
RTOS–UH

Prof. Dr.–Ing. W. Gerth

Last update 21/06/2006

Vorwort

Mehr als zwnazig erfolgreiche Jahre der industriellen Anwendung von RTOS–
UH liegen hinter uns. Die Zahl der registrierten RTOS-UH Systeme, die bisher
das Licht der Welt erblickt haben, überschreitet längst die 40.000-er Grenze.
Der außerordentliche Erfolg der 68k-Prozessoren in der Automatisierungstech-
nik hat dazu sicher seinen Teil beigetragen. Inzwischen ersetzen die schnelleren
PowerPC-Prozessoren bei immer mehr Einsätzen die 68k-Familie. Oft werde
ich gefragt, ob denn die Unterstützung der bewährten 68k-Familie auch in Zu-
kunft mit vollem Engagement bei der Systempflege weitergehen wird. Wer das
vorliegende Handbuch genauer liest, kennt die Antwort: Weil es für die 68k-
und die PowerPC-Familie nur einen gemeinsamen Quellcode aller Systemkom-
ponenten für die Transferassemblierung gibt, ist es gar nicht möglich, den einen
oder den anderen Prozessortyp bei der Systempflege zu favorisieren.
Gegenüber der Vorgängerversion dieses Handbuches hat es kleinere Erweite-
rungen und Korrekturen gegeben. Nicht geändert haben wir unsere primären
Zielsetzungen:

• Kompaktheit:

Während allgemein der Speicherbedarf selbst für einfachste Programm-
funktionen in den letzten Jahren stark angewachsen ist, passen Anwen-
dungen mit RTOS–UH immer noch in die kleineren EPROMs. Unser
besonderes Augenmerk gilt stets den embedded Anwendungen.

• Skalierbarkeit:

Die Anwendungen reichen vom kleinsten Controller, bei dem das kom-
plette System ohne externe Speicher direkt auf dem Chip abgelegt ist
(System on a Chip) bis zum komplexen VME-System mit hunderttau-
senden Zeilen von Quellkode. Auch Projekte mit vielen hundert Tasks
auf einem Prozessor sind keine Seltenheit.

• Nachvollziehbare Arbeitsweise:

Durch die PEARL-Orientierung des Betriebssystemes ergab sich zwangs-
läufig eine klare und sehr präzise beschreibbare Architektur – optimal für
die Automatisierungstechnik.

2

• Echtzeiteigenschaften:

Der problematischste Bereich aller Echtzeit-Betriebssysteme – Input und
Output, Vernetzung – hat in RTOS–UH längst seine Schrecken verlo-
ren. Bei wichtigen Strukturmerkmalen – etwa der Verlagerung des I/O auf
prioritätsgerechte Dämonprozesse – werden keine Kompromisse gemacht.
Wir versuchen stets, auch die unvermeidlichen Auswirkungen von Ver-
netzung und Multiwindowing auf die Echtzeiteigenschaften so gering wie
irgend möglich zu halten. Im Rahmen der wissenschaftlichen Weiterent-
wicklung haben wir ein objektives Meßverfahren für die Dienstgüte eines
Echtzeitbetriebssystemes entwickelt und publiziert – damit konnten wir
die Systemstruktur nach wissenschaftlichen Kriterien weiter optimieren.

• Qualitätssicherung:

Wir dokumentieren und verifizieren jede Änderung im System mit größter
Sorgfalt. Bevor eine neue Version freigegeben wird, hat sie eine lange Test-
phase mit hochqualifizierten Testern zu überstehen. Wir verwenden von
der Qualitätssicherungsnorm ISO 9000 die für Software gültige Hand-
lungsanweisung ISO 9001-2 als interne Leitlinie. Viel aussagekräftiger ist
jedoch eine erfolgreich abgelegte offizielle Betriebsbewährtheitsprüfung
nach DIN VDE 801/A1. Für diese Zertifizierung kommen nur Systeme in
Frage, die mit einer einzigen Version – das kann niemals die neueste sein –
viele Millionen fehlerfreie Betriebsstunden in verschiedenen Einsatzfällen
nachweisen können. In diesem Fall waren es 972 industriell eingesetzte
CPUs, die über 9 Millionen Stunden ausgewertet wurden.

• Anwenderkontakt:

Durch ständigen Kontakt mit den Anwendern eliminieren wir alle be-
kannten Fehler umgehend. Auch Anregungen zur Verbesserung greifen
wir gerne auf, soweit dies mit vernünftigem Aufwand möglich ist. Das
System liegt bei vielen modischen Nutzeroptionen gegenüber der PC-
oder Workstation-Welt manchmal etwas zurück. Ich denke aber, daß eine
strukturell saubere Einbindung neuer Dinge für den Anwender am Ende
nützlicher ist als eine Hauruck-Lösung.

Die Urform dieses Handbuches wurde vor einigen Jahren von der Fa. IEP Han-
nover durch Umschreiben der alten Vorlage nach TEX initiiert. Aus dieser klei-
nen Dokumentation wurde inzwischen ein Werk mit über 700 Seiten.

Durch die Herstellung mit TEX gibt es das Handbuch auch als Postscript- und
als PDF-File. Bitte beachten Sie dazu den Wegweiser auf unserer Internetseite.

3

Wichtig:

Trotz aller Sorgfalt ist auch unser System höchstwahrscheinlich nicht fehlerfrei.
Gleiches ist auch für dieses Handbuch anzunehmen. Eine Haftung für Schäden,
die durch den Gebrauch von RTOS–UH oder durch Fehler in diesem Doku-
ment entstehen, wird ausdrücklich ausgeschlossen.

Bitte maximieren Sie die Zuverlässigkeit Ihrer Software und inspizieren Sie
zur rechten Zeit die Fehlerbulletins, die Sie über unsere Homepage erreichen
können!

www.rtos-uh.de.

www.rtos.irt.uni-hannover.de.

http://www.rtos-uh.de
http://www.rtos.irt.uni-hannover.de

4

Diese Seite widme ich den vielen hochqualifizierten Helfern, die bei der Entste-
hung des Systemes mitgewirkt haben. Sie haben schwierige Teilprobleme mit
Ingenieursfleiß gelöst und meist auch Code beigesteuert. Nur so konnte das
System seine heutige Reife erreichen. Mein Dank gilt insbesondere:

Dr.-Ing. Dipl.-Ing. Dipl.-Ök. A. Albert seinerzeit IRT Uni Hannover
Dipl.-Ing. R. Arlt heute Fa. esd Hannover
Dipl.-Ing. H. Bartels heute Fa. ATR
Dipl.-Ing. U. Bartels seinerzeit Hannover
Dr.-Ing. S. Bunzel seinerzeit Hannover
Dipl.-Ing. A. Domeyer seinerzeit Hannover
Dipl.-Ing. A. Hadler heute Fa. IEP Hannover
Prof. Dr.-Ing. R. Hausdörfer heute FH Lippe
Dipl.-Ing. M. Huck heute Fa. esd Hannover
Dr.-Ing. H. Husmann seinerzeit Hannover
Dipl.-Ing. I. Jovers seinerzeit Hannover
Dipl.-Ing. K. Koerth heute Fa. IEP Hannover
Dipl.-Ing. B. Kroll heute Fa. IEP Hannover
Prof. Dr.-Ing. K.-H. Niemann seinerzeit Hannover
Dr.-Ing. T. Lilge IRT Uni Hannover
Dr.-Ing. T. Probol seinerzeit Hannover
Dr.-Ing. B. Wolter seinerzeit Hannover

Für Ihre Anwendungen wünsche ich Ihnen viel Erfolg!

Hannover, im Juni 2006 Prof. Dr.-Ing. W. Gerth

c©1984 – 2006 Prof. Dr.-Ing. W. Gerth (für das Handbuch und RTOS–UH)
Dies ist die Handbuchversion 5.4 vom 21/06/2006 Sie umfaßt 718 Seiten.

Inhaltsverzeichnis

1 Die innere Architektur 17

1.1 Was muß der Systemanwender wissen? 17

1.2 Programme, Prozesse und Kontext 18

1.3 Beschreibung des RTOS–UH-Prozeßmodelles . 21

1.4 Das I/O-System 24

2 Betriebssystem RTOS–UH 27

2.1 Schnellkurs Teil 1: Erste Schritte 27

2.1.1 Einschalten 27

2.1.2 Erste Aktion 28

2.1.3 PEARL–Programmentwicklung 29

2.1.4 Retten des Programmes auf Platte oder
Diskette 34

2.1.5 Zeit sparen durch Multitasking 36

2.1.6 Das Bediensystem in Kürze 36

2.1.7 Empfehlung für das weitere Anlernen . . 40

2.2 Schnellkurs Teil 2: Schnittstellen und Dations . . 41

2.3 Schnellkurs Teil 3: Typische Bedienungsfehler . . 44

2.4 Interpretation von Fehlermeldungen 46

2.4.1 Der Error-Dämon 46

2.4.2 Beispiele für Fehlermeldungen 47

2.4.3 Der Exception-Handler 48

2.5 Das Pathlist-Konzept von RTOS–UH/PEARL . 49

2.6 Einige technische Daten 53

5

6 INHALTSVERZEICHNIS

3 Bedienung des Systems 55

3.1 Struktur der RTOS-Shell 55

3.1.1 Die 8 Ebenen der Shell 55

3.1.2 Prozeßphilosophie der RTOS–UH–Shell 59

3.1.3 Das User-Environment 60

3.2 Umgang mit der Shell 61

3.2.1 Aufbau der Anweisungszeile 61

3.2.2 Bedienung durch den primären Shellprozeß 62

3.2.3 Bedienung durch einen sekundären Shell-
prozeß . 62

3.2.4 Bedienfunktionen mit Hilfe der Datensta-
tion /XC 64

3.2.5 Zeitliche Hintereinanderschaltung von Be-
fehlen . 65

3.2.6 Antwort der Shell im Fehlerfall 67

3.3 PEARL–codierte Bedienbefehle 68

3.4 Besonderheiten bei transienten Kommandos . . . 72

3.5 Die Shell-Sprache 74

3.5.1 Aufruf von Shellskripten 74

3.5.2 Sprachumfang Shell-Interpreter 76

3.5.3 Kommentare 76

3.5.4 Metazeichen 77

3.5.5 Shell-Variablen 77

3.5.6 E/A-Befehle 80

3.5.7 Ablaufsteueranweisungen 81

3.5.8 Bedingungs-Anweisungen 84

3.5.9 Zeichenketten-Behandlung 85

3.5.10 Verschiedene Anweisungen 88

3.6 Tabelle der Bedienbefehle 95

INHALTSVERZEICHNIS 7

3.7 Beschreibung der Bedienbefehle 99

4 Der Editor Rtos-Word 227

4.1 Einleitung . 227

4.2 Erste Schritte . 228

4.2.1 Öffnen einer Datei 228

4.2.2 Statuszeile, Tabulatorleiste und Fenster-
aufbau . 230

4.2.3 Fenster-Elemente im Window-Modus . . . 232

4.3 Bearbeitung von Texten 232

4.3.1 Beschreibung der Bedienbefehle 232

4.3.2 Statusänderungen des Editors 233

4.3.3 Grundlegende Bearbeitung einer Datei . . 235

4.3.4 Befehle zum Blättern 239

4.3.5 Dateibefehle 241

4.3.6 Blockbefehle 245

4.3.7 Befehle für den Zeilenpuffer 247

4.3.8 Tabulatorbefehle 248

4.3.9 Marken 250

4.3.10 Das Hilfesystem 250

4.3.11 Befehle zum Aufräumen 251

4.3.12 Zusätzliche Befehle im Window-Modus . . 251

4.3.13 Suchen und Ersetzen 254

4.3.14 Ausführen von Batchdateien 255

4.4 Übergabeparameter des Bedienbefehles 256

4.5 Die Fernsteuerung 257

4.6 Alphabetisches Verzeichnis der Kommandos . . . 259

4.7 Standardmäßig unterstützte Terminals 264

4.8 Das Konfigurationsmodul 264

8 INHALTSVERZEICHNIS

4.8.1 Die Anpassung an Ihr Terminal 265

4.8.2 Beispielmodul 265

4.9 Besonderheiten bei der Einbindung in das Be-
triebssystem RTOS-UH 268

4.10 Statusmeldungen und Eingabeaufforderungen . . 269

4.11 Fehlermeldungen 272

4.12 Technische Daten 275

5 Programmieren in PEARL 277

5.1 Die PEARL-Compiler-Familie 277

5.1.1 Compilertypen und Zielprozessoren 277

5.1.2 Sprachliche Besonderheiten des UH–PEARL281

5.2 Preprozessor-Anweisungen 286

5.2.1 Die Preprozessoranweisung DEFINE . . . 287

5.2.2 Die INCLUDE-Anweisung 288

5.2.3 Bedingte Kompilation: die Preprozes-
soranweisung IF 290

5.2.4 Bedingte Compilation: Schaltbarer Kom-
mentar . 292

5.3 Globale Sondereinstellungen des Compilers . . . 293

5.3.1 SETLINE, MAXERR und MODE 293

5.3.2 Modulgröße, ROM-Code 295

5.3.3 Codegenerierung unterdrücken 296

5.4 Lokale Hilfs– und Testmodi des Compilers 297

5.4.1 Übersetzungsprotokoll ein–/ausschalten . 297

5.4.2 Codeprotokollierung ein–/ausschalten . . 297

5.4.3 Markierungsoption ein–/ausschalten . . . 298

5.4.4 Seitenvorschub im Protokoll erzeugen . . 299

5.4.5 Index–, Selektor– und Parametertest akti-
vieren . 300

INHALTSVERZEICHNIS 9

5.4.6 EPROM–Prozedur erzeugen 302

5.4.7 Prozedurparameterstrukturanalyse unter-
drücken 302

5.4.8 Prozedurarbeitsspeicher reservieren 303

5.4.9 Konstantenpool leeren 304

5.4.10 Default-PRIO setzen 304

5.5 Umgang mit Datenstationen in PEARL 305

5.5.1 Festlegungen im Systemteil 305

5.5.2 Beschreibung AI und MB-Parameter . . . 307

5.5.3 Besonderheiten bei der formatierten Ein-
gabe (”GET“) im UH–PEARL 312

5.5.4 Besonderheiten bei der formatierten Aus-
gabe (”PUT“) im UH–PEARL. 313

5.5.5 Erweitertes OPEN/CLOSE–Statement . . 313

5.5.6 E/A–Formate 314

5.5.7 Datenkonvertierungsformate 315

5.5.8 Steuerformate 319

5.5.9 Report- und Positionierungsformate . . . 321

5.6 Umgang mit Feldern und Zeigern 322

5.6.1 Besonderheiten bei Feldzugriffen 322

5.6.2 Arbeiten mit Zeigervariablen 323

5.7 Einbaufunktionen 329

5.7.1 Mathematische Funktionen 329

5.7.2 Die Funktion ”ST“ zur Statusabfrage von
Datenstationen 331

5.7.3 Bitmapping Basis–Grafik 335

5.7.4 Besondere E/A–Operationen 336

5.7.5 READ/WRITE 338

5.7.6 READ/WRITE mit S-Format 340

5.7.7 Die Einbaufunktion NOW 341

10 INHALTSVERZEICHNIS

5.7.8 Die Funktion DATE zum Einlesen des Da-
tums . 341

5.7.9 Die Einbaufunktion REFADD 342

5.7.10 Die Funktion ASSIGN zum Ändern der
Datenstation 342

5.7.11 Die Funktionen RANF und DRANF zur
Erzeugung von Zufallszahlen 344

5.7.12 Die Funktion TASKST zum Feststellen ei-
nes Taskstatus 345

5.7.13 Prozeduren zum Lesen und Ändern der
Taskpriorität 346

5.7.14 Die Prozeduren TOIEES und TOIEED
zur Floatzahl–Wandlung 348

5.7.15 Die Prozeduren TORTOS und TORTOD
zur Floatzahl–Wandlung 348

5.7.16 PEARL-Unterprogramme für Shellfunk-
tionen . 349

5.7.17 PEARL-Unterprogramme für Textstrings 355

5.7.18 PEARL-Unterprogramme für Datensta-
tionen . 361

5.8 Aufruf von C-kodierten Unterprogrammen 368

5.9 Aufruf von Assembler–Unterprogrammen 370

5.10 Ausnahmebehandlung und Signale 372

5.10.1 Vorgänge im Systemkern 372

5.10.2 Exception-Händler in PEARL 375

5.11 Fehlermeldungen zur Compile–Zeit 377

5.11.1 Lokal detektierbare Fehler 377

5.11.2 Bilanzdetektierbare Fehler 380

5.11.3 Nicht sprachbedingte Abbruchkonditionen 380

5.11.4 Warnungen 382

5.11.5 Abschlußmeldungen 382

INHALTSVERZEICHNIS 11

5.12 Fehlermeldungen zur Laufzeit 385

5.12.1 Fehlermeldungen der implementierten ma-
thematischen Einbaufunktionen 387

6 Datenstationen 389

6.1 Datenstationen Ax, Bx, Cx, UL 389

6.2 Datenstation BU 394

6.3 Eigene BU–Datenstation 397

6.4 Datenstation Dx 402

6.5 Datenstationen ED/EDB 404

6.6 Datenstationen Fx/Hx 407

6.7 Stationszugriff über ”LD“ 409

6.8 Datenstation NIL 410

6.9 Parallel–Port . 412

6.10 Datenstationen VI, VO 413

6.11 Datenstation XC 415

6.12 Prozeßinterrupts 416

6.13 Einbindung eigener Prozeßinterrupts 417

7 Der RTOS–UH Assembler 419

7.1 Allgemeine Eigenschaften 419

7.2 Programmzeilenaufbau 420

7.2.1 Labelfeld 420

7.2.2 Operationsfeld 421

7.2.3 Operanden–Feld 424

7.2.4 Ausdrücke 426

7.2.5 Die Assemblerdirektiven 427

7.3 Besonderheiten des T-Code 429

7.3.1 Problematische 68k-Befehle 429

7.3.2 Optimierter T-Code 430

12 INHALTSVERZEICHNIS

7.3.3 Zielmaschinenkonditionierte Befehle . . . 431

7.3.4 Formatdefinition 432

7.4 PowerPC-Assembler 435

7.5 Tabellenkapazität 436

7.6 FPU–Befehle und Maxi–Version 436

7.7 S–Records . 440

7.8 Assembler–Fehlermeldungen 442

7.9 Einbettung von Assemblerprogrammen 446

7.9.1 Beispiele für Modul–/Taskköpfe 448

7.9.2 Task-Deklarationsblock 450

8 Innenstrukturen des Systemes 451

8.1 Die Systemtraps 451

8.1.1 Hinweise zur Benutzung der Traps 451

8.1.2 Tabelle der Traps 453

8.2 Das Filesystem 551

8.2.1 Der Verwaltungskopf 551

8.2.2 Die Datenblöcke 553

8.2.3 Eigene Driver für das RTOS–UH-Filesy-
stem . 553

8.3 Das Communication Element 559

8.3.1 Benutzung und Aufbau des CE 559

8.3.2 Die Modebytes 562

8.4 Assemblerkodierte PEARL-Unterprogramme . . 566

8.4.1 Parameterübergabe bei PEARL90 566

8.4.2 Der Signaturcheck in PEARL90 571

8.4.3 Der Feldbeschreibungsblock 574

8.5 Parameterübergabe im alten PEARL80 576

8.6 Umstellung von alten Assemblerunterprogram-
men auf PEARL90 586

INHALTSVERZEICHNIS 13

8.7 Hyperprozessorbefehle 595

8.8 E/A in Assemblersprache 605

8.9 Ergänzung von E/A-Treibern 608

8.10 Exception-Handler 618

8.10.1 Einführung 618

8.10.2 Anschluß des Exception-Handlers 619

8.10.3 Selbstverarbeitete Ausnahmebehandlungen 620

8.10.4 Interna 623

9 Das Scheibenkonzept 625

9.1 Die Systemkonfigurierung 625

9.2 Modifikation eines Systems 626

9.2.1 Beispielhafte Systemerweiterung 628

9.3 Beschreibung der Scheiben 634

10 Netzwerkoperationen 663

11 Glossar 671

12 Stichwortverzeichnis 685

Tabellenverzeichnis

3.1 Übersicht über mögliche Shellprozesse 60

3.2 Schlüsselworte der Shellsprache 92

3.3 Die vorbesetzten Shellvariablen 93

3.4 Metazeichen der Shellsprache 93

3.5 Sonderzeichen der Shellsprache 94

3.6 Kurznamen der Taskzustände 154

3.7 Kurznamen der Speichersektionen. 202

4.1 Erlaubte Textzeichen für den Editor Rtos-Word 229

4.2 Statuszeilenelemente des Editors Rtos-Word . 231

4.3 Der Einsetzmodus von Rtos-Word 234

4.4 Der Überschreibmodus von Rtos-Word 235

4.5 Korrektur von Dateinamen bei Rtos-Word . . 242

4.6 Parameter von Rtos-Word beim Verlassen einer
Datei . 244

4.7 Farbzuordnungstabelle von Rtos-Word 252

4.8 Rtos-Word-Kommandos mit einem Buchstaben 259

4.9 Rtos-Word-Kommandos im ”E“-Submenü . . . 260

4.10 Rtos-Word-Kommandos im ”O“-Submenü . . . 261

4.11 Rtos-Word-Kommandos im ”P“-Submenü . . . 261

4.12 Rtos-Word-Kommandos im ”X“-Submenü . . . 262

4.13 Rtos-Word-Kommandos im ”B“-Submenü . . . 262

4.14 Rtos-Word-Kommandos im ”Esc“-Submenü . 263

5.1 Datentypen in RTOS–UH/PEARL 282

14

TABELLENVERZEICHNIS 15

5.2 DIN/PEARL90–Abweichungen 285

5.3 Gerätebezeichner in PEARL 307

5.4 Ersatzformate bei LIST 319

5.5 Mathematische Funktionen in PEARL 329

5.6 Mathematische Funktionen beim 68881-PEARL . 331

5.7 Standardwerte der ST-Funktion bei der PEARL-
E/A . 332

5.8 ST–Werte bei abgeschaltetem NE-Flag 334

5.9 Taskstatus . 346

8.1 Filesystem, Verwaltungskopf 552

8.2 Filesystem, Datenblock 553

8.3 Aufbau des CEs 561

8.4 CE, linkes Modebyte 563

8.5 CE, linkes Modebyte (untere 3 Bits) 563

8.6 CE, rechtes Modebyte 563

8.7 Betriebsbefehle des CEs 564

8.8 Statusbyte des CEs 565

8.9 Parameterschnittstelle bei PEARL90 567

8.10 Der Feldbeschreibungsblock in PEARL90 575

8.11 Struktur von Exception-Frames 624

16 TABELLENVERZEICHNIS

(Leere Seite vor neuem Kapitel)

Kapitel 1: Die innere Architektur

1.1 Was muß der Systemanwender wissen?

Kaum ein Hersteller macht verwertbare Angaben über das innere Funktions-
modell seines Betriebssystemes. Das bedeutet, daß eklatante Schwächen des
Systemkonzeptes manchmal sehr lange unerkannt bleiben. Eine wichtige Frage
ist ja stets die nach einer sicheren und schnellen Reaktion des Rechnersystemes
auf Alarme und Ausnahmesituationen. Zu dem Thema ”Reaktionszeit“ hat sich
leider in letzter Zeit eine unseriöse Unart eingebürgert: sehr oft wird z. B. als
Reaktionszeit einfach nur jene Zeit angegeben, die vom Eintreffen des äußeren
Ereignissignales bis zum Beginn der Interruptroutine (Supervisorprozeß s. u.)
verstreicht. Diese Zeit ist bei RTOS–UH strukturbedingt absolut hervorra-
gend, doch verwenden wir sie niemals als Qualtitätsmaß. Sie besagt nämlich
für sich genommen überhaupt nicht, daß man sichere Echtzeitsoftware mit dem
System erzeugen kann. Man erlebt gerade bei dieser Frage oft, daß es selbst sog.

”Fachberatern“ an jeglichem Verständnis für die innere Arbeitsweise der von
ihnen vertriebenen Systeme fehlt.

Mit diesem Kapitel wollen wir unsere Anwender in die Lage versetzen, bei der
Auswahl eines Betriebssystemes die richtigen Fragen zu stellen und treffende
Qualitätsargumente für die Verwendung unseres Systemes zu finden. Schließlich
haben wir mit den intellektuellen Möglichkeiten einer Universität viele Proble-
me erkannt und gelöst, die von anderen Systemen nicht beherrscht werden. Bei
fast jeder Echtzeitanwendung bleibt ein unbekanntes Restrisiko, weil im Pro-
bebetrieb stets nur irgendein kleiner Ausschnitt der im späteren Betrieb denk-
baren zeitlichen Konstellationen wirklich getestet werden kann. Minimieren Sie
dieses Risiko – wenn möglich zu Null – und studieren Sie das Multitasking-
konzept unseres Systemes.

17

18 1.2 Programme, Prozesse und Kontext

1.2 Programme, Prozesse und Kontext

Der Begriff Programm ist sicher jedermann geläufig. Man versteht darunter
eine Handlungsanweisung an den Rechner, bestimmte Abläufe selbständig aus-
zuführen. Wir unterteilen Programme in ”Systemprogramme“ und ”Anwen-
derprogramme“ . Erstere werden meist vom Hersteller des Betriebssystemes
stammen und sind Teil des Betriebssystemes. Anwenderprogramme enthalten
dagegen die eigentliche spezielle Problemlösung, z. B. Regelalgorithmen, Anla-
genüberwachung oder die Bedienerunterstützung. Anwenderprogramme benut-
zen die (zumeist universellen) Systemprogramme, während es eine umgekehr-
te Abhängigkeit nicht gibt. Dieser eingeführte Programmbegriff ist jedoch lei-
der nicht ausreichend zum Verständnis eines modernen Multitasking-Echtzeit-
Betriebssystemes.

Eine zentrale Bedeutung in modernen Echtzeitmultitaskingsystemen hat der
Begriff Prozeß. Darunter verstehen wir den Vorgang, der abläuft, wenn der
Prozessor ein Programm bearbeitet. Wenn unser Rechnersystem nur einen Pro-
zessor besitzt, so kann zu jedem Zeitpunkt stets nur genau ein Prozeß wirklich
ablaufen. Anders ausgedrückt: Es ist zwar möglich, ja sogar üblich, daß es mehr
als einen Prozeß gibt, es haben jedoch nur immer genauso viele eine Ablauf-
geschwindigkeit > 0, wie es verfügbare Prozessoren im System gibt. Prozesse
sind also quasi die Inkarnation von Programmen, sie sind Subjekte, die nach ei-
ner Programmvorschrift handeln, aber manchmal vorübergehend bewegungslos
verharren.

Wenn der Prozessor einen Prozeß ablaufen läßt, dann muß er sich einige Noti-
zen machen, z. B. welcher Maschinenbefehl als nächster zu bearbeiten ist, sowie
einige Zwischenresultate, die er sich in seinen Registern auf dem Chip ”merkt“.
Wenn der Prozeß eine Weile ruht und der Prozessor einen anderen lebendig wer-
den läßt, so muß die Gesamtheit dieser ”Notizen“ aufgehoben werden, damit
eine korrekte Fortführung des im Moment ruhenden Prozesses später möglich
ist. Die Gesamtheit dieser Hilfsinformationen nennen wir den Kontext. Aus
wieviel Daten dieser Kontext besteht, hängt vom Prozessor und vom Prozeß ab:
beim 68000 genügen für die ”Nutzerprozesse“ (s. u.) 80 bytes, beim PowerPC
dagegen sind es mindestens 160 Bytes. Bei Benutzung des Gleitkommarechen-
werkes des PowerPC kann das Volumen des Kontextes sogar über 400 Bytes
erreichen. Bei den sogenannten ”Supervisorprozessen“ (s. u.) besteht der Teil
des Kontextes, den sie brauchen und ändern, oft nur aus wenigen Bytes.

1.2 Programme, Prozesse und Kontext 19

Wenn der Prozessor einen Prozeß ruhen läßt, um einen anderen (weiter) zu
bearbeiten, so rettet er den alten Kontext und lädt den neuen: das nennen
wir Kontextswitch. Wegen des größeren Datenvolumens ist der Begriff aber
eigentlich nur beim Umschalten zwischen den ”Nutzerprozessen“ gebräuchlich.
Auch der Begriff Prozeßumschaltung ist in der Regel nur für den Wechsel
von einem Nutzerprozeß zum anderen üblich. In den Diagrammen verwenden
wir das Kürzel ”csw“ für diese Umschaltung.

Um es noch einmal zu veranschaulichen, hier eine Übertragung der obigen Fach-
begriffe in das normale Leben: Auf Papier gedruckte Noten treten an die Stelle
der Programme. Das Flötenspiel ist der Prozeß, der diese Handlungsanweisung
(Programm) lebendig werden läßt. Die Flöte samt Spieler ist logischerweise das
Äquivalent zum Prozessor. Wenn mehrere Stücke gleichzeitig gespielt werden
müssen, es aber nur einen Flötenspieler gibt, so muß der Spieler auf seiner Flöte
abschnittweise mal dieses und mal jenes Stück weiterspielen. Dazu muß er sich
aber mindestens die jeweils nächste Note und die gültige Tonart als ”Kontext“
für jeden dieser Prozesse merken und bei Wiederaufnahme des Stückes erneut
installieren. (Gottseidank gibt es solcherlei ”Katzenmusik“ nur in den Multi-
taskingbetriebssystemen und nicht bei Konzerten . . .)

In der ...ix-Welt sind die ”Prozesse“ normalerweise an einen Nutzerarbeits-
platz gebunden und wollen nichts miteinander zu tun haben (sie streiten sich
höchstens um die Resourcen). Erst in neuerer Zeit (POSIX-Norm-Versuch)
denkt man dort an eine besondere Form von Prozessen, die ”Threads“ ge-
nannt werden. In einigen ...ix-Derivaten sind die Threads bereits heute instal-
liert. Threads sollen immerhin gemeinsame Speicherzellen kennen. Ob mit der
POSIX-Schnittstellennorm nach all den Jahren der Diskutiererei am Ende ir-
gendetwas für die Automatisierungstechnik brauchbares herauskommt, kann
man weiterhin anzweifeln. Das PEARL-Prozeßkonzept ist sicher erheblich um-
fassender, dabei aber auch flexibler und viel praxisorientierter.

20 1.2 Programme, Prozesse und Kontext

In unserer RTOS–UH-Welt kennen wir aus guten Gründen folgende zwei Sor-
ten von Prozessen:

• Supervisorprozesse.

Diese Prozesse laufen in RTOS–UH stets auf Systemebene im Supervi-
sormode des Prozessors. Es würde gegen das Sicherheitskonzept unseres
Systemes verstoßen, diese Sorte von Prozessen in die Hand des Nutzers
zu geben. Wie unten erläutert, gehören u. a. die Interruptantwortrouti-
nen und die mit Systemtraps angestoßenen Prozesse zu dieser Kategorie.
Diese Prozesse dürfen niemals Warteschleifen oder ähnliches ausführen,
denn ihre zeitliche Kürze ist entscheidend für die sichere Echtzeitfunktion
des Systemes. Logischerweise soll das Datenvolumen ihres Kontextes so
klein wie möglich sein.

• Nutzerprozesse.

In der RTOS–UH-Welt nennen wir diese Prozesse auch ”Tasks“ . Sie
entsprechen den PEARL-Tasks und damit in etwa den ”Threads“ der
POSIX-Philosophie. Allerdings gibt es in RTOS–UH auch Prozesse
(z. B. die Shell-Prozesse), die eher den normalen Prozessen der ...ix-Welt
entsprechen. Das Wort ”Nutzer...“ bedeutet nicht zwingend, daß in diese
Gruppe nur Prozesse gehören, deren Programm ein Nutzer kodiert hat.
Auch die im System immer vorhandene Leerlauftask (#IDLE), sowie der
Errordämon (#ERRDM) und die I/O-Dämonen sind in diesem Sinne Nut-
zerprozesse.

1.3 Beschreibung des RTOS–UH-Prozeßmodelles 21

1.3 Beschreibung des RTOS–UH-Prozeßmodelles

Das Innenleben eines Echtzeitbetriebssystemes mit seinen Stärken und Schwä-
chen begreift der Ingenieur am besten an Hand eines sauber definierten ”Pro-
zeßmodelles“ . Dazu studieren wir hier einfach einen hypothetischen Ablauf
längs der Zeitachse. Solche Prozeß/Zeit Diagramme werden vom Autor seit
sehr langer Zeit in der Prozeßrechentechnikvorlesung benutzt. Sie haben sich
längst beim Studium der verschiedensten Phänomene bewährt. Als Ordinate
(vertikale Achse) wird mit wachsender Priorität nach oben für jeden Zeitpunkt
derjenige Prozeß markiert, dessen Ablaufgeschwindigkeit von Null verschieden
ist. Jeder Prozeß ist durch Prozesse, die im Diagramm unter ihm liegen, nicht
unterbrechbar, solange er selbst noch arbeiten kann.

6

-
6 6 6 6

Idle
Tsa
. . .
Tsx
Tsy
PU
SF
IR0
IR1
. . .
IRx
IS

IR0 SF1 SF2 IR1

?

6

?

6

?

6

csw
SF1 SF2

preemption

csw
SFe

end

csw
SF2

User

Supervisor

Zeit

Prozeß

Ein beispielhaftes Prozeß/Zeitdiagramm von RTOS–UH.

An der Grenzlinie zwischen Supervisor- und Nutzerprozessen liegt der Pro-
zeßumschalter ”PU“. Er ist gleichzeitig der niedrigst priorisierte Supervisor-
prozeß. Jede Rückkehr des Prozessors aus dem Supervisormode oberhalb der

”PU“-Linie in den User-Bereich führt zu einer (evtl. sehr kurzen) Inspektion
der Sachlage durch den ”PU“: es kommt zum Kontextswitch ”csw“ oder nicht.
Im letzteren Fall wird dies durch eine nur kurze waagerechte Linie ohne Zusatz

”csw“ auf der ”PU“-Ebene dargestellt.

22 1.3 Beschreibung des RTOS–UH-Prozeßmodelles

Im Diagramm dargestellt ist die durch einen Hardwareinterrupt bewirkte Ak-
tivierung der Task ”TSa“, wie sie etwa durch das PEARL-Statement

WHEN IR0 ACTIVATE TSa;
vereinbart sein könnte.

Die Task TSa ruft dann eine Systemfunktion SF1 auf, z. B. ein erfolgreiches
REQUEST auf eine Semaphorvariable. Im obigen Beispiel wurde angenom-
men, daß beim Aufruf einer weiteren Systemfunktion SF2 zufällig gerade ein
Hardwareinterrupt ausgelöst wird, der zum echten ”preemptive Contextswitch“
(CSW) zugunsten der Task TSx führt. SF2 wird also abgebrochen, damit
TSx möglichst sofort starten kann. TSx ruft an ihrem dynamischen Ende die
Terminate- (end)-Systemfunktion SFe auf. Der PU exekutiert einen Contexts-
witch, der jedoch nur fiktiv in den Prozeß TSa zurückführt, da sofort die ab-
gebrochene Systemfunktion SF2 wieder in Bearbeitung genommen wird. Ein
eventueller interner Kontext von SF2 wird bedingt durch ihre Bauart dabei
neu erstellt - mußte also vorher nicht gerettet werden (s. u.).

Trotz der im Gegensatz zu anderen Betriebssystemen klaren Struktur von
RTOS–UH gibt es auch hier natürlich Leistungsgrenzen.
So gibt es zwangsläufig durch die Maschinenbefehlssequenzen in den Supervi-
sorprozessen oberhalb der ”PU“-Linie Zeitabschnitte, in denen eine Umschal-
tung durch den ”PU“ nicht möglich ist – z. B. bei der Systemfunktion ”Re-
quest Semaphore“ zwischen Testen und Umsetzen der Variablen. Für die kor-
rekte Funktion des Semaphorkonzeptes ist es sogar zwingend notwendig, daß
der ”PU“ diese beiden Operationen nicht teilen kann. Je länger aber jeweils die
ungünstigste Zeitspanne einer solchen Behinderung des ”PU“ ist, desto schlech-
ter ist die Echtzeitqualität (Determiniertheit) des Systemes! Es gibt tatsächlich
einige sogenannte Echtzeitsysteme, die hier je nach Nutzerprogrammsituation
keine obere Grenze zu kennen scheinen und eigentlich in der Echtzeit-DV nicht
eingesetzt werden dürften.

1.3 Beschreibung des RTOS–UH-Prozeßmodelles 23

Die durch den ”PU“ nicht aufspaltbaren Sequenzen sind in RTOS–UH im
Prinzip vorher statisch auszählbar, hängen also z. B. nicht von der aktuellen
Speicherbelegung ab. Auch die Suche nach Platz oder irgendwelchen Objekten
im Speicher ist nach jeweils einer Handvoll Maschinenbefehle immer wieder
für den ”PU“ abbrechbar. Bei der Unterbrechung einer ”SF“ durch den ”PU“
gilt so eine Art ”Throw-away“-Prinzip: Die ”SF“ selbst haben keinen eigenen
Kontext oder nur solchen, der bei Neubeginn der ”SF“ von alleine wiederkehrt;
was die ”SF“ bis zum Abbruch geleistet hat, wird einfach bei Wiederaufnahme
der verdrängten Task wiederholt. Dadurch entsteht theoretisch natürlich ein
Verlust von Prozessorarbeitsleistung. Er ist jedoch in der Praxis kaum nach-
zuweisen. Lediglich beim Labortestbetrieb mit Signalgenerator und zyklischen
Interrupts im Frequenzbereich der (hohen) Systemleistungsgrenze beobachtet
man verfahrensbedingte charakteristische Phänomene. Man beachte, daß die

”verworfene Arbeit“ ja stets dem minderwichtigen, zu verdrängenden Prozeß
aufgehalst wird. Diese Technik wurde in den modernen Versionen von RTOS–
UH ständig weiter perfektioniert und ist sicher einer der Gründe für die sehr
gute Phasentreue, Determiniertheit und schnelle Reaktivität der aktuellen Im-
plementierungen.

Die Abbrechbarkeit von Systemfunktionen ist für den Regelungstechniker zwin-
gend. Multiusersysteme, wie z. B. normales Unix oder gewisse OS-x haben trotz
ihrer sonstigen Qualitäten hier ganz gravierende konzeptionelle Mängel, die sie
für typische anspruchsvolle Regelaufgaben ungeeignet machen: Irgendeine nie-
derpriore Task veranlaßt eine Terminalausgabe, ruft dazu eine ”SF“ auf, und
schon ist der Reglerzyklus völlig zerstört, weil der Timerinterrupt erst am Ende
der SF zum Taskwechsel führt. Das große Gefahrenpotential durch die Verwen-
dung solcher Systeme wird hier sehr deutlich.

In RTOS–UH liegen oberhalb des Prozeßumschalters folgende Supervisorpro-
zesse:

IS = Interruptsperre, durch Software ein-/ausgeschaltet
IR = Interruptroutinen, durch Prozessorhardw. aktiviert
SF = Systemfunktion, durch Software-IR/Trap aktiviert

24 1.4 Das I/O-System

Bei unserem System wird aus einsichtigen Gründen generell die Strategie ver-
folgt, möglichst wenig Aktionen von den Supervisorprozessen ausführen zu
lassen. Wie an dem Prozeß-/Zeitdiagramm deutlich wird und oben schon ge-
sagt wurde, entziehen sie den Nutzerprozessen Prozessorleistung und gefähr-
den die Determiniertheit von Anwenderprogrammen. Sie sind deswegen quasi
Störenfriede im System. Im RTOS–UH ist darum die einzige Aufgabe der IR-
Prozesse die Veränderung des Laufzustandes von Nutzerprozessen. Haben sie
den Laufzustand irgendeines Nutzerprozesses geändert, dann hinterlassen sie
eine Notiz in einer zentralen Sammelflag. Gleiches tun auch die ”SF“-Prozesse,
jedoch finden hier im Gegensatz zu den IR-Prozessen noch andere Aktionen
(Speichersuche etc.) statt.

Der RTOS–UH-Kern prüft bei jedem ”Abstieg“ vom Supervisor- in den Us-
erstatus auf der PU-Ebene die oben erwähnte Sammelflag, in der jede zwi-
schenzeitliche Taskzustandsänderung archiviert wurde. Der PU selbst ist der
niedrigst priorisierte Supervisorprozess des Systemes, läuft also im privilegier-
ten Mode des Prozessors mit vollem Instruktionssatz. Da auch die Aufgaben
des PU sehr langatmig werden können, ist er ebenfalls so konstruiert, daß ein
preemptiver Contextswitch möglich ist.

Wichtiger Hinweis:

Das Interruptsystem des Prozessors ist in RTOS–UH bis auf sehr kurze Se-
quenzen immer offen. So können jederzeit Alarme oder Dateninterrupts das
System erreichen. Der Aufruf einer SF durch eine Nutzertask gefährdet al-
so auch diese Art von Echtzeitreaktivität nicht. Grundsätzlich kann auch der
Anwender eigene IR-Prozesse zum System hinzufügen, es ist aber unbedingt
erforderlich, daß er sich an die Konventionen hält und seine IR-Prozesse so ge-
staltet, daß sie nach möglichst wenig Maschinenzyklen (z. B. 20) ihren Ausgang
(über die PU-Ebene!!) nehmen können.

1.4 Das I/O-System

Die Ein- oder Ausgabe unter Verwendung von Geräten, die langsamer sind als
der Prozessor, ist eine Aufgabe des Betriebssystemes. Solche Geräte sind z. B.
Drucker, Plattenspeicher, ein Fenster auf dem Monitor oder auch eine ferne
Station im Netz.

1.4 Das I/O-System 25

Eine Besonderheit des RTOS–UH liegt hier in der Verwendung besonderer
Input- und Output-Tasks. Diese Tasks sind quasi dienstbare Geister des Sy-
stemes und werden darum hier auch ”I/O–Dämonen“ genannt. Eine Task, die
etwas drucken möchte, füllt dazu ein sogenanntes ”Communication–Element“
mit Text und Verarbeitungsvorschriften und übergibt es an den Druckerdämo-
nen. Der Druckerdämon kümmert sich fortan autonom um die Ausführung des
Auftrages, während die auftraggebende Task schon wieder andere Aktivitäten
entfalten kann; wenn sie will, kann sie allerdings auch auf das Ende des Druck-
vorganges warten, ohne dabei den Prozessor zu belasten.

Fast alle anderen Systeme haben hier nur eine prozedurale Schnittstelle, und die
zugehörige Systemfunktion ist naturgemäß sehr zeitaufwendig. Die gewaltigen
Nachteile aufwendiger Systemfunktionen wurden ja bereits in diesem Kapitel
herausgearbeitet. In RTOS–UH aktivieren und versorgen die Systemfunktio-
nen für die Ein- und Ausgabe dagegen nur den zuständigen Dämonen, der mit
einer Priorität ganz knapp über seinem momentanen Auftraggeber eine nach
Prioritäten geordnete Warteschlange abarbeitet.

Ist ein Dämon gerade mitten in einem Auftrag, während ein neuer wichtigerer
Auftrag eingeht, so ändert das System sofort seine Priorität genau passend, um
den Rest des alten Auftrages, so schnell es möglich ist, zu Ende zu bringen.
Damit ist eine Irritation hochpriorer Tasks durch Ein- Ausgabevorgänge niedrig
priorer Prozesse in RTOS–UH auf ein kaum noch zu unterbietendes Maß
reduziert. Praktisch tritt eine Beeinflussung meist nur noch dann auf, wenn
hoch- und niederpriore Tasks Geräte gemeinsam benutzen, weil RTOS–UH
die Aufträge aus guten Gründen nicht beliebig fein zerstückelt.

So ist erklärlich, weshalb sogar Reglertasks mit Abtastzyklen im Millisekun-
denbereich zeitkonform arbeiten können, während andere niedriger priorisierte
Tasks umfangreiche Datensätze von der Platte lesen oder dorthin schreiben.

26 1.4 Das I/O-System

(Leere Seite vor neuem Kapitel)

Kapitel 2: Betriebssystem RTOS–UH

2.1 Schnellkurs Teil 1: Erste Schritte

2.1.1 Einschalten

Systeme mit Monitorprogramm erwarten nach Meldung des Monitors die Ein-
gabe eines systemabhängigen ”Boot“-Befehles, andere starten RTOS–UH aus
dem EPROM oder booten automatisch.

Es dauert bis zu 20 Sekunden, bevor überhaupt etwas auf dem Sichtgerät
passiert. In dieser Zeit konfiguriert sich das Betriebssystem (automatic lin-
king) an Hand der im EPROM oder Bootbereich zusammengestellten System-
komponenten. Passiert auch nach längerer Zeit nichts, so muß die Hardware
(Baudrate richtig?) untersucht werden. Ansonsten erscheint die Kopfzeile mit
Konfigurations– und Lizenzhinweisen, abgeschlossen mit der Meldung RESET.
Wann immer RESET erscheint, handelt es sich um einen sogenannten ”Kalt-
start“.

Nach dieser Reset-Meldung ist das System im leeren Grundzustand. Es kann
so konfiguriert sein, daß es nun sofort beginnt, auf der Platte nach Initialisie-
rungsfiles zu suchen. Diese stehen meistens im Ordner /H0/AUTO und heißen
AUTOC, AUTOCx und AUTOW sowie AUTOWx. Dabei steht C für den Kaltstart- und
W für den Warmstartvorgang. Mit x ist die Nummer (1, 2, 3 ..) der jeweils
einzurichtenden Nutzerarbeitsplätze gemeint. Mit diesen Initialisierungsfiles in
Shellsprache kann bei Bedarf natürlich auch automatisch Anwendungssoftware
geladen werden.

”Leerer Grundzustand“ bedeutet aber auch, daß eventuelle Editordateien im
Speicher oder dort bisher abgelegte Daten und Programme verloren sind. Auch
nach einem ”System Abort“ nimmt das System diesen Zustand automatisch
ein, wenn vorher durch fehlerhafte Programme wichtige RTOS–UH-eigene
Daten inkonsistent geworden sind. In solch einem Fall sollte man bei nicht
ROM-residenten Systemen besser neu booten.

27

28 2.1 Schnellkurs Teil 1: Erste Schritte

2.1.2 Erste Aktion

Im Gegensatz zu den meisten anderen Betriebssystemen passiert jedoch bei
Anschlag eines Zeichens auf der Tastatur zunächst gar nichts. Hier muß man
sich mit der ersten Besonderheit von RTOS–UH vertraut machen: Der Nutzer
mit seiner Tastatur ist nicht der Herrscher im System, sondern nur ein von
Zeit zu Zeit störendes externes Ereignis, auf das RTOS–UH prioritätsgerecht
reagieren wird. Was aber tut der Prozessor zur Zeit? Der Prozeßumschalter
hat festgestellt, daß die einzige lauffähige ”Task“ die Leerlaufaktivität #IDLE
ist und läßt diese arbeiten. #IDLE ist immer lauffähig. Um den Prozessor von
seiner #IDLE–Task zu trennen, erzeugen wir einen Interrupt durch Anschlag
von

Ctrl A (Bei gedrückter Ctrl-Taste Taste A anschlagen)

Auch mit Ctrl B oder Ctrl C oder BREAK/Undo kann der Interrupt erzeugt
werden. Diese Befehle haben aber eine besondere Bedeutung. Mit Ctrl B ent-
scheidet man sich für eine Eingabe auf der seriellen Schnittstelle im Bx-Mode
(siehe dazu Seite 389). Mit Hilfe von BREAK/Undo kann man Bedienbefehle
selbst unterbrechen oder sich in verfranster Situation, z. B. im Editor, mit
einem ”Notruf“ der Shell wieder befreien. Mit Ausnahme von Ctrl C oder
Break/Undo, dort dauert es etwa 2 Sekunden, erscheint sofort nach Anschlag
der Prompt ”*“ und zeigt Eingabebereitschaft an.

Wann immer wir Bedienfunktionen des Rechners benötigen, muß! →
eine der obigen Tasten, i. a. Ctrl A, angeschlagen werden.

Mit dem Erscheinen des ”*“ übergibt der Dispatcher (Prozeßumschalter, PU)
gleich wieder an ”#IDLE“. Dennoch können wir jetzt eine Eingabe machen. Wir
sind nämlich mit dem Bedieninterpreter (Shell) des Systemes verbunden.

Die Sprache des Interpreters darf nicht verwechselt werden mit! →
einer PEARL–Programmierung, auch wenn es viele ganz ähnli-
che oder gar gleiche Anweisungen gibt.

Die nun zulässigen Eingaben werden in einem eigenen Kapitel später beschrie-
ben. Wir wählen das Kommando

L

und schließen es mit Carriagereturn (CR) ab. Dieses Kommando bedeutet ”List
all tasks“. Möglich wäre dann etwa folgende Ausgabe:

2.1 Schnellkurs Teil 1: Erste Schritte 29

00001986 +FFF/1 RUN TWS=00000D36 PC=00081192 #IDLE
000019D0 -001/1 DORM TWS=00000D92 PC=00000000 #EDFMN
00001A1A -00A/1 SCHD TWS=00000E00 PC=00081DEC #ERROR
00001AAE -007/1 RUN TWS=00000EB8 PC=00082C84 #USER1
00001AF8 -006/2 DORM TWS=000010CE PC=00000000 #USER2
00001B42 -002/1 DORM TWS=000012E4 PC=00000000 #XCMMD
00001B8C -001/1 DORM TWS=000014FA PC=0008C9A0 #UHFX6
00001BD6 -005/1 RUN TWS=000016B0 PC=0008F4A8 #ACIA1
00001C20 -005/1 DORM TWS=00001716 PC=00000000 #ACIA2

Dabei bezeichnet die erste Adresse den Ort, an dem der sogenannte ”Taskkopf“
im verwalteten RAM zu finden ist. In der zweiten Spalte finden wir Prio-
rität/Usernummer des Prozesses. Negative Prioritäten sind für den Hoch-
sprachprogrammierer unerreichbar hoch. Der angezeigte Laufzustand (RUN,
DORM, SUSP etc.) ist beim L–Kommando genauer beschrieben.

2.1.2.1 Groß oder klein?

Im Gegensatz zum PEARL–Compiler akzeptiert der Bedienin-
terpreter alle Kommandos sowohl in Groß– als auch in Klein-
schreibung. Aber man beachte dabei, daß Filenamen immer
gleich geschrieben werden müssen! Groß definiert — groß refe-! →
renziert.

Nun können wir z. B. den Befehl S eingeben (natürlich erst nach erneutem
Anschlag von Ctrl A!) und sehen, wie der verwaltete Speicherbereich aufgeteilt
ist.

2.1.3 PEARL–Programmentwicklung

Folgende Aufgabe sei angenommen: Ein Rechenprozeß (”Task“) soll fortwäh-
rend die Zahlen 1.0, 2.0, 3.0, 4.0, etc. sowie deren Kehrwerte und Quadrate
ausgeben. Ein zweiter unabhängiger Rechenprozeß soll jede Sekunde in einem
File notieren, welcher Wert gerade bearbeitet wird und den ersten Prozeß nach
100 Sekunden anhalten.

2.1.3.1 Festlegung eines ”Working Directories“ (”WD“)

Um für den Editor, Compiler, Lader usw. einfachere Ansprechwege zu erschlie-
ßen, geben wir den Befehl ”Change Directory“ ein:

CD /ED Der Slash bedeutet: ”ED“ ist eine Datenstation. (Nur zwecks
Abwärtskompatibilität akzeptiert das System vorläufig auch
noch veraltete syntaktische Konstrukte. Aus früherer Zeit
stammen CD ED. und CD ED:.)

30 2.1 Schnellkurs Teil 1: Erste Schritte

(Nach Ctrl A, wie immer vor einer Bedienbefehlseingabe . . .). Der Befehl wird
vom System bestätigt mit:
WD=/ED/- aktuelles Working Directory=/ED/

XD=/- kein Execution Directory

Die Vereinbarung bleibt bis zum neuen CD–Befehl oder ”Kaltstart“ erhalten.

2.1.3.2 Festlegung eines Execution Directory

Für unsere kleine Einführungsaufgabe benötigen wir es nicht, aber es sei hier
erwähnt: neben dem Working Directory existieren noch ein oder mehrere Exe-
cution Directories. Das sind Verzeichnisse, in denen die Bedienkomponente des
Systemes, die ”Shell“, nach ihr unbekannten Bedienbefehlen sucht. Die Ände-
rung des Executingdirectories erfolgt mittels der Anweisung: CXD devpath — es
erfolgt dann auch die Ausgabe der aktuellen Einstellung.

2.1.3.3 Einloggen in den Editor

Wir geben das Kommando ED (nach Ctrl A!) ein und finden uns im Nu im Bild-
schirmeditor des Systemes wieder. Der Filename wurde vom System ”defaul-
tiert“. Wir können (s. ED–Kommando) aber auch einen frei gewählten Filena-
men wählen, etwa ED TEST.

Erscheint ein chaotisches Bild, so geben Sie gleich die Zeichen ESC X (nachein-
ander anschlagen, ohne Ctrl A) ein, um den Editor sofort wieder zu verlassen.
Wir versuchen eine Umparametrierung mit Hilfe des Bedieninterpreters:

SD /A1/+1 01 oder
SD /A1/+1 02 oder
SD /A1/+1 03

und loggen erneut mit ED (bzw. ED TEST) in den Editor ein.

Hilft auch das nicht, so muß ggf. das Terminal auf den Televideo oder VT–52
kompatiblen Mode umgestellt werden.

Standardmäßig ist der Editor auf den Televideo–Typ eingestellt. Solange wir
im Editor sind, ist übrigens der Zugang zum Bedieninterpreter verwehrt, weil
die Zeichen Ctrl A, Ctrl B und Ctrl C vom Editor abgefangen werden. Nur
Break/Undo ist für den größten Notfall, wenn man sich total verfranst haben
sollte, noch aktivierbar. Radikaler ist die Abort–Taste der CPU. Wir löschen
die erste Zeile mit ESC R (siehe Beschreibung des ED-Befehles auf Seite 136)
und geben ein:

2.1 Schnellkurs Teil 1: Erste Schritte 31

MODULE PROBE; /* Bezeichner sind max. 24 Zeichen lang*/;
SYSTEM; /* Leitet Definition der Datenstationen ein */;

Disp: A1<->; /* Datenstation der Ein-Ausgabe */;
File: /ED/Daten->; /* File zum Sammeln der Daten */;

PROBLEM; /* Leitet den Hardware-unabhaengigen Teil ein */;
SPECIFY Disp DATION INOUT ALPHIC CONTROL(ALL);
SPC File DATION OUT ALPHIC CONTROL(ALL);
DCL Ausgabenummer FIXED; /* Zaehler fuer Anzahl Ausdruecke*/;
DCL (x,Leer) FLOAT; /* Aktuelles Argument, Leerzyk*/;
DCL Erstesmal BIT(1); /* Fuer Startvorgang */;

/*--*/;
Machs:TASK PRIO 50; /* Ausfuehrende Task */;

x=1.0; /* Startwert setzen */;
REPEAT; /* Unbegrenzte Wiederholschleife */;

PUT x, x*x, 1.0/x TO Disp BY SKIP,(2)F(20),E(20,7);
x= x + 1.0;

END; /* Schleifenende */;
END; /* Ende der Task Machs */;
/*--*/;
Steuer:TASK PRIO 49; /* Ueberwachende Task */;

IF Erstesmal THEN
ACTIVATE Machs;
Ausgabenummer = 1;
Erstesmal = NOT Erstesmal;

FIN; /* Ende If-Bereich */;
PUT Ausgabenummer,x,Leer TO File BY F(8),(2)F(20),SKIP;
IF Ausgabenummer EQ 100 THEN

TERMINATE Machs;
PREVENT Steuer;

FIN;
Ausgabenummer=Ausgabenummer+1;

END; /* Ende der Task Steuer */;
/*--*/;
Rest: TASK PRIO 100;/* Niedrige Prio f.Restkapazitaetsmessung */;

REPEAT Leer=Leer+1.0; END; END; /* Keine Wartephasen */;
/*--*/;
start:TASK PRIO 48; /* Start-Task */;

Erstesmal = ’1’B; Leer = 0.0;
ALL 1 SEC ACTIVATE Steuer; ACTIVATE Rest;

END; /* Ende der Start-Task */;
/*--*/;
MODEND; Ende des Modules.

32 2.1 Schnellkurs Teil 1: Erste Schritte

Wir verlassen den Editor, indem wir nacheinander (!) die Zeichen ESC und X
anschlagen. Im Gegensatz zum Ctrl A, bei dem die Ctrl-Taste nur eine Um-
schaltung der Tastatur bedeutet, ist ESC ein eigenes Zeichen. Eventuell können
wir nun noch den File auf die Floppy oder die Platte retten (siehe COPY-Befehl
auf Seite 115). Dann aktivieren wir die Bedientask (Ctrl A, wie üblich) und
starten den Compiler:

P (CR) | /ED/SI kompilieren
P TEST (CR) | Editierter Filename war TEST.

Bei dieser Parametrierung erzeugt der Compiler das Übersetzungsprotokoll auf
unserem Terminal. Genaueres über weitere Parameter (kein Protokoll etc.) fin-
den Sie beim PEARL-Befehl auf Seite 180. Schon nach wenigen Sekunden ist
das Programm übersetzt. Falls es Tippfehler gegeben hat — der Compiler zeigt
sie uns an — müssen wir erneut mit ED bzw. ED TEST den Editor aufrufen. Das
korrigierte Programm wird dann erneut übersetzt.

Irgendwann zeigt der Compilerlauf keinen Fehler mehr an. Jetzt können wir
das ganze Modul in den Speicher laden:

LOAD (CR) | Objektcode-Filename wurde defaultiert

Sofort meldet der Lader, daß er fertig ist, und wir geben das nächste Bedien-
kommando ein:

LU (CR) | (Bedeutung: List User–Tasks.)

Nun erhalten wir eine Liste, in der unsere 4 Tasks aufgeführt sind. Um das
Programm in Gang zu bringen, müssen wir nur noch die Task start aktivieren:
(Wie stets vor jeder Bedienung auch hier vorher Ctrl A anschlagen . . .)

start (CR)

2.1 Schnellkurs Teil 1: Erste Schritte 33

Einen solchen Bedienbefehl gibt es nicht, wohl aber eine gleichnamige geladene
Task. So weiß das Bediensystem, die Shell, in diesem Fall, was zu tun ist: die
Task ”start“ nimmt ihre Arbeit auf. Jetzt rasen Zahlen über den Bildschirm,
aber nach 100 Sekunden ist alles wieder ruhig. Wir schauen uns den File Daten
mit Hilfe des Editors an:

ED Daten | oder
ED /ED/Daten | falls kein WD vereinbart

Es ist zu erkennen, daß die Task Rest offensichtlich wesentlich mehr (100 bis
300 mal!) Runden als die doch viel höher prioritierte Task Machs drehen konnte.
Die Ursache liegt in einem verborgenen Wartezustand von Machs: Das Terminal
ist zu langsam, und nach einer gewissen Anzahl Zeilen ist der Zwischenpuffer
im RTOS–UH voll. Dann bremst RTOS–UH die Task Machs mit der Folge,
daß der wartezustandfreie Rechenprozeß Rest blendend bedient werden kann.
Wenn Sie sich jetzt wundern, weil sie den eben beschriebenen Effekt nicht
beobachten konnten, dann haben Sie ein System mit emuliertem Terminal. Bei
solchen Systemen kommt Rest nicht von der Stelle, weil die CPU voll fürs

”Malen“ beansprucht wird!!

Jetzt können Sie mit dem Programm ein paar Experimente machen. Sie können
z. B. die Ausgabe aus Machs entfernen, um dann den Versuch zu wiederholen.
Dazu müssen Sie jedoch zunächst das Modul (Name: PROBE) aus dem System
entfernen. (Nebenbei: Rest geht’s inzwischen noch blendender, sie läuft und
läuft. . .) Das Entfernen dieses Modules erledigen wir mit:

UNLOAD PROBE* (* = ”Inklusive aller Tasks“)

Unschön, wenn wir mal den Stern vergessen haben sollten. Dann müssen wir
nämlich anschließend jede einzelne Task namentlich mit UNLOAD entfernen, z. B.
Unload Machs,Rest,Steuer,start (CR).

Wir loggen nun einfach erneut mit ED bzw. mit ED TEST in unseren Quellfile
ein, ändern diesen, übersetzen ihn neu und laden ihn genau wie vorhin. Wichtig
ist, daß wir vor dem Laden wirklich das Modul entfernt haben, ggf. mit dem
LU–Befehl überprüfen, ob alle Tasks verschwunden sind.

34 2.1 Schnellkurs Teil 1: Erste Schritte

Bevor wir nun ein zweites Mal start aktivieren, sollten wir den Ausgabefile
Daten zurücksetzen, z. B. mit

REWIND Daten oder
rewind Daten oder, falls kein Work.-Dir. vereinbart
REWIND /ED/Daten bzw. gleichwertig dazu:
rewind /ed/Daten Statt ”Daten“ jedoch nicht ”DATEN“ oder ”daten“

oder durch Elimination des ganzen Files:

RM Daten oder
ERASE Daten

Sonst würden die neu produzierten Daten hinter die alten gesetzt. Jetzt können
wir wieder die Task start aktivieren. Damit ist ein kompletter Programment-
wicklungszyklus abgeschlossen.

2.1.4 Retten des Programmes auf Platte oder Diskette

Jetzt darf kein Netzausfall passieren, sonst ist das ganze erstellte Programm
unrettbar verloren. Aus diesem Grund legen wir nun eine Diskette (hier: Lauf-
werk 0) ein und formatieren sie neu:

RTOSFILES /F0
FORM D /F0/B5DS80

oder
MSFILES /F0
FORM D /F0/C5DS80

Das rechte Anweisungspärchen gilt für den Fall, daß aus irgendwelchen Gründen
nicht das RTOS-UH-eigene, sondern das ”kompatible“ PC-Format gewählt wer-
den soll. Dabei steht D für Double density, B5 für das kompakteste ”B“–Format
und C5 für das weniger effiziente aber kompatible ”C“–Format. DS bedeutet

”Double sided“ und 80 steht hier für 80 Tracks. Die Formatierungsinformation
wird beim FORM wie ein Filename übergeben.

2.1 Schnellkurs Teil 1: Erste Schritte 35

Wir sind nun ausnahmsweise für eine ganze Weile aus dem System ausgeblen-
det, weil das Formatieren bei den meisten Systemen eine sehr zeitkritische An-
gelegenheit ist. Zunächst werden nacheinander beide Seiten beschrieben, dann
wird nach defekten Blöcken gesucht — diese werden aus der Verwaltung gestri-
chen — und, das Ergebnis wird auf dem Terminal ausgegeben. Bei mehr als 9
defekten Blöcken allerdings wird die Bearbeitung der Diskette abgebrochen.

Meist werden Sie eine Platte in Ihrem System haben, die bereits formatiert ist.
Dann kann man das kleine Testprogramm statt auf Diskette auch erst einmal
dort ablegen. Dazu ist in den folgenden Befehlen ”/F0“ durch den Plattenbe-
zeichner, z. B. ”/H0“ zu ersetzen.

Nun können wir mit dem Befehl

DIR /F0 (
”
/..“ gibt an: Kein File, sondern Gerät)

nachsehen, wieviel Platz wir haben.

Das Retten unseres Programmes erledigen wir mit COPY:

COPY /ED/SI>/F0/xyz (Def. Filename für User1)
COPY TEST>/F0/xyz (File-name war TEST)

Später können wir den File jederzeit wieder von der Diskette holen, etwa mit

COPY /F0/xyz > /ED/TEST (kein Work.-Dir.)
COPY /F0/xyz > /A1/ (Ausgabe auf Terminal)

2.1.4.1 Files geschlossen?

Zur Einsparung von Platten- und Diskettenoperationen werden, solange es geht,
das Inhaltsverzeichnis und der aktuelle Datenfile teilweise im Speicher gehalten.
Die Daten sind daher nur dann auf dem Medium gesichert, wenn alle Files
vor dem Herausnehmen geschlossen sind. Geben Sie dem System eine Chance,
prüfen Sie, ob Sie die Diskette herausnehmen oder den Rechner abschalten
dürfen:

36 2.1 Schnellkurs Teil 1: Erste Schritte

CF /F0/ Change Floppy, erzeugt eine Warnung, falls ein File noch offen ist.
FILES /F0/ Listet alle offenen Files auf, anschließend wird mit
RETURN /F0/xyz,/F0/abcd jeder einzelne File geschlossen oder
SYNC /F0/; CF /F0/FORGET eingegeben. Nun erst Diskette entnehmen.

Auch auf einer Festplatte müssen alle Files geschlossen sein, bevor Sie den
Rechner ausschalten oder Abort/Reset drücken. Ansonsten kann es passieren,
daß langsam das gesamte File–System zerstört wird und alle Daten verlorenge-
hen! Dann sollten Sie retten, was zu retten ist, und neu formatieren. Der Lader,
Compiler, Copy etc. hinterlassen normalerweise keine offenen Files. Sie treten
darum nur bei Unregelmäßigkeiten und abgebrochenen Programmen auf.

2.1.5 Zeit sparen durch Multitasking

Wenn Sie etwas experimentiert haben, so werden Sie schon bemerkt haben,
daß unser System anscheinend tausend Dinge gleichzeitig erledigen kann. Sie
können z. B. einen COPY auf die Schnittstelle /A2/ oder /PP/ (Centronics)
in Gang setzen, und während die Ausgabe läuft, ungehindert das nächste
Programm entwickeln. Die bei anderen Systemen oft zu findenden ”Spooler“
sind auf Grund der kompromißlosen Multitasking-Architektur bei RTOS–UH
überflüssig. Man muß nur immer darauf achten, daß stets nur eine Operation
pro File stattfinden darf, also nicht den gleichen File sowohl im Editor haben
als auch gleichzeitig kompilieren oder kopieren!

Dagegen können Sie ruhig während der Kompilation eines Files den Kompila-
tionslauf eines anderen Files in Gang setzen oder diesen anderen editieren und
vielleicht zwanzig andere assemblieren. . .

2.1.6 Das Bediensystem in Kürze

Bisher haben wir immer nur eine Anweisung in jeder Zeile benutzt. Wir können
durchaus mehrere Anweisungen in eine Zeile schreiben und dabei festlegen, ob
diese ”gleichzeitig“ oder nacheinander zu erledigen sind:

P TEST -- load -- start

bedeutet: Kompiliere, wenn fertig (und 0 Fehler!) lade, wenn mit Laden er-
folgreich fertig, aktiviere start. Der Sinn der zeitlichen Kettung besteht darin,
daß man vielleicht gerne mal irgendwohin möchte und das Programm in Aktion
sehen will, wenn man zurück kommt. . .

2.1 Schnellkurs Teil 1: Erste Schritte 37

Dagegen werden bei dem Befehl

P TEST;COPY mist>/A2/;COPY kaese>/PP/

gleichzeitig ein Compiler und zwei Kopiervorgänge lauffähig gemacht. Neben-
bei: /A2 ist die Stationsbezeichnung für die zweite serielle Schnittstelle, /PP die
Stationsbezeichnung für ein evtl. vorhandenes Parallelport (Centronics).

2.1.6.1 Fernsteuerung

Alle Befehle des Bedieninterpreters können auch von PEARL-Programmen aus
ausgeführt werden! Sie brauchen dazu nur den Eingabetext mit “PUT“ in die Sy-
stemdatenstation ”/XC“ (Remote-Control) einzuschreiben. Auch wenn es dank
der Shellsprache und bestimmter Unterprogramme (wie z.B. EXEC) hierzu auch
noch andere und elegantere Lösungen gibt, betrachten wir einmal ein PEARL-
Beispiel, bei dem der Rechner sich um 16.00 Uhr selbst das Bedienkommando
zur Anzeige aller Files auf dem Plattenmedium /H0 ”eingibt“:

MODULE TEST;
SYSTEM;

Bedien:/XC;
PROBLEM;

SPC Bedien DATION OUT ALPHIC;
Plattenschau:TASK;

PUT ’DIR /H0’ TO Bedien BY A,SKIP;
END;
MODEND;

38 2.1 Schnellkurs Teil 1: Erste Schritte

Nach dem Übersetzen und Laden geben Sie den Bedienbefehl

AT 16.00 ACTIVATE Plattenschau

ein und vergessen die Sache zunächst einmal.

Wir hoffen nun doch sehr, daß Sie solche ”Zeitbomben“ nicht mutwillig für
den nächsten Nutzer im Rechner zurücklassen und einen unerfahrenen Nach-
folger mit solchen oder schlimmeren schlafenden Bedienbefehlen erschrecken.
Allerdings kann man als Nutzer jederzeit sicherstellen, daß sich keine ungewoll-
ten Einplanungen mehr im System befinden. Aus Sicherheitsgründen gibt es
nämlich keine Möglichkeit, solche Prozesse vor dem ”L“ oder ”LU“–Kommando
zu verstecken. Eine sinnvollere Möglichkeit des /XC (bzw. der EXEC-Routine)
besteht in der Kreation von Blockkommandos:

...
Neu:TASK;
PUT ’Unload PROBE*;WE--P--Load--start’ TO Bedien;
END;
...

Nach dem Laden dieser Task braucht man nur noch jeweils den Befehl Neu
einzugeben (auch während Machs läuft!) und findet sich im Window-Editor
wieder. Sobald man diesen verläßt, wird kompiliert, geladen und gestartet.

RTOS–UH bietet allerdings auch hierzu noch andere Möglichkeiten, zum Bei-
spiel mit Hilfe des DEFINE-Befehles (siehe Seite 126) oder durch ein sogenanntes

”Skript“ in der Shellsprache.

2.1.6.2 Weitere Nutzer

An anderen Terminals, die ebenfalls einen Bedieninterfaceanschluß besitzen, ist
die Bedienung nicht anders. Allerdings sollte man bei mehr als einem Nutzer
sich hierarchisch in das ED–Filesystem einloggen. Sonst riskieren Sie zufällige
Namensgleichheit bei den Files.

CD /ED/Mueller

Mit z. B. ED TEST wird nun mit voller Pathlist /ED/Mueller/TEST adressiert.
Wenn der andere Nutzer nicht auch ”Mueller“ heißt und sich unter anderem
Namen einführt, ist sein File TEST einer im anderen Zweig des Baumes.

2.1 Schnellkurs Teil 1: Erste Schritte 39

Das Konsolenterminal (User 1) hat allerdings vereinzelt doch einen Sondersta-
tus, z. B. bei Fehlermeldungen in Interruptprozessen.

2.1.6.3 Haben Sie eine Festplatte?

Bei größeren Speichermedien (Festplatte oder Wechselplatte) sollten Sie Ihre
Files immer nur hierarchisch organisieren, sonst stehen hinterher vielleicht 200
Files in der Root–Ebene, und Sie finden sich garantiert nicht mehr zurecht.
Man lege sich dazu ”Ordner“, auch ”Unterverzeichnisse“ oder ”Subdirectories“
genannt, mit Hilfe des MKDIR–Befehles (Beschreibung auf Seite 175) an:

mkdir /H0/usr
mkdir /H0/usr/mueller

Fortan können Sie etwa nach /H0/usr/mueller/TEST schreiben oder von dort
lesen. Greifen Sie häufiger darauf zu, so kann natürlich mit

CD /H0/usr/mueller

der Zugriff vereinfacht werden. Leider müssen Sie jetzt aber beim Editie-
ren die ED–Files über die volle pathlist ansprechen. Wenn wir also den File
/H0/usr/mueller/TEST in Bearbeitung haben, könnte eine Kommandozeile
wie folgt uns weiterhelfen:

copy TEST > /ED/TEST -- ed /ED/TEST -- copy /ED/TEST > TEST

Bei diesem Befehl wird der File von der Festplatte geholt, editiert und anschlie-
ßend wieder zurückgeschrieben.

2.1.6.4 Ein- und Ausgabe von Daten ganz allgemein.

Im folgenden Teil 2 des Schnellkurses finden Sie noch einige Tabellen zu den
Schnittstellen. Die Schnittstellen selbst sind einzeln im Kapitel 6 ab Seite 389
beschrieben. Es ist sehr wahrscheinlich, daß Ihr System noch weitere Ein-
oder Ausgabeschnittstellen besitzt, zu denen Sie zusätzliche Beschreibungen
zur Ergänzung des Handbuches erhalten haben, z. B. für den Windowmanager.

40 2.1 Schnellkurs Teil 1: Erste Schritte

2.1.7 Empfehlung für das weitere Anlernen

Studieren Sie bitte zunächst noch die beiden folgenden Teile 2 und 3 des
Schnellkurses. Kurz, aber enorm wichtig, ist der Teil über die Bedienfehler-
teufel. Schließlich sind in allen komplexen Computersystemen einige typische
Bedienfehler trotz aller Sorgfalt der Nutzer nie ganz auszuschließen. Ab Sei-
te 44 haben wir die von uns beobachteten häufigsten Fehlbediensituationen
beschrieben.

Lesen Sie sich doch alle Befehle des Bedieninterpreters einmal in Ruhe durch!
Sie finden dort die detaillierte Information, die hier keinen Platz fand. Eini-
ge Bedienbefehle haben Sie ja schon benutzt, wenn auch z. T. nur mit einem
Teil der möglichen Parameter. Zur Sprache PEARL selbst finden Sie in diesem
Handbuch nur wenige Angaben. Dazu empfehlen wir Ihnen das PEARL90 Re-
ferenzbuch, welches die Fachgruppe 4.4.2 ”Echtzeitprogrammierung PEARL“
der Gesellschaft für Informatik bereithält, oder eines der PEARL-Lehrbücher.

Auch wenn heute scheinbar alles über Windowtechnik erledigt wird und Sie
das RTOS–UH-eigene Multiwindowsystem benutzen: eine Beschäftigung mit
der Shellsprache ist weiterhin lohnend! Die Technik der Skripte ermöglicht im
RTOS–UH nämlich verblüffend einfach die Steuerung von Fensteroperationen
u. ä.

2.2 Schnellkurs Teil 2: Schnittstellen und Dations 41

2.2 Schnellkurs Teil 2: Schnittstellen und Dations

Grundsätzlich existieren zwei Typen von Datenstationen, je nachdem ob sie
annähernd mit Prozessorgeschwindigkeit die Daten übertragen können oder
nicht.

• D/A–Wandler, Digitalkoppler etc. sind quasi jederzeit bereit. Sie werden
darum nicht vom Betriebssystem als Betriebsmittel verwaltet, der Com-
pilercode greift direkt darauf zu.

• Terminalschnittstellen, Druckerports, Floppydisks etc. sind langsamer als
der Prozessor und werden daher nur unter Kontrolle von RTOS–UH
zugänglich gemacht. Die Bearbeitung erfolgt ähnlich wie am Postschal-
ter: Es werden ”Warteschlangen“ aufgebaut, und zu einem bestimmten
Zeitpunkt wird nur das jeweils vorne befindliche Datenpaket bearbeitet.

Die folgende Beschreibung gilt demnach nur für die Stationen des zweiten Types
mit Warteschlangen.

Zu jeder Station existiert eine Warteschlangennummer, LDN genannt (”Logical
Dation–Number“). Benutzen mehrere anscheinend eigenständige Geräte (z. B.
Floppy 0, Floppy 1) gemeinsame Bausteine (Floppykoppler), so werden sie
dennoch nur durch eine einzige LDN repräsentiert. Die einzelnen Geräte werden
dann durch die sog. Untergliederungsnummer (DRIVE) unterschieden. Oft wird
die Untergliederungsnummer auch nur benutzt, um verschiedene Betriebsar-
ten eines einzigen Gerätes anzuwählen. Die nächst feinere Unterteilung erfolgt
durch den ”FILE–Namen“ oder noch genauer durch eine baumförmige ”Path–
List“.

Jede Warteschlange besitzt einen ”Bediener“, quasi der Beamte am Postschal-
ter. Wir nennen diesen Bediener die ”Betreuungstask“ der Warteschlange. Auch
die Bezeichnung ”I/O-Dämon“ haben wir für diesen autonomen guten Geist
schon kennengelernt. Er ist ein Dämon, weil er Betriebssystemaufgaben zur
Wahrung der Systemreaktivität in die Welt der Nutzerprozesse verlagert. Die
Aufgabe der Betreuungstask bzw. dieses Dämonen besteht einfach nur darin,
die Warteschlange möglichst schnell abzubauen. Wie im täglichen Leben gibt
es auch hier ”ganz eilige Kunden“, die sich frech nach vorne drängen, evtl.
direkt bis zum Schalter. Wie weit man sich vordrängen kann, hängt von der
Wichtigkeit des Auftraggebers ab: der Priorität der lese–/schreibwilligen Task.
(Der Name des I/O-Dämonen ist für den Anwender uninteressant, er ist meist
analog zur Gerätebezeichnung gewählt.)

42 2.2 Schnellkurs Teil 2: Schnittstellen und Dations

In PEARL–Programmen kann man nun den einzelnen Geräten frei wählbare
Namen zuordnen. Das geschieht mit Hilfe des ”Systemteiles“.

So bedeutet etwa

Drucker:/LP ;

folgendes: Im Programm wird das Symbol ”Drucker“ verwendet, als physika-
lisches Gerät wird das Gerät ”/LP“ des zur Laufzeit benutzten Betriebssyste-
mes verwendet. Ein solches Gerät muß dort vorhanden sein, sonst erfolgt beim
Laden des Programmes eine Fehlermeldung. Es ist aber auch möglich, Daten-
stationen direkt über ihre LDN und Laufwerksnummer anzusprechen:

XYZ:LD/5.3/abcd/efg ; ! adressiert LDN 5, Drive 3

Die Station heißt XYZ, besitzt die Warteschlangennummer 5 und benutzt das
Laufwerk Nummer 3. Über das ”Directory“ namens ”abcd“ wird der File ”efg“
adressiert. Man beachte, daß die pathlist bei Bedarf auch noch während des
Programmlaufes ganz (d.h. inklusive Gerätebezeichner) oder im Filebezeichner-
teil durch das PEARL-statement ”OPEN BY IDF...“ verändert werden kann.
Dabei kann auch das aktuelle Working-Directory mit berücksichtigt werden.
Durch weitere Zusätze kann auch der Betriebsmode modifiziert werden.

PUT und GET benutzen stets solche Stationen mit Warteschlangen.

Für alle Stationen gibt es im Bediensystem Bezeichner, zu denen LDN und DRIVE
automatisch generiert werden, z. B. /A1 für das Konsolenterminal = LD/0.0/.
Im Systemteil des Compilers darf man auf der rechten Seite der Namenszuord-
nung auch Bezeichner verwenden, die der Compiler nicht kennt und/oder die
im aktuellen Entwicklungssystem dem Bediensystem nicht bekannt sind. Solche
Bezeichner listet der Compiler unter ”Extra Devices“ bei der Modulbilanz auf.
Sie müssen später im Zielsystem beim Laden vorhanden sein, sonst verursacht
ihre Ansprache einen Laufzeitfehler. Auch beim Linken solcher Module können
dem Linker die Vereinbarungen über Datenstationen des Zielsystemes mitgege-
ben werden. Der Lader warnt beim Fehlen einer Station, sodaß derartige Fehler
nicht erst später bei der echten Benutzung der Station, sondern schon in der
Entwicklungsphase des Programmes erkennbar sind.

2.2 Schnellkurs Teil 2: Schnittstellen und Dations 43

Folgende Standarddatenstationen sind in allen Systemen enthalten:

Mnemo LDN DRIVE Bemerkung
A1 0 0 1. Ser. Schnittstelle (A–Mode)
B1 0 2 1. Ser. – " – (B–Mode)
C1 0 6 1. Ser. – " – (C–Mode)
ED 1 0 EDFM–Filesystem (ASCII–Mode)
EDB 1 1 EDFM–Filesystem (Binär–Mode)
A2 2 0 2. Ser. Schnittstelle (A–Mode)
B2 2 2 2. Ser. – " – (B–Mode)
UL 2 3 2. Ser. – " – (UL–Mode)
C2 2 6 2. Ser. – " – (C–Mode)
VO 7 0 virtueller Out-channel (#VDATN)
VI 8 0 virtueller In-channel (#VDATN)
XC 9 0 external Commandprocessor
PP 10 0 parallel Port (falls #PPORT)
NIL 15 0 Nil–Dation

In Ihrem konkreten System sind sicherlich weitere DATIONs vorhanden, ein ty-
pisches Beispiel:

Mnemo LDN DRIVE Bemerkung
F0 3 0 1. Floppy
F1 3 1 2. Floppy
H0 3 2 1. Partition Harddisk
H1 3 3 2. Partition Harddisk
H2 3 4 3. Partition Harddisk
H3 3 5 4. Partition Harddisk

Bei manchen Systemen ist auf der CPU–Platine eine 3. serielle Schnittstelle
vorhanden, dann gelten meist folgende Zuordnungen:

Mnemo LDN DRIVE Bemerkung
A3 4 0 3. Ser. Schnittstelle (A–Mode)
B3 4 2 3. Ser. – " – (B–Mode)
C3 4 6 3. Ser. – " – (C–Mode)
D3 14 0 3. Ser. Schn. Duplexkanal (out)

Die Zuordnungen weiterer DATIONs entnehmen Sie bitte den Unterlagen zu Ihrer
Systemimplementation, oder benutzen Sie ”HELP-D“.

44 2.3 Schnellkurs Teil 3: Typische Bedienungsfehler

2.3 Schnellkurs Teil 3: Typische Bedienungsfehler

Hier erfahren Sie etwas über die typischen Bedienungsfehlerteufel — soweit sie
uns bekannt sind.

Der Ctrl S–
Teufel

In diese Falle tappt man, wenn man aus Versehen statt
Ctrl A einmal das Zeichen Ctrl S anschlägt. Dann
kann der Fehlerteufel nämlich das Terminal totlegen.
Das Ctrl S ist an sich sehr notwendig, um etwa rasen-
de Ausgaben anhalten zu können (Xoff) — und dafür
benutzen wir es ja auch absichtlich. Befreien Sie sich
aus der Situation und bieten Sie dem System Ctrl Q an
(Xon), mehrmals schadet nichts.

Der ”No–scroll“–
Teufel

Er siedelt nur in einigen besonderen Terminals, die ei-
ne ”No scroll“–Taste besitzen. Oft hilft dann Ctrl Q
nicht, sondern nur die terminalseitige Aufhebung der
No–scroll–Bedingung.

Der Input–queue–
Teufel

Ein schwer zu bekämpfender Parasit, der den ”Beam-
ten“ am Postschalter befällt, er kann den aktuellen Auf-
trag nicht ausführen. Eine Task veranlaßt zum Beispiel
eine Leseoperation (GET) vom Terminal. Solange auf
dem Gerät die erwartete Zahl von Zeichen nicht ein-
gegeben wird, geht’s in der Schlange nicht voran. Trotz
der hohen Priorität kommt auch die Bedientask nicht
durch. Scheinbar reagiert das System auf Ctrl A nicht.
Uns bleibt nichts anderes zu tun als Ctrl A anzuschla-
gen, evtl. die Daten einzugeben oder ersatzweise so oft
die Carriagereturn–Taste zu betätigen, bis der Eingabe-
prompt der Shell erscheint.

Der Index–error–
Teufel

Diese Art von Programmfehlern ist mit ihren mögli-
chen Effekten die Inkarnation der Teufelei schlechthin!
Er kann wohl alles Mögliche an Schäden im System an-
richten, von zerstörten Zeigern bis zu Systemabstürzen,
die erst Stunden später auftreten. Gegen ihn gibt es nur
eine Waffe: Die ”T“–Option des PEARL–Compilers. Da-
mit wird der unerlaubte Zugriff durch überschrittene In-
dexgrenzen in jedem Fall verhindert. Hat der Bold aber
bereits zugeschlagen, sollten Sie von Ihren Files retten,
was zu retten ist, und die ”RESET“–Taste aktivieren.

2.3 Schnellkurs Teil 3: Typische Bedienungsfehler 45

Der Parameter–
Teufel

Der PEARL90-Compiler prüft lückenlos, ob Prozedu-
ren mit den richtigen Parametern aufgerufen werden.
Bei ihm bekannten Prozeduren aus dem eigenen Mo-
dul ist dieser Test lückenlos. Bei externen Prozeduren
kann er sich nur auf die Korrektheit der ihm mitgeteil-
ten Spezifikation verlassen. Stimmt die innere Struktur
der zur Laufzeit aufgerufenen Prozedur mit der Spe-
zifikation nicht überein, so sind katastrophale Folgen
wie beim Index-Error möglich. Genau wie beim Index-
error-Teufel so hilft auch hier die ”T“–Option wirkungs-
voll. Es wird auch nur sehr wenig Prozessorzeit für den
Parameter-check verbraucht. Das Programm sollte aber
nach der Fehlermeldung keinesfalls fortgesetzt wer-
den, da eine Notreparatur wie beim Indexfehler nicht
möglich ist!

Der Doppellade–
Teufel

Seine Spezialität besteht darin, uns zu einem unüber-
legten LOAD–Befehl zu verführen, obwohl eine gleichna-
mige Task noch in der Verwaltung existiert. Mit jeder
Aktivierung der Task erwischen wir dann immer nur die
erste (meist alte) und wundern uns, daß Programmände-
rungen ohne Wirkung geblieben sind. Wir sollten dar-
um stets sicher gehen, daß Doppelladen nicht auftreten
kann.

46 2.4 Interpretation von Fehlermeldungen

2.4 Interpretation von Fehlermeldungen

2.4.1 Der Error-Dämon

Der Betriebssystemkern von RTOS–UH bekommt bei seiner Arbeit Hilfe
durch die im Einführungsteil vorgestellten ”Dämonen“. Das sind im Prinzip
normale Nutzerprozesse (Tasks), die quasi eigenverantwortlich arbeitende gute
Geister des Systemes sind. Dämonen finden wir bei RTOS–UH auch im Ein-/
Ausgabesystem und als Netzwerkdämonen. Hier interessiert uns zunächst nur
der Error-Dämon mit dem Tasknamen #ERRDM. Er hat die höchste Priorität
aller Tasks im System und ist dazu gedacht, über eventuelle Irregularitäten
bei der Arbeit des Systemkernes zu berichten. Sein zweiter – hier nicht in-
teressierender – Aufgabenbereich ist das Starten des sogenannten ”primären
Shellprozesses“ beim Anschlag der Ctrl A Taste.

Für jeden Nutzerarbeitsplatz gibt es ein sogenanntes User-Environment. Es
enthält einen Puffer für Fehlermeldungen, der ringförmig verwaltet wird. Sei-
ne Größe ist implementierungsabhängig, in der Regel ist Platz für 6 bis 12
Meldungen. Kommen neue Fehlermeldungen an, bevor der Error-Dämon durch
Textausgabe der alten wieder Platz im Puffer schaffen konnte, so gehen die
neuen Meldungen verloren. Aus diesem Grund sollte man sich nicht an vorbei-
huschenden Fehlerinformationen erfreuen, sondern daran denken, daß vielleicht
wichtigere Nachrichten als die momentan visualisierten verloren gehen können.
#ERRDM liegt in der Priorität höher als der Bedieninterpreter, bei manchen Ter-
minals muß man bei vorbeirasenden Meldungen ziemlich hartnäckig auf die
Ctrl A Taste hacken, um wieder in das System zu kommen.

Jede Meldung über #ERRDM beginnt mit dem typischen ”
>>“ am linken Rand der

Terminalzeile. Diesem String folgt typischerweise der Name der verursachenden
Task, eine Adresse oder ein weiterer Name, sowie die eigentliche Botschaft. Je
nach Schwere des Fehlers wird die Task suspendiert oder kann weiterlaufen.

Die Fehlermeldung wird in den Error-Datenkanal desjenigen Nutzers geschrie-
ben, der dafür verantwortlich gemacht wird. Verantwortung übernimmt ein
Nutzer durch Absetzen eines Kommandos oder durch die Aktivierung einer
fehlerhaften Task. Ist die Verantwortlichkeit nicht feststellbar, z. B. bei Inter-
ruptprozessen, so wird der Konsolennutzer angesprochen.

Der Errordatenkanal, in den der Dämon schreibt, kann mit einem besonderen
Kommando (PER = Permanent Error Redirection) permanent umdefiniert wer-
den. Dies ist sinnvoll, wenn man die Fehlermeldungen unbedienter Systeme in
einem File sammeln möchte.

2.4 Interpretation von Fehlermeldungen 47

2.4.2 Beispiele für Fehlermeldungen

Wir studieren hier exemplarisch einige Meldungen:

>> ABCD: 00008022 wrong op-code trap

Die Task ABCD ist auf einen unbekannten Befehl gelaufen, der Programmzähler
steht jetzt auf 008022. Der falsche Befehl (Speicherfehler?, Feldüberschreitung
ohne Tester?) muß also kurz vor dieser Adresse zu finden sein. Wenn die Task
ABCD eine PEARL–Task ist und mit der /*+M */–Option übersetzt wurde, wird
mit /Lxxxxx die Nummer der letzten registrierend überlaufenen Programm-
quellzeile ausgegeben. Diese kann man sich auch mit dem DL–Kommando (Dis-
play Line) ausgeben lassen.

>> COPY/26: (terminate)

Dies ist keine Fehlermeldung. Die Ausgabezeile dient als Hinweis, daß der Sohn-
prozeß COPY/26 jetzt seine Arbeit beendet hat.

>> --??--: (terminate)

Auch hier ist kein Fehler aufgetreten, sondern ein Sohnprozeß hat sich termi-
niert und wollte sich verabschieden. Da der Error-Dämon #ERRDM aber gerade
mit anderen Dingen beschäftigt war, konnte er die ”Fertig–Meldung“ erst aus-
geben, nachdem der Sohnprozeß schon aus dem Speicher verschwunden war.
Ein Name war zu diesem späteren Zeitpunkt nicht mehr zu ermitteln. Die Mel-
dung tritt nur noch bei alten Shellmodulen auf, die nicht in der Lage sind, eine
eigene Ausnahmebehandlung auszuführen.

>> **V200:0008FFA2 wrong address

Die Sterne bedeuten, daß sich keine Task zuordnen läßt, weil der Fehler in ei-
nem Interruptprozeß aufgetreten ist. Dabei bedeutet V200, daß der Interrupt-
prozeß über den Exceptionvektor $200 angeschlossen ist. Fast immer bedeutet
eine solche Meldung eine bedrohliche Entwicklung. Tatsächlich konnte der Kol-
laps des Systemes nur durch den integrierten Interruptrückfallmechanismus von
RTOS–UH verhindert werden. Anders als in vielen anderen Systemen hängt
der Interruptprozeß trotz der gravierenden Fehlfunktion nicht, sondern wurde
geordnet abgebrochen.

48 2.4 Interpretation von Fehlermeldungen

>> MASTER:MURKS not suspended (continue)

Die Task MASTER hat eine CONTINUE–Anweisung für die Task MURKS ausgeführt.
Das Betriebssystem stellt aber fest, daß MURKS gar nicht suspendiert ist und die
Anweisung somit ohne Wirkung bleiben muß. Keine schlimme Sache, irgendein
kleinerer Denkfehler des Programmierers beim Tasking.

>> x:INTRPT overflow (activate)

Die Task x sollte vom Systemkern durch einen Interrupt (Zeittakt oder externes
Signal) aktiviert werden. Die Task x kann aber aus irgendwelchen Gründen dem
Aktivierungstakt nicht folgen. Vielleicht ist sie zu langsam und wird darum
nicht rechtzeitig fertig oder sie wurde suspendiert. Diese Prüfeigenschaft des
Systemkernes ist ein wichtiges Element der Echtzeitqualitäten des Systemes.

2.4.3 Der Exception-Handler

Neuere Software in der RTOS–UH-Welt stößt bei Irregularitäten, für die
sie selbst verantwortlich ist, nicht mehr den Error-Dämonen an. Stattdessen
wird bei solcher Software dem Systemkern die Adresse einer eigenen Fehlerbe-
handlungsroutine mitgeteilt. Diese Fehlerbehandlungsroutine wird in der Fach-
sprache auch ”Exception Handler“ genannt. Alle Shellprozesse benutzen diesen
Weg. Damit wird ein korrektes Weiterleben des Prozesses selbst nach fatalen
Situationen möglich. Exekutiert man etwa von der Shell aus einen DM-Befehl
mit Zugriff auf einen nicht vorhandenen Speicher, dann bringt der BUS-ERROR
die Shell nicht zum Halt. (In alten Versionen des Betriebssystemes wurde die
Shell wie eine normale Nutzertask durch solche Fehler blockiert und mußte mit
Break wiederbelebt werden).

Meldungen der Exception-Handler werden wie die des Error-Dämonen inter-
pretiert, denn es werden in beiden Fällen die gleichen Texterzeugungsroutinen
benutzt. Die Meldungsausgabe erfolgt nun von der fehlerverursachenden Task
mit deren eigener Priorität.

Da die Shellprozesse die Fehlerausgabe selbst erledigen, kann man deren Mel-
dungen mit dem Befehl ER (Error Redirect) auch temporär umlenken, ohne daß
der Error-Dämon von dieser Umlenkung betroffen ist.

2.5 Das Pathlist-Konzept von RTOS–UH/PEARL 49

2.5 Das Pathlist-Konzept von RTOS–UH/PEARL

Wie bereits im Schnellkurs 2 erläutert, gibt es in der RTOS–UH–Welt zwei
Typen von Datenstationen: Typ I, der dermaßen schnell arbeiten kann, daß
keine Wartephasen für den Prozessor anfallen (Digitale E/A, A/D– und D/A–
Wandler etc.) und Typ II, der beim Datentransport den Prozessor derart wenig
belastet, daß es sinnvoll ist, die kostbare Prozessorleistung für andere Aufgaben
verfügbar zu machen. Der Typ I wird nicht vom Betriebssystem unterstützt,
da seine Ansprache durch Nutzertask–eigenen direkten Maschinencode erfolgt.
Dieser Typ ist daher auch nicht über Bedienbefehle ansprechbar, allenfalls in
bestimmten Fällen durch seine Hardware–Adresse mit dem ”SM“– bzw. ”DM“–
Befehl.

Uns interessiert hier nur der Typ II, der in RTOS–UH mit den auf Seite 46
schon erwähnten ”Dämonen“ realisiert ist. In diesem Fall handelt es sich um
die Dämonen des Ein-/ Ausgabesystemes, die ”I/O-Dämonen“. Sie sind wie al-
le Dämonen normale Tasks, auch der Begriff ”Warteschlangenbetreuungstask“
beschreibt sie gut. Jeder I/O-Dämon kümmert sich um eine ihm zugeordnete
Warteschlange, in der seine Aufträge stehen. Wenn ein Nutzerprozeß z. B. auf
dem Drucker etwas ausgeben will, so reiht er in Wirklichkeit nur einen Ausga-
beauftrag in die Warteschlange des Druckerdämonen ein. Diese Warteschlange
ist, wie im Schnellkurs beschrieben, nach Prioritäten geordnet. Die moderneren
I/O-Dämonen laufen mit variabler, selbstanpassender Priorität. Damit tragen
sie der aktuellen Auftragslage optimal Rechnung, behindern aber Nutzerpro-
zesse, die wichtiger als ihre Auftraggeber sind, praktisch nicht. Auch sonst
erinnern sie an Chamäleons: Sie verwenden die Nutzeridentifikation desjenigen
Prozesses, für den sie gerade arbeiten. (Wes Brot ich eß, des Lied ich sing . . .).

Wenn verschiedene Geräte eine gemeinsame, nur einmal vorhandene Kompo-
nente teilen müssen (z. B. ein Controller für mehrere Floppy–Laufwerke), so
gibt es hierfür nur einen gemeinsamen Dämon und einegemeinsame Warte-
schlange, was gewisse Einschränkungen bringen kann: Eine physikalisch echt
zeitlich parallele Arbeitsweise der beiden Geräte ist dann nicht möglich.

Für die Ansprache der Datenstationen über die sogenannte ”Pathlist“ spie-
len diese internen Details allerdings keine Rolle. Die Adressierung jeder über
Bedienbefehle oder PEARL–Programme erreichbaren Datei geschieht auch im
RTOS–UH so wie es heute allgemein üblich ist, nämlich durch einen hierar-
chisch aufgebauten Pfad, eben jene bereits erwähnte ”Pathlist“:

/Gerätebez/subdir/subdir/.../subdir/filename
/Netzrechner/Gerätebez/subdir/.../subdir/filename

50 2.5 Das Pathlist-Konzept von RTOS–UH/PEARL

Durch das Zeichen ”/“ wird die Pfadliste auf der allerobersten Ebene, der
Root– (Wurzel–) Ebene begonnen. Anschließend muß entweder über einen im
System definierten Gerätebezeichner oder explizit numerisch eine Warteschlan-
ge (Warteschlangennummer= LDN) samt zugehöriger Untergliederungsnummer
(Laufwerk= DRIVE) folgen.

Zwischen Klein– oder Großschreibung wird beim Gerätebezeichner im Gegen-
satz zum Rest der Pathlist nicht unterschieden. Eine numerische Angabe der
beiden Parameter LDN und DRIVE wird durch einen Sondergerätebezeichner

”LD/integer.integer/“ ermöglicht:

/LD/7.6/ steht für LDN=7, DRIVE=6.

Der endende Slash dieses Konstruktes darf niemals fehlen, auch nicht, wenn die
Pathlist hinter der DRIVE–Zahl ohnehin beendet ist. Wenn für DRIVE keine Zahl
angegeben wird, so substituiert das System den Wert 0. So ist z. B. /LD/3/
identisch zu /LD/3.0/.

Die maximale Länge der Pfadliste ist begrenzt, allerdings ist die-! →
se Zahl keine interne RTOS-Konstante. Sie hängt ausschließlich
von Ihrer Implementierung ab. Bei den älteren Systemen durften
maximal 24 Zeichen benutzt werden – wobei der Gerätebezeich-
ner nicht mitzählt. Dieser Wert ist für die sehr kleinen Mikrokon-
trollersysteme immer noch eine gute Empfehlung, weil dadurch
an vielen Stellen Speicherplatz gespart wird. VME-Systeme und
die Apple-Systeme arbeiten heute meist mit einer Maximallänge
von 64 Zeichen.

Auch der Querverkehr zu irgendwelchen anderen Rechnern im! →
Netz (RTOS–PDV–Bus–Netz, Ethernetkopplung, RTOS–Profi–
Bus–Netz etc.) zweigt von der Root–Ebene ab. Der Bezeichner
fixiert in diesem Fall sowohl das angewählte Netz als auch die
untergeordnet selektierte Rechnerstation. In dem angewählten
Rechner befindet man sich dann erneut auf dessen Root–Ebene
und steigt von dort weiter über einen dort gültigen Gerätebe-
zeichner ab.

/F0 Eigene Floppy, Laufwerk 0
/A1 Konsolterminal
/ST3 PDV–Netz, Rechner No. 3
/LD/0,2/ Numerisch: LDN=0, DRIVE=2 (Konsole)

Wenn die Pathlist hinter dem Gerätebezeichner endet, so wird
sie vom System gedanklich um ”/--“ verlängert, wobei dieser

”Defaultfile“ mit Namen ”--“ aber nicht explizit (z. B. /F0/-)

2.5 Das Pathlist-Konzept von RTOS–UH/PEARL 51

angegeben werden kann. Der Defaultfile hat für manche Pro-
gramme eine sinnvolle Bedeutung, z. B. bei COPY, wo er die au-
tomatische Substitution eines Teiles der Partnerpathlist bewirkt.

Außer bei den nicht weiter untergliederungsfähigen seriellen
(z. B. /A1, /B2 etc.) oder parallelen (z. B. /PP) Rechnerschnitt-
stellen ist hinter dem Gerätebezeichner, angehängt durch ”/“,
ein weiterer Bezeichner nötig. (Es sei denn, daß man seine ganze
Floppy über /F0 als einen einzigen File ”--“ benutzt . . .). Dieser
Fortsetzungsbezeichner kann folgendes bedeuten:

1. Ein Unterinhaltsverzeichnis (Subdirectory).

2. Der Defaultfile in einem Unterinhaltsverzeichnis. (Dann en-
det hier die Pathlist hinter dem ”/“).

3. Name einer Datei (Dann endet hier die Pathlist).

4. Ein Gerätebezeichner (erzeugt LDN und DRIVE) passend für
den Rechner, der durch den vorhergehenden Bezeichner
über das Netz angewählt wurde. Hier ist jedoch aus Si-
cherheitsgründen keine numerische Angabe möglich, son-
dern nur ein im Zielrechner freigegebener Bezeichner.

Beispiele zu 1 bis 4:

1. /F0/SYSTEM/... SYSTEM ist ein Subdirectory

2. /F0/SYSTEM/ Defaultfile Names ”--“ in /F0/SYSTEM

3. /F0/Daten File Daten auf Floppy Nr. 0

4. /ST4/A1 Konsole des Rechners Nr. 4 im Netz
/ST6/ED/... ED–File des Rechners Nr. 6 im Netz

Beispiele: Kopieren mit vollständigen längeren Pathlists:

copy /st4/ed/mueller/prog.p > /st3/pp
type /ed/maier/test
cp /ed/prog>/F0/save/ (Geht nach /F0/save/prog!)
(cp ist die Kurzform von COPY)

Wie zu erkennen ist, darf der Punkt als Namensbestandteil ver-
wendet werden. Dies ist hauptsächlich gedacht, um beim Hantie-
ren mit Disketten anderer Softwareanbieter deren ”Extensions“
verwenden zu können. Bezeichner dürfen Ziffern enthalten.

Wegen der Kompatibilität zu älteren RTOS–UH–Versionen, bei! →
denen Punkt und Doppelpunkt eine spezielle Bedeutung haben

52 2.5 Das Pathlist-Konzept von RTOS–UH/PEARL

— nämlich Trennung des Gerätebezeichnerstrings vom Rest der
Pathlist — muß vor Mißdeutungen gewarnt werden, z. B. wird

ed.xy = ed:xy = /ed.xy = /ed:xy = /ed/xy

vom System als gleichwertig akzeptiert. Es sollte nur die letzte
Form Verwendung finden, da die ältere Syntax sehr leicht zu
Fehlern bei der Adressierung im Rechnernetz führen kann.

Ebenfalls aus Kompatibilitätsgründen wird als Gerätebezeichner! →
auch noch der String ”Lx“ angenommen, wobei ”x“ für eine Zahl
oder einen Buchstaben steht. Auch hier wird empfohlen, diese
Syntax fortan nicht mehr zu benutzen. (Die Zuordnung war da-
bei wie folgt: L4 = /LD/4,0/, LA = /LD/10,0/, LG = /LD/16,0/
etc.). Logischerweise sind daher LO und auch LD Gerätebezeich-
ner, wenn man sie durch ein Versehen im falschen Kontext be-
nutzt!

Mit dem Bedienbefehl ”CD“ verändert man ein sogenanntes! →
”Working–Directory“. Dies ist ein vorderer Teil der Pathlist, der
immer dann automatisch vom System vorangestellt wird, wenn
eine Pathlist nicht mit dem Wurzelsymbol ”/“ startet.

Beispiel: CD /ed/mueller
type mist == type /ed/mueller/mist

Es ist immer irgendein Working–Directory definiert. Beim Start! →
des Systemes ist es ”/“, so daß man in diesem Fall direkt mit
dem Gerätesymbol starten kann, d. h. ”load b2“ wird dann
wie ”load /b2“ behandelt. Es ist aber absolut nicht zu emp-
fehlen, sich diese nur um ein Zeichen kürzere Adressierung anzu-
gewöhnen — es sei denn, daß man grundsätzlich nie mit einem
Working–Directory arbeitet . . . (wehe aber, man hilft dann ei-
nem anderen Nutzer, der mit Working–Directory arbeitet, bei
der Abfassung eines Bedienbefehles!)

2.6 Einige technische Daten 53

2.6 Einige technische Daten

Maximale Anzahl gleichz. aktiver Tasks: Nur durch Speicher begrenzt.
Maximale Anzahl von Semaphorvariablen: Nur durch Speicher begrenzt.
Maximale Anzahl von Prozeßinterrupts: 32
Reaktionszeit, Prozeßinterr., PEARL: 3 . . . 200 µs

je nach Prozessor

Prozeßumschalter (”Dispatcher“): Rein ereignisgesteuert, kann auch Sy-
stemaufrufe niedriger priorisierter Tasks – das sind Supervisormodese-
quenzen – abbrechen (”echte“ Preemption).

Task–Wechselzyklus A–B–A: etwa 7 . . . 400 µs

I/O–System: Prioritätsgeordnete Warteschlangen mit eigenen Betreuungs-
prozessen (I/O–Dämonen, I/O–Tasks). Die Ein– und Ausgabe arbeitet
asynchron und ist ohne Wartephasen des Auftraggebers möglich, wobei
die Information nicht umkopiert werden muß. Durch einen Trap (XIO)
wird ein unabhängiger I/O–Dämon gestartet. Damit werden wesentliche
Nachteile der sonst üblichen unterprogrammgesteuerten Ein– und Aus-
gabe vom Prinzip her bereits vermieden.

Nutzerdatenstationen können permanent oder temporär hinzugefügt wer-
den.

Bedieninterpreter: In Universal–Maschinensprache codiert. Hierarchisches,
erweiterbares Shellkonzept mit einer leistungsfähigen Shellsprache.

PEARL90-Compiler: In virtuellem (VCP–) Code geschrieben, damit ex-
trem kompakt. Eine Version in native Code ist ebenfalls verfügbar. Voll
kompatible Crossversionen für MS-DOS u. a. Systeme.

Portabilität: Durch Austausch der Implementierungsscheibe an alle Rechner
anpaßbar, für die ein Transferassembler existiert. (zur Zeit 680xx und
PowerPC 603/4)

System– c©1982 ... 2003: Prof. Dr.–Ing. W. Gerth,
Institut für Regelungstechnik
Universität Hannover
Appelstr. 11

30167 Hannover

54 2.6 Einige technische Daten

(Leere Seite vor neuem Kapitel)

Kapitel 3: Bedienung des Systems

3.1 Struktur der RTOS-Shell

3.1.1 Die 8 Ebenen der Shell

Dieser Abschnitt ist nicht für den eiligen Leser gedacht, sondern für diejeni-
gen, die gerne detaillierte Kenntnisse über das System erwerben möchten. Beim
ersten Lesen dieses Handbuches kann man evtl. gleich zu 3.2 auf Seite 61 wei-
terblättern.

Der Kern des Betriebssystemes kennt keine Shell. Viele eingebettete Syste-
me benötigen auch keine. Shell-lose Systeme entstehen, indem man bei der
Komposition des Systemes die entsprechenden Scheiben fortläßt. Jede mensch-
liche Kommunikation erfolgt mit Hilfe einer aus Systemsicht völlig gewöhn-
lichen Task, der Shelltask, auch ”Shellprozeß“ genannt. RTOS–UH ist kein
PC-Betriebssystem, seine Shellphilosophie ähnelt eher den ”...ix“-Systemen aus
der Multiuser-Workstationwelt – jedoch ohne deren echtzeit-riskanten Strate-
gien und unter Einsparung der Schutzmechanismen gegen ”böswillige“ Mitbe-
nutzer. Es wurde optimiert auf effiziente und sichere Echtzeiteigenschaften. Die
Forderung, quasi jederzeit Einblick und Eingriff nehmen zu können – und dies
ohne die laufenden Echtzeitprozesse zu stören! –, stand bei der Entwicklung im
Vordergrund.

Es gibt verschiedene Arten von Shellprozessen. Gewissermaßen die ”Väter“
jeder Bedienkommunikation mit dem System sind die ”primären Shellprozesse“.
Primäre Shellprozesse können ”permanent“ oder ”temporär“ sein.

Die Zahl permanenter primärer Shellprozesse wird bei der Komposition
des Systemes festgelegt. Sie ändert sich nach dem Einschalten nicht mehr. Per-
manente primäre Shellprozesse laufen typischerweise durch den Anschlag von
Ctrl A auf einer ihnen fest (!) zugeordneten Eingabetastatur an und schrei-
ben einen Eingabeaufforderungsprompt. Sie repräsentieren gewissermaßen fest
installierte Nutzerarbeitsplätze des Systemes.

Die temporären primären Shellprozesse benötigt man z. B. für das Fern-
Einloggen über ein Netz. Es entstehen damit vorübergehend quasi weitere Nut-
zerarbeitsplätze. In aller Regel wird aus Sicherheitsgründen den temporären
primären Shellprozessen eine deutlich niedrigere Priorität als den permanenten
zugewiesen.

55

56 3.1 Struktur der RTOS-Shell

Alle primären Shellprozesse besitzen ein ”User-Environment“ und sind der Ort,
an dem die ”User-ID“ entsteht. Die sogenannten ”sekundären“ Shellprozesse
sind Handlanger oder Abkömmlinge primärer Shellprozesse. Sie erben deren

User-ID und erhalten bestimmte Daten aus deren User-Environment als Kopie.
Die primären Shellprozesse sind unsere eiserne Zugriffsreserve auf das System.
Sie kennen meistens eine Art ”Notruf“ über die BREAK-Funktion der Tastatur.

In Wirklichkeit ist jeder ”Shellprozeß“ eine vom Code her geradezu winzige
Task, nur ca. 200 Bytes groß. Die komfortable ”RTOS–Shell“ entsteht erst
durch das ”Ebenenmodell“. Die Elemente der einzelnen Ebenen sind wieder-
eintrittsfeste Unterprogramme. Dazu gehört das ”Shell Subroutine Package“,
abgekürzt ”SSRP“. Auch die Dekodierung der Befehle der Grundshell ”SHL“
ist in entsprechenden Unterprogrammen realisiert. Gleiches gilt für alle weite-
ren Zusatzshellmodule. Weil der Code des ”SSRP“, des ”SHL“ und aller korrekt
kodierten Zusatzshells wiedereintrittsfest ist, können ihn verschiedene Shellpro-
zesse gleichzeitig benutzen, ohne sich gegenseitig zu beeinflussen. Das Ebenen-
modell kann man sich in etwa wie folgt vorstellen:

E Ebene Funktion Identifikation
1 Shell–Prozeß Call E2 #USERxy ,#XCMMD
2 Shell–Subroutine–package UP-Sammlung SSRPxy-slice
3 Die Grund–Shell Standardbefehle SHLxy-slice
4 Extra–Shell Optionalbefehle ??
5 Nutzer–Shellbefehle im ROM nach Wunsch ROM–slices
6 Nutzer–Shellbefehle im RAM nach Wunsch Speichersektion
7 Transiente Befehle nach Wunsch z.B. /F0/ABCD
8 Skript in Shellsprache nach Wunsch z.B. /H0/skript1

Dieses 8–Ebenen–Schema beschreibt recht genau, wie die Verarbeitung eines
jeden eingegebenen Bedienbefehles funktioniert. Wir unternehmen eine Reise
durch die Ebenen und beginnen mit dem Anschlag von Ctrl A auf unserem
Terminal (bzw. auf der Tastatur, während der Eingabefocus im Kommando-
fenster unseres Schirmes ist).

Wenn wir nach Anschlag von Ctrl A den Eingabeprompt (z. B.Ebene 1:
das Zeichen ”*“) erhalten haben, so hat die Ebene 1, in die-
sem Fall eine ”primäre permanente Shelltask“ (in der sich das

”User–Environment“ befindet) diesen Prompt geschrieben und
anschließend die Eingabe angestoßen, auf die sie nun wartet. Se-
kundäre Shellprozesse, so auch die spezielle Shell-Task mit Na-
men #XCMMD, (die gleichzeitig auch eine I/O-Task ist) schreiben
keine Eingabeaufforderung, weil sie den Bedien-Befehlstext auf
irgend eine Weise bereits erhalten haben.

3.1 Struktur der RTOS-Shell 57

Wir lassen den Shellprozeß nicht lange warten, sondern geben
ihm nun den Text ”EinTest“ als Befehl ein, Abschluß mit CR.

Der Shell–Prozeß ruft mit diesem String das SSRP auf (es muß al-Ebene 2:
so vorhanden sein). Mit Hilfe des SSRP-Unterprogrammes sucht
der Shell–Prozeß nun zunächst in der Tabelle der Grundshell
nach einem Befehl dieses Namens. Dabei wird zwischen Groß-Ebene 3:
und Kleinschreibung nicht unterschieden. In unserem Fall wird
der Befehl ”EinTest“ dort natürlich nicht gefunden und die Su-
che geht automatisch in den im ROM (bzw. gebooteten RAM,
in dem das System sitzt) vorhandenen Extra–Shell–slices weiter.Ebene 4:
Auch hier wird nicht zwischen Groß- und Kleinschreibung unter-
schieden, wäre ein Befehl ”EINTEST“ dort definiert, so würde er
unser Kommando übernehmen. Auch die Befehle, die der Nut-Ebene 5:
zer selbst zum System hinzugefügt hat, werden am Ende dieser
Suche erfaßt.

Nachdem auch diese Suche fehlgeschlagen ist, untersucht der
Shell–Prozeß (der immer noch im SSRP-Unterprogramm steckt)
nun, ob es eine Task mit dem Namen ”EinTest“ in der System-
verwaltung gibt, die dann behandelt würde, als ob man den Be-
fehl ”activate EinTest ...“ eingegeben hätte. Hierbei wird
dann wie beim ACTIVATE-Befehl zwischen Groß- und Kleinschrei-
bung unterschieden.

Die Suche geht weiter im von RTOS–UH verwalteten RAM.Ebene 6:
Alle SMDL-Sektionen und auch alle PMDL-Sektionen werden un-
tersucht, ob es darunter einen Befehl ”EinTest“ gibt – ohne Un-
terscheidung von Groß- und Kleinschreibung. (SMDL, PMDL siehe
Seite 201)

Nun wird der Befehl ”EinTest“ versuchsweise als Bezeichner ei-Ebene 7:
nes Files interpretiert. Weil er nicht mit dem Zeichen ”/“ beginnt,
werden ihm nacheinander die vorhandenen Execution-Directories
vorangestellt. Vorher werden alle Kleinbuchstaben endgültig in
Großbuchstaben verwandelt. Wird kein passender File mit Na-
men ”EINTEST“ gefunden, so bricht der immer noch im SSRP lau-
fende Shell–Prozeß mit einer Fehlerantwort nach Stderr die wei-
tere Befehlsdekodierung ab. In der Fehlermeldung erscheint un-
ser Eingabebefehl jetzt als EINTEST, weil die Umwandlung nicht
rückgängig gemacht wird.

58 3.1 Struktur der RTOS-Shell

Wir nehmen an, ein File wurde gefunden. Er wird jetzt vom
Shell–Prozeß mit Hilfe entsprechender Code-Sequenzen des SSRP
gelesen, und der Anfangstext wird analysiert. Wenn der Inhalt
mit S0... beginnt und wenn im System der RTOS-Lader vor-
handen ist (er ist eine eigene Scheibe und mit dem integrier-
ten LOAD-Befehl der Ebene 4 zuzuordnen), so wird der File
/.../.../EINTEST geladen. Enthält er einen passenden Shell-
Befehl, so wird dieser als ”transientes Kommando“ ausgeführt,
anderenfalls erfolgt ein Fehlerabbruch (”....cannot execute“
nach Stderr). Transiente Kommandos erzeugen einen der Shell
unterlagerten eigenen Prozeß, im RTOS–UH auch Sohnpro-
zeß genannt, der das Laden übernimmt und danach wieder ver-
schwindet. Der Shell–Prozeß wartet während des Ladens auf die-
sen Sohn. Das in den Speicher geladene Modul verschwindet nach
Abarbeitung des Befehles automatisch.

Wenn der Inhalt des gefundenen Files nun nicht mit S0... anfingEbene 8:
und im System der optionale Shellspracheninterpreter vorhan-
den ist, so wird ein Sohnprozeß eingerichtet, der die interpreta-
tive Abarbeitung des Shellsprachprogrammes übernimmt – ein
sekundärer Shellprozeß entsteht. Die primäre Shell–Task über-
gibt diesem sekundären Shellprozeß bestimmte Daten aus ihrem

”User-Environment“ und startet diesen. Die RTOS-Shellsprache
ist in einem eigenen Abschnitt beschrieben, der auf Seite 74 die-
ses Handbuches beginnt.

Man beachte, daß der Shellspracheninterpreterprozeß der EbeneRekursion:
8 nun selbst wieder das SSRP aufrufen kann und damit erneut
alle Folgeebenen durchlaufen werden können. Wegen der Rekur-
sivität und Wiedereintrittsfestigkeit der RTOS–UH–Software
gibt es keine Probleme.

3.1 Struktur der RTOS-Shell 59

3.1.2 Prozeßphilosophie der RTOS–UH–Shell

Die ”Shell“ als Partner unserer Kommunikation ist aus Sicht des Systemes eine
ganz gewöhnliche Task, ein ”Prozeß“ im Sinne der Informatik. Allerdings ist
dies meist ein Prozeß mit sehr hoher Priorität. Da Prozesse mit hoher Priorität
generell hinsichtlich der Echtzeitreaktivität bedenklich sind, ist der Shellprozeß
so strukturiert, daß er nur solche Aktionen selber ausführt, die nur sehr wenig
Prozessorleistung erfordern. Es wäre keine gute Lösung, nun etwa die Priorität
der ”primären Shellprozesse“ abzusenken – sonst kann man nämlich sehr leicht
durch länger laufende Nutzerprozesse aus dem Systemzugriff herausgedrückt
werden. Die Priorität der permanenten primären Shellprozesse kann dennoch
bei der Zusammenfügung des Systemes über die User–Environment–Scheibe
frei festgelegt werden – für Einsatzfälle, bei denen jede Bedienung immer den
sonstigen Aufgaben untergeordnet sein muß.

Das Problem dieser widersprüchlichen Anforderungen – Hohe Echtzeitgüte und
gleichzeitig einen immer schnell möglichen Shellzugriff – wird beim RTOS–
UH-System durch Delegation von Aufgaben an niedriger priorisierte ”Sohnpro-
zesse“ gelöst. Typische Sohnprozesse sind etwa die Compiler und Assembler.
Auch die vom Nutzer in PEARL kodierten Shellfunktionen laufen grundsätz-
lich als Sohnprozesse ab – aus Sicherheitsgründen, schließlich könnte der Nutzer
aus Versehen eine Unendlichschleife programmiert haben. Der Interpreter für
die Shellsprache läuft aus dem gleichen Grund ebenfalls als eigener Prozeß ab,
dessen Prioriät im Nutzer-Bereich liegt und damit deutlich niedriger als die der
primären Shellprozesse ist.

Bei den Shellbefehlen, die Sohnprozesse generieren, kann man den Namen des
Prozesses selbst bestimmen und den Prozeß damit weiteren Manipulationen
zugänglich machen. Außerdem kann mit Hilfe des ”WAIT“-Befehles auf das re-
guläre oder irreguläre Ende eines Sohnprozesses gewartet werden. Mit Hilfe
der Namenswahl könnten z. B. durch zyklische Einplanung einer COPY–Subtask
beliebige Befehle automatisch wiederholt werden:

COPY.X /ED/X1>/XC/;T X;ALL 10 SEC X

Der COPY-Prozeß schickt nun alle 10 Sekunden den Inhalt des Files /ED/X1
an den Shellprozeß #XCMMD, der die Befehle wie oben beschrieben auswertet
(Näheres in 3.2.4 auf Seite 64).

60 3.1 Struktur der RTOS-Shell

No. Prozeß Priorität Bemerkung
1 Primärer Shellprozeß sehr hoch Wird durch Ctrl A aktiviert.

Netz-Shellprozeß hoch Remote Login über Netz
2 Sohnprozeß von 1,2,3 mittel Compiler, Assembler etc.

und/oder PEARL-kod. Shell-Befehl
Sekundärer Shellprozeß Shell-Folgebefehle des Sohnes

—– “ —– oder Shellsprachinterpreter
3 XCMMD-Prozeß variabel gleichzeitig I/O-Prozeß

– “ – und sekundärer Shellprozeß
4 Lader für trans. Befehl hoch Flüchtiger Sohn von 1. . . 4

Tabelle 3.1: Übersicht über mögliche Shellprozesse

3.1.3 Das User-Environment

Bei der Montage des Systemes wurden sogenannte ”User-Environment“–Schei-
ben eingebunden, in denen u. a. die Zugriffspfade für ”Stderr“, ”Stdin“ und

”Stdout“ vordefiniert wurden. Das User-Environment liegt im Verwaltungs-
kopf jedes primären Shellprozesses, der in der Tabelle im Abschnitt 3.1.2 mit
der lfd. Nummer 1 als ”Vater aller Shell-Aktivitäten“ zu finden ist. Bei tem-
porären primären Shellprozessen wird das User-Environment durch den Log-In
des Netzwerkhandlers eingerichtet. Im User-Environment ist auch der Platz für
das Working-Directory und mehrere (bei der Systemmontage parametrierbare
Zahl) Execution-Directories . Sie bestimmen die Pfadlisten, mit deren Hilfe die
Shell in den Ebenen 7 und 8 nach Kommandos sucht.

Die im User-Environment abgelegten Daten sind folgende:

Systemname Bedeutung beeinflußbar?
Error-Buffers Meldungsspeicher für Fehler nur ungewollt
NXD No. of Execution-Directories bei Systemgenerierung
STDE... Stderr-path über PER-Befehl
STDI... Stdin-path über PI-Befehl
STDO... Stdout-path über PO-Befehl
WXDIR W/X-Directory CD- und CXD-Befehle
ENVADR Pointer to Extra-Environment mit ENVSET-Befehl

Die Daten des User-Environmentes werden vom primären Shellprozeß für sei-
ne eigenen Aufgaben und die seiner Abkömmlinge (Sohnprozesse, sekundäre
Shellprozesse) unterschiedlich ausgewertet und weitergegeben.

3.2 Umgang mit der Shell 61

• NXD wird stets unverändert weitergegeben.

• Von STDE... ,STDI... und STDO... wird eine lokale Kopie angefertigt,
auf die die Befehle ”I“, ”O“ und ”ER“ für die Dauer einer kompletten
Befehlszeile einwirken. Mit jedem Aufwecken durch Ctrl A fertigt sich
der primäre Shellprozeß die Kopie erneut an. Alle Sohnprozesse und se-
kundären Shellprozesse erhalten im Moment ihrer Entstehung ihre eigene
Kopie dieser E/A-Pfadbeschreibungen.

• Beim WXDIR arbeitet ein primärer Shellprozeß stets mit seinem Original.
Die Befehle ”CD“ und ”CXD“ überdauern darum mit ihrer Wirkung Ende
und Neuaktivierung eines permanenten primären Shellprozesses. Sohn-
prozesse und sekundäre Shellprozesse erhalten dagegen eine Kopie und
arbeiten damit. Wenn solche Prozesse Working-/Execution-Directories im
User-Environment verändern sollen, so sind die Befehle ”CUD“ und ”CUXD“
zu verwenden. Bei primären Shellprozessen ist die Wirkung von ”CD“ und

”CUD“ sowie ”CXD“ und ”CUXD“ logischerweise jeweils völlig identisch.

3.2 Umgang mit der Shell

3.2.1 Aufbau der Anweisungszeile

In einer Anweisungszeile dürfen keine, eine oder mehrere Anweisungen ste-
hen. Mehrere Anweisungen in einer Zeile werden durch ein Semikolon oder das
Doppelminuszeichen ”--“ voneinander getrennt. Durch Semikolon getrennte
Anweisungen werden soweit möglich parallel abgearbeitet. Wenn die Anwei-
sungen zeitlich nacheinander abgearbeitet werden sollen, sind sie durch ”--“
zu trennen (siehe 3.2.5 auf Seite 65). Leeranweisungen sind auch zwischen Se-
mikolons zulässig. Zwischenräume (Blanks) sind zwischen Schlüsselworten und
Parametern erforderlich, wenn andernfalls Mißverständnisse entstehen könn-
ten. Mehrere Parameter in einer Parameterliste können wahlweise durch Blanks
oder Kommata getrennt werden. Eine Zeile wird durch das Zeichen ”Carriage–
Return“ beendet.

Beispiele für zulässige Eingaben:

DM 5000;;; (mit Leeranweisungen)
SM 1000,1200;S;L;XYZ PRIO 50;TERMINATE ABCD;
T XYZ; TRACE TEST L344,23;
/H0/XD/QP SI /ED/Test LO /ED/Liste; (trans. Befehl)

62 3.2 Umgang mit der Shell

3.2.2 Bedienung durch den primären Shellprozeß

Die Zugriffszeit (nach Anschlag von Ctrl A) hängt von der dem Terminal zu-
geordneten primären Shelltask mit Namen #USERx und der aktuellen System-
belastung ab. Die typische Priorität permanenter primärer Shellprozesse ist
allerdings die zweithöchste — nach dem #ERROR–Dämon — im ganzen System,
so daß die Reaktion prompt erfolgen sollte.

Eine eventuell noch ”hängende“ Eingabe (z. B. erwartet eine! →
Task eine Eingabe) kann den Zugriff verhindern. Erscheint das
Zeichen ”*“ nicht, daher probeweise ”Carriage–Return“ einge-
ben.

Eine Eingabezeile darf max. 128 Zeichen lang sein.

Der Shellprozeß kann durch BREAK abgebrochen werden. Es erscheint dann ein
neuer Eingabeprompt. Die BREAK-Taste ist der letzte Rettungsanker, weil sie
auch Wartezustände – z. B. mit ”WAIT“-Befehl erzeugte – aufheben kann. Aus-
gabevorgänge des Shellprozesses werden sobald irgend möglich gestoppt.

Trotz der hohen Priorität des Shellprozesses werden andere laufende Akti-
vitäten durch ihn praktisch nicht behindert, so daß keinerlei Grund zur Zurück-
haltung z. B. während einer laufenden Compilation besteht. Zeitlich aufwendi-
ge Operationen werden vom Shellprozeß ja bekanntlich durch Erzeugung von
Subtasks (Sohnprozesse) erledigt und damit auf eine niedrigere Prioritätsebene
verlagert. Derartige Sohnprozesse oder sekundäre Shellprozesse werden nicht
durch BREAK, sondern mit Hilfe von UNLOAD abgebrochen!

3.2.3 Bedienung durch einen sekundären Shellprozeß

Sekundäre Shellprozesse entstehen durch das Anhängen von Befehlstext an
Sohnprozesse der Shell mit Hilfe zweier Minuszeichen. Genaueres dazu in 3.2.5
auf Seite 65. Mit Hilfe des DEFINE-Befehles ist es möglich, quasi einen ”leeren“
Sohnprozeß zu erzeugen, dessen einzige Aufgabe die Execution von Shellbe-
fehlen unabhängig von unserer primären Shell ist. Auf diese Weise kann man
praktisch jedes beliebige Shell-Kommando einplanbar machen.

Soll zum Beispiel ein Befehl eingeplant werden, der alle 10 Sekunden den Inhalt
der Speicherzelle $4712 anzeigt, so kann das wie folgt erreicht werden:

DEFINE.DM4712--DM 4712; ALL 10 SEC ACTIVATE DM4712

Die Namenswahl ”DM4712“ erfolgte frei. Es ist aber natürlich sinnvoll, die Auf-
gaben sekundärer Shellprozesse in ihrem Namen erkennbar zu halten. Wenn
man seiner Tätigkeit überdrüssig ist, kann man ”DM4712“ selbstverständlich
mit PREVENT ausplanen oder ihn mit UNLOAD völlig eliminieren.

3.2 Umgang mit der Shell 63

Dem Shellprozeß (Name im Beispiel ”DM4712“) wurde im Moment der Aus-
führung des DEFINE-Befehles Kopien von Stdin, Stdout, Stderr und WXDIR
mitgegeben. Verändert man diese Daten später, so erreicht das den sekundären
Shellprozeß nicht. Umgekehrt – und auch das ist sehr erwünscht – beeinflussen
Umlenkungen mit ”I“, ”O“, ”ER“, ”CD“ und ”CXD“ des sekundären Shellprozes-
ses den ”Vater“-Shellprozeß nicht. Ausnahmen sind hier die Umlenkungen mit

”PI“, ”PO“, ”PER“, ”CUD“ und ”CUXD“, die stets auf den primären Shellprozeß
zurückwirken – und darum sehr gefährlich sein können: Lenkt man z. B. mit
PI die Eingabe auf eine Quelle um, von der keine Anweisungen kommen, so ist
die entsprechende primäre Shell praktisch unbrauchbar geworden!

Wird ein sekundärer Shellprozeß, der ja eine normale Task ist,! →
von einer anderen als der einrichtenden primären Shell aktiviert,
so erbt er nicht die Environment-Daten dieses Shellprozesses, da
seine bei der Definition gemachten Kopien nur von ihm selbst
verändert werden können. Allerdings übernimmt er die User-ID-
Nummer des Aktivierers. (Die jedoch bei gleichzeitiger mehrfa-
cher Aktivierung von verschiedenen primären Shells nicht gepuf-
fert wird!)

Eine gewisse Umlenkung der Datenausgabe sekundärer Shellprozesse ist den-
noch mit Hilfe der Datenstation /TY möglich, wie an folgendem Beispiel er-
kennbar ist:

DEFINE.X--O /TY--LU

Es wird das Terminal (bzw. Fenster), das der primären Shell des Aktivie-
rers zugeordnet ist, durch Umlenkung innerhalb der sekundären Shelltask (mit
Namen ”X“) als Ausgabe genommen. Man beachte, daß das Konzept der se-
kundären Shells nicht für kompliziertere Aufgaben gedacht ist; umfangreichere
Aktivitäten erledigt man besser mit Hilfe von Skripten in der Shellsprache (sie-
he 3.5 auf Seite 74).

64 3.2 Umgang mit der Shell

3.2.4 Bedienfunktionen mit Hilfe der Datenstation /XC

Jedes ASCII–Record, welches durch COPY oder Programmbefehle in die Ausga-
bestation /XC geschrieben wird, wird genauso behandelt, wie eine vom Nutzer
über seinen Shellprozeß (Bedientask) abgesetzte Zeile. Damit ist auch das au-
tomatische und einplanbare Laden, Entladen, Compilieren etc. möglich.

Solange mit dem ”O“–Kommando nicht anderes vereinbart, wird als Ausgabe-
gerät das jeweilige Standardausgabegerät ”Stdout“ aus dem User-Environment
des auftraggebenden Nutzers angenommen. Bei Umschaltung durch das ”O“–
Kommando gilt dieses nur für den Rest der Zeile bzw. bis zum nächsten ”O“–
Kommando.

Beginnend um 12:00:00 Uhr soll alle 2 Sekunden der ZustandBeispiel 1:
der Task TRANS aufgelistet werden. Die Zustände sollen in die
Datei /ED/ZUST geschrieben werden. Um 12:02:50 soll der letzte
Eintrag erfolgen:

COPY /A1/ > /ED/CMMD (Erstellung der Befehlsdatei)

=O /ED/ZUST;SHOW TRANS;TERMINATE LIST
=Ctrl D (EOT) Eingabevorgang

COPY.LIST /ED/CMMD > /XC/;T LIST

AT 12:00:00 ALL 2 SEC UNTIL 12:02:50 LIST

Man kann die Kommando–Datei natürlich bequemer mit einem
Editor erstellen! Man beachte, daß durch den Befehl COPY.LIST
ein benamter Kopierprozeß (Name = ”LIST“) entsteht, der
zunächst nicht läuft (wegen T LIST). Mit der letzten Zeile wird
der Prozeß ”LIST“ dann eingeplant.

Ein in PEARL geschriebenes Modul (TEST) soll sich selbst spur-Beispiel 2:
los aus der Verwaltung von RTOS–UH eliminieren:

3.2 Umgang mit der Shell 65

MODULE TEST;
SYSTEM; Shell:/XC;
PROBLEM; SPC Shell DATION OUT ALPHIC;
....
ABCD:TASK;
....
PUT ’UNLOAD TEST*’ TO Shell BY A,SKIP;
SUSPEND;

END;
....
MODEND;

Die Priorität der Betreuungstask für die ”/XC“–Warteschlange! →
hängt von der Priorität des schreibenden Prozesses ab und liegt
um eine Einheit höher als dessen Priorität. Dennoch kann der im
letzten Beispiel eingebaute SUSPEND–Befehl evtl. zur Ausführung
kommen, weil noch andere Aufträge weiter vorne in der Warte-
schlange stehen können und die mit dem ”PUT“-Befehl abgesetz-
ten Anweisungen dadurch verzögert werden.

3.2.5 Zeitliche Hintereinanderschaltung von Befehlen

Bei längerdauernden Aktivitäten benutzt die Shell Sohnprozesse, und diese
führen dann zu einer quasi parallelen Abarbeitung mehrer Bedienbefehle. Auf
diese Weise können Wartephasen – z. B. wenn der Compiler von der Platte
lesen muß – einzelner Aktivitäten zugunsten anderer Bedienbefehle genutzt
werden: So wird eine optimale Ausnutzung des Prozessors erreicht. Dennoch
kann es wünschenswert sein, verschiedene Bedienbefehle statt wie üblich par-
allel nun zwangsweise sequentiell ablaufen zu lassen. Prinzipiell gibt es dafür
zwei verschiedene Möglichkeiten.

66 3.2 Umgang mit der Shell

• Mit Hilfe des ”WAIT“-Befehles wird der Shellprozeß gezwungen, mit der
nächsten Anweisung in der Zeile erst zu beginnen, wenn die vorhergehende
Bedienanweisung beendet ist. Eine genauere Beschreibung von ”WAIT“ ist
auf Seite 223 zu finden.

WAIT;P;LOAD;ACTIVATE TASK1

Während der Compilation und beim Laden laufen Sohnprozesse ab, auf
die unser Shellprozeß jetzt jeweils wartet. Meistens wird es nachteilig sein,
daß der Shellprozeß dadurch während der Bearbeitung der Zeile nicht
mehr für andere Aktivitäten zur Verfügung steht. Auf Ctrl A reagiert
ein primärer Shellprozeß in dieser Zeit nicht, lediglich unser ”Notruf“
mit BREAK kann ihn aus der Blockierung befreien. Sohnprozesse geben in
der Regel einen Fehlerstatus an den übergeordneten Shellprozeß zurück,
wenn dieser im ”Wait-Mode“ auf ihn wartet. Würde der Compiler einen
Fehler im Programm finden, so führt die Shell alle in der Zeile folgenden
Befehle nicht mehr aus, sondern schreibt ”Befehl : operation failed“
nach Stderr. Das Laden unterbleibt dann, ebenso die Aktivierung.

• Wenn man die Anweisungen statt durch Semikolon durch zwei Minuszei-
chen trennt, so werden automatisch an den richtigen Stellen sekundäre
Shellprozesse erzeugt, die die weitere Bearbeitung der Folgeanweisungen
übernehmen. Der Shellprozeß wird also durch die Bearbeitung der An-
weisungsfolge nicht blockiert.

P--LOAD--ACTIVATE TASK1; DM 500

Nach dem Übersetzen verwandelt der PEARL-Compiler sich in einen se-
kundären Shellprozeß, der die Anweisungen LOAD--ACTIVATE TASK1 zu
bearbeiten hat. Sohnprozesse, die sich in sekundäre Shellprozesse ver-
wandeln, unterdrücken ihre Endemeldungen. Der sekundäre Shellprozeß
(er trägt noch den Namen des Compilers, braucht aber nicht mehr seinen
ganzen Speicher) führt das Laden allerdings nur aus, wenn er selbst keinen
Fehler detektiert hat. Bei dieser Lösung werden fehlerhafte Programme
nicht geladen, und die (primäre) Shell bleibt frei für andere Aufgaben:
Der DM 500-Befehl wird schon in Bearbeitung genommen, während der
Compiler läuft. Interessant ist, daß der Lader sich selbst am Ende in einen
sekundären Shellprozeß verwandelt und die Anweisung ACTIVATE TASK1
mit auf den Weg bekommen hat. Die Aktivierung unterbleibt, wenn beim
Laden ein Fehler auftrat.

3.2 Umgang mit der Shell 67

3.2.6 Antwort der Shell im Fehlerfall

Wenn ein unzulässiger Bedienbefehl eingegeben wurde, antwortet der veranlas-
sende Shellprozeß mit einer Meldung nach ”Stderr“, der Standard-Fehleraus-
gabedatei (bzw. Gerät), die zum Zeitpunkt der Ausführung des fehlerhaften
Befehles vereinbart war. Mit den Bedienbefehlen ER und PER kann diese Aus-
gabe umgelenkt werden, z. B. in eine ”Alertbox“ des Windowsystemes oder
in eine Sammeldatei auf Festplatte etc. Die Fehler führen bis auf wenige Aus-
nahmen immer zum Abbruch der kompletten Bedienzeile. Bedienbefehle hinter
dem fehlerhaften kommen also in der Regel nicht mehr zur Ausführung. Aus-
nahmen gibt es z. B. beim UNLOAD-Befehl, der die Nichtexistenz von Modulen
oder Tasks zwar beklagt, aber dennoch weitermacht, weil das gewünschte Ziel
ja erreicht wurde.

Die Fehlermeldungen der Shell haben folgendes Aussehen:

Bedienbefehl : Fehlerinfo
oder
< Shellprozessname > Bedienbefehl : Fehlerinfo

Die erste Form gilt für primäre Shellprozesse, die zweite für sekundäre. Unter
Bedienbefehl ist der inkriminierte Bedienbefehl samt allen Parametern – bis
zum nächsten Semikolon bzw. dem Zeilenende – zu finden. Die Fehlerinfo ist
abhängig von der Art des Fehlers und selbsterklärend, bzw. bei den einzelnen
Bedienbefehlen beschrieben.

Der optional vorhandene Interpreter für die Shellsprache benutzt zum Teil die
Grundmechanismen der Shell, hat aber darüber hinaus weitere eigene Fehler-
meldungen, z. B. bei Verletzung von Konventionen der Shellsprache.

68 3.3 PEARL–codierte Bedienbefehle

3.3 PEARL–codierte Bedienbefehle

Der modulare Aufbau der Shell (Bedieninterpreter) und ein entsprechender
Sonderteil im PEARL–Compiler lassen es zu, daß zuladbare oder systemresi-
dente (ROM, Bootdisk) Bedienbefehle in PEARL geschrieben werden können,
wobei ein evtl. Parametersatz des Bedienbefehles als Text an das PEARL–
Modul transferiert werden kann. Außerdem werden die drei Datenstationen
Stdin, Stdout und Stderr des momentanen Shellprozesses für die PEARL–
Welt zugänglich gemacht:

1. Standard Input = Eingabegerät der Aufrufershell. Es kann mit dem I–
und PI–Befehl (Vorsicht!) umgelenkt werden.

2. Standard Output = Ausgabegerät der Aufrufershell. Es kann mit dem O–
und PO–Befehl umgelenkt werden.

3. Standard Error = Error–Message–Sammeldatei der Aufrufershell. Es
kann mit den Befehlen ER und PER umgelenkt werden. Meist ist Stderr
nicht umgelenkt und ist dann das Terminal des Bedieners bzw. das Fen-
ster für die Kommandoeingabe.

Die Shell generiert einen Sohnprozeß, dessen Name und/oder Priorität vor-
gegeben werden kann. Dieser Sohnprozeß ruft mit dem unten beschriebenen
Parametersatz eine PEARL–Prozedur auf. Diese gibt einen Fehlerstatus (Er-
folg ja/nein) zurück. Wenn es Shellfolgebefehle (mit 2 Minuszeichen angehängt)
gibt und der Fehlerstatus ”o.k.“ ist, so verwandelt sich der Sohnprozeß in einen
sekundären Shellprozeß, der die Folgebefehle interpretiert. Betrachten wir das
Beispiel in der Abbildung 3.3 (auf Seite 71).

Nach dem Übersetzen (nur mit einem Compiler später als P16.6-D wenn die
XHELP-Unterstützung in {..} nach dem Schlüsselwort PROC genutzt wird!) und
Laden des Shellmodules könnte man dann folgende Bedienbefehle eingeben:

xhelp;

Auf dem eigenen Terminal erscheint dann Zeile für Zeile eine Liste der Bedien-
befehle und diese enthält folgende Zeile:

ECHOTX gibt Aufruftext aus.

Nun benutzen wir den neuen Befehl:

echotx Dies ist ein Test-Text;

Auf dem eigenen Terminal erscheint dann die folgende Zeile:

3.3 PEARL–codierte Bedienbefehle 69

Dies ist ein Test-Text (+CR wg. SKIP)

Anderes Aufrufbeispiel:

O /ed/murks; echotx Soll in den Murks-file;

Nun wurde die Zeile ”Soll in den Murks-file“ in den File /ed/murks ge-
schrieben.

Weiteres Aufrufbeispiel:

echotx.z2 prio 12 PEARL-Compilation folgt -- P;

Es erscheint der Text ”PEARL-Compilation folgt“ und anschließend wird der
PEARL–Compiler gestartet. Nur zur Demonstration wurde ein Sohnprozeßna-
me (z2) und eine Priorität angegeben.

---> Der übermittelte Text beginnt immer mit dem ersten Zeichen hinter
der Lücke nach dem eigentlichen Bedienbefehl und endet vor dem Se-
mikolon oder dem Zeichen --, das den evtl. Folgebefehl einleitet. Der
Längenparameter erhält genau den dazu passenden Wert. Es ist Auf-
gabe des Programmierers, den Text — etwa mit passenden Unterpro-
grammen — selbst zu analysieren, um z. B. Zahlenwerte, Parameter-
bezeichner etc. zu erkennen.

---> Der so erzeugte Shell–Befehl ist i. a. nur dann mehrbenutzerfest, wenn
im Shellmodule weder Tasks noch globale (d. h. auf Modulebene dekla-
rierte) Variable benutzt werden. Gleiches gilt auch für in einem evtl.
vorhandenen SYSTEM–Teil deklarierte DATIONs. Der Grund liegt einfach
darin, daß derartige Objekte nur einmal vorhanden sind und zu einem
Zeitpunkt nur einem einzigen Herrn dienen können. Gleichwohl sind
natürlich auch Fälle denkbar, in denen es für mehrere Nutzer nur eine
Server–Task geben darf, die sich ihre Aufträge z. B. über einen Ring-
puffer von den verschiedenen Nutzern holt (Nur aus diesem Grund läßt
der PEARL–Compiler auch in den Shellmodulen Modulvariable und
DATIONs zu).

70 3.3 PEARL–codierte Bedienbefehle

---> Die Bildung einer ”Scheibe“, um die Bedienbefehle EPROM– (oder
Bootdisk–) resident zu machen, geschieht auf die übliche Weise, wie sie
später (z. B. Seite 630) noch beschrieben wird, durch Angabe von CODE–
und VAR–Adressen. (Wobei – s. o. – die 13–er Scheibe des Variablen-
Blockes evtl. leer ist und nicht in das EPROM übernommen zu werden
braucht). Der Compiler gibt eine Meldung aus, ob der Einsatz des PROM–
Befehls (bzw. des Linkers) nötig ist oder ob das entstandene Modul frei
verschieblich ganz unkompliziert im EPROM (oder auf der Bootdisk)
abgelegt werden darf.

---> Shell–Module dürfen nur entladen werden, wenn sichergestellt ist, daß
kein Kommando dieses Modules mehr ausgeführt wird. Ein UNLOAD
modname* entlädt nur das Shell–Modul und nicht auch die evtl. auf
diesem Code noch laufenden Sohnprozesse!

3.3 PEARL–codierte Bedienbefehle 71

SHELLMODULE test; ! Eroeffnung eines ’Shellmodules’

Sages:’ECHOTX’;
! Bedienbefehl ’ECHOTX’ wird definiert und mit interner
! PEARL-Prozedur Sages verbunden xxxx:’YYYYYY’; Evtl.
! weitere solche Verbindungen: PEARL-Name der Prozedur
! links, rechts vom Doppelpunkt der String des neuen
! Bedienbefehles. Nur Grossbuchstaben bei YYYYYY!

PROBLEM; ! SYSTEM oder PROBLEM beendet den speziellen
! Shell-Definitionsteil

Sages: PROC{’gibt Aufruftext aus.’} ((Stdin,Stdout,Stderr)
DATION INOUT ALPHIC IDENT,
Length FIXED, Text CHAR(255)) RETURNS(BIT(1));

! Bis auf die Formalparameternamen und den evtl. Text
! fuer XHELP ({}) muss die Prozedurdefinition immer
! genau so aussehen. Oft ist aber eine individuelle
! Richtungsangabe fuer die 3 Dations zweckmaessig:
! Stdin DATION IN ..., etc., da ja evtl. ein anderes
! Geraet als das Terminal gemeint sein kann

DCL Istokay BIT(1) INIT (’1’B);

OPEN Stdout;
Istokay = Istokay AND ST(Stdout) EQ 0;
PUT Text TO Stdout BY A(Length), SKIP;
Istokay = Istokay AND ST(Stdout) EQ 0;
CLOSE Stdout;
Istokay = Istokay AND ST(Stdout) EQ 0;
/* Info an Shell ob alles gelungen ist */
RETURN(Istokay); ! wird von Shell ausgewertet, wenn

! Folgekommando mit ’--’ folgt oder
! auf das Ende dieses Kommandos mit
! ’WAIT’ gewartet wird.

END; ! An Shell angeschlossene Prozedur Sages
MODEND; ! Ende des Shell-Modules

Abbildung 3.3 Beispiel für ein Shell–Modul in PEARL

72 3.4 Besonderheiten bei transienten Kommandos

3.4 Besonderheiten bei transienten Kommandos

Wird von der Shell die Ausführung eines Bedienbefehles verlangt, den sie
in den Ebenen 3 ... 6 nicht finden konnte, und existiert auch keine Task mit
diesem Namen in der Systemverwaltung, so wird vermutet, daß es sich um
ein ”transientes Kommando“ oder um einen ”Skript“ in Shellsprache handelt
(siehe 3.5.2 auf Seite 76). Wenn ein Systemlader vorhanden ist (er kann darum
nicht als transientes Kommando benutzt werden!), wird zunächst die Annahme

”transientes Kommando“ probiert, anderenfalls erfolgt der Übergang in Ebene
8 zum Shellsprachinterpreter – falls vorhanden.

Wenn der Bedienbefehl mit ”/“ beginnt, so wird angenommen, daß ein Geräte-
bezeichner folgt, z. B. /F0/..., anderenfalls wird dem Befehl nacheinander
jedes vorhandene Execution-Directory vorangestellt. Die sich so ergebenden
File-Bezeichner werden versuchsweise geöffnet, und der Inhalt wird auf Lad-
barkeit (Beginn mit ”S0“) geprüft. Wird ein File des Namens gefunden und ist
er ladbar, so generiert die Shell einen Sohnprozeß als Lader, der den Namen
des Befehles plus laufender Nummer erhält. Die Shell wartet auf diesen Prozeß!
Anschließend wird das Kommando im hinzugeladenen transienten Modul ge-
sucht. Nach Bearbeitung des Befehles verschwindet das Modul wieder aus dem
Speicher.

Wenn man einen Befehl häufiger benötigt, so sollte man zur Zeitersparnis mit
Hilfe des ganz normalen ”LOAD“-Befehles das Shellmodule laden. Es wird dann
zu einer Erweiterung der Ebene 6 (Shell-Modul im RAM) und zukünftig nicht
mehr transient ausgeführt.

Beispiel:

Das Execution–Directory sei ”/F0/CMD“. Hier befindet sich ein übersetztes
Shellmodul (S–Records) mit dem Kommando MORE. Die Datei muß auch den
Namen MORE haben.

Es müssen einige Restriktionen für transiente Kommandos beachtet werden.
Die Angaben unten gelten für neuere Versionen von RTOS–UH, erschienen
nach Februar 1994.

1. Der Filename muß mit dem Kommandonamen übereinstimmen und darf
nur Großbuchstaben enthalten. Bei neueren Systemen werden alle Klein-
buchstaben des eingegebenen Befehlsnamens in Großbuchstaben verwan-
delt. Erst danach wird der File gesucht. Mit Hilfe des ”LINK“-Befeh-
les können weitere alternative Filebezeichner angelegt werden, falls das
Shellmodul mehrere Befehle beherbergt.

Beispiel: xy123 sucht nach File XY123.

3.4 Besonderheiten bei transienten Kommandos 73

2. Bei vorhandenen Execution-Directories muß nur der Kommandoname
eingegeben werden. Im Beispiel:

More; bei XD=/F0/CMD

3. Ohne Execution-Directory muß die gesamte Pathlist (inklusive Device
und Kommandoname) eingegeben werden:

/F0/CMD/MORE; oder auch
/f0/cmd/more; wegen Umwandlung in Großbuchstaben.

4. Das Testlesen erfolgt im I/O-Mode ”no errors“. Wenn der fileverwalten-
de I/O-Prozeß diese Unterdrückung nicht beherrscht, kann es zu von ihm
produzierten Fehlermeldungen, z. B. ”FILE-NOT-FOUND“ kommen – ob-
wohl die Suche anschließend erfolgreich ist.

5. Falls beim Laden eines transienten Kommandos die primäre Shell über
den ”Notruf“ der BREAK–Taste gerufen wird, so kümmert sie sich nicht
weiter um ihren Sohnprozeß. Gleiches gilt, wenn ein sekundärer Shellpro-
zeß von außen abgebrochen wird, während er auf den transienten Lader
wartet. Der Sohnprozeß (Lader) führt die Ladeoperation zu Ende, aber
der transiente Bedienbefehl kommt nicht mehr zur Ausführung. Dadurch
lebt nun aber leider niemand mehr, der den Entladevorgang ausführen
könnte. Zur Speicherersparnis empfiehlt es sich, das Modul dann gele-
gentlich von Hand zu entladen, denn die vom transienten Lader gelade-
nen Shellmodule können nicht als Shellerweiterung der Ebene 6 benutzt
werden. (Für Insider: die AEB1-Scheibe wird vom Transientlader neu-
tralisiert, damit niemals mehr als ein Shellprozeß auf dem Code laufen
kann.)

6. Sehr wenige Befehle, z. B. ”MSFILES“ und ”RTOSFILES“ lassen sich prin-
zipbedingt nicht durch transienten Aufruf benutzen, weil deren Code noch
nach Abarbeitung des Kommandos benötigt wird. Ansonsten kann man
alle S-Rekords, die als Scheibe für die Shell-Ebenen 3 ... 6 geeignet sind,
auch transient benutzen.

74 3.5 Die Shell-Sprache

3.5 Die Shell-Sprache

3.5.1 Aufruf von Shellskripten

Programme in Shellsprache werden wie in der UNIX-Welt auch in RTOS–
UH ”Skripte“ genannt. Von H. Husmann stammt die Software, mit der solche
Skripte auf drei verschiedene Arten zur Ausführung gebracht werden können:

1: path [positpara]
2: EX [.sonprocname] [PRIO integer3] [SZ hexnum6] [path] [positpara]
3: SHELL [PRIO integer3] [SZ hexnum6] [path] [positpara]

Beim Aufruf eines Shell-Skriptes wird ein flüchtiger, unabhängiger Sohnprozeß
generiert, der den über path angesprochenen Textfile interpretiert.

1 Ist path nur ein Name, so wird eine solche Datei in den Execution-
Directories gesucht. Als ”sonprocname“ wird ”name/xx“ generiert, wo-
bei ”xx“ eine zweistellige Hexadezimalzahl mit automatischer Weiter-
schaltung ist. Steht das auszuführende Skript nicht in den Execution-
Directories, ist bei path der vollständige Pfad anzugeben.

2 Mit dem Aufruf eines Skriptes über die Befehle EX oder auch (in der
Langform) EXECUTE können zusätzlich der Sohnprozeßname (.sonprocna-
me), die Priorität des Sohnprozesses (PRIO) und die Arbeitsspeichergröße
(SZ) festgelegt werden. Fehlt der Sohnprozeßname, wird der Defaultna-
me ”EX/xx“ vergeben, wobei ”xx“ eine zweistellige Hexadezimalzahl mit
automatischer Weiterschaltung ist. Ist bei path nur ein Name angegeben,
wird eine gleichnamige Datei im Working-Directory gesucht.

3 Beim Aufruf über den Befehl SHELL gelten außer beim Sohnprozeßna-
men die gleichen Aufrufparameter wie beim Aufruf über EX. Als Name
erhält der Sohnprozeß ”#BSHxx“, wobei xx die Usernummer des Aufrufers
ist. Zusätzlich wird der Sohnprozeß als sekundäre Shell in das Userenvi-
ronment eingetragen und damit beim Anschlag der Taste ”CTRL A“ des
Users fortgesetzt. Die primäre Shell ist dann nur noch über die ”BREAK“-
Taste erreichbar. Das SHELL-Skript sollte in einer Endlosschleife Befehle
einlesen, ausführen und sich dann für den nächsten Anschlag der Taste

”CTRL A“ suspendieren. Damit kann man sich eine Shell mit eigenem En-
vironment und geringerer Priorität einrichten. Die sekundäre Shell kann
mit dem EXIT-Befehl beendet werden. Nach einem Warmstart läuft das
SHELL-Skript neu an und bleibt als sekundäre Shell aktiv. Pro User ist
nur eine sekundäre Shell einrichtbar, der SHELL-Befehl darf nicht gesta-
pelt abgesetzt werden.

3.5 Die Shell-Sprache 75

SZ hexnum6 oder SZ=hexnum6. Mit hexnum6 kann der dy-Speicher:
namische Arbeitsspeicher des Sohnprozesses bestimmt werden
(Default und Minimum: SZ=2000).

Der Parameter path muß angegeben werden und bezeichnetpath:
die auszuführende Datei. Es wird eine Kopie mit dem Namen
/ED/filename/xxxx angelegt, um das mehrfache, parallele Ab-
laufen eines Skriptes zu ermöglichen.

Einem Shell-Skript können beim Aufruf ”Positionsparameter“positpara:
mitgegeben werden. Der in positpara enthaltene Text wird wort-
weise (durch Leerzeichen getrennt) den Variablen $1 bis $n zuge-
wiesen. Sollen Parameter Leerzeichen enthalten, sind sie in Apo-
strophs einzuschließen.

RMD /ed/*Beispiele:

Die Datei RMD wird in den aktuellen Execution-Directories ge-
sucht und dann interpretiert. Der Text ”/ed/*“ ist im Skript
über die Shell-Variable $1 erreichbar.

EX PRIO 40 SZ 4000 /H0/TEST parameter1 ’parameter 2’

Das Shell-Skript in der Datei TEST auf dem Festplattenlaufwerk
H0 wird interpretiert. Die EX/xx Subtask besitzt die Priorität
40 und erhält $4000 Bytes Speicher. Die Texte ”parameter1“
und ”parameter 2“ sind über die Shell-Variablen $1 und $2 im
Shell-Skript erreichbar.

SHELL /H0/XD/SHELL

Es wird eine sekundäre Shell für den aufrufenden User eingerich-
tet. Im einfachsten Fall könnte das Skript SHELL folgendermaßen
aussehen:

: Privates Environment setzen,
: z.B. mit den Befehlen CD, CXD, ...

WHILE TRUE : Endlosschleife
DO
SUSP; : warten auf CTRL-A
ECHO -N >; : Prompt ausgeben
READ Kmd; : Kommando lesen
IF EXEC $Kmd; THEN : Kommando ausfuehren und
FI; : Fehlerabbruch durch

: IF...THEN FI; verhindern
DONE;

76 3.5 Die Shell-Sprache

Der Interpretercode ist wiedereintrittsfest, so daß beliebig vie-Hinweis:
le Shell-Skripte gleichzeitig abgearbeitet werden können (sofern
noch dynamischer Speicher zur Verfügung steht).

3.5.2 Sprachumfang Shell-Interpreter

Ein Shell-Skript ist eine Aneinanderreihung von Anweisungen, wobei eine An-
weisung ein Bedienbefehl oder ein Kommando aus dem Befehlssatz des Shell-
Interpreters sein kann. Innerhalb eines Interpreterbefehls können Bedienbefehle
an jeder Stelle stehen, an der eine Anweisung stehen darf. Beim Auftreten eines
Fehlers in einem Bedienbefehl wird der logische Wert ”falsch“ zurückgegeben.
Bei Bedienbefehlen, die eine Subtask generieren, kann mit dem Shellbefehl

”WAIT“ auf die Beendung gewartet werden. Nur im ”Waitmode“ erreicht ein
Fehler der Subtask das Shellskript.

Die Syntax der Shell-Skripte ist an die der ”UNIX Bourne-Shell“ angelehnt.
Im folgenden werden alle Kommandos des Shell-Interpreters mit ihrer Syntax
und ihrer Bedeutung erklärt. Der Shell-Interpreter akzeptiert Schlüsselwörter
in Groß- und Kleinschreibung. Eine vollständige Liste der Schlüsselwörter be-
findet sich in Tabelle 3.5.10.8, in der Syntaxbeschreibung sind sie durch die
Schriftart ”teletype“ gekennzeichnet. In eckigen Klammern stehende Teile der
Syntaxbeschreibung sind optional und können auch entfallen. Beschreibungs-
teile in geschweiften Klammern können beliebig oft oder überhaupt nicht ein-
gesetzt werden. Alternativen sind in Klammern gesetzt und durch das Zeichen
| getrennt.

Über den Befehl .[/Gerät /Pfad /]Name können sogenannte ”Subskripte“ auf-
gerufen werden. Fehlen Gerät und Pfad, wird die Datei Name in den Execution-
Directories gesucht. Ein Subskript ist ein Unterprogrammaufruf ohne Überga-
beparameter. Es kann jedoch auf alle Variablen des Aufrufers zugegriffen wer-
den. Mit dem Ende des Subskriptes (EXIT-Befehl) kehrt man in das aufrufende
Skript zurück. Für ein Subskript wird kein eigener Prozeß gebildet.

3.5.3 Kommentare

Kommentare beginnen mit der Zeichenfolge Doppelpunkt Leerzeichen und en-
den mit dem Zeilenende. Sie können beliebig in den Prozedurtext eingestreut
werden. Die Zeichenkette Doppelpunkt Leerzeichen verliert ihre Bedeutung nur,
wenn sie in Anführungszeichen (”:“) oder in Apostrophs (´:´) eingeschlossen
wird.

3.5 Die Shell-Sprache 77

3.5.4 Metazeichen

Zeichen mit spezieller Bedeutung werden Metazeichen genannt. Dazu gehören
die Zeichen: *, ?, $, `, :, \, “, ´, ;, CR. Die Zeichen Stern und Fragezeichen
sind sogenannte Wildcards und werden bei Zeichenvergleichen eingesetzt. Der
Stern repräsentiert dabei beliebig viele beliebige Zeichen, während das Frage-
zeichen genau ein beliebiges Zeichen vertritt. Das Dollarzeichen kennzeichnet
mit darauffolgendem Namen den Wert einer Variablen (siehe 3.5.5). Durch
das Einschließen eines Bedienbefehls in Hochkommata (z. B. `S`) wird sei-
ne Ausgabe in eine Variable umgelenkt (siehe 3.5.5.1). Das Voranstellen des
Zeichens \ bewirkt für ein folgendes Metazeichen, daß es seine besonderen Ei-
genschaften verliert und als normales Textzeichen interpretiert wird. Folgt dem
Zeichen \ eine dezimale Zahl, so wird ein Zeichen mit dem der Zahl entspre-
chenden ASCII-Code eingesetzt (z. B. \4 entspricht dem Zeichen CTRL-D; \42
entspricht dem Zeichen ”*“). Einige fest vereinbarte Sonderzeichen erreicht man
über \B, \F, \N, \O, \R und \T, siehe Tabelle Seite 94. Durch Einschließen in
Anführungszeichen (“ ... “) werden folgende Metazeichen zu normalem Text
* ? : ; CR \´ durch Einschließen in Apostrophs (´ ...´) dagegen
* ? : ; CR \ $ ` “

3.5.5 Shell-Variablen

Shell-Variablen enthalten grundsätzlich nur Zeichenketten (im folgenden auch
als ”String“ bezeichnet). Auch Zahlen, die mit dem EXPR Kommando (siehe
3.5.9.2 auf Seite 86) verarbeitet werden, sind als String gespeichert. Den Wert
einer Variablen erhält man, indem man dem Namen ein Dollarzeichen ($) vor-
anstellt. Variablennamen müssen mit einem Buchstaben oder einer Ziffer be-
ginnen und dürfen nur Buchstaben und Ziffern enthalten.

Die Variablen $1, $2, . . . werden beim Aufruf des Shell-Interpreters mit den

”Positionsparametern“ der Kommandozeile besetzt. Diese Positionsparameter
enthalten der Reihe nach, bei $1 beginnend, die einzelnen Textworte der Kom-
mandozeile:

/H0/XD/XYZ Dies ist ein test

erzeugt die Inhalte $1 = ´Dies´ , $2 = ´ist´ , $3 = ´ein´ usw.

In der Variablen $# findet man die Anzahl der Positionsparameter. Außerdem
werden noch $?, $@ und $$ vom Interpreter gesetzt (siehe Tabelle).

78 3.5 Die Shell-Sprache

$1- Positionsparameter der Aufrufzeile
$n
$# Anzahl der Positionsparameter
$@ alle Positionsparameter durch ein Leerzeichen getrennt
$? Austrittsstatus des zuletzt ausgeführten Bedienbefehls

Kein Fehler –> $?=’0’; Fehler –> $?=’1’
$$ Name der Interpreter-Subtask
$0 Name der interpretierten ED-Datei
$EOF Austrittsstatus des letzten READ-Befehls

Vorbesetzte Shell-Variablen

3.5.5.1 Wertzuweisung an Shellvariable

Shell-Variablen kann durch die Verwendung des Gleichheitszeichens ein Wert
zugewiesen werden. Das Ende der zugewiesenen Zeichenkette ist entweder das
Zeilenende oder das Semikolon.

Syntax: variablenname = string (; | CR)

DIR=/F0/SYS : $DIR wird /F0/SYS zugewiesen
CD $DIR : entspricht CD /F0/SYS

TEXT = ´Diese Zeile enthaelt Metazeichen: * ? $ ` : \ ” ; ´
TEXT = ”Diese Zeile enthaelt Metazeichen: * ? : \ ´ ; ”

Die Verkettung von Zeichenketten ist durch einfaches Aneinanderhängen
möglich. Folgt einem Variablennamen bei einer Verkettung direkt ein Buchsta-
be oder eine Ziffer, dann muß er durch geschweifte Klammern vom folgenden
Text abgegrenzt werden.

DIR = /F0/SYS : $DIR wird /F0/SYS zugewiesen
DAT = $DIR/DATEI; : $DAT wird /F0/SYS/DATEI zugewiesen
COPY $DAT>/ED/TEXT : /F0/SYS/DATEI wird nach /ED/TEXT kopiert

DIR2 = $DIRTEM; : DIR folgt ein Buchstabe, daher wird die
: Variable mit dem Namen DIRTEM angesprochen

DIR2 = ${DIR}TEM; : $DIR2 wird /F0/SYSTEM zugewiesen
COPY $DIR2>/ED/SYS : /F0/SYSTEM wird nach /ED/SYS kopiert

3.5 Die Shell-Sprache 79

Es ist weiterhin möglich, die Ausgabe eines Bedienbefehls in eine Variable ein-
zulesen. Dazu muß der Bedienbefehl in Hochkommata eingeschlossen werden:

Speicher = `S` : Die Ausgabe des S Kommandos wird der
: Variablen $Speicher zugewiesen

3.5.5.2 Implizite Wertzuweisung

Variablenname1 = ${Variablenname2 (– | = | ?)String }Syntax:

Der Wert einer nicht gesetzten Variablen ist die leere Zeichenkette. Wenn z. B.
$WERT nicht gesetzt ist, würde der Befehl VAR = $WERT, der Variablen $VAR also
nichts zuweisen. Ein impliziter Wert kann mit Hilfe der folgenden Notationen
zugewiesen werden:

Bsp. 1: DIR = ${DIR2 - DIR2 ist nicht gesetzt}

Ist $DIR2 gesetzt, wird der Wert von $DIR2 zugewiesen, anderenfalls wird $DIR
der Text ”DIR2 ist nicht gesetzt“ zugewiesen.

Bsp. 2: DIR = ${DIR2 = /F0/SYS}

Ist $DIR2 gesetzt, wird der Wert von $DIR2 zugewiesen, anderenfalls wird $DIR2
und dann auch $DIR der Text ”/F0/SYS“ zugewiesen.

Bsp. 3: DIR = ${DIR2 ? DIR2 ist nicht gesetzt}

Ist $DIR2 gesetzt, wird der Wert von $DIR2 zugewiesen, anderenfalls wird die
Meldung ”DIR2 ist nicht gesetzt“ an das Standard-Ausgabegerät ausgege-
ben, und die Ausführung wird abgebrochen.

80 3.5 Die Shell-Sprache

3.5.6 E/A-Befehle

3.5.6.1 Der Ausgabe-Befehl ECHO

Syntax: ECHO [-N] string (; | CR)

Der dem ECHO-Kommando folgende string wird auf das ”Standard-Out-Gerät“
des Skriptes ausgegeben. Mit dem ”O“-Kommando kann die Ausgabe umgelenkt
werden (siehe Seite 179). Der auszugebende String wird durch das Zeilenende
oder durch ein Semikolon beendet. Ohne die -N Option wird ein Zeilenvorschub
angehängt, mit -N erfolgt kein Zeilenvorschub.

Beispiel: DIR=/F0/SYS; ECHO \7´Der Wert von $DIR ist : ´$DIR

Es wird der Text ”Der Wert von $DIR ist : /F0/SYS“ mit Bell (\7 –>
ASCII-Code 7 entspricht Bell) ausgegeben.

Beispiel: O /ED/TEXT; ECHO -N ”Die Uhrzeit ist : `CLOCK`”

Der Text ”Die Uhrzeit ist : xx:yy:zz ...“ wird in die Datei /ED/TEXT
geschrieben.

3.5.6.2 Der Einlese-Befehl READ

Syntax: READ variable {variable } (; | CR)
oder READ [-N|-E] variable (; | CR)

Der READ-Befehl liest Eingaben vom ”Standard-In-Gerät“ des Users (Die Ein-
gabe kann durch das ”I“-Kommando umgeleitet werden, siehe Seite 152). Er-
reicht man beim Lesen von einer Datei das Dateiende, enthält die Shell-Variable
$EOF eine ”1“, ansonsten eine ”0“. Ohne -N Option wird die eingelesene Zeile
einer oder mehreren Variablen, die dem READ-Befehl folgen, zugewiesen. Dabei
wird den ersten Variablen jeweils ein Wort (Wortgrenze ist das Leerzeichen)
und der letzten Variablen der Rest der Zeile zugewiesen. Als Zeilenende gelten

”Carriage-Return“=$0D, ”Linefeed“=$0A und ”End of Text“=$04, wobei
das Zeichen ”Carriage-Return“ nicht zugewiesen wird.
Mit -N Option wird einer Variablen die komplette eingelesene Zeile einschließ-
lich evtl. vorhandener führender Leerzeichen zugewiesen. Mit -E Option wird
ein Einzelzeichen gelesen, dabei werden auch alle Steuerzeichen zugewiesen.

3.5 Die Shell-Sprache 81

Beispielprogramm: READ X Y Z
Eingabe: Diese Zeile wird gelesen (CR)

Ergibt: $X: Diese $Y: Zeile $Z: wird gelesen

Beispielprogramm: READ -N X
Eingabe: Diese Zeile wird gelesen (CR)

Ergibt: $X: Diese Zeile wird gelesen

Beispielprogramm: REWIND /ED/TEXT; I /ED/TEXT; READ ZEILE
Ergibt: $ZEILE: Erste Zeile aus /ED/TEXT

3.5.7 Ablaufsteueranweisungen

3.5.7.1 Die IF-Anweisung

Syntax: IF { Anweisung }
THEN { Anweisung } [ELSE { Anweisung }] FI (; | CR)

Die Anweisungen hinter dem IF-Kommando werden als Bedingungsfolge aus-
geführt. Es sind sowohl Interpreteranweisungen als auch Bedienbefehle anwend-
bar. Die Bedingungsfolge wird beim ersten Auftreten des Ergebnisses falsch
oder fehlerhaft abgebrochen, und sofern vorhanden, der ELSE-Zweig ausgeführt.
Liefert sie den Wert ”wahr“ oder ”fehlerfrei“, wird der THEN-Zweig ausgeführt.
Danach wird die Ausführung der Shell-Prozedur hinter dem FI-Kommando
fortgeführt. Tritt innerhalb der Anweisungsfolge die Bedingung ”unwahr“ oder
ein Fehler auf, wird die IF-Anweisung abgebrochen und der Wert ”unwahr“,
ansonsten ”wahr“ zurückgegeben. Die Befehlsfolge ELSE IF kann als ”ELIF“
abgekürzt werden.

IF TEST $1 = TEXT : wenn $1 gleich TEXT ist
THEN : dann
ECHO ´$1 ist gleich TEXT´ : Ausgabe: $1 ist ...

ELSE : sonst
ECHO ´$1 war nicht gleich TEXT´ : Ausgabe: $1 war ...
1 = TEXT : $1 = TEXT

FI : Ende der IF-Anweisung

82 3.5 Die Shell-Sprache

3.5.7.2 Die CASE-Anweisung

Syntax: CASE Variable IN
{Muster { | Muster }) {Anweisung} ;; }

ESAC (; | CR)

Die CASE-Anweisung gestattet eine Mehrfachverzweigung. Sie vergleicht den
Wert der Variablen mit den Mustern. Das Zeichen ”|“ ist als ”oder“ zu ver-
stehen. Stimmt der Wert der Variablen mit einem Muster überein, wird die
zugehörige Anweisungsfolge ausgeführt und danach die CASE-Anweisung ver-
lassen. Im Muster dürfen auch die Wildcards ”Stern“ und ”Fragezeichen“ ver-
wendet werden.

Beispiel:
CASE $# IN
1 | 2) ECHO ”ein oder zwei Parameter” ;; : $# ist 1 oder 2
?) ECHO ”drei bis neun Parameter” ;; : $# ist ein Zeichen
*) ECHO ”mehr als neun Parameter” ;; : $# ist beliebig

ESAC

3.5.7.3 Die FOR-Anweisung

Syntax: FOR Steuervariable [IN [-(W|L)] String (; | CR)]
DO {Anweisung } DONE (; | CR)

Ohne den IN-Befehlsteil werden der Steuervariablen nacheinander die Positi-
onsparameter ($1 - $n) zugewiesen. Mit dem IN-Befehlsteil und -L (”Line“)
oder fehlender Option wird der String zeilenweise, mit -W (”Word“) Option
wortweise, der Steuervariablen zugewiesen. Die Anweisungsfolge wird bei jedem
Schleifendurchlauf ausgeführt, bis alle Werte zugewiesen wurden. Der aktuelle
Wert der Steuervariablen ist über $Steuervariable erreichbar.

3.5 Die Shell-Sprache 83

Beispiel 1:

FOR VAR IN `DIR /H0` : liest die Ausgabe von DIR /H0 zeilenweise
DO : führe aus
ECHO $VAR; : gibt die aktuelle Zeile aus

DONE : Ende der FOR-Schleife

Beispiel 2:

FOR VAR : liest die Positionsparameter $1 - $n
DO : führe aus
ECHO $VAR; : gibt nacheinander $1 - $n aus

DONE : Ende der FOR-Schleife

3.5.7.4 Die WHILE- und die UNTIL-Anweisung

Syntax: WHILE {Anweisung } DO {Anweisung } DONE (; | CR)
oder: UNTIL {Anweisung } DO {Anweisung } DONE (; | CR)

Die dem WHILE-Kommando folgenden Bedingungsanweisungen werden aus-
geführt und beim ersten Auftreten der Bedingung ”unwahr“ oder ”Fehler“ ab-
gebrochen. Solange die Bedingungsanweisungen den Wert ”wahr“ liefern, wird
der mit dem DO- und DONE-Befehl eingeschlossene Schleifenkern wiederholt. Bei
der UNTIL-Variante wird der Schleifenkern solange ausgeführt, bis die Bedin-
gungsfolge den Wert ”wahr“ liefert. Sowohl bei der WHILE– als auch bei der
UNTIL–Anweisung wird vor dem Schleifenkern die Bedingungsanweisungsfolge
ausgeführt.

Beispiel:

DATE =´0´
UNTIL ER /NIL; DATESET $DATE : bis das Datum richtig gesetzt ist
DO : führe aus
IF TEST $DATE !=´0´; THEN
ECHO ´Die Eingabe war falsch!´

FI
ECHO -N ´Geben Sie das Datum in der Form TT-MM-JJJJ ein :´
READ DATE : lies DATE vom Terminal

DONE : Ende der UNTIL-Schleife

84 3.5 Die Shell-Sprache

3.5.8 Bedingungs-Anweisungen

Bedingungsanweisungen werden in der WHILE-, UNTIL- und in der IF-Anweisung
benötigt, um Programmverzweigungen zu realisieren. Es kann grundsätzlich
jede Anweisung des Befehlssatzes und jeder Bedienbefehl als Bedingung dienen.
Ist die Anweisung keine spezielle Bedingungs-Anweisung aus diesem Kapitel,
dann wird bei fehlerfreier Ausführung ”wahr“ und beim Auftreten eines Fehlers

”falsch“ zurückgegeben.

3.5.8.1 TRUE- und FALSE- Anweisung

Syntax: (TRUE | FALSE) (; | CR)

Die TRUE- und FALSE-Anweisung kann beim Programmtest eingesetzt werden,
um bestimmte Programmzweige zwingend zu durchlaufen. Dabei liefert TRUE
den Wert ”wahr“ und FALSE den Wert ”falsch“.

Beispiele für Endlosschleifen:

WHILE TRUE UNTIL FALSE
DO DO
DONE DONE

3.5.8.2 Die TEST-Anweisung

Syntax: TEST log Ausdruck {(-A|-O|-E) log Ausdruck } (; | CR)

log Ausdruck : [!] ((-Z|-N) $Variablenname |
String 1 [!] = String 2 |
Zahl 1 (-EQ|-NE|-GT|-GE|-LT|-LE) Zahl 2)

Das TEST-Kommando liefert in Abhängigkeit vom folgenden Ausdruck den lo-
gischen Wert ”wahr“ oder ”falsch“. Logische Ausdrücke können miteinander

”UND“ (-A), ”ODER“ (-O) oder ”EXKLUSIV-ODER“ (-E) verknüpft werden.
Bei einem TEST-Befehl über mehrere Zeilen sollte man -A, -O oder -E an das
Zeilenende setzen, um die Beendigung durch das CR aufzuheben.

Die Ausdrücke werden von links nach rechts abgearbeitet, es können jedoch
durch Einschließen in Klammern Gruppen gebildet werden. Das Ausrufungs-
zeichen (”!“) bewirkt eine Negation des folgenden Ausdrucks. Die logischen
Ausdrücke haben folgende Bedeutung:

3.5 Die Shell-Sprache 85

-Z $Variablenname : wahr, wenn die Variable nicht existiert
: oder die Länge Null ist

-N $Variablenname : wahr, wenn die Länge ungleich Null ist
String 1 = String 2 : wahr, wenn String 1 gleich String 2 ist
String 1 != String 2: wahr, wenn String 1 ungleich String 2 ist
Zahl 1 -EQ Zahl 2 : wahr, wenn Zahl 1 gleich Zahl 2 ist
Zahl 1 -NE Zahl 2 : wahr, wenn Zahl 1 ungleich Zahl 2 ist
Zahl 1 -GTZahl 2 : wahr, wenn Zahl 1 größer Zahl 2 ist
Zahl 1 -GEZahl 2 : wahr, wenn Zahl 1 größergleich Zahl 2 ist
Zahl 1 -LTZahl 2 : wahr, wenn Zahl 1 kleiner Zahl 2 ist
Zahl 1 -LEZahl 2 : wahr, wenn Zahl 1 kleinergleich Zahl 2 ist

Beispiele:

IF TEST -Z $VAR : wenn $VAR nicht gesetzt ist
· · ·
IF TEST -N $VAR : wenn $VAR gesetzt ist
· · ·
IF TEST $FNAME = /ED/* -O $FNAME = /ed/*
: wenn $FNAME gleich /ED/irgendwas oder /ed/irgendwas ist
· · ·
IF TEST $# -GE 2 -A $# -LE 4
: wenn die Anzahl der Positionsparameter zwischen 2 und 4 liegt
· · ·
WHILE TEST $ZAEHLER -LE 10 : solange $ZAEHLER kleiner 10
DO . . .

3.5.9 Zeichenketten-Behandlung

3.5.9.1 Die LEN-Anweisung

Syntax: LEN($Variablenname) (; | CR)

Die LEN-Anweisung berechnet die Länge der folgenden Variablen, sie kann über-
all dort stehen, wo ein String oder eine Zahl stehen darf.

LAENGE = LEN($VAR) : LAENGE wird die Länge von VAR
: zugewiesen

IF TEST LEN($VAR) -LT 10 : wenn VAR kürzer als 10 ist

86 3.5 Die Shell-Sprache

3.5.9.2 Die EXPR-Anweisung

Syntax: EXPR arithmetischer Ausdruck (; | CR)

Der dem EXPR-Befehl folgende String wird als arithmetischer Ausdruck ange-
sehen. Es sind die Operationen +, –, *, / und % (% -- > Bestimmung des
Divisionsrestes) erlaubt. Bei Addition und Subtraktion sind Integerzahlen von
-30000000 bis +30000000 erlaubt, bei der Multiplikation und Division von
-32000 bis +32000. Der Ausdruck wird von rechts nach links abgearbeitet, wo-
bei Multiplikation, Division und Restbestimmung Vorrang vor Addition und
Subtraktion haben. Eine Gruppenbildung durch Einschließen in Klammern ist
möglich. Der EXPR-Befehl kann überall dort eingesetzt werden, wo eine Zahl
oder ein String stehen darf.

Hinweis:

Folgt dem EXPR-Befehl innerhalb einer TEST-Anweisung direkt ein Vergleichs-
operator (-EQ etc.), kommt es zu einem Syntaxfehler: das Minuszeichen wird
fälschlich als Rechenoperator interpretiert. Zur Abhilfe kann man den Ver-
gleichsoperator an den Anfang der nächsten Zeile setzen. Ein Zeilenende oder
Semikolon beendet die Textanalyse des EXPR. Natürlich hilft auch die vorherige
Zuweisung des EXPR-Ergebnisses in eine Variable, die dann im TEST verwendet
wird.

Beispiele:

ERGEBNIS=EXPR (3+4)*-5 : ERGEBNIS ist ´-35´
COUNT=0;
WHILE TEST $COUNT -LT 10 : solange COUNT kleiner 10
DO
COUNT=EXPR $COUNT+1 : increment COUNT

. . .
DONE

3.5 Die Shell-Sprache 87

3.5.9.3 Die SEG-Anweisung

Syntax: SEG [[Begin] , [End]] (String) (; | CR)

Mit Hilfe des SEG-Befehls ist eine Bildung von Teilstrings möglich. Durch Begin
wird der Anfang und durch End das Ende des Teilstrings im String festgelegt.
Begin und End müssen Zahlen sein oder Zahlen ergeben. Wenn Begin nicht
angegeben oder negativ ist, dann beginnt der Teilstring am Anfang des Strings.
Fehlt die Angabe von End, dann endet er mit dem Ende des Strings. Ist End
minus Begin kleiner Null oder liegt der gewählte Bereich außerhalb des Strings,
hat der Teilstring die Länge Null.

VAR=SEG[2,5](abcdefghij) : VAR ist gleich ´bcde´
VAR=SEG[,7](abcdefghij) : VAR ist gleich ´abcdefg´
VAR=SEG[4,](abcdefghij) : VAR ist gleich ´defghij´
VAR=SEG[12,](abcdefghij) : VAR ist leer ´´

VAR=SEG[3,EXPR LEN($VAR)-2](abcdefghij)
: LEN($VAR) ist 10; 10–2 ist 8; VAR ist gleich ´cdefgh´

3.5.9.4 Die SET-Anweisung

Syntax: SET [String] (; | CR)
Fehlt der Parameter String, wird eine Liste der Variablen auf dem aktuellen
Ausgabegerät (mit dem ”O“-Kommando umlenkbar, siehe Seite 179) ausgege-
ben.
Ist ein String als Parameter vorhanden, wird er expandiert und dann wortweise
den Variablen $1 ... $n zugewiesen. Wortgrenzen sind dabei das Leerzeichen
sowie Steuerzeichen mit dem ASCII-Code kleiner 29. $# enthält die Anzahl der
gebildeten Variablen n. Aus vorangegangenen Operationen gebildete Variablen
größer $n bleiben vom SET-Befehl unbeeinflußt.

Beispiele:

SET : Ausgabe der Liste der Variablen

SET ”para1 para2” : $1 = para1; $2 = para2; $# = 2

SET `pwd` : die Ausgabe von pwd wird wortweise
: $1 ... zugewiesen

88 3.5 Die Shell-Sprache

3.5.9.5 Die TOCHAR-Anweisung

Syntax: TOCHAR(arithmetischer Ausdruck) (; | CR)

Die sich durch den arithmetischen Ausdruck ergebende Zahl wird in das zu-
gehörige ASCII-Zeichen gewandelt. Das Ergebnis ist ein String (aus einem Zei-
chen) und kann überall eingesetzt werden, wo ein String stehen darf.

ECHO TOCHAR(66) : der Text ’B’ wird ausgegeben

VAR=TOCHAR(EXPR(66+1)) : entspricht VAR=C

3.5.9.6 Die TOFIX-Anweisung

Syntax: TOFIX(Einzelzeichen) (; | CR)

Diese Funktion wandelt ein Einzelzeichen in eine Zahl um. Das Ergebnis ist ein
String und kann überall dort stehen, wo eine Zahl oder ein String zugelassen
ist.

ECHO TOFIX(A) : der Text ’65’ wird ausgegeben

VX=EXPR(TOFIX(A)+1) : ergibt VX=66

3.5.10 Verschiedene Anweisungen

3.5.10.1 Die BREAK-Anweisung

Syntax: BREAK [n] (; | CR)

Durch das BREAK-Kommando kann eine FOR-, WHILE- oder UNTIL-Schleife ver-
lassen werden. Ist der Parameter n angegeben, dann wird die Schleife beim n-
ten Durchlauf abgebrochen, fehlt n, erfolgt der Abbruch unmittelbar. Es wird
immer die innerste Schleife unterbrochen.

3.5 Die Shell-Sprache 89

Beispiel:

DATE =´0´
UNTIL ER /NIL; DATESET $DATE : bis das Datum richtig gesetzt ist
DO : führe aus
BREAK 5 : maximal 5 Versuche
IF TEST $DATE !=´0´; THEN
ECHO “Die Eingabe war falsch!“

FI
ECHO -N ´Geben Sie das Datum in der Form TT-MM-JJJJ ein :´
READ DATE : lies DATE vom Terminal

DONE : Ende der UNTIL-Schleife

3.5.10.2 Die CONT-Anweisung

Syntax: CONT [n] (; | CR)

Mit Hilfe des CONT-Kommandos kann an den Anfang einer FOR-, WHILE- oder
UNTIL-Schleife gesprungen werden. Ist der Parameter n angegeben, dann wird
der Schleifenzähler auf n gesetzt; fehlt n, erfolgt der Sprung an den Anfang der
Schleife. Es ist immer nur die innerste Schleife betroffen. Der Schleifenzähler
wird bei der WHILE- und UNTIL-Schleife nur vom BREAK-Kommando ausgewer-
tet. Bei FOR-Schleifen mit Positionsparametern bestimmt er den nächsten Pa-
rameter; bei der FOR-Schleife mit ”IN“ und ”String“ bestimmt er die nächste
Position im String.

Beispiel:

FOR LINE IN -L `S` : lies S zeilenweise ein
DO : führe aus
IF TEST -Z $MARK : wenn MARK nicht gesetzt ist
THEN :
MARK = ´SET´; : MARK wird gesetzt
CONT 15; : beginne mit der 15. Zeile

FI : Ende wenn MARK nicht gesetzt ist
ECHO $LINE : gibt S ab der 15. Zeile aus

DONE : Ende der FOR-Schleife

90 3.5 Die Shell-Sprache

3.5.10.3 Die EXEC-Anweisung

Syntax: EXEC String (; | CR)

Der Parameter String wird als Anweisung ausgeführt. Dabei wird der String
zunächst expandiert und anschließend in einem zweiten Durchlauf interpretiert.
Sind nach der Expansion noch Metazeichen enthalten, so werden sie vom In-
terpreter auch als solche behandelt! Erlaubt sind Bedienbefehle und die Anwei-
sungen ECHO, EXIT, SHIFT, SLEEP, SET, UNSET sowie alle Zeichenkettenbefehle
von LEN bis TOFIX der Seiten 85 ... 88. Beim ersten Fehler bricht das EXEC
Kommando ab und gibt als Ergebnis ”falsch“ zurück.

Beispiel:

kommando =”DIR /H0/PFAD;”
IF EXEC $kommando
THEN ECHO ”ok”; : DIR /H0/PFAD Kommando fehlerfrei
ELSE ECHO ”fehler”; FI; : DIR /H0/PFAD fehlerhaft

3.5.10.4 Die EXIT-Anweisung

Syntax: EXIT [n] (; | CR)

Der EXIT-Befehl bewirkt ein sofortiges Beenden der Shell-Prozedur. Der Para-
meter n ist der Fehlercode des Skriptes:

EXIT (-1) : fehlerfrei mit Endemeldung
EXIT (0) : fehlerfrei ohne Endemeldung
EXIT (1) : fehlerhaft

3.5.10.5 Die SHIFT-Anweisung

Syntax: SHIFT (; | CR)

Bei Anwendung des SHIFT-Befehls werden die Positionsparameter wie folgt
umbenannt: $n--> $n-1, wobei $1 verlorengeht. $# wird dabei dekrementiert.

Hinweis:

$n bleibt nach dem SHIFT erhalten! Die letzte gültige Variable erhält man nur
über $#.

3.5 Die Shell-Sprache 91

Beispiel:

WHILE TEST $# -GT 0 : solange Positionsparameter vorhanden sind
DO
ECHO $1 : gibt $1 aus
SHIFT : $2 -> $1 ... ; $# = $#-1

DONE

3.5.10.6 Die SLEEP-Anweisung

Syntax: SLEEP n (; | CR)

Die Fortführung der Shell-Prozedur wird für n Sekunden unterbrochen. Die
Zahl n muß eine Integerzahl zwischen 1 und 32767 sein.

3.5.10.7 Die SUSP-Anweisung

Syntax: SUSP (; | CR)

Durch den SUSP-Befehl wird die Interpreter-Subtask suspendiert. Insbesondere
beim Aufruf eines Bediener-Skriptes über den Befehl ”SHELL“ kann mit dem
SUSP-Befehl auf das ”CTRL A“ von der Bedienerkonsole gewartet werden.

3.5.10.8 Die UNSET-Anweisung

Syntax: UNSET [$Variablenname] (; | CR)

Mit Hilfe der UNSET-Anweisung können Variablen aus der Verwaltung des
Shellsprachinterpreters entfernt werden. Der dafür vorher belegte Speicherplatz
steht damit dem System (und damit auch dem Interpreter) wieder für andere
Zwecke zur Verfügung.

Beispiel: UNSET $VAR1 $HILFE : Löschen der Variablen $VAR1und $HILFE

92 3.5 Die Shell-Sprache

BREAK : Abbruch einer Schleife
CASE : Mehrfach-Verzweigung
CONT : Sprung an den Anfang einer Schleife
DO : Beginn des Anweisungsteils einer Schleife
DONE : Ende des Anweisungsteils einer Schleife
ECHO : Textausgabe
ELSE : Alternativzweig einer IF-Anweisung
ELIF : Abkürzung für ELSE IF
ESAC : Ende der CASE-Anweisung
EXEC : Ausführung eines Kommandos
EXIT : Abbruch des Shell-Skriptes
EXPR : Berechnung eines arithmetischen Ausdrucks
FALSE : liefert den logischen Wert ”falsch“
FOR : Anfang der FOR-Schleife
FI : Ende der IF-Anweisung
IF : Beginn der IF-Anweisung
IN : Beginn des Strings in einer FOR-Schleife
IN : Beginn der CASE-Musterliste
LEN : Bestimmung der Länge einer Variablen
READ : Anfordern einer Eingabe
SEG : Bilden eines Teilstrings
SET : Wortweise Zuweisung an die Positionsparameter
SHIFT : Verschieben der Positionsparameter
SLEEP : Unterbrechung der Shell-Prozedur für bestimmte Zeit
SUSP : Suspendiert die Interpreter-Subtask
TEST : Ermittlung einer logischen Bedingung
THEN : Anweisungsteil einer IF-Anweisung
TOCHAR : Ausdruck in ASCII-Zeichen wandeln
TOFIX : Zeichen in Zahl des ASCII-Codes wandeln
TRUE : liefert den logischen Wert ”wahr“
UNSET : Variable aus Verwaltung eliminieren
UNTIL : Beginn der UNTIL-Schleife
WHILE : Beginn der WHILE-Schleife

Tabelle 3.2: Schlüsselworte der Shellsprache

3.5 Die Shell-Sprache 93

$1 - $n Positionsparameter der Aufrufzeile

$# Anzahl der Positionsparameter

$@ alle Positionsparameter durch ein Leerzeichen getrennt

$? Austrittsstatus des zuletzt ausgeführten Bedienbefehls

Kein Fehler -> $?=’0’; Fehler -> $?=’1’

$$ Name der Interpreter-Subtask

$0 Name der interpretierten ED-Datei

$EOF Austrittsstatus des letzten READ-Befehls

Tabelle 3.3: Die vorbesetzten Shellvariablen

* Wildcard; beliebige Anzahl beliebiger Zeichen

? Wildcard; genau ein beliebiges Zeichen

$ mit darauffolgendem Namen: Variablenwert

` Ausgabe eines Bedienbefehls wird eingelesen

: mit Doppelpunkt+Leerzeichen beginnt ein Kommentar

\ bitte in der nächsten Tabelle nachsehen!

” Einschließen einer expandierten Textkonstanten

´ Einschließen einer Textkonstanten

; Anweisungsende

CR Zeilen- oder Anweisungsende

Tabelle 3.4: Metazeichen der Shellsprache

94 3.5 Die Shell-Sprache

\mz Metazeichen mz als normales ASCII-Zeichen

\dz ASCII-Code der Dezimalzahl dz

\B Backspace, Code $08

\F Formfeed, Code 12=$0C

\N Newline, Code 10=$0A

\O End of Text, EOT, Code 4=$04

\R Carriage Return, CR, Code 13=$0D

\T Tabulator, Code 9=$09

Tabelle 3.5: Sonderzeichen der Shellsprache

3.6 Tabelle der Bedienbefehle 95

3.6 Tabelle der Bedienbefehle

Bedienbefehle, die nur optional vorhanden sind, werden in Schrägschrift darge-
stellt.

A oder ’ tasknamelist Aktivierung von Tasks ggf. mit
Angabe der Laufpriorität.

ACTIVATE tasknamelist Wie ”A“

AFTER schedule,task Einplanung zeitverzögert

ALL schedule,task Einpanung, zyklisch

AS paralist Assemblieren durch Sohnprozeß

ASM paralist Zusatzname für ”MINI“–Assembler

ASSEM paralist Wie ”AS“

AT schedule,task Einplanung für Zeitpunkt

AUTOSTART tasknamelist Task autostartfähig machen, s.

”PROM“
BADBLOCK device/block Markieren eines ungültigen Blocks

C tasknamelist Continue suspended Tasks

CD pathlist Working-Directory festlegen

CF pathlist-list Platten/Disketten montieren etc.

CLEAR [devbez.] Löschen von RTOS–UH–CE’s

CLOCK Uhrzeit + nächste Einplanung
ausgeben

CLOCKSET time-specif. Rechneruhr stellen

CONTINUE tasknamelist Wie ”C“

COPY paralist Kopieren und/oder mischen von
Files

CP paralist wie ”COPY“

CUD pathlist Working-Directory festlegen

CUXD pathlist-list Execution-Directories festlegen

CXD pathlist-list Execution-Directories festlegen

DATE Systemdatum ausgeben

DATESET date Systemdatum setzen

DD device Parameterbytes anzeigen

DEFINE paralist temporäre Shelltask erzeugen

96 3.6 Tabelle der Bedienbefehle

DIR pathlist-list Directories auflisten

DISABLE eventcode Prozeßinterrupt(s) abklemmen

DL taskname Aktuelle Zeilennummer ausgeben

DM adress-parameter Display Memory

DR taskname Display Registers of Task

ECHO textstring Ausgabe des Textstrings

ED paralist Einloggen Texteditor

ENABLE eventcode Prozeßinterrupt(s) scharf machen

ENVSET paralist Umgebungsvariable setzen

ER pathlist Stderr umlenken

ERASE pathlist-list Löschen von Files, s. ”RM“

FILES pathlist-list Auflisten der aktiven Files

FIND pathlist-list File-Index ausgeben

FORM paralist Platte/Floppy formatieren

FREE pathlist Freien Platz auf dem Medium
ausgeben

GO paralist Prozeß auf angegebener Adresse
starten

HELP optionlist Hilfefunktion der Shell

I pathlist Stdin umlenken

L [options] Alle Tasks mit Zuständen auflisten

LE [options] Line-Edit installieren /
konfigurieren / entladen

LIBSET file-list Library einrichten

LINEDDIT [options] Line-Edit installieren /
konfigurieren / entladen

LINK path>newname Aliasname für Datei anlegen

LNK paralist Linken von Modulen in S–Rekords

LOAD paralist Linken und Laden von Modulen

LOADX paralist LOAD + extended search

LU Usertasks mit Zuständen auflisten

MKDIR pathlist Directory neu einrichten

3.6 Tabelle der Bedienbefehle 97

MSFILES pathlist Umschalten auf MS–DOS
kompatibles Filehandling

NOTRACE taskname Adressen– und Zeilenüberwachung
abstellen

O pathlist Stdout umlenken

P paralist PEARL–Programm kompilieren

PEARL paralist Langform von ”P“

PER pathlist Permanent Stderr umlenken

PI pathlist Permanent Stdin umlenken

PO pathlist Permanent Stdout umlenken

PREVENT tasknamelist Einplanungen löschen

PROM modulelist Erzeugung von S–Record von
PEARL–Programmen für
EPROM–Betrieb

PWD Working-Directory und
Execution-Directory ausgeben

QAS paralist Programm schnell assemblieren

QP paralist PEARL–Programm schnell
kompilieren

RELEASE sema–adr–list Semaphore freigeben

RENAME pathlist>newname Umbenennen eines Files

RETURN pathlist–list Files zurückgeben

REWIND pathlist–list Files zurückspulen

RM pathlist–list Wie ”ERASE“

RMDIR pathlist–list Directories löschen

RTOSFILES pathlist–list RTOS–UH Filemanagement
einschalten

S [options] Speicherbelegung ausgeben

SB device Setze Baudrate, serielles Port

SD device Parameterbytes setzen

SHARE prio Timesharing

SH tasknamelist Taskzustände ausgeben

SHOW tasknamelist Langform von SH

SM adr.expr., value Speicherzelle(n) setzen

98 3.6 Tabelle der Bedienbefehle

SU tasknamelist Tasks suspendieren

SUSPEND tasknamelist Langform von ”SU“

SYNC device Synchronisieren des Filesystemes

SYSTEM ABORT Warmstart durchführen

SYSTEM RESET Kaltstart durchführen

T tasknamelist Tasks beendigen

TAPP paralist Transferassembler PowerPC

TERMINATE tasknamelist Langform von ”T“

TOUCH options,pathlist File-Erstellungsdatum
zeigen/ändern

TRACE taskname,adr/line Adreß–/Zeilenüberwachung
einschalten

TRIGGER eventcode Interrupt simulieren

TYPE paralist Auflisten eines Files

UNLOAD namelist Tasks/Module entfernen

WAIT Warten auf Sohnprozeß

WHEN event, schedule Task für Interrupt einplanen

WHO Primäre Shellprozesse auflisten

3.7 Beschreibung der Bedienbefehle 99

3.7 Beschreibung der Bedienbefehle

Die Beispiele auf den folgenden Seiten gehen der Einfachheit halber immer
von einer Bedienung über die primäre Shell der ersten seriellen Schnittstelle
(#USER1) des Rechners aus. Bei ”embedded“ Mikrokontrollern existiert manch-
mal nur diese ”Console“ als einziger Bedienzugriff. Die ”Consolen-Shell“ hat
stets die User-ID 1 (die systemintern als 0 abgelegt ist). Bezüglich nicht ange-
gebener Parameter der typischen sohnprozeßgenerierenden Befehle (COPY, P,
AS, ...) gelten für die Consolen-Shell folgende Default–Parameter:

/A1 Stdout, Stdin, Stderr (/TY) der primären Shell
/ED/SI Default-Source-Input und ED-Arbeits-File
/ED/SR Default-Output S-Rekords für Compiler, Assembler
/ED/LB Default-Library-File für den Lader bei undef. Symbole
/ED/SC Default-Scratch-File für Assembler

Bei der Bedienung über eine Shell (primär oder sekundär) mit der User-ID n>1
verändern sich die Default-Vorbesetzungen durch einen Anhang unmittelbar an
den Filenamen. Dieser Anhang besteht aus einem Zeichen und ist identisch mit
der User-ID. Die User-ID zählt 1,2,3, ... ,9,A,B, ... ,Z. (Systemintern
sind allerdings mehr möglich).

Statt /ED/SI heißt der File /ED/SIn, z. B. /ED/SI5
Statt /ED/SR heißt der File /ED/SRn, z. B. /ED/SR9
Statt /ED/LB heißt der File /ED/LBn, z. B. /ED/LBC
Statt /ED/SC heißt der File /ED/SCn, z. B. /ED/SC3

wobei n z. B. mit Hilfe des ”L“- oder ”WHO“-Befehles (siehe Seite 225) inspiziert
werden kann.

Man beachte, daß ein primärer Netzshellprozeß nach dem Aus-! →
loggen seine User-ID verliert. Beim Neueinloggen kann eine an-
dere User-ID zugeordnet werden. Man ist darum gut beraten,
seine File-Situation bezüglich eventueller Defaultfiles vor dem
Ausloggen zu ordnen.

100 3.7 Beschreibung der Bedienbefehle

A / A C T I V A T E Activate Task (by Priority)

ACTIVATE taskname [PRIO integer3]SYNTAX:
’taskname [PRIO integer3]
A taskname [PRIO integer3]
taskname [PRIO integer3]

Beschreibung: Die Task taskname wird mit der Priorität integer3 aktiviert.

Ist die Task bereits aktiv, so wird der Aktivierungszähler der
Task erhöht (die Anzahl der gepufferten Aktivierungen wird
erhöht); eventuell bestehende Einplanungen der Task auf Zeit-
punkte oder Interrupts werden nicht beeinflußt.

Fehlt der Zusatz PRIO, so wird der Defaultwert aus der Task–
Definition eingesetzt. Das gleiche gilt, wenn integer3 gleich Null
ist. integer3 ist eine maximal 3–stellige Ganzzahl.

Die Shell prüft selbst nicht, ob die Task vorhanden ist. Der Akti-
vierungsbefehl kann also zur Auslösung eines Fehlersignals durch
den Kern von RTOS–UH (hier ... not loaded) führen.

ACTIVATE XYZ PRIO 123;test;’ABCDEBeispiel:

Die Task XYZ wird mit der Priorität 123 aktiviert, während
die Tasks test und ABCDE unter Verwendung ihrer Default–
Prioritäten aktiviert werden.

Wenn der Taskname gleich einem Bedienkommado ist, kann dieHinweis:
Kurzform (nur Taskname) nicht angewendet werden, da zuerst
auf ein gültiges Kommando geprüft wird.

3.7 Beschreibung der Bedienbefehle 101

Delayed Activation or Continuation A F T E R

Syntax: AFTER duration ACTIVATE taskname [PRIO integer3]
AFTER duration CONTINUE taskname

AFTER duration ALL duration UNTIL clock

ACTIVATE taskname [PRIO integer3]
AFTER duration ALL duration DURING duration

ACTIVATE taskname [PRIO integer3]

Mit diesem Befehl kann man die zeitverzögerte Aktivierung oder Fortset-
zung einer Task vorplanen. Bestehende Einplanungen für eine Aktivierung (bei
ACTIVATE) bzw. zur Fortsetzung (bei CONTINUE) werden gelöscht, und die an-
gegebene Einplanung wird eingetragen.

Wird bei ACTIVATE keine Priorität angegeben, so wird die taskeigene Default–
Priorität eingesetzt. Die aktuelle Priorität einer laufenden Task wird jedoch
nicht geändert, sondern erst, wenn die Einplanung zur Aktivierung führt.

integer5 HRS integer5 MIN integer5[.integer3] SECduration:
Dabei ist integer5 eine maximal 5–stellige Ganzzahl und integer3
ein max. 3–stelliger Dezimalbruch. Bis zu 2 Zeiteinheiten (HRS,
MIN, SEC) dürfen fehlen, die Reihenfolge HRS - MIN - SEC muß
jedoch eingehalten werden.

siehe ALL–Schedule (Seite 102). Eine mit DURING angegebeneALL:
Zeitdauer rechnet ab der ersten Aktivierung. Diese Kombination
ist im ”DIN–Basic–PEARL“ nicht erlaubt, aber im RTOS–UH–
PEARL wie hier implementiert.

An Stelle der Schlüsselworte ACTIVATE und CONTINUE sind auchHinweis:
deren Kurzformen Hochkomma (’) bzw. C zulässig. Die ange-
gebene Verzögerungszeit rechnet ab dem Eintritt des nächsten
Clock–Ticks. Der Abstand der Clockticks beträgt bei heutigen
680xx-Implementierungen 1 msec, bei älteren z. T. auch 2, 3 oder
4 msec. Ist bei solchen Systemen die Anzahl der Millisekunden
für die Gesamtverzögerung nicht durch den Abstand der Clock–
Ticks ohne Rest teilbar, so tritt die Aktivierung bzw. Fortsetzung
mit dem ersten Clock–Tick nach Ablauf der Zeitspanne ein.

AFTER 0.25 SEC CONTINUE XYZBeispiele:

AFTER 10 MIN 5 SEC ALL 1 SEC ACTIVATE XYZ PRIO 70

AFTER 5HRS59MIN22.55SEC ACTIVATE XYZ

102 3.7 Beschreibung der Bedienbefehle

A L L ALL-Schedule

Syntax: ALL duration ACTIVATE taskname [PRIO integer3]
ALL duration UNTIL clock ACTIVATE ...
ALL duration DURING duration ACTIVATE ...

Es wird eine zyklische Einplanung für die angegebene Task definiert und evtl.
bestehende zeitliche und ereignisgekoppelte (WHEN) Einplanungen zur Aktivie-
rung gelöscht. Die erste Aktivierung erfolgt mit dem nächsten Clock–Tick und
wiederholt sich – ggf. bis zur Endzeit – von da an zyklisch.

Wird die Priorität (3–stellige Ganzzahl) nicht angegeben, so wird die taskeigene
Priorität genommen.

ist vom Typ: integer5 HRS integer5 MINduration:
integer5.[integer3] SEC

dabei ist integer5 eine maximal 5–stellige Ganzzahl und integer3
ein max. 3–stelliger Dezimalbruch.

Es dürfen bis zu 2 Zeiteinheiten (HRS, MIN, SEC) weggelassen
werden, die Reihenfolge HRS - MIN - SEC muß jedoch stets ein-
gehalten werden.

ist vom Typ: integer2:integer2:integer2[.integer3]clock:

integer2 ist eine 1 bis 2–stellige Dezimalzahl und integer3 ein
max. 3–stelliger Dezimalbruch.

An Stelle des ACTIVATE ist auch die Kurzform mit HochkommaHinweis:
vor dem Tasknamen zulässig.

Zeitdauer und Uhrzeit werden intern als Vielfache von Milli-
sekunden gerechnet. Je nach Implementierung werden jedoch
Clock–Ticks von 1 oder 4 ms als Interruptbasis benutzt. Ist der
Zyklus nicht ohne Rest durch diese Basis teilbar, so werden die
Zeitintervalle länger oder kürzer, aber im Mittel richtig, reali-
siert.

ALL 0.02 SEC ACTIVATE XYZ PRIO 30Beispiele:
ALL 13 HRS 2.005 SEC ’XYZ
ALL 2 MIN UNTIL 13:05:55.66 ACTIVATE XYZ
ALL 7000 SEC DURING 14000 SEC ACTIVATE ABC

ABC wird 3 mal aktiviert – sofort, nach 7000 sec und nach 14000
sec.

3.7 Beschreibung der Bedienbefehle 103

Assemble Program A S / A S S E M

Syntax: AS.sonprocname [PRIO integer3][size--spec] [parameterlist]
AS [PRIO integer3] [size--spec] [parameterlist]
ASSEM.sonprocname [PRIO integer3] ...
ASSEM [PRIO integer3] [size--spec] [parameterlist]
— zusätzlich für den ”MINI“–Assembler (nur 68000-Befehle):
ASM [PRIO integer3] [size--spec] [parameterlist]

Der Befehl dient zum Übersetzen von Programmen, die in der 680xx-Maschinen-
sprache formuliert sind. Die Shell generiert zu diesem Zweck einen eigenständi-
gen Sohnprozeß mit vom Nutzer vorgegebenem Namen oder, falls in der zwei-
ten Form benutzt, einem Systemnamen AS/xx oder ASSEM/xx. Für xx wird eine
zweistellige Hexzahl mit automatischer Weiterschaltung eingesetzt. Die Prio-
rität des Sohnprozesses kann vorgegeben oder dem System überlassen werden
(Default: 20).

Ebenso kann der dynamische Arbeitsspeicher des so erzeugten 2–Pass–RTOS–
UH–Assemblers vorgewählt oder die vom System standardmäßig gewählte
Größe von 5 kB benutzt werden. Wenn das Feld size–spec benutzt wird, so
ist dies bis maximal SZ=10100 (64 kB) sinnvoll.

Da der Assembler wiedereintrittsfest codiert ist, können, solange der Speicher-
platz reicht, beliebig viele Programme gleichzeitig assembliert werden, wobei
stets derselbe, im ROM gespeicherte Assembler benutzt wird.

parameterlist: Es werden die Elemente SI (Source Input), LO (List Output), CO
(Code Output) und SC (SCratch–pad) akzeptiert. Die Reihenfol-
ge ist bedeutungslos, die Liste darf auch leer sein. Für fehlen-
de Angaben werden die ”Default–Werte“ des Systems eingesetzt
(SI=/ED/SI, LO=/A1/, CO=/ED/SR, SC=/ED/SC).

Wird ein Parameter auf den Wert NO gesetzt, so gelten dennoch
davor oder dahinter gemachte Vereinbarungen bzw. die Default-
werte, wenn der Assembler das Gerät im Ausnahmefall benötigt.

Das SCratch–pad wird nur benötigt, wenn das Gerät für SI nicht
rückspulbar ist (z. B. /VI/, /A2/). Ist das Gerät für SI rückspul-
bar, so erfolgt sowohl bei SC=NO als auch bei fehlendem SC–
Parameter zweimaliges Lesen der SI–Datei ohne SCratch–pad
Benutzung. Wird beim Aufruf des Assemblers nur eine Datei

104 3.7 Beschreibung der Bedienbefehle

angegeben, so wird diese als SI–Datei betrachtet.

AS.T PRIO 40 SZ 4000 /F1/QUELLE>/A2/ LO NOBeispiele:

Name des Sohnprozesses ist ”T“. Nur fehlerhafte Zeilen mit Feh-
lerbeschreibung über /A1/ ausgeben — keine Liste. Ausgabe der
S–Records über /A2/. Da SI als Floppy–Datei rückspulbar und
SC nicht angegeben ist, wird der File QUELLE auf /F1/ zweimal
gelesen und kein SCratch–pad benutzt.

ASSEM

Aufruf ASSEM/xx mit Default–Werten.

ASSEM.X /A2/>NO LO /A1/ SC /F1/BX

Name des Sohnprozesses ist ”X“. Nur Syntaxprüfung der über
/A2/ eingegebenen Programmzeilen, Ausgabe der Liste über
/A1/. S–Records werden nicht erzeugt. Der Eingabetext wird
auf der Datei BX auf Floppy /F1/ zwischengespeichert (und ist
dort später verfügbar).

Soweit rückspulbare Files benutzt werden, erfolgt automatisch zuHinweis:
Beginn eine REWIND– und zum Abschluß eine RETURN–Operation.

Der generierte Sohnprozeß verschwindet nach Abschluß der As-
semblierung vollständig aus dem System, es sei denn, daß evtl.
Folgebefehle (mit 2 Minuszeichen angehängt) den Sohn zunächst
noch in eine sekundäre Shell verwandeln.

Weitere Erläuterungen zum Assembler finden Sie ab Seite 419.

3.7 Beschreibung der Bedienbefehle 105

At given time activate or continue A T

Syntax: AT clock ACTIVATE taskname [PRIO integer3]
AT clock CONTINUE taskname

AT clock ALL duration ACTIVATE taskname [PRIO integer3]
AT clock ALL duration UNTIL clock ACTIVATE ...
AT clock ALL duration DURING duration ACTIVATE ...

Mit diesem Befehl ist die Einplanung zur Aktivierung oder Fortsetzung einer
Task zu einem bestimmten Zeitpunkt möglich. Der Befehl funktioniert anson-
sten wie eine Einplanung mit AFTER, siehe Seite 101; statt der relativen Zeit-
spanne bei AFTER wird bei AT ein absoluter Zeitpunkt festgelegt.

integer2:integer2:integer2[.integer3]clock:

integer2/3 sind max. 2– bzw. 3–stellige Dezimalzahlen.

siehe ALL. Die Kombination AT. . . ALL ist im ”DIN–Basic–ALL:
PEARL“ nicht erlaubt, jedoch im Compiler wie hier implemen-
tiert.

AT 0:10:00 CONTINUE testBeispiele:

AT 7:00:0 ALL 2 SEC UNTIL 9:0:0 ACTIVATE XYZ PRIO 8

Ist die angegebene Uhrzeit kleiner als die Istzeit, so wird derHinweis:
Wert von clock um 24 Stunden inkrementiert.

106 3.7 Beschreibung der Bedienbefehle

B A D B L O C K Badblock setting

BADBLOCK /dev/BnnnnSYNTAX:

Wenn auf einer Diskette oder Festplatte ein einzelner Sektor unbrauchbar ge-
worden ist, so muß entweder der ganze Datenträger neu formatiert werden
(Verlust aller darauf gespeicherten Daten) oder dem zuständigen Filehandler
muß mitgeteilt werden, daß er in Zukunft diesen defekten Sektor nicht mehr
benutzt. Dazu ist dieser Befehl geeignet. Weil jeder Sektor Teil eines sogenann-
ten ”Blockes“ ist, der eine logische Verwaltungsnummer trägt, kann stets nur
der komplette Block aus der Systemverwaltung herausgenommen werden. Die
Blocknummer erhält man aus den Fehlermeldungen des Filehandlers.

BADBLOCK /H0/B20Beispiel:

Es wird der Block mit der Nummer 20 aus der Verwaltung der
Festplatte H0 entfernt.

Anwendung: Sobald der Filemanager einen Block mit der Meldung ”ID-Field
not found“ oder ”CRC-Error ...“ meldet, sollte daran gedacht
werden, mit Hilfe des BADBLOCK–Kommandos den angezeigten
Block aus der Verwaltung herauszunehmen. Weil der gesamte
File, in dem der defekte Block steht, zunächst gelöscht werden
muß, sollte man immer erst mehrmals versuchen, ob sich die
Datei nicht doch noch (zumindest bis zur defekten Stelle) retten
läßt.

Angenommen, der Filemanger gab die folgende Meldung aus:

>>drivername../dev/path: ID-Field not found in Block 20

Aktion des Nutzers:

RM /dev/path
RM /dev/path (muß explizit ein zweites Mal eingegeben werden)
BADBLOCK /dev/B20

3.7 Beschreibung der Bedienbefehle 107

Change Directory C D

Syntax: CD devpath

Der Befehl CD erlaubt es, für nachfolgende Bedienbefehle der ausführenden
Shell ein ”Working-Directory“ zu vereinbaren oder die bisherige Vereinbarung
zu ändern. Das Working-Directory wird bei allen Befehlen, die mit Devices und
Files arbeiten, immer dann eingesetzt, wenn der Dev-File-Bezeichner nicht auf
der Root–Ebene, d. h. nicht mit dem Zeichen ”/“ beginnt. Das aktuell gültige
Working-Directory kann mit dem Befehl ”PWD“ abgefragt werden (Seite 189).

Jeder Nutzer kann sich sein individuelles Working-Directory einrichten und
wird damit bei der Verwaltung hierachisch organisierter Dateien unterstützt.
Der CD-Befehl wirkt allerdings nur auf die Umgebung der ausführenden Shell.
Bei primären Shellprozessen ist das das User-Environment.

Normale sekundäre Shellprozesse verändern mit CD nur ihre eigene nach außen
abgeschlossene Umgebung. CD ist darum nicht geeignet, um in einem Auto-
Exec-File, der nach XCMMD kopiert wird, das User-Environment zu verändern.
Zu diesem Zweck ist der Bedienbefehl CUD vorgesehen.

Mit dem SHELL-Befehl erzeugte sekundäre (Bourne-) Shells benutzen jedoch
das gleiche Execution- und Working-Directory wie die primäre Shell, von der
sie abstammen. Hier wirkt CD dann genau wie ein CUD.

Bezeichnet einen Filezugriffspfad im System, der wie ein Direc-devpath:
tory nach rechts verlängerbar ist, z. B.

/ED, /F0, /H0/Maier/simul oder /A1.

Beginnt devpath nicht auf der Root-Ebene, so wird ihm das zu
dem Zeitpunkt vereinbarte Working-Directory vorangestellt.

Man kann sich mit Hilfe des BefehlesBackpath:

CD ..

im aktuellen Working-Directory um einen Pfadabzweig rück-
wärts bewegen, wie im folgenden dargestellt:

WD=/H0/TEST/UGRUP -> CD .. -> WD=/H0/TEST

Entsprechend kann mit

CD ../..

usw. gleich um mehrere Abzweige zurückgegangen werden.

108 3.7 Beschreibung der Bedienbefehle

CD NO löscht das Working-Directory. Ein gelöschtes Working-Löschen:
Directory erscheint mit dem Text WD=/-

Beispiel 1: CD /ED/ Die Shell antwortet:
WD=/ED/-
XD=/-

Damit ist als Working-Directory /ED/ vereinbart
Ein COPY-Befehl könnte jetzt so aussehen:

COPY /F0/TEST>TEST1

Beispiel 2a: CD /H0/PROG Die Shell antwortet:
WD=/H0/PROG
XD=/-

Zur Compilation könnte man schreiben:

P MESS>/ED/TESTSR LO NO Das Programm
/H0/PROG/MESS
wird übersetzt.

Beispiel 2b: CD MIST Die Shell antwortet:
WD=/H0/PROG/MIST
XD=/-

Man beachte vorsorglich, daß man keine Working-Directories! →
vereinbart, die später die Restriktionen bestimmter File-Handler
verletzen. Alle bekannten File-Handler beherrschen jedoch min-
destens jeweils 7 Zeichen zwischen den Pfadtrennern ”/“.

Die maximale Länge des Working-Directorys – der eröffnende! →
”/“ und der Gerätename samt folgendem ”/“ zählen dabei nicht!
– ist implementierungsabhängig. Defaultimplementierungswert
sind 64 Zeichen. Bei Verletzung der Obergrenze reagiert die Shell
mit ”... path too long“ und Abbruch der Kommandozeile.

3.7 Beschreibung der Bedienbefehle 109

Change Filesystemstate C F

CF /discdevice/extrainfoSYNTAX:
CF /discdevice/

Beschreibung: Es wird dem System mitgeteilt, daß sich der Filezustand der
angegebenen Diskette bzw. der Wechsel- oder Festplatte in ir-
gendeiner Weise ändern wird. Der Befehl ist auch geeignet, um
sich zu vergewissern, daß keine Teile des Filesystems mehr im
Speicher gehalten werden, man also das Laufwerk ausschalten
oder die Diskette entnehmen darf.

Hier gibt es verschiedene Textstrings, die vom System akzeptiertextrainfo:
werden. Wir nehmen als beispielhaftes Discdevice einmal /F0 an:

CF /F0 Überprüfung, ob das Filesystem inak-
tiv ist. Falls nicht, wird eine Fehler-
meldung ausgegeben. Das Filesystem
bleibt jedoch aktiv.

CF /F0/FORGET Filesystem abwerfen ohne Abgleich mit
den Daten auf der Disc. Waren Daten
nicht zurückgeschrieben, d. h. Files of-
fen, so sind sie nun (außer bei vorher-
gehendem ”SYNC“) nicht auf der Disc
gesichert, also Vorsicht!

CF /F0/MOUNT Das Directory wird geöffnet, um in Zu-
kunft mit höherer Geschwindigkeit ar-
beiten zu können. Solange keine Files
offen sind, sind die Daten auf dem Me-
dium jedoch stets mit dem Speicherin-
halt im Einklang. (Lese-Cache für das
Directory mit write-thru-Betrieb)

CF /F0/RECALL Falls das System durch einen Klap-
peninterrupt beim Wechsel der Dis-
kette oder Platte alarmiert wurde, so
kann nun das Wiedereinlegen angezeigt
werden. Befehl muß aus Sicherheits-
gründen zweimal eingegeben werden.

CF /F0/UMNT Beendigung des montierten Zustandes.

110 3.7 Beschreibung der Bedienbefehle

CF /F0/Vx x=0,1,2 oder 3. Wenn eine Floppy di-
rekt mit einem FD-Controller gesteu-
ert wird, so kann die Steprate des Kon-
trollers (0=schnellste, 3=langsamste)
verändert werden. Gilt dann für alle
Laufwerke an diesem Kontroller.

Bei Systemen mit Klappenabfragemöglichkeit kann entschieden
werden, was nach irrtümlich entnommener Diskette geschehen
soll. Beim Wiedereinlegen (RECALL) wird die noch im Speicher
vorhandene Verwaltung weiterbenutzt, wird eine falsche Disket-
te eingelegt, so wird diese zerstört. RECALL muß nach Einlegen
zweimal gegeben werden.

CF /F1/RECALL;DIR /F1/;CF /F1/RECALL

Man sollte sich für das Entnehmen der Disketten die BenutzungHinweise:
des CF–Befehles zur Regel machen. Die Systemwarnung soll dann
zum Retten noch geöffneter Files animieren. Der FORGET–Mode
ist als Softwarereset auch ohne Klappenabfrage sinnvoll einsetz-
bar — mit entsprechender Vorsicht! — z. B. nach vorherigem

”SYNC“. Man beachte, daß die als Pfadname kodierten Komman-
dos stets mit Großbuchstaben geschrieben werden müssen.

Kein Device angegeben, oder Device ist keine Disc, oder der mo-Fehler:
mentane Zustand läst die Operation nicht zu.

>>> ... :Fx directory active (Files noch offen).

CF /F1/ ; cf /f0/ ; CF /F0/V2Beispiele:

CF /F1/FORGET; (Vorsicht!!)

CF /H0/MOUNT;

CF /F0/RECALL; (Nur bei Systemen mit Klappentest).

3.7 Beschreibung der Bedienbefehle 111

Clear Device (optional) C L E A R

CLEAR /device/SYNTAX:

Beschreibung: Mit diesem Kommando wird auf den Treiber einer Warteschlange
ein ”Continue“ abgesetzt, sodaß liegen gebliebene CE’s vom Typ
RTOS durch den Treiber entfernt werden können. Dabei sind nur
besondere kundenspezifische Treiber zugelassen.

Falls eine Task, die ein ”GET“ auf eine serielle Schnittstelle abge-Beispiel:
setzt hat, von der Seite terminiert wird, so ist die Schnittstelle
durch das Eingabe–CE solange blockiert, bis ein entsprechendes
Endezeichen oder die angeforderte Anzahl der Zeichen erreicht
ist. Mit Hilfe des CLEAR Befehls kann der I/O–Treiber veranlaßt
werden, das CE sofort aus seiner Verwaltung zu entfernen und
ist somit bereit für neue Aufträge.

CLEAR /B2/

Bemerkung: Dieses Kommando ist systemfeindlich und wird nur von wenigen
I/O–Dämonen richtig bearbeitet. Insbesondere wirkt es nicht auf
Datenstationen mit dem Attribut ”formatierbar“, da diese offene
Verwaltungsstrukturen im Speicher halten.

Falls auf das angegebene Device noch von einer Task CE’s pro-Hinweis:
duziert werden, so kommt es zum Konflikt zwischen der Task
und dem CLEAR–Befehl, wobei die Shell längere Zeit blockiert
sein kann. Den CLEAR–Befehl kann man dann durch den ”Not-
ruf“ der Shell mit BREAK abbrechen.

112 3.7 Beschreibung der Bedienbefehle

C L O C K Inspect computer–clock

CLOCKSYNTAX:

Beschreibung: Es wird der aktuelle Stand der Rechneruhr ausgegeben. Außer-
dem wird die Uhrzeit des zeitlich nächstfolgenden Einplanungs-
zeitpunktes hinzugefügt.

Selbst wenn im System überhaupt keine zeitlichen Einplanungen
vereinbart wurden, wird ein nächster Einplanungstermin ange-
geben. Dies ist die ”Geisterstunde“, in der die zentrale Rück-
stellung der Uhr und aller Planungszeitpunkte um 24 Stunden
erfolgt.

CLOCK Ausgabe: 05:24:59 NEXT SCHED 10:55:30Beispiele:

CLOCK Ausgabe: 22:01:12 NEXT SCHED 24:00:00

Die Ausgabe der Geisterstunde im letzten Beispiel zeigt an, daß
für den laufenden Tag keine Zeiteinplanungen zur Aktivierung
oder Fortsetzung mehr vorliegen.

Zeigt die Rechneruhr eine deutliche Tendenz zum Nachgehen, dieHinweis:
nicht auf Ungenauigkeiten des Quarzoszillators beruhen können,
so ist das Betriebssystem überlastet.

Eventuell kann der Austausch des Betriebssystems gegen eines
mit größerem Abstand der Clock–Ticks oder der Austausch des
Prozessors gegen eine schnellere Version erforderlich sein.

Eine Überlastung, die sich auf die Ganggenauigkeit der Uhr aus-
wirkt, kann normalerweise nicht durch reguläre Nutzerprogram-
me, sondern nur durch eine zu große Zahl oder zu zeitaufwendige
Interruptprozesse Ihrer Implementierung verursacht werden.

3.7 Beschreibung der Bedienbefehle 113

Set Computer–clock to given time C L O C K S E T

CLOCKSET clockSYNTAX:

Beschreibung: Die Rechneruhr wird auf die angegebene Uhrzeit gestellt. Es
empfiehlt sich, vorher alle zeitlichen Einplanungen zu löschen,
da bei Vorrücken der Uhrzeit u. U. eine große Zahl von Aktivie-
rungen bzw. Fortsetzungen sofort und gleichzeitig fällig werden
können.

integer2:integer2:integer2[.integer3]clock:

integer2/3 sind max. 2– bzw. 3–stelige Ganzzahlen.

CLOCKSET 13:00:00Beispiel:

CLOCKSET 0:0:10.5

Es wird nur die Software–Uhr Ihres Rechners gestellt. Das StellenHinweis:
der Hardware–Uhr kann implementationsabhängig auch erfolgen.

114 3.7 Beschreibung der Bedienbefehle

C / C O N T I N U E Continue Task

CONTINUE tasknameSYNTAX:
C taskname

Beschreibung: Die angegebene Task wird aus dem Zustand ”suspended“ in den
Laufzustand gebracht.

Die Shell prüft zwar, ob die Task vorhanden ist, jedoch nicht,! →
ob sie – wie es sein sollte – im suspendierten Zustand ist. Der
Auftrag wird nach der Identifikation der Task an das Betriebssy-
stem abgesetzt. Von dort erfolgt ggf. die Auslösung des Fehlersi-
gnals ... not suspended. Solch ein Fehler ist an sich harmlos,
er führt aber dazu, daß die Shell – wie üblich – den Rest der
Befehlszeile nicht mehr bearbeitet.

CONTINUE ABCD; C XYZ; CONTINUE EBeispiel:

3.7 Beschreibung der Bedienbefehle 115

Kopieren C P / C P B / C O P Y

COPY.sonprocname [PRIO integer3] [size-spec]paramlistSYNTAX:
COPY [PRIO integer3] [size--spec] paramlist

CP ... statt COPY ... CPB ... statt COPY ...Kurzform:
Binärmode:

Der Befehl dient zum Kopieren und Mischen von Dateien. Die Shell generiert
dazu einen eigenständigen Sohnprozeß (Task) mit vom Nutzer vorgegebenem
Namen oder einem vom System erzeugten Namen COPY/xx oder CP/xx. Für xx
wird eine zweistellige Hexzahl mit automatischer Weiterschaltung eingesetzt.
Die Priorität des Sohnprozesses kann vorgegeben oder dem System überlassen
werden — Defaultwert ist 20.
Da der im Betriebssystem liegende Programmcode wiedereintrittsfest ist,
können — solange der Speicher für den ca. 200 Byte großen Task-Kopf reicht
— beliebig viele unterschiedliche COPY-Befehle abgesetzt werden, die im Multi-
tasking parallel bearbeitet werden.
Sind sowohl Ein– wie Ausgabedatei formatierbare Geräte (siehe dazu SD-Befehl
auf Seite 203), so findet ein binärer Transfer der Daten statt, d. h. der Kopier-
vorgang ist erst beendet, wenn das Ende der Eingabedatei erreicht ist. Es wird
in diesem Fall nicht auf ein Eot ($04) reagiert. Daneben kann durch Verwen-
dung des Befehles CPB der binäre Transfermodus erzwungen werden – sinnvoll
z.B. wenn im /ED-Filesystem binäre Dateien abgelegt werden sollen. Allerdings
wird CPB nur bei rückspulbaren Quellfiles akzeptiert, weil sonst (z.B. bei seri-
eller Schnittstelle) kein Ende des Datenstromes erkannt würde.

Es gelten die Parameterparamlist:

SI (Source-Input)

CO (Copy/Corrected Output)

SC (Source Correction/Command)

Fehlen SI oder CO, so werden die Defaultwerte des Systems ein-
gesetzt (SI=/A1/, CO=/ED/SI), was normalerweise nicht sinnvoll
sein dürfte.

Bei der Angabe des CO-Parameters kann der Dateiname wegge-
lassen werden, wenn der Name vom SI übernommen werden soll.
Die Pathliste muß aber angegeben werden.

Es gibt — abhängig davon, ob SC angegeben wurde oder nicht
— zwei verschiedene Betriebsfälle:

1. SC fehlt oder SC=NO

116 3.7 Beschreibung der Bedienbefehle

Der bei SI angegebene File wird vollständig auf den bei
CO angegebenen File übertragen. Es werden max. 128 Zei-
chen zu je einem ”Record“ zusammengefaßt und ggf. — je
nach Device-Parametersatz der CO–Datei gemäß Seite 203
— nach Ergänzung eines Zeichens Lf auf die Ausgabeda-
tei übertragen. Als Ende eines ”Record“ auf der SI–Seite
gelten auch die Zeichen Lf, Cr und Eot. Die Übertra-
gung wird beendet, wenn ein ”Record“ nur aus dem Zeichen
Eot besteht oder das Gerät der SI–Datei eine End–of–file–
Bedingung festgestellt hat. Bei Übertragungsfehlern wird
der Sohnprozeß vorzeitig beendet und verschwindet nach
Ausgabe entsprechender Meldung über das Terminal. Auch
die normale Beendigung wird durch ...name (terminate)
angezeigt.

2. SC wurde einer Eingabedatei zugeordnet.

Es werden die Zeilen aus den Quellen SI und SC gemischt
und als ”Records“ auf die CO–Datei übertragen. Die Anwei-
sungen zum Mischen und — bei rückspulbarer SI–Datei —
auch zum Umschichten der aus SI stammenden Zeilen wer-
den als Kommandos ebenfalls über das SC–Gerät eingege-
ben. Als Unterscheidungsmerkmal zwischen Kommandos
und einzumischendem Text auf dem SC–Gerät dient das
Zeichen am Anfang einer Zeile. Steht dort das Zeichen +,
so wird die Zeile als Kommando interpretiert. Mit + begin-
nende Zeilen können also nicht eingemischt werden.

+33-455 Übertrage die Zeilen Nr. 33 bis einschließlich 455
aus dem SI–File in den CO–File. Anschliessend können
beliebig viele Zeilen (die nicht mit + beginnen) einge-
geben werden, die direkt nach CO übertragen werden.

+755 Übertrage nur die Zeile Nr. 755 aus dem SI–File in
den CO–File.

+855-840 Unzulässig, die zweite Zeilennummer darf nie-
mals kleiner als die erste sein. Es wird die ”Komman-
do-Fehler“–Kondition (s. u.) angenommen.

+399-402 Die Rückkehr vor oder auf die letzte bereits aus
dem SI–File übertragene Zeile ist nur bei rückspul-
barem SI–File erlaubt, sonst wird die ”Kommando-
Fehler“–Kondition angenommen (s. u.). Nach dem
Rückspulen wird die SI–Datei durch Lesen von An-

3.7 Beschreibung der Bedienbefehle 117

fang an auf die angegebene Stelle positioniert und die
Übertragung wie gewünscht durchgeführt.

COPY.Z PRIO 16 /F0/ALT>/F1/NEUBeispiel:

Name des Sohnprozesses ist Z. Mit Priorität 16 wird der File ALT
von Floppy 0 in den File NEU der Floppy 1 kopiert, bis der File
ALT an sein Ende oder eine mit Eot beginnende Zeile gekommen
ist.

CP /F1/Quelle>/F0/Ziel SC /A1/

Name des Sohnprozesses und Priorität werden vom System
gewählt. Es werden Kommandos zum Mischen über das Gerät
/A1/ erwartet.

Annahme SI-Inhalt: AAAAAAAAA (1. Zeile)
BBBBB (2. Zeile)
CCC (3. Zeile)

Angenommene SC-Zeilen: +2-3
KKKK
+1 (SI rückspulbar)
JJJJ
+2
Eot

Ergebnisfile: BBBBB
CCC
KKKK
AAAAAAAAA
JJJJ
BBBBB
Eot

Der Mischvorgang wird beendet, sobald entweder vom SI– oder
vom SC–File eine Endebedingung (Eot oder End–of–file) er-
kannt wird, also auch dann, wenn eine Zeile hinter der letzten
auf SI vorhandenen Zeile adressiert wird.

Wird ein falsches Kommando erkannt (Adressierung einer ZeileFehler:
hinter der letzten vorhandenen ist kein Fehler), so wird die Mel-
dung ... wrong command ausgegeben und die Task suspendiert.
Nach der Fortsetzung wird das Kommando erneut erwartet.

118 3.7 Beschreibung der Bedienbefehle

COPY /H0/mueller/dat1>/H1/meier/

Die Datei dat1 wird von /H0/mueller nach /H1/meier/ kopiert.
Der Name der Datei bleibt gleich.

COPY filename > oder! →
COPY filename >.
bedeutet ”kopiere in das aktuelle Working-Directory mit altem
Filenamen“ – sofern ein Working-Directory definiert ist (sonst
Fehler).

Files mit dem Device-Parameter ”rückspulbar“ (siehe Seite 203)! →
werden automatisch mit REWIND eröffnet bzw. neu eingerichtet
und zum Abschluß mit RETURN zurückgegeben. Wenn eine Datei
auf sich selbst kopiert werden soll, bricht der COPY–Befehl mit

”wrong command“ ab.

3.7 Beschreibung der Bedienbefehle 119

Change User-Environment-Directory C U D

CUD devpathSYNTAX:

Dieser Befehl ist eine Sonderform des CD-Befehles. Es gelten alle Angaben der
Seiten 107 ff. Die Besonderheit besteht darin, daß mit CUD nicht das momentane
lokale Working-Directory neu eingestellt wird, sondern dasjenige, welches zur
primären Shell des ausführenden Nutzers gehört.

Nur mit CUD kann man aus Shellskripten heraus das Working-Directory der
primären ”Ur“-Shell verändern. Die lokalen Vereinbarungen des Skriptes blei-
ben unberührt. Logischerweise macht der Befehl keinen besonderen Sinn, wenn
er von einer primären Shell aufgerufen wird: die Wirkung von CD und CUD ist
dann völlig identisch. Gleiches gilt auch für die speziellen sekundären Shells,
die durch den SHELL-Befehl (siehe Seite 206) von einer primären Shell erzeugt
wurden, da sie fortan die erzeugende primären Shell vertreten.

Beispiel: CUD /ED

Im Gegensatz zum CD-Befehl antwortet die Shell beim CUD nicht mit der Aus-
gabe der aktuellen Einstellungen.

120 3.7 Beschreibung der Bedienbefehle

C U X D Change User-Environment Execution-Directory

CUXD devpath1[,] devpath2[,] ...SYNTAX:

Dieser Befehl ist eine Sonderform des CXD-Befehles. Es gelten alle Angaben der
Seiten 121 ff. Die Besonderheit besteht darin, daß mit CUXD nicht die momen-
tanen lokalen Execution-Directories neu eingestellt werden, sondern jene, die
zur primären Shell des ausführenden Nutzers gehören.

Nur mit CUXD kann man aus Shellskripten heraus die Execution-Directories
der primären ”Ur“-Shell verändern. Die lokalen Vereinbarungen des Skriptes
bleiben unberührt. Logischerweise macht der Befehl keinen besonderen Sinn,
wenn er von einer primären Shell aufgerufen wird: die Wirkung von CXD und
CUXD ist dann völlig identisch. Gleiches gilt auch für die speziellen sekundären
Shells, die durch den SHELL-Befehl (siehe Seite 206) von einer primären Shell
erzeugt wurden, da sie fortan die erzeugende primären Shell vertreten.

Beispiel: CUXD /ED /H1/XD

Im Gegensatz zum CXD-Befehl antwortet die Shell beim CUXD nicht mit der
Ausgabe der aktuellen Einstellungen.

3.7 Beschreibung der Bedienbefehle 121

Change Execution-Directory C X D

CXD devpath1[,] devpath2[,] ...SYNTAX:

Der Befehl Change–Execution–Directory erlaubt es, die von der aktuellen Shell
nach transienten Kommandos und Skripten in Shellsprache (siehe Seite 76)
zu durchsuchenden Directories zu definieren. Mit jedem CXD-Befehl werden,
mit dem ersten beginnend, alle Execution-Directories neu festgelegt, für die
devpath--Angaben vorhanden sind. Weiter hinten folgende Vereinbarungen blei-
ben bestehen. Die Anzahl der definierbaren Execution-Directories ist implemen-
tierungsabhängig, Defaultwert ist 2.

Normale sekundäre Shellprozesse verändern mit CXD nur ihre eigene nach außen
abgeschlossene Umgebung. CXD ist darum nicht geeignet, um in einem Auto-
Exec-File, der nach XCMMD kopiert wird, das User-Environment zu verändern.
Zu diesem Zweck ist der Bedienbefehl CUXD vorgesehen.

Mit dem SHELL-Befehl erzeugte sekundäre (Bourne-) Shells benutzen jedoch
das gleiche Execution- und Working-Directory wie die primäre Shell, von der
sie abstammen. Hier wirkt CXD dann genau wie ein CUXD.

Bezeichnet einen Filezugriffspfad im System, der wie ein Direc-devpath:
tory nach rechts verlängerbar ist, z. B.

/ED, /F0, /H0/Maier/simul etc.

Beginnt devpath nicht auf der Root-Ebene, so wird ihm das zu
dem Zeitpunkt vereinbarte Working-Directory – und nicht ei-
nes der Execution-Directories! – vorangestellt. Der Befehl macht
darum fast immer nur mit vollen – auf der Root-Ebene begin-
nenden – devpath-Angaben Sinn.

CXD NO löscht das erste Execution-Directory. Ein gelöschtesLöschung:
Execution-Directory erscheint mit dem Text XD=/-, oder es wird
nicht aufgelistet, falls nur noch unbesetzte ”XDs“ folgen. Sollen
mehrere Directories gelöscht werden, so ist die entsprechende
Anzahl NO oder ”/“ als Parameter anzugeben.

122 3.7 Beschreibung der Bedienbefehle

Beispiel 1: CXD /ED/ Die Shell antwortet:
WD=/xxxx
XD=/ED

Damit ist als Exec.-Directory /ED/ vereinbart
Ein transienter Befehl könnte jetzt so aussehen:

QP paralist

Beispiel 2: CXD /ED /H0/XD Die Shell antwortet:
WD=/xxxx
XD=/ED
+ /H0/XD

Nun sind 2 XDs aktiv

Man beachte vorsorglich, daß man keine Execution-Directories! →
vereinbart, die später die Restriktionen bestimmter File-Handler
verletzen. Alle bekannten File-Handler beherrschen jedoch min-
destens jeweils 7 Zeichen zwischen den Pfadtrennern ”/“.

Die maximale Länge des Execution-Directories ist implemen-! →
tierungsabhängig. Dabei zählen der eröffnende ”/“ und der
Gerätename samt folgendem ”/“ nicht mit. Der Kern defaultiert
die Obergrenze zunächst auf 24 Zeichen. Die heute gebräuchli-
chen Entwicklungssysteme sind in der Regel auf 64 Zeichen ein-
gestellt. Bei Verletzung der Obergrenze reagiert die Shell mit

”... path too long“ und Abbruch der Kommandozeile.

3.7 Beschreibung der Bedienbefehle 123

Show Date D A T E

DATESYNTAX:

Beschreibung: Es wird das aktuelle Datum der RTOS–UH–Datumszeile
ausgegeben. Wurde diese Zelle noch nicht gesetzt (s. Befehl
DATESET), so wird eine Folge von Minus–Zeichen ausgegeben.

DATEBeispiel:
Ausgabe: 01-01-1987

DATE
Ausgabe: ----------
(Datumszelle war noch nicht gesetzt)

124 3.7 Beschreibung der Bedienbefehle

D A T E S E T Set Computer–Date

DATESET dateSYNTAX:

Beschreibung: Die Datumszelle von RTOS–UH wird gesetzt. Implementati-
onsabhängig kann auch eine vorhandene Hardware–Uhr gesetzt
werden.

Eine Zeichenkette mit dem Aufbau tt-mm-jjjjdate:

tt: Tag
mm: Monat
jjjj: Jahr (zwischen 1984 und 2162)

Es wird geprüft, ob Anzahl Tage/Monat und Anzahl Mona-Fehler:
te/Jahr zulässig ist. Im Fehlerfall erscheint die Meldung

...... : date wrong

DATESET 29-02-1988Beispiel:
Das Datum wird auf den 29.02.1988 gesetzt.

3.7 Beschreibung der Bedienbefehle 125

Display device–parameters D D

DD /device/SYNTAX:

Beschreibung: Für die angegebene Station wird der Inhalt der aktuellen Para-
meterbytes ausgegeben. Die Bedeutung der einzelnen Bits ent-
nehmen Sie bitte der Beschreibung des SD-Kommandos auf Seite
203. Das Kommando wird intern über die DM-Funktion bearbei-
tet. Dadurch werden mehr Bytes ausgegeben als für die angege-
bene Station signifikant sind.

DD /A1/Beispiel:

Ausgabe Adresse des Parameterfeldes und Inhalt:

xxxxxxxx: 3300

Lies: Lf nach Cr ergänzen ($20), dialogfähig ($10), Ausgabe
möglich ($02) und Eingabe möglich ($01).

DD /ED/

xxxxxxxx: C780

Lies: rückspulbar ($80), braucht open/close ($40), löschen
möglich ($04), Ein–/Ausgabe möglich ($03), DIR erlaubt ($80).

DD /VI/

xxxxxxxx: 0500

Lies: löschen möglich ($04), Eingabe möglich ($01).

DD /PP/

xxxxxxxx: 2200

Lies: Lf nach Cr ergänzen ($20), Ausgabe möglich ($02).

Wenn (mit CD) ein Working-Directory vereinbart wurde und demHinweis:
Devicenamen kein ”Slash“ vorrangeht, so gilt die DD–Operation
für das mit CD–fixierte Gerät (”LDN“), also nach CD /ED/ und DD
B2 z. B. für alle ED–Files!!

126 3.7 Beschreibung der Bedienbefehle

D E F I N E Define Shell Process

DEFINE -- commands to executeSYNTAX:
DEFINE.sonprocname -- commands to execute

Mit dem Befehl lassen sich sekundäre Shellprozesse definieren. Dazu bildet die
ausführende Shell einen Sohnprozeß mit dem Namen sonprocname und beauf-
tragt ihn mit der Ausführung der bis zum Semikolon folgenden Bedienbefehle.
Fehlt die Angabe von sonprocname – was nicht sinnvoll ist (!) –, so wird vom
System ein Name der Form DEFINE/xx generiert. Der Sohnprozeß verschwin-
det nach Ausführung der Kommandos nicht, sondern kann später immer wieder
namentlich aktiviert werden. Erst mit einem UNLOAD–Befehl wird er wieder ent-
fernt.

Die auf diese Weise als Prozeß definierten Einzelbefehle oder Befehlsgruppen
sind anschließend den üblichen Taskmanipulationen – Einplanungen auf Zeit
oder Ereignis etc. – zugänglich.

DEFINE.X--DL Y; T X Keine erste Aktion!Beispiel:
P.Y /ed/prog LO NO -- Prevent X; All 1 sec X

Jede Sekunde wird die Zeilennummer des Übersetzungslaufes an-
gezeigt. (Damit’s nicht so langweilig ist . . .) Der Compiler löscht
bei erfolgreichem Abschluß die Einplanung für das Blockkom-
mando X selbst wieder.

Entwicklung eines Programmes in /ED/SI. Start–Task sei RUN,
Modulname test. Modul test wurde schon einmal geladen.

define.neu--ed--p lo no--unload test*--load--RUN

ausprobieren des Programmes etc., dann: neu

ausprobieren des Programmes etc., dann: neu

ausprobieren, am Ende der Sitzung dann:

unload neu,test*

Wie man leicht erkennen kann, ist der Turnaround–Zyklus durch
das Blockkommando neu erheblich angenehmer geworden.

Der Ablauf entspricht genau dem von allen normalen Sohnpro-Internes:
zessen, z. B. P, COPY, LOAD, ED etc. mit angeschlossenen Folge-
befehlen — lediglich eine eigentliche Operation des Sohnes fehlt,
und das Verschwinden am Ende der Aktion wird unterdrückt.

3.7 Beschreibung der Bedienbefehle 127

Der so erzeugte Shellprozeß ist nicht gut für Mehrnutzerbetrieb! →
geeignet, da er mit eingefrorenen Kopien der Environment-Daten
seiner Vatershell arbeitet. Dennoch ist eine gewisse dynamische
Redirektion des Outputs mit Hilfe der Station /TY möglich:

DEFINE.X--O /TY-- LU;

Wird ein sonprocname irrtümlich zum zweiten Mal verwendet,Fehler:
erfolgt die Meldung ”wrong label“. Eine Operation findet dann
nicht statt.

128 3.7 Beschreibung der Bedienbefehle

D I R Directory listing

DIR [-E|-A|-EA] dev/pathlistSYNTAX:

Der Befehl zeigt den Inhalt eines Haupt- oder Unterverzeichnisses an. Die Aus-
gabe erfolgt nach Stdout. Die angegebene dev/pathlist muß auf ein unterglie-
dertes Gerät oder ein Directory zeigen. Dies kann entweder durch Angabe eines
geeigneten Gerätebezeichners – erkennbar an den Geräteparametern gemäß Sei-
te 203, z. B. /ED/, /Fx/, /Hx/, etc.– geschehen oder durch Pfadgebung zu einem
Unterinhaltsverzeichnis. Die zur entsprechenden LDN (Warteschlangennummer)
gehörende I/O–Task schreibt nach Erhalt des Befehles selbsttätig eine Liste der
zum bezeichneten Inhaltsverzeichnis gehörenden Files in den Stdout-File bzw.
auf das Stdout-Gerät.

Obwohl der ED–Filehandler nur pseudohierarchisch arbeitet, physikalisch also
keine Unterdirectories angelegt werden, erhält man auch bei ihm eine Liste aller
über den angegebenen Pfad erreichbaren Files.

Die folgenden Parameter können beim DIR–Kommando angege-Parameter:
ben werden. Es werden dann zusätzliche Informationen ausgege-
ben.

-E gibt Dateien mit Datum und Uhrzeit der letzten Änderung
aus.

-A gibt alle Dateien ab dem angegebenen Path aus (inklusive
aller darunterliegenden Subdirectories mit ihren Dateien).

-EA gibt alle Dateien ab dem angegebenen Path mit Datum
und Uhrzeit aus.

Wenn die Geräteeigenschaft kein DIR–Kommando zuläßt (sie-Fehler:
he SD–Befehl Seite 203), so wird der DIR–Befehl mit

”befehlsstring: operation failed“ abgewiesen.

Aus der angesprochenen I/O–Task sind die verschiedenen Feh-
lermeldungen möglich, z.B.:

..... DRIVE NOT READY (Floppy/Festplatte)

..... TRACK000 NOT FOUND

..... DIRECTORY NOT FOUND

DIR /F0/,/F1/,/H1/USR/MUELLERBeispiel:
DIR /ED/MAIER/QUELLFILES
DIR -> Hier war mit CD ein Working-Directory fixiert!
O /ED/FILELIST;DIR /F0/

3.7 Beschreibung der Bedienbefehle 129

DIR -E /F0/mist

Es werden die Dateien des Subdirectories mist mit Datum und
Uhrzeit in einer Liste ausgegeben.

DIR -A /H1/

Ergibt ein Gesamtverzeichnis aller Dateien auf der Winchester
/H1/.

Mit dem O–Befehl kann die Liste in einen beliebigen File gelenktHinweis:
werden, bei den neueren Systemen auch in einen solchen, der zur
LDN der mit DIR angesprochenen I/O–Task gehört.

Man denke aber daran, daß der File, in den die Ausgabe des DIR-
Befehles umgeleitet wird, am Ende nicht automatisch geschlos-
sen wird. Dies muß ggf. durch einen Extrabefehl (z. B. Return)
nachgeholt werden.

130 3.7 Beschreibung der Bedienbefehle

D I S A B L E Disable Processinterrupt

DISABLE EV hexnum8SYNTAX:

Beschreibung: Von dem Bitmuster hexnum8, das bei Eingabe von weniger als
8 Hexziffern durch Ergänzen führender Nullen gebildet wird,
wird das 1–er–Komplement gebildet. Dieses wird logisch ”UND“
mit der Event–enable–maske des Systems verknüpft und das
Ergebnis nach dorthin zurückgeschrieben. Dadurch werden die
durch ”Einsen“ in hexnum8 gekennzeichnete Prozeß–Interrupts
gesperrt.

DISABLE EV 1Beispiel:

DISABLE EV FFFFFFFF (alle Prozeß–IR gesperrt)

DISABLE EV 0 (unsinnig, ohne Wirkung)

Die Anweisung entspricht der gleichnamigen PEARL–Operation.Hinweis:

3.7 Beschreibung der Bedienbefehle 131

Display Line–number of Task D L

DL tasknameSYNTAX:

Der Befehl erlaubt einen ”Schnappschuß“ bezüglich der momentanen Aktivität
der mit taskname angegebenen Task, sofern diese die Ausgabe einer ”Zeilen-
nummer“ unterstützt und eine Zeilenregisterzelle an der richtigen Stelle ih-
res Workspace besitzt. Das ist bei PEARL-kodierten Tasks immer der Fall,
wenn die angegebene Task oder von ihr benutzte Prozeduren mit der Zeilen-
markiereroption übersetzt wurden und sie zum Zeitpunkt des DL–Kommandos
Workspace besitzt. Auch die RTOS–UH eigenen Assembler, Compiler sowie
der COPY-Befehl versorgen eine entsprechende Zeilenregisterzelle. Auch bei der
Ausführung von Shellskripten kann mit DL die aktuell ausgeführte Zeilennum-
mer angezeigt werden.

DL REGELBeispiel:

Es wird die letzte registrierte Zeilennummer (bis zu 5 Dezimal-Hinweis:
stellen) ausgegeben.
Wenn nur Teile des Programms mit der Markeroption übersetzt
wurden, kann es sein, daß die Zeilennummer auf einen längst
verlassenen Programmpfad zeigt.

Wird der Wert 0 ausgegeben, so wurde noch keine Zeilennummer
registriert.

Bei nicht für den DL-Befehl geeigneten, assemblerkodierten Tasks
wird auch eine scheinbare Zeilennummer ausgegeben, diese stellt
jedoch nur einen Zufallswert dar, weil die Zeilenregisterzelle ver-
mutlich für andere Zwecke benutzt wird.

Bei älteren Systemen wurde bei Anwendung dieses DL–Befeh-! →
les auf den Assembler, PEARL–Compiler oder einen COPY–
Sohnprozeß wird die aktuell überlaufene Quellzeilennummer als
hexadezimaler Wert ausgegeben. (Bei den aktuellen Systemen
dezimale Ausgabe bis max. 65535)

Möglich sind:Fehler:

>>... not loaded oder
>>... not active

132 3.7 Beschreibung der Bedienbefehle

D M Display Memory

DM hex-add-expression (Fall A)SYNTAX:
DM hex-add-expr1 hex-add-expr2 (Fall B)

Beschreibung: Je nachdem, ob ein oder zwei Adreßausdrücke angegeben wur-
den, sind zwei Betriebsfälle möglich:

Fall A Der Wert von hex–add–expression wird auf die nächstklei-
nere oder gleiche gerade Zahl abgerundet und als Start-
adresse für die Ausgabe benutzt. Mit dieser Startadresse
beginnend werden die Hexadezimalwerte der folgenden 8
Worte aus dem Speicher mit ihren ASCII–Werten ausge-
geben. Steuerzeichen werden durch Punkte dargestellt.

Fall B Der Wert von hex–add–expression1 wird wie im Fall A als
Startadresse gewertet. Ist der (ebenfalls auf geraden Wert
gerundete) Wert von hex–add–expression2 kleiner als die
Startadresse, so wird er als Anzahl der (mindestens) aus-
zugebenden Bytes gewertet; ist er größer oder gleich der
Startadresse, so werden alle Speicherzellen bis mindestens
hex-add-expression2 aufgelistet. In jedem Fall werden gan-
ze Blöcke von 8 Worten (16 Bytes) in jeder Zeile aufgelistet.

hex–add–expression: Eine Folge von maximal 8–stelligen Hexadezimalzah-
len, die durch +/- Zeichen miteinander verbunden sind. Da-
mit soll dem Anwender in erster Linie das mühselige Addie-
ren/Subtrahieren z. B. von Ladeadressen und relativem Abstand
erspart werden.

DM 5000 Ausgabe der Bytes $5000 . . . $500FBeispiel:

DM 610+20,100 Ausgabe der Bytes $630 . . . $72F

DM 37FF 3901 Ausgabe der Bytes $37FE . . . $390D

Der Zugriff auf die Speicherzellen erfolgt im Usermode des Pro-Hinweis:
zessors. Dadurch ist es bei manchen Rechnern nicht möglich,
sich alle Speicherstellen anzusehen, da die Hardware einen ”Bus-
Error“ auslöst, woraufhin der Shellprozeß abgebrochen wird.

Als Erweiterung hierzu ist ein Zusatzshellbefehl DMX zuladbar
(oder transient ausführbar), der folgende Zusatzparameter er-
laubt:

-S Zugriff im Supervisormode, sonst

3.7 Beschreibung der Bedienbefehle 133

Zugriff im Usermode

-B Zugriff mittels Befehl MOVE.B und byteweise Darstellung

-W Zugriff mittels Befehl MOVE.W und wortweise Darstellung

-L Langwortzugriff (MOVE.L) und Darstellung

-M Zugriff mittels Befehl MOVEP.W und wortweise Darstellung,
dabei werden nicht gelesene Byte mit einem ? dargestellt

-P Zugriff über PIT–Trap, nur interessant für PBUS–Zugriffe

Fehlt in der Parameterliste des Befehls DMX die Angabe -S, wird
der geforderte Zugriff im Usermode ausgeführt.
Mit dem DMX sind dann folgende Beispiele möglich:

DMX -S 400 zeigt einen Speicherdump ab Adresse $400, dabei
erfolgt der Zugriff im Supervisormode.

DMX -B 3000 5 zeigt einen Speicherdump der Adressen $3000
bis einschließlich $3005, der Zugriff erfolgt im Usermode und
byteweise.

DMX -SL 4444 zeigt die Zelle $4444 in einem Langwort, und der
Zugriff erfolgt im Supervisormode und langwortweise.

134 3.7 Beschreibung der Bedienbefehle

D R Display Registers of Task

DR tasknameSYNTAX:

Beschreibung: Die angegebene Task wird in der Speicherverwaltung gesucht. Ist
sie dort nicht vorhanden, so erfolgt Meldung >> taskname not
loaded. Ist die Task zwar vorhanden, aber im Zustand DORM, so
erfolgt Meldung >> taskname not active.

Anschließend werden die Register der Task ausgegeben. Die Aus-
gabe erfolgt in spartanischer Schlichtheit, da die Anweisung oh-
nehin nur für Bitmuster–Freaks oder Assembler–Programmierer
interessant ist:

Adr: A7 (US) A7 (SS) D0 D1
Adr: D2 D3 D4 D5
Adr: D6 D7 A0 A1
Adr: A2 A3 A4 A5
Adr: A6 St5/4 St3/2 St1/0

Mit St sind die letzten 6 Worte des System–Stacks gemeint. So
ist z. B. St1/0 die Adresse hinter einer TRAP–Instruktion, wenn
diese auf Taskebene ausgeführt wurde.

DR XVYBeispiel:

Bei suspendierten Tasks können die Registerinhalte mit HilfeHinweis:
des SM–Kommandos verändert werden, wenn man die bei DR an-
gegebenen Adressen (s. linker Rand) der Registerablageplätze
verwendet.

3.7 Beschreibung der Bedienbefehle 135

Echo text E C H O

ECHO textstringSYNTAX:

Mit diesem Befehl läßt sich auch ohne den Shellsprachinterpreter ein (fast)
beliebiger Text auf dem aktuell gültigen Standard-Output Gerät ausgeben.

ECHO Laden des Modules XY fertig;

produziert eine Ausgabe des Textes, wobei das Semikolon und das Doppelminus
(Zeichenpaar --) nicht mehr mit ausgegeben werden, sondern als Beginn eines
Nachfolgebefehles an die Shell gewertet werden.

Will man diese Zeichen ebenfalls ausgeben, so muß der entsprechende Textteil
entweder mit Hochkommata (’) oder mit Gänsefüßchen (") umrahmt werden.
Bei einer Umrahmung mit Hochkommata dürfen auch Gänsefüßchen im Text
stehen und umgekehrt.

ECHO Das Zeichen ’;’ wird nun gedruckt; oder
ECHO ’Das Zeichen ; wird nun gedruckt’;

ECHO "Das Zeichen ’ wird nun gedruckt";
ECHO ’Das Zeichen " wird nun gedruckt’;

Man beachte, daß es bei der Anwendung des Befehles aus der Grundshell kleine
Unterschiede bei der Auflösung ”umrahmter“ Texte im Vergleich zum ECHO-
Befehl der Shell-(skript-)sprache gibt. Hat man mit dem optionalen ENVSET-
Befehl eigene oder globale Environment-Variablen der Shell angelegt, so wer-
den diese als Argumente des ECHO-Befehles auch im Falle einer Umrahmung
substituiert.

ENVSET MIST=ABCDE;
ECHO ’$MIST’;

ergibt den Text ABCDE als Ausgabe.

136 3.7 Beschreibung der Bedienbefehle

E D Edit a File

ED.sonprocname [PRIO integer3] [parameterlist] (Form
1)SYNTAX:
ED [PRIO integer3] [parameterlist] (Form 2)

Beschreibung: Es wird eine flüchtige unabhängige Task mit vom Nutzer (1.
Form) oder vom System (2. Form) vorgegebenem Namen erzeugt
und gestartet. Ein vom System (2. Form) generierter Name hat
den Aufbau ED/xx. Die Standardpriorität für den Editor ist 15
($0F hexadezimal). Der Editor ist ”reentrant“, es kann also mit
dem gleichen Code (auch ROM–Resident) auf mehreren Termi-
nals gleichzeitig gearbeitet werden — es müssen nur unterschied-
liche Dateien editiert werden.

Es werden die Parameter SC (Scratch–Datei, auf der der EditorParameter:
arbeiten soll) und SI (Source–Input, Port, über den der Nutzer
Eingaben tätigt) akzeptiert.

/SC/ muß eine ED–Datei der Form /ED/xyz sein, sonst wird
der Editor sofort mit der Meldung wrong ldn (mode) abgebro-
chen und verschwindet aus dem System. /SI/ muß ein Sicht-
gerät sein, welches im System als ”dialogfähig“ bekannt ist (siehe
SD–Befehl), sonst erfolgt ein Abbruch mit der Meldung wie bei
falschem SC–Paramter. Die Angabe von SC kann entfallen. Die
folgenden Aufrufe sind äquivalent:

ED /ED/name bzw.
ED SC /ED/name und
ED SC=/ED/name

Bei fehlenden Parametern wird SC=/ED/SIx und SI=/Ax/ einge-
setzt, wobei x die LDN der Schnittstelle des Nutzer ist.

Es ist nahezu jedes Terminal oder aber das RTOS–UH-Win-Sichtgerät:
dowsystem als Arbeitsplatz geeignet, wenn von der Struktur fol-
gende Bedingungen erfüllt werden:

• Typ: TELEVIDEO TVI 925, 950 oder VT52 und kompatible.

• 24 oder 25 Zeilen mit jeweils 80 Zeichen.

• Automatischer UP–Scroll bei Lf in der untersten Bild-
schirmzeile.

• Autowraparound = autom. Cr + Lf nach Anschlag des
80. Zeichens einer Zeile (No Wrap parametrierbar)

3.7 Beschreibung der Bedienbefehle 137

• Kein automatischer Lf nach Erhalt eines Cr.

• Cursorsteuerung über $0A, $0B, $0C, $08, $16 (Umpara-
metrierung auf ESC–Sequenzen möglich).

• Betrieb wie bei der Shell im Full–Duplexmode.

Nach dem Start wird die erste Seite des Files aufgeblättert. Exi-Steuerung:
stierte der File vorher nicht, so wird er mit der Zeile

*File was installed by ED

als einziger Information neu im System eingerichtet. Der Editor
arbeitet ohne Zwischendatei direkt auf dem angegebenen ED–
File, Änderungen sind daher von sofortiger Wirkung auf die Da-
tei.

Die Veränderung einzelner Zeichen erfolgt durch Anfahren der
Position auf dem Bildschirm und Eingabe eines neuen Zeichens
(Replace–Mode). Der Editor arbeitet stets im Replace–Mode.

Sonderfunktionen werden durch Anschlag des Zeichens ESC an-
gewählt, wobei der nachfolgende Buchstabe die Operation be-
zeichnet. Die Operationsbezeichner wurden im Sinne einer leich-
ten Merkbarkeit gewählt (siehe folgende Operationstafeln).

Es sollten nur Zeichen eingegeben werden, die einen ASCII–Wert
von größer $1F haben. Enthält die Datei Zeichen, deren Wert
kleiner als $1F ist — z. B. durch einen COPY-Befehl erzeugt —,
so werden diese mit dem Zeichen @ abgebildet.

Abweichend von dieser Regel darf in die erste Spalte ein Zei-
chen $04 (Eot) eingegeben werden, um das Ende des Textes zu
markieren (für eine Übertragung via Schnittstelle wichtig).

Betriebsmodi: Der Editor kennt zwei Betriebsmodi, die durch den SD–
Bedienbefehl der Shell, siehe Seite 203, verändert werden können.

Der Normalmode ist standardmäßig eingestellt. Der Cursor–
ESC–Mode kann mit dem Kommando SD /Ax/+1 01 eingestellt
werden. Der Normalmode wird mit SD /Ax/+1 00 eingestellt.

Die ESC–Sequenzen für Ein–/Ausfügungen wurden so gelegt,
daß möglichst viele unterschiedliche Terminals benutzt werden
können.

Tabelle der vom Editor genutzten Zeichen zur Cursorsteuerung:

138 3.7 Beschreibung der Bedienbefehle

Funktion Normalmode Cursor–ESC–Mode
↓ $0A, $16, Ĵ oder V̂ ESC B
↑ $0B oder K̂ ESC A
→ $0C oder L̂ ESC C
← $08 oder Ĥ ESC D
Insert Char ESC → ESC Q
Delete Char ESC ← ESC W / ESC P
Insert Line ESC ↓ ESC E / ESC L
Delete Line ESC ↑ ESC R / ESC M

Terminals: TELEVIDEO TV925 DEC VT52

Funktionen: Die folgende Tabelle enthält die über Escape-Sequenzen anwähl-
baren Befehle. Der Editor ”merkt” sich also keinerlei ”Komman-
domodus“ o. ä., sondern erkennt dies an dem Anschlag der Esc-
Taste.

Mnemonik Code Erklärung
Forward 10 Li ESC F Fenster 10 Zeilen weitersetzen.
Exit ESC X Ausstieg aus dem File, Beendigung des

Editors.
Home ESC H 1. Zeile, 1. Spalte des Files anlaufen

und Keybuffer löschen. Der File wird
verdichtet.

Ins Keybuffer ESC I Der Keybuffer wird vor der Zeile, in der
der Cursor steht, eingesetzt.

Keybuffer ed. ESC K Der Keybuffer wird angelaufen, und es
können in ihn Zeichen eingesetzt wer-
den.

New Numbers ESC N Alle Zeilennummern werden aktuali-
siert und der Keybuffer gelöscht.

Overlay Keyb. ESC O Der Keybuffer wird mit der Zeile, in
der der Cursor steht, ab der Position
des Cursors gefüllt.

Search Keyb. ESC S Es wird in dem File nach dem im Key-
buffer enthaltenen Text gesucht. Die
Suche beginnt ab der aktuellen Cursor-
position in Richtung Fileende.

Tabulator set ESC T Tabulatormarke setzen.
Unmask Tabul. ESC U Tabulatormarke löschen.
Verify Pict. ESC V Fenster aus der Datei neu nachladen.

Hilft bei unklaren Situationen.
Zone Select ESC Z Das Fenster wird auf die angegebene

Zeilennummer neu positioniert.

3.7 Beschreibung der Bedienbefehle 139

Bei den o. a. Escape–Sequenzen dürfen auch kleine Buchstaben
mit gleicher Wirkung benutzt werden. Es empfiehlt sich, von
Zeit zu Zeit über ESC H eine Verdichtung des Files zu forcie-
ren, insbesondere wenn nur noch wenig Platz im Speicher ist.
Bricht der Editor seine Bearbeitung mit der Meldung ... no
mem. suspended ab, so kann nach Bereitstellung von genügend
Speicher die Task mit CONTINUE fortgesetzt werden. Gelingt dies
nicht, so kann der ED–File dennoch gelesen werden, allerdings
ist die zuletzt aufgeblätterte Seite nicht im aktuellen Zustand. Es
sollte nun unbedingt die Task mit einem UNLOAD entfernt werden,
da bei einer Fortsetzung des Editors nach gewaltsamer Verände-
rung des Files ein Absturz bzw. eine BAD POINTER. EXITUS Mel-
dung erscheint und Veränderungen am File nicht ausgeschlossen
sind.

Die übergeordnete primäre Shell des Terminals ist während einer! →
Editor–Sitzung über CTRL A nicht erreichbar. Sie müssen vorher
über ESC X aussteigen. Allerdings kann über die BREAK–Taste
dennoch die Shell bei gleichzeitig aktivem Editor aktiviert wer-
den. Dies ist jedoch nur für den Notfall vorgesehen. Die aktuelle
Seite des ED–Files muß danach über ESC V restauriert werden.

Zum Löschen der Anzeige des Keybuffers muß dieser über ESC
K angelaufen und dann mit ↑ (Cursor UP) verlassen werden.
Der Inhalt bleibt aber weiterhin erhalten (z. B. für die Funktion
Suchen: ESC S).

Wenn das verwendete Terminal (z. B. ITOH CT 101) keinen
Auto–Wrap–Mode besitzt oder dieser nicht wie oben angegeben
funktioniert, so kann mit SD /Ax/+1 yy der Editor umparame-
triert werden. Das Setzen des Bit mit Wertigkeit 2 in yy bewirkt,
daß die Lf–Generierung nun vom Editor übernommen wird. Das
Terminal muß nun so eingestellt werden, daß nach Anschlag des
80. Zeichen in einer Zeile der Cursor in der 80. Spalte stehen
bleibt. Es können z. B. mit SD /Ax/+1 3 die Funktionen ”curs–
ESC“ und ”no wrap around“ vereinbart werden.

SD /A2/ 3301 Port2: dialog, Lf nach Cr, Curs=ESC, IN/OUTBeispiel:

ED /ED/marion Der File marion wird editiert.

Nach der Vereinbarung eines ”Working-Directories“ (siehe Befehl
CD) können die Dateien hierarchisch organisiert werden:

Der Nutzer hat das Working-Directory /ED/ABC angelegt. Die
Eingabe von:

140 3.7 Beschreibung der Bedienbefehle

ED Affe richtet eine Datei mit dem Namen
/ED/ABC/Affe ein, und diese wird editiert.

Durch die Verwendung von Working-Directories kann im Mehr-
nutzerbetrieb ein versehentliches Benutzen von Dateien ande-
rer Nutzer vermieden werden. Dazu richten sich alle in einem
System arbeitenden Nutzer unterschiedliche Working-Directories
ein, über diese erfolgt dann der Zugriff auf die einzelnen den Nut-
zern zugeordneten Dateien.

Nutzer1 legt mit CD /ED/Nutz1 sein Working-Directory für sich
fest, Nutzer2 legt CD /ED/Nutz2 fest usw.

Wenn nun beide Nutzer das Kommando:

ED mein eingeben, editieren sie die folgenden im System enthal-
tenen Files:

Nutzer1: /ED/Nutz1/mein und
Nutzer2: /ED/Nutz2/mein usw.

3.7 Beschreibung der Bedienbefehle 141

Enable Processinterrupt E N A B L E

ENABLE EV hexnum8SYNTAX:

Beschreibung: Mit dem aus hexnum8 erhaltenen Bitmuster werden die Proze-
ßinterrupts freigegeben, an deren Bitposition eine 1 in hexnum8
enthalten ist. Es können 32 verschiedene Prozeßinterrupts ange-
sprochen werden. ENABLE EV 1 Prozeßinterrupt Nr.1 wird
freigegebenBeispiel:

ENABLE EV FF Nr.1–8 werden freigegeben

ENABLE EV 0 unsinnig, da ohne Wirkung

Diese Anweisung entspricht der gleichnamigen Anweisung derHinweis:
Sprache PEARL und erfüllt die gleiche Funktion auf System–
Kommandoebene.

Nach einem Kaltstart des Systemes sind zunächst alle Prozeßin-
terrupts abgeschaltet. Die jeweils benötigten müssen daher vor
ihrer Benutzung mit diesem Kommando oder durch die entspre-
chende PEARL-Anweisung eingeschaltet werden.

142 3.7 Beschreibung der Bedienbefehle

E N V S E T Environment Set (optionaler Bedienbefehl)

ENVSET variable=textstringSYNTAX:
ENVSET -G variable=textstring
ENVSET -R variable

ENVSET -R
ENVSET -G -R variable

ENVSET -G -R
ENVSET -S size

ENVSET -G -S size

ENVSET
ENVSET -G

Mit dieser Anweisung können lokale (arbeitsplatzgebundene) oder globale (-G,
für alle Arbeitsplätze gleich) Environment-Variable mit einem Textwert besetzt
werden. Die Parameter (R,S und G) können auch klein geschrieben werden. Mit
ENVSET definierte lokale oder globale Variablen können mit vorangestelltem
$-Zeichen in Shellbefehlen an Stelle des Textes, den sie beinhalten, benutzt
werden. Das Objekt textstring endet am Semikolon bzw. am Doppelminus (--).

Die Environmentvariablen werden in speziellen Speichermodulen (#ENV/x) an-
gelegt, deren Größe (Defaultwert ist $200=512 Bytes) man nur mit dem allerer-
sten ENVSET-Befehl (also bei noch nicht existierendem Environment!) einstellen
kann:

ENVSET -S 1000 |4 kB lokal vorsehen
ENVSET -G -S 2000 |8 kB globales Env.

ENVSET PF=/H0/TEX/TEST.TEX |Lokale Definition
COPY $PF > /ED/A |Benutzung

ENVSET -G SV=CP /H0/xy > /H0/xy.bak |Globale Definition
$SV |Benutzung

Der Befehl ENVSET ohne Parameter erzeugt eine Liste aller zur Zeit gespeicher-
ten lokalen Environment-Variablen und listet zusätzlich alle eventuell vorhan-
denen unveränderlichen Systemvariablen auf. Der Befehl ENVSET -G erzeugt
analog dazu eine Liste aller zur Zeit gespeicherten globalen Environment-
Variablen.

3.7 Beschreibung der Bedienbefehle 143

Der Zusatzparameter -R (Remove) gestattet das Löschen aller oder einer ein-
zelnen Environmentvariablen.

ENVSET |Listet alle lokalen Variablen, auch Sysvars
ENVSET -R SV |Lösche die lokale Variable SV
ENVSET -R |Lösche alle lokalen Variablen
ENVSET -G -R |Lösche alle globalen Variablen

Beim lokalen ENVSET-Befehl werden neben den zur aktuellen Shell gehörende
Environmentvariablen auch eingebaute platzgebundene Variablen angezeigt.
Dabei können jedoch diese eingebauten Variablen, etwa WORKDIR, EXEDIR..,
STDOUT, STDIN, STDERR, EDITOR, TIMEBASE und P_TYPE nur angezeigt, jedoch
nicht gelöscht oder verändert werden. Zu deren Veränderung – soweit über-
haupt möglich – bediene man sich der dafür vorgesehenen Befehle, z.B. ER, I,
O sowie CD usw.

Führt man den ENVSET-Befehl aus einem Skript heraus aus (siehe Seiten 76
ff.), so wird der Befehl vom Shellinterpreter selbst dekodiert und neben dem
globalen oder lokalen Environment wird auch eine gleichnamige Skriptvariable
gesetzt oder verändert – und zwar unabhängig davon, ob das lokale oder globale
(-G Option) Environment angesprochen wurde.

Beim Ersetzen der Environmentvariablen durch ihren (Text-)Wert (durch die
Shell oder im Skript) wird zunächst immer im lokalen Environment gesucht.
Nur wenn das Objekt dort nicht gefunden wurde, erfolgt eine Suche im globalen
(für alle Nutzer gleichen) Environment.

Wı̈rd die Bourne-Shell von der primären Shell aus gestartet, so erbt sie alle
zum Startzeitpunkt definierten Environmentvariablen als Kopie. Dabei werden
zunächst alle globalen Variablen kopiert und als Skriptvariable angelegt. An-
schließend werden alle lokalen Variablen übernommen – wobei ggf. gleichnami-
ge aus dem globalen Environment stammende Skriptvariablen überschrieben
werden. Damit ist gesichert, dass das lokale Environment quasi eine höhere
Priorität besitzt.

Verändert man in einem Skript die Inhalte der in diesen Skript hineinkopierten
Variablen durch Wertzuweisung (...=...), so ändert sich nichts am Environ-
ment – eben auch nicht an dem, aus dem die Objekte kopiert wurden.

144 3.7 Beschreibung der Bedienbefehle

E R Error Redirect

ER pathlistSYNTAX:

Beschreibung: Als Standard-Error Datenstation (Stderr) der Shell, die die-
sen Befehl ausführt, wird fortan die durch pathlist bezeichnete
Datensenke verwendet. Die Wirksamkeit beschränkt sich auf die
Kommandos im Rest der Kommandozeile. Der Befehl ist dar-
um im Gegensatz zum ”PER“-Befehl nicht riskant: die Fehler der
nächsten Befehlszeile schreibt die Shell weiterhin in die bisherige
Datenstation.

Hat man ein PEARL-Shellmodul geschrieben, welches nach
Stderr seine Daten schreibt, so kann man durch Vorschalten
dieses Befehles ohne weiteren Kodieraufwand jede beliebige Da-
tensenke des aktuellen Rechners nutzen.

ER /H0/NIL; MKDIR /H0/POOL;Beispiel:

In diesem Beispiel erspart man sich die lästige Fehlermeldung,
falls das Directory ”POOL“ schon vorhanden war. Man bekommt
allerdings auch nicht mit, wenn auf der Platte kein Platz mehr
ist o. ä.

Man beachte, daß die Shell vor dem Hineinschreiben in die Da-
tenstation Stderr den File nicht öffnet, das macht der Handler
der Datenstation notfalls automatisch. Auch wird der File am
Ende nicht geschlossen. Auf diese Weise ist das akkumulierende
Sammeln von Fehlermeldungen in einem File möglich, man muß
allerdings dafür Sorge tragen, daß der File irgendwann geschlos-
sen wird oder häufig genug SYNC-Befehle einstreuen.

Eine wichtige Bedeutung hat der ER-Befehl in der Shellsprache,! →
z. B. um in einem Skript Fehlermeldungen selbst anzunehmen. In
der grafischen Bedienoberfläche kann man mit ihm Meldungen
in eine ”Alert-Box“ lenken.

3.7 Beschreibung der Bedienbefehle 145

List Files F I L E S

FILES device--listSYNTAX:

Es werden die Namen der auf den angegebenen Geräten zur Zeit aktiven Files
ausgegeben. Das sind Dateien, die sich im geöffneten Zustand befinden, weil aus
ihnen gelesen wurde oder etwas hineingeschrieben wurde, ohne daß es bisher
einen abschließenden Close- (=RETURN-)Befehl gegeben hätte. Auch nach einer
evtl. REWIND-Operation ist ein File im aktiven Zustand.

Bei Benutzung eines Working-Directories (siehe CD-Befehl) werden nur die dem
vereinbarten Working-Directory zugeordneten Files ausgegeben.

FILES /ED/ /F0/ alle aktiven /ED/– und /F0/–FilesBeispiele:

FILES /F1/ alle aktiven /F1/–Files

Wird ein Gerät addressiert, das nicht in Files untergliedert ist,Fehler:
so erfolgt die Meldung

befehlsstring: operation failed

und die weitere Bearbeitung der Befehlszeile unterbleibt. Wird
dagegen ein nicht existierendes Verzeichnis angewählt, so wird
dies nicht moniert, sondern angegeben, daß darunter keine akti-
ven Files gefunden wurden.

146 3.7 Beschreibung der Bedienbefehle

F I N D File Index

FIND [parameter] devpath1 devpath2...SYNTAX:

Mit dieser Anweisung läßt sich ein sogenannter File-Index erstellen, der für al-
le File-Verzeichnisse auf allen Geräten die stets gleiche Ausgabeform hat. Der
Befehl ist im Gegensatz zu DIR oder FILES darum besonders gut geeignet, um
File-Verzeichnisse von Skripten in Shellsprache normiert erstellen und abarbei-
ten zu können. Skripte wie CPX u. ä. stützen sich auf FIND ab.

Man erhält für jeden File die volle zur Verfügung stehende Information, so
auch den ”Startblock“, mit dem sich z. B. beim RTOS–UH-eigenen Flop-
py/Festplattenfilehandler Files evtl. sogar noch nach Verlust des Directories
lesen lassen.

Jeder File wird mit seinem kompletten Zugriffspfad aufgelistet, jedoch ohne
den führenden /dev/-Pfadanteil.

Hierbei muß es sich um einen Bezeichner für ein Verzeichnis han-devpath:
deln. Der Befehl veranlaßt den adressierten E/A-Treiber, die un-
ten angegebene Information nach Stdout zu senden. Ohne Zu-
satzparameter werden nur die Files und Unterverzeichnisse der
mit devpath angesprochenen Ebene aufgelistet.

Es ist nur die Optionparameter:

-A (oder -a) ”alle“

vorgesehen. Damit wird erreicht, daß nun auch alle Unterver-
zeichnisse sowie deren Unterverzeichnisse (etc.) aufgeschlüsselt
werden. Vorsicht: Das kann bei Festplatten einen fürchterlich
langen File-Index erzeugen!

FIND /H0/XDBeispiele:
FIND -A /ED/SIMULA

Die quasi ”genormte“ Struktur einer Ausgabezeile sieht wie folgt aus:

path no. of bytes Uhrzeit Datum Start-block
SIMULA/test 32627 09:51 27-05-1993 $00041A16

Wenn das Gerät nicht in Verzeichnisse untergliederbar ist, soFehler:
wird mit ”... operation failed“ die Bearbeitung der laufen-
den Befehlszeile abgebrochen.

3.7 Beschreibung der Bedienbefehle 147

Formatting of a Floppy or Harddisc F O R M

FORM S /Floppydevice/forminfo (single density)SYNTAX:
FORM D /Floppydevice/forminfo (double density)
FORM D /Harddiscdev/forminfo (Festplatten nur double!)

Auf dem angegebenen Floppylaufwerk wird neben der eher hardwaretechni-
schen Softsektorierung auch das Filesystem des Filemanagers installiert. Alle
bisher auf der Floppy/Festplatte gespeicherten Daten sind unwiderruflich ver-
loren. Die auf das FORM–Kommando folgenden Eingaben müssen in Großbuch-
staben eingegeben werden.

S Single–Density Disketten (kaum noch unterstützt)
D Double–Density Disketten

Die Formatanweisung wird aus 3 Parametern gebildet. Im erstenforminfo:
wird mit einer Buchstabe/Zahl-Kombination mitgeteilt, welche
Aufteilung in wieviel Sektoren und ob 5“/3,5“ oder 8“ formatiert
werden soll. Der zweite Parameter gibt eine ein– oder doppelsei-
tige Formatierung an. Im dritten Paramter wird mit einer 1– bis
4–stelligen Zahl die Anzahl der Tracks mitgeteilt.

Der 1. Parameter:

xy seclen sec/track blk/track typ. Medium
A5 256 16 1x4k 3.5“ und 5“ DD-Disk. RTOS
B5 1024 5 1x5k 3.5“ und 5“ DD-Disk. RTOS
C5 512 9 1x4.5k 3.5“ und 5“ DD RTOS+MSDOS
A8 256 26 1x6.5k 8“ und 5“ HD-Disk. RTOS
B8 1024 8 1x8k 8“ und 5“ HD-Disk. RTOS
C8 512 15 1x7.5k 8“ und 5“ HD RTOS+MSDOS
AH 256 32 2x4k 3.5“ HD-Disk. RTOS
BH 1024 10 2x5k 3.5“ HD-Disk. RTOS
CH 512 18 2x4.5k 3.5“ HD-Disk. RTOS+MSDOS
BJ 1024 20 4x5k 3.5” ED-Disk. RTOS
CJ 512 36 4x4.5k 3.5” ED-Disk. RTOS
W5 512 Blocksize 4k SCSI Harddisc
W6 512 Blocksize 16k SCSI Harddisk
X5 Platte mit 1024-er Sektoren

148 3.7 Beschreibung der Bedienbefehle

Der 2. Parameter:

SS – single sided Disketten
DS – double sided Disketten
Hz – mit z Köpfen der Winchester
Bxxxxx – SCSI-Platte mit xxxxx (dezimal) Blöcken, die eine

Größe haben, wie sie durch den ersten Parameter
des FORM-Befehles festgelegt ist. (z. B. 4 kByte)

Der 3. Parameter: (entfällt bei ”B“ als zweitem Parameter!)

1– bis 4–stellige dezimale Anzahl Tracks.

Nach dem Formatieren wird jeder Block gelesen und im Feh-! →
lerfall für das Filesystem ausgesondert. Bei mehr als 9 un-
brauchbaren Blöcken wird die Operation mit ”wrong i/o“ oder

”ABORTED COMMAND ERROR“ abgebrochen. Zur Zeit werden die
Blöcke aber nicht auf Übereinanderfaltung geprüft (z. B. wenn
Drive bei DS nur eine Seite schreiben kann).

Fehlermeldungen:

>> ... :Fx DRIVE NOT READY
>> ... :Fx DEVICE WRITE PROTECTED
>> ... :Fx TRACK 000 NOT FOUND
>> ... :Fx ID FIELD NOT FOUND (Beim Verify)

FORM D /F0/B5SS80 single sided RTOS–UH–DiskBeispiele:
FORM D /H0/W5B21800 SCSI-Festplatte, ca. 88 Mbyte

Nach dem Absetzen des Kommandos MSFILES /F0/:

FORM D /F0/C5DS80 double sided MS–DOS–Disk

3.7 Beschreibung der Bedienbefehle 149

Inspect FREE Storage on Disc F R E E

FREE devpathSYNTAX:

Beschreibung: Es wird der noch vorhandene freie Platz auf dem angegebenen
Gerät – eine Floppy oder Festplatte – ausgegeben.

Nur der Geräteteil wird ausgewertet. Es muß sich um ein Gerätdevpath:
mit der Eigenschaft ”formatierbar“ (siehe Seite 203) handeln,
sonst beendet die Shell die laufende Zeile mit der Fehlermel-
dung ”... operation failed“. Wurde ein Working-Directory
vereinbart (siehe Befehl CD), wirkt der Befehl auf das im Directoy
vereinbarte Device.

FREE /F1/Beispiele:

Es wurde das Working-Directory /F0/ vereinbart. Der Befehl

FREE;

wirkt dann auf das Floppydevice /F0/.

150 3.7 Beschreibung der Bedienbefehle

G O Go and execute

GO AD hexadrSYNTAX:
GO.sonprocname [PRIO integ3] [SZ sizehexnum] AD
hexadr

GO.sonprocname AD hexadr

Beschreibung: Es wird vom System ein Sohnprozeß gebildet, der entweder
einen Systemnamen GO/xx oder den angegebenen Tasknamen
(2. Form) erhält. Die Task wird mit dem minimal möglichen
Workspace ausgestattet und erhält die angegebene Startadresse.
Anschließend wird sie mit der angegebenen Priorität bzw. der
Defaultpriorität 50 gestartet.

Dies ist eine Hilfskonstruktion für maschinennahe Programmie-Beachte:
rung. So kann eine kurze Codesequenz schon mal ohne jeden
Taskheader zur Ausführung gebracht werden. Auch können im
ROM liegende User-Tasks ggf. über diesen Weg exekutiert wer-
den. Privilegierte Befehle führen zur Fehlermeldung ”>> xyz

not privileged“.

GO.TEST AD 2000Beispiele:

GO AD 5000 SZ 5000

GO.CHECK PRIO 2 AD 8E000

Es lassen sich noch SI und CO–Parameter angeben, die jedoch nurHinweis:
dann Bedeutung haben, wenn der Anwender sich die Informa-
tionen aus dem (nur Insidern bekannten) Header des generierten
Sohnprozesses selbst herausholt.

Durch Angabe eines SZ–Parameters kann die Größe des für den
Sohnprozeß angeforderten Task–Workspace vorbestimmt werden
(siehe Beispiel).

Wenn angegeben, darf der SZ-Parameter die zum Überleben des! →
Systemes notwendige Mindestgröße keinesfalls unterschreiten, da
der Kontext in den Taskworkspace passen muß. Ein für alle bis-
herigen Hardwareplattformen ausreichender Wert ist SZ=100.

3.7 Beschreibung der Bedienbefehle 151

Help H E L P / ?

HELP Form a)SYNTAX:
HELP -D Form b)
HELP -E Form c)
XHELP Form d)
? identisch zu Form a)
? -D identisch zu Form b)
? -E identisch zu Form c)

Mit diesem Bedienbefehl kann eine Kurzinformation über das aktuelle System
angefordert werden:

a) Ohne Parameter: Es wird eine Liste der in der Shell vorhande-
nen speicherresidenten Bedienbefehle ausgegeben. Die Liste ist in
der Reihenfolge geordnet, in der die Befehle vom Scanner erfaßt
werden. Auch speicherresident hinzugeladene eigentlich transiente
Shellerweiterungen werden aufgelistet, sofern sie aktiv ansprech-
bar sind. Die Suche im RAM wird allerdings erst nach der Suche
im Systembereich gestartet.

b) Mit Parameter -D oder -d: Es werden die Datenstationen des aktu-
ellen Systemes aufgelistet. Dabei wird auch ihre LDN und die Lauf-
werksnummer DRIVE ausgegeben. Vorsicht: Es wird hexadezimale
Kodierung verwendet, während der Datenstationscode /LD/x.y/
bei x und y Dezimalzahlen erwartet.

c) Mit Parameter -E oder -e: Es werden die im System vorhandenen
fest eingebauten globalen Symbole samt der zugehörigen Adresse
ausgegeben. An Hand des Vorspannes ”∼“ lassen sich PEARL90-
Symbole erkennen. Leider sieht man nicht, um welche Art Objekt
es sich dabei genau handelt. Symbole, die mit dem Zeichen # be-
ginnen, dienen der Selbstkonfiguration des Betriebssystems und
sind für den Nutzer nicht zugänglich.

d) Der Aufruf über XHELP entspricht der Form a) – jedoch wird für
jeden Bedienbefehl eine komplette Zeile ausgegeben. Die Befehls-
namen werden dadurch ungekürzt ausgegeben. Außerdem kann
evtl. vorhandener Beschreibungstext (siehe Seite 68) ausgegeben
werden. Wird XHELP mit Zusatzparametern aufgerufen, so verhält
er sich wie der normale HELP-Befehl.

152 3.7 Beschreibung der Bedienbefehle

I Input–device specification

I pathlistSYNTAX:

Beschreibung: Als Standard-Input (Stdin) der Shell, die diesen Befehl ausführt,
wird fortan die durch pathlist bezeichnete Datenquelle verwen-
det. Die Wirksamkeit beschränkt sich auf die Kommandos im
Rest der Kommandozeile. Der Befehl ist darum im Gegensatz
zum ”PI“-Befehl nicht riskant: die nächste Befehlszeile liest die
Shell weiterhin vom bisherigen Gerät.

Hat man ein PEARL-Shellmodul geschrieben, welches von Stdin
seine Daten liest, so kann man durch Vorschalten dieses Befeh-
les ohne weiteren Kodieraufwand jede beliebige Datenquelle des
aktuellen Rechners nutzen.

I /H0/SOURCE/TEXT1.TXT; CONVERT;Beispiel:

CONVERT könnte eine PEARL-kodierte Shell sein, der man im obi-
gen Beispiel einen Inputfile .../TEXT1.TXT anbietet. Eine wei-
tere wichtige Bedeutung hat der ”I“-Befehl in der Shellsprache,
z. B. beim READ.

3.7 Beschreibung der Bedienbefehle 153

List Task States L

L [-S[O]|-U[O]] | [-O]SYNTAX:

Beschreibung: Für alle im System existierende Tasks werden die Statusinfor-
mationen aufgelistet. Durch die Angabe der Parameter kann eine
Selektierung der Ausgabe erfolgen.

S Es werden nur Systemtasks — alle, die mit einem # begin-
nen — aufgelistet.

U Es werden nur die Usertasks, die sich im System befinden,
aufgelistet.

O Es werden nur die Tasks aufgelistet, die dem jeweiligen
Nutzer zur Zeit ”gehören“.

L Es werden alle Tasks aufgelistet.Beispiel:

L -UO Es werden die eigenen Usertasks gelistet.

Die Statusinformation hat folgenden Aufbau:

Adr Prio/User (resident) Status TWS=xxxx PC=xxxx Name

Gibt die Priorität der Task an. Prioritäten von $1 – $FFF sindPrio:
Anwenderprioritäten. Negative Prioritäten liegen über den An-
wenderprioritäten und sind dem Betriebssystem vorbehalten.

Gibt an, welchem User die Task zugeordnet ist. User NummernUser:
sind fortlaufend von 1 bis n, entsprechend der Zahl der seriellen
I/O–Kanäle vergeben.

Erscheint bei Tasks, deren Taskworkspace auch nach dem Ter-Resident:
minieren der Task erhalten bleibt. Bei zyklisch aktivierten Tasks
mit kurzen Einplanungsintervallen kann das ”Resident” Attribut
zur Verkürzung der Verwaltungszeiten benutzt werden.

Hier wird die Adresse des Taskworkspace ausgegeben. Ist sieTWS=
00000000, so besitzt die Task noch keinen Workspace (z. B. hat
sie noch keine CPU–Zeit bekommen, oder es war noch zu keinem
Zeitpunkt genügend Platz).

Hier wird der letzte vom Dispatcher auf Task–Grundebene gülti-PC=
ge und festgestellte Wert des Programmzählers ausgegeben.

Gibt den Namen der Task an. Tasknamen, die mit # beginnen,Name:
sind Systemtasks und lassen sich nicht mit UNLOAD entfernen.

154 3.7 Beschreibung der Bedienbefehle

Hier werden die folgenden Abkürzungen eingetragen:Status:

CWS? Task wartet auf Zuteilung eines Communication–Elemen-
tes, weil sie infolge reger Ausgabetätigkeit auf ein langsa-
meres Gerät ihr Kontingent ausgeschöpft hat.

DORM Die Task ruht zur Zeit, keine Aktivität.
I/O? Task wartet auf Beendigung einer Ein–/Ausgabe.
PWS? die Task wartet darauf, daß irgendwo ein passendes Spei-

cherstück frei wird. In der Regel wird auf Procedur-
workspace gewartet, es ist aber auch möglich, daß auf ein

”CE“ gewartet wird, wobei das zustehende Kontigent (s.
CWS? oben) noch nicht ausgeschöpft ist.

RUN Die Task ist lauffähig oder läuft.
SCHD Task ist für eine Aktivierung vorgeplant, die entsprechende

Bedingung (Zeit,Ereignis) ist aber noch nicht eingetreten.
SEMA Task wurde durch vergebliches REQUEST auf eine Sema-

phorvariable oder vergebliches RESERVE bzw. ENTER auf ei-
ne Boltvariable blockiert. Es ist auch möglich, daß die Task
mit Hilfe des WFEX-Traps auf die Beendigung einer anderen
Task wartet. Shellprozesse im WAIT-Mode warten auf diese
Weise auf Sohnprozesse.

SUSP Task wurde suspendiert und wartet auf die CONTINUE–
Operation. Bei System I/O–Tasks wird auf das Ende des
laufenden Records gewartet.

???? Die Task ist durch mehrere Bedingungen gleichzeitig
blockiert, z. B. weil sie durch eine externe SUSPEND–
Operation zusätzlich verriegelt wurde. Dieser Zustand wird
vom Systemkern auch eingestellt, wenn diese im Supervi-
sormode laufen und dabei einen Fehler verursacht haben.

Tabelle 3.6: Kurznamen der Taskzustände

3.7 Beschreibung der Bedienbefehle 155

install Lineedit (optional) L E / L I N E E D I T

LINEEDIT [options][device]SYNTAX:

Beschreibung: Die Befehle LE bzw. LINEEDIT installieren, konfigurieren bzw.
deinstallieren den Zeileneditor Lineedit für das angegebene
Eingabe-Gerät. Der Lineedit verwaltet die über ein dialogfähi-
ges Datenterminal erfolgten Eingaben.

Der Lineedit bietet u.a. die Möglichkeit, über die Cursor-Tasten
alte Zeilen zurückzuholen, ggf. zu modifizieren und dann erneut
der Shell zur Bearbeitung zu übergeben.

Um die gewünschte Eingabezeile schnell zu finden, kann man
auch die ersten Zeichen der gewünschten Zeile eingeben und da-
nach die Cursortasten betätigen. Der Lineedit sucht dann nur
nach den Zeilen, die mit den angegebenen Zeichen beginnen. Fin-
det er keine solche Zeile, so zeigt er weiterhin alle Zeilen an.

Wird eine Eingabe abgeschlossen, so wird sie im sogenann-
ten History-Buffer abgespeichert. Ist der Puffer des Lineedit
vollständig gefüllt, so werden bei neuen Eingaben so viele alte
Zeilen gelöscht, bis genügend Platz vorhanden ist. Alte Zeilen
werden auch bei mehrfacher Auswahl nur einmal im Puffer ab-
gelegt.

Der History-Buffer des Lineedit läßt sich auch in eine Textda-
tei abspeichern und zu einem späteren Zeitpunkt wieder einlesen.
Man kann also z.B. nach dem Einschalten des Rechners direkt
die Befehle noch einmal benutzen, die man tags zuvor eingetippt
hat. Natürlich kann man auch von Hand eine Textdatei mit allen
für ein spezielles Projekt benötigten Befehlen mit einem Editor
erstellen. Wann immer man an diesem Projekt arbeiten möchte,
lädt man die Datei in den Lineedit und kann die Befehle kom-
fortabel aufrufen.

Der Lineedit bietet noch einige weitere zum Editor UH–
WORD kompatible Tastaturkommandos zum Editieren einer
Zeile.

156 3.7 Beschreibung der Bedienbefehle

Im Umgang mit älteren Eingaben stehen folgende Kommandos zur Verfügung:

Taste Funktion Erklärung
↑ one line up eine Zeile zurück (ältere Zeilen), eventuell

suchen
↓ one line down eine Zeile vorwärts (neuere Zeilen), evtl. su-

chen
ˆY delete line Zeile aus History-Buffer löschen

ˆXR; to first entry zur ältesten Zeile im History-Buffer springen
ˆXC; to last entry ans Ende des History-Buffer springen, Ein-

gabezeile löschen
ˆO push line to Buf. Vom Nutzer eingegebene Zeile in den Histo-

ry-Buffer schreiben (ist sinnvoll, wenn man
nach der Eingabe eines langen Befehl merkt,
das doch zunächst noch ein anderer Befehl
auszuführen ist)

Zur Bearbeitung einer Zeile kennt der Lineedit zusätzlich folgende Komman-
dos:

Taste Funktion Erklärung
Cr exit Eingabe beenden
Eot exit Eingabe beenden a

Esc Cr truncate and exit Eingabezeile hinter dem Cursor lösch-
en und und Zeile an Task schicken, die
die Eingabe erwartet

(backspace) backspace Zeichen links vom Cursor löschen
← cursor left Cursor ein Zeichen nach links
→ cursor right Cursor ein Zeichen nach rechts
ˆN clear line Eingabezeile löschen

DEL delete char Zeichen unter dem Cursor löschen
INS insert char Zeichen einfügen
ˆXD cursor to linebegin Cursor zum Zeilenanfang
ˆXS cursor to lineend Cursor zum Zeilenende
ˆXY truncate line Eingabezeile hinter dem Cursor lösch-

en
ˆT clear end of word Wort rechts vom Cursor löschen
ˆF cursor word right Cursor ein Wort nach rechts
ˆA cursor word left Cursor ein Wort nach links

abeenden, falls Autostop für EOT aktiv

3.7 Beschreibung der Bedienbefehle 157

Sofern device angegeben ist, wird der Lineedit für das angege-Parameter:
bene Gerät installiert, konfiguriert oder deinstalliert. Ist dieser
Parameter nicht angegeben, so wird das Stdin-Device der dem
Nutzer zugeordneten Shell verwendet.

Bei einigen Optionen kann direkt hinter dem OptionsbuchstabenOptionen:
optional eine 1 bzw. 0 folgen. Die 1 bedeutet Aktivierung und die
0 Deaktivierung der Option. Diese Optionen sind standardmäßig
inaktiv.

-? Anzeige aller Parameter und Optionen (Online-
Hilfe).

-X Lineedit deinstallieren.

-B[|0|1] Diese Option legt fest, ob das Zeichen Backspace
($08) als Backspace oder als Cursor links zu in-
terpretieren ist (-B → als Cursor links interpre-
tieren).

-I[|0|1] Einfüge-Mode aktivieren.

-O[|0|1] Klingel bei Fehleingaben deaktivieren.

-P[|0|1] Normalerweise bearbeitet der Lineedit alle
Eingabe-CEs. Bei aktiver P-Option werden je-
doch die CEs, deren Pfad nicht mit dem Instal-
lationspfad des Lineedit übereinstimmen, di-
rekt an die I/O-Task geschickt.

-S=xxx Diese Option legt die Größe des History-Buffers
fest. Sie darf nur bei der Installation des Li-
needit angegeben werden. Fehlt sie, so hat
der History-Buffer eine Größe von 1KByte. Als
Wert sind nur Potenzen von zwei zugelassen. Die
Eingabe erfolgt als Hexadezimalzahl.

-D=xxx Es ist i.a. nicht sinnvoll, sehr kurze Befehle (z.B.
’S’ oder ’LU’) abzuspeichern. Mit dieser Option
läßt sich eine minimale Zeilenlänge angeben, ab
der der Lineedit die Zeile in seinen Puffer auf-
nimmt. Kürzere Zeilen werden nicht im History-
Buffer gespeichert. Standardmäßig speichert der
Lineedit alle Zeilen.

158 3.7 Beschreibung der Bedienbefehle

-F=xxx Diese Option definiert eine Default-Datei zum Spei-
chern und Lesen des History-Buffers.

-R=xxx Mithilfe dieser Option läßt sich eine Textdatei in den
Lineedit einlesen. Soll aus der mittels F-Option de-
finierten Default-Datei gelesen werden, so ist -R=&
anzugeben.

-W=xxx Mithilfe dieser Option läßt sich der History-Buffer
in eine Textdatei schreiben. Existiert die Datei be-
reits, so wird sie überschrieben. Soll in die mittels
F-Option definierte Datei geschrieben werden, so ist
-W=& anzugeben.

Eine spezielle Konfiguration des Lineedit für das verwendeteSichtgerät:
Terminal oder den Windowmanager ist nicht erforderlich. Der
Lineedit kennt die Steuerzeichen der meisten Terminals (Tele-
video, VT52,VT100, usw.). Zur Ansteuerung benutzt er nur die
druckbaren Zeichen und das allgemein verfügbare Steuerzeichen
Backspace ($08). Mehrzeilige Eingaben sind nur möglich, wenn
das Sichtgerät einen Autowraparound durchführt.

Es folgt eine vollständige Aufstellung aller dem Lineedit be-
kannten Steuersequenzen:

exit Cr; $04(Autostop bei EOT aktiv);
truncate and exit Esc Cr;
backspace $07; $08(Option B nicht aktiv);
cursor left $08(Option B aktiv); Esc D; Esc [D;
cursor right $0C; Esc C; Esc [C;
delete char $7F; Esc $08; Esc P; Esc W; Esc

Esc D; Esc Esc [D;
insert char Esc $0C; Esc Q; Esc Esc C; Esc

Esc [C;
cursor to linebegin ˆXD; ˆQD;
cursor to lineend ˆXS; ˆQS;
clear line ˆN; Esc $0A; Esc Esc B; Esc Esc

[B;
truncate line ˆXY; ˆQY;

3.7 Beschreibung der Bedienbefehle 159

clear end of word ˆT;
cursor word right ˆF;
cursor word left ˆA;
toggle B-Option ˆB;
toggle I-Option ˆI; ˆ ;
one line up 0B; Esc A; Esc [A;
one line down 0A; Esc B; Esc [B; 16;
delete line ˆY Esc 0B; Esc Esc A; Esc Esc [A;
to first entry ˆXR; ˆQR;
to last entry ˆXC; ˆQC;
push line to Buf. ˆO;

Einbindung in RTOS–UH: Der Bedienbefehl LE bzw. LINEEDIT erzeugt eine
Task, die sich vor die Betreuungstask der Eingabeschnittstelle
setzt. Diese Filtertask empfängt von RTOS–UH alle CEs für
die jeweilige Schnittstelle. Alle CEs, die keine Eingabe erwarten,
schickt sie direkt weiter an die I/O-Task. Nur Eingabe-CEs ohne
binären Transfer mit einer Datenlänge (RECLEN) größer eins,
eingeschaltetem Echo und aktivem Autostop bei Cr bearbeitet
die Filtertask weiter.

LE -D=4 -IB -F=/H0/AUTO/MYCOMAND -R=&Beispiele:

Für die eigene Eingabeschnittstelle wird der Zeileneditor Linee-
dit eingerichtet. Alle Eingaben, die kürzer als vier Zeichen sind,
werden nicht abgespeichert. Der Lineedit wird im Einfüge-
Modus betrieben, das Zeichen $08 wird als Cursor links inter-
pretiert. Die Datei /H0/AUTO/MYCOMAND ist standardmäßig zum
Speichern und Lesen des History-Buffers zu erwenden. Abschlie-
ßend werden die in der Datei /H0/AUTO/MYCOMAND (-R=&) gespei-
cherten Befehle eingelesen. Dies ist ein typischer Aufruf, wie er
in der Startup-Datei eines jeden Benutzers stehen könnte.

LE -W=& -X

So könnte die letzte Aktivität vor dem Ausschalten des Rechners
aussehen: Der Inhalt des History-Buffers wird in die voreinge-
stellte Datei gesichert und der Lineedit deinstalliert.

160 3.7 Beschreibung der Bedienbefehle

L I B S E T Library einrichten

LIBSET [[+][file1+file2+...] | [-R [filex]]]SYNTAX:

Beschreibung: Die typische Anweisung sieht wie folgt aus:

LIBSET +file1+file2+ ...

Sie legt eine Library mit den Bezügen zu den Dateien file1, file2
etc. an, in denen globale Symbole bereits geladener S-Records
abgelegt sind, wenn beim Laden derselben die Files file1 und file2
mit Hilfe der ”Code-Output“-Option des Laders erzeugt wurden,
d.h. dem Lader als CO-Parameter übergeben wurden.
Zum Beispiel:

LOAD SREC1 CO file1

LOAD SREC2 > file2

CO und > sind wie üblich gleichwertig. Der Vorteil dieser Library
ist, daß beim Laden eines S-Records, in dem Querbezüge durch
globale Symbole zu den S-Records SREC1, SREC2 ... bestehen,
nicht immer wieder alle S-Records in der Ladeliste anzugeben
sind. Stellt der Lader beim Laden eines S-Records offene Quer-
bezüge fest, wird die Library nach diesen durchsucht. Bei der
Programmentwicklung ist also immer nur noch das sich gerade
in Bearbeitung befindliche Modul zu laden und zu entladen.

Die Anweisung

LIBSET -Rfilex

entfernt den Bezug auf die Datei filex aus der Library. Wird filex
nicht angegeben, werden alle Bezüge der Library gelöscht.

Entladen Sie kein Modul, wenn noch der Eintrag der in diesem! →
Modul vorhandenen globalen Symbole in der Library besteht!
Dieser ist mit der Option ”-R“ zuvor zu entfernen. Werden die

3.7 Beschreibung der Bedienbefehle 161

Dateien mit den Symboladressen gelöscht, ohne den Bezug in
der Library zu entfernen, meldet das System beim Laden mit
offenen Bezügen das Nichtvorhandensein dieser Datei, und der
Ladevorgang wird abgebrochen.

Die Anweisung

LIBSET

ohne Parameter listet alle Dateien auf, die in der Library enthal-
ten sind.

LIBSET +ACO+BCO Fügt ACO und BCO der Libery hinzu.Beispiel:

LIBSET ACO+BCO Setzt die Libery auf ACO und BCO

162 3.7 Beschreibung der Bedienbefehle

L I N K Link Filenames

LINK filename > newfilenameSYNTAX:

Beschreibung: Mit dieser Anweisung wird ein alternativer neuer Filename (ne-
wfilename) in das Fileverzeichnis eingetragen, in dem sich das
existierende File filename bereits befindet.

Mit der Anweisung:Beispiel:

LINK /H0/ABCD/GROSS > gross;

erreicht man, daß der Inhalt des Files /H0/ABCD/GROSS zukünf-
tig auch über den Zugriffspfad /H0/ABCD/gross erreichbar ist.
Dabei werden keine Inhalte kopiert, sondern es wird in das Direc-
tory (Hier:/H0/ABCD/) nur ein weiterer Zeiger unter dem neuen
Namen eingerichtet. Beim FIND-Befehl erkennt man dies daran,
daß ”gelinkte“ Files denselben Startblock besitzen.

Besonderheit: Weil auch der dazugelinkte Filename einen vollständigen Verwal-
tungsblock erhält, kann auf diese Weise gleichzeitiges multiples
Lesen ein- und derselben Datei durch mehrere Tasks ermöglicht
werden. (Natürlich darf nicht gleichzeitig irgendein Schreiber den
File benutzen!)

Gelinkte Files unterliegen gewissen Restriktionen, die vom je-! →
weiligen File-Handler abhängen. Im MSDOS-kompatiblen Disc-
Filehandler ist die Anwendung von LINK nicht möglich. Allge-
mein gilt, daß man vor der Entfernung des Files mit Hilfe des
RM–Befehles zunächst die dazugelinkten alternativen Zugriffsna-
men beseitigen muß. Links bei RTOS-formatierten Disketten und
Festplatten sind an der Dateilänge 0 erkennbar.

3.7 Beschreibung der Bedienbefehle 163

Link S-Records (optionaler Bedienbefehl) L N K

LNKSYNTAX:

LNK.sonprocname [PRIO integer3] [linkspeclist]

LNK [integer3] [linkspeclist]

Beschreibung: Es wird ein Prozeß zum Linken mehrerer S-Records zu einem
einzigen Ladefile generiert. Der Name kann entweder durch son-
procname vorgegeben werden, oder er wird mit LNK/xx vom Sys-
tem gewählt. In beiden Fällen kann die Priorität dieser Linker–
Task durch eine max. 3–stellige Ganzzahl vorgegeben werden.
Bei nicht angegebener Priorität wird ein Wert von 20 eingesetzt.

Fehlt der Zusatz linkspeclist, so wird ein Linkvorgang mit den
Defaultwerten des Aufrufers für SI, CO und LO eingeleitet.

linkspeclist ist eine Liste von Geräte/File–Namen und eine evtl.
Arbeitsspeichergrößenangabe. Die Elemente dieser Liste werden
durch Leerzeichen oder Kommata getrennt.

Programmgröße: SZ hexnum6 oder SZ=hexnum6

Mit hexnum6 wird die Größe des verfügbaren Arbeitsspeichers
vorgegeben. Die neueren Linkerversionen kennen 2 Betriebsar-
ten: Der Small-Mode ist der herkömmliche Linkermode. Dabei
ist der Speicherraum für die globalen Symbole merkbar begrenzt.
Oberhalb von SZ=1D000 schaltet der Linker in den Large-Mode,
bei dem die globalen Symbole durch ein Hash-Verfahren im nun
größeren Speicher effizienter abgelegt werden. Der maximal aus-
nutzbare Wert ist SZ=FE0000 und ermöglicht praktisch unbe-
grenzt viele globale Symbole.

Geräte/Filenamen: Es werden die Parameter SI (S–Rekord–Input), CO (Code–
Output) und LO (List–Output) akzeptiert.

Linkerbefehle: Die im folgenden erläuterten Linkeranweisungen können direkt
in die zu linkenden S-Records eingefügt werden. Komfortabler
und übersichtlicher ist aber die Verwendung von Steuerdateien,
die dem Linker als Source-Input anzugeben sind und in denen
die erforderlichen Anweisungen aufgeführt sind.

#WD Pathlist; Vereinbarung eines Working-Directory für folgende INCLUDE-
Anweisungen. Bei folgenden INCLUDE-Anweisungen wird das

164 3.7 Beschreibung der Bedienbefehle

”$“–Zeichen durch den unter Pathlist angegebenen String er-
setzt.

#WDIR Pathlist; Identisch mit #WD.

#INCLUDE filespecifier; Bei der Bearbeitung eines INCLUDE setzt der Linker sei-
ne Arbeit mit der Bearbeitung des angegebenen Files fort und
kehrt nach der Bearbeitung dieses Files an die Stelle hinter der
Anweisung zurück. Der filespecifier muß auf dem aktuellen Sys-
tem ein gültiges File selektieren. Wird nur ein Filename angege-
ben, wird das aktuelle Working-Directory des Users nach diesem
File durchsucht.

Innerhalb der Include-Datei gilt zunächst das beim Aufruf gülti-
ge ”WD“, es kann aber dort auch ein lokales ”WD“ verein-
bart werden, das dann nur in diesem File und eventuell tieferen
Include-Leveln gilt. Nach der Rückkehr aus einem Includefile ist
das beim Aufruf gültige ”WD“ wieder gesetzt.

#INCLUDE $file; Das ”$“-Zeichen wird durch den unter ”WD“ angegebenen
String ersetzt. Sonst wie oben.

MODNAME Name; Bei Verwendung dieser Anweisung erhält das Gesamtmodul
einen vorgeschalteten Modulkopf mit dem angegebenen Namen.
Dieser darf maximal 6 Zeichen lang sein. Fehlt die MODNAME-
Anweisung, erhält das Gesamtmodul den Namen des ersten Mo-
duls, auf das der Linker trifft. Soll das Gesamtmodul einen ande-
ren Namen erhalten, der länger als 6 Zeichen lang ist, kann ein
entsprechendes Modul mit dem PEARL-Compiler erzeugt und
dem Linker als erstes File angeboten werden.

Sinnvoll ist die MODNAME-Anweisung insbesondere dann, wenn
bei der ROM–Code–Erzeugung das Gesamtmodul erneut in den
Speicher geladen werden soll, um z. B. den DUMP-Befehl zu ver-
wenden. Die Verschiebung der Adresse durch den vorgeschalte-
ten Modulkopf wird dann vom Linker automatisch berücksichtigt
(siehe vom Linker ausgegebene Speicherliste).

”Conditional Linkmode On“ für Library Linking. ”Im Conditio-CONDLNK;
nal Linkmode“ wird ein eingegebenes S-Record-File nur dann ins
Ausgabefile gelinkt, wenn in diesem File offene globale Referen-
zen vorher bearbeiteter Files definiert sind (Bibliotheksfunkti-
on), ansonsten wird das Eingabefile ignoriert.

UNCONDLNK; ”Conditional Linkmode Off“.

Einschalten der ROM-Code-Erzeugung. Alle einzugebendenROMCODE;

3.7 Beschreibung der Bedienbefehle 165

(PEARL-) Files müssen mit eingeschalteter ”CODE=“ und ”VAR=“
Option des Compilers übersetzt sein. Der Linker erzeugt als Aus-
gabe einen S–Recordfile, der nur hexadezimale Werte enthält,
zwar ladbar aber nicht ausführbar ist, weil er nur auf den an-
gegebenen ROM– und RAM–Adressen im Zielrechner lauffähig
ist.

Einschalten der ROM-Code-Erzeugung wie oben. An die Ausga-ROMCODE+;
bedatei wird nun jedoch ein zusätzlicher – mit S0 und S9 einge-
rahmter Block – angehängt, der alle nicht versteckten globalen
Symbole exportiert. Damit kann man nachträglich an E-Prom-
residente Programme noch weitere Module anlinken. Siehe dazu
auch das HIDE- und UNHIDE-Kommando.

Durch diese Anweisungen lassen sich die Codeadresse und die Va-CODE= ...
riablenadresse bei der ROM-Code-Erzeugung bliebig vorgeben.VAR= ...
Damit können die bei der PEARL-Compilation gemachten Ver-
einbarungen völlig legal übersteuert werden. Ist das Schlüssel-
wort ROMCODE nicht vorhanden, werden die Eingabefiles vor-
gelinkt, d. h. alle lokalen Label innerhalb der S-Records entfernt
und auf die in der Linker-Speicherliste angegebenen Adressen
verschoben, um dann z. B. erneut gelinkt oder mittels des PROM-
Befehls bearbeitet zu werden.

Durch diese Anweisungen lassen sich die in den folgenden ein-HIDE;
zulesenden S-Rekords definierten globalen Symbole verstecken
bzw. wieder aufdecken. Versteckte globale Symbole werden imUNHIDE;
erzeugten S-Rekord normal benutzt aber nicht global exportiert.
Sie sind in der ggf. ausgegebenen Liste durch ein der hexadezi-
malen Adresse nachgestelltes i (für internal) zu erkennen. Stan-
dardmäßig befindet sich der Linker im UNHIDE-Mode.

DEVICE Name Hex4; Durch dieses Kommando wird eine DATION mit der Be-
zeichnung Name definiert. Damit können die vom Compiler
als Extra-Devices adressierten Geräte des Targetsystemes ein-
gebunden werden. Die vierstellige Hexadezimalzahl Hex4 ist die
Device– und Drive–Nummer (z. B. 0302 für /H0).

Bei der ”WD“- und der INCLUDE-Anweisung kann das vorstehende #–Zeichen
auch weggelassen werden.

Die Steuerdatei (z. B. /H0/LK/LINKES):Beispiele:

166 3.7 Beschreibung der Bedienbefehle

! Mit dem Ausrufezeichen beginnen Kommentare.
WD /H0/REGELUNG/
MODNAME REGLER
INCLUDE $MESSENSR
INCLUDE $PIDSR
INCLUDE $GRAFIKSR
HIDE ! Grafik-package verstecken
INCLUDE /H0/GRAFIK/GRAFDRV
UNHIDE ! Globale Symbole der folgenden Dateien exportieren.
INCLUDE AUSGABSR
INCLUDE ../TESTSR

Durch die Anweisung

LNK SI /H0/LK/LINKES CO /H0/PIDREGSR;

erzeugt der Linker ein Modul mit dem Namen ”REGLER“. Abge-
legt wird es in der Datei ”/H0/PIDREGSR“. Die effektiven Zugriffs-
pfade für die sechs gelinkten Teilmodule ergeben sich in diesem
Fall wie folgt:

/H0/REGELUNG/MESSENSR /H0/REGELUNG/PIDSR
/H0/REGELUNG/GRAFIKSR /H0/GRAFIK/GRAFDRV
/H0/LK/AUSGABSR /H0/TESTSR

3.7 Beschreibung der Bedienbefehle 167

Fatale Fehler, die zum Abbruch führen:

NO SRECORD FILE
das bearbeitete File ist kein S-Record oder Steuerfile.

CHECKSUM ERROR (FATAL)
die Prüfsumme eines S-Records ist falsch.

WRONG LINKER INPUT
es liegt ein gravierender Fehler in dem S-Record vor.

MISSING /S0/S9/DATAREC
die Struktur eines S-Records ist falsch.

ODD NO (FATAL)
globales Symbol mit ungerader Adresse oder Kopf eines Files
steht auf ungerader Adresse.

TABLE ERROR (FATAL)
Fehler bei Organisation der Listen des Linkers (sollte bei S-
Records fehlerfrei übersetzter Sources nicht auftreten).

FILE READ ERROR
Fehler beim Zugriff auf ein File.

HIGHNIBBLE INCONST ERROR
Overflow über einen 3 Byte Wert mit Vorzeichen.

LINKER PASS 1 ERROR TERMINATED
leichter Fehler in Pass 1 (Pass 2 wird nicht gestartet).

NO SKEW IN FILE NO: 0
Linker wurde erst nach vollständiger Abarbeitung von Files in
den romable Mode geschaltet.

SYNTAX ERROR (CONTINUE)
Fehler bei Bearbeitung einer Linkeranweisung, führt zum Ab-
bruch nach Pass 1.

Überbrückbare Fehler sowie Warnungen des Linkers:

WARNING: RTOS - SHELLEXTENSIONS LOST
ein Modul wird überzeigert, das RTOS-Shellextensions enthält,
die später vom System (nur beim Laden in das RAM!) nicht
mehr gefunden werden können. Tritt auf, wenn für ein Shellm-
odul MODNAME verwendet wird oder ein Shellmodul nicht das
erste File der Includeliste ist.

168 3.7 Beschreibung der Bedienbefehle

DOUBLE : ...
eine doppelte Definition eines Symbols wird ignoriert.

UNDEF SYMBOL: ... AT ADRS: ...
bei der ROM-Code-Erzeugung wurde ein Symbol ”requested“,
das nicht definiert ist; der Fehler kann nachträglich nicht vom
Linker korrigiert werden, die Benutzung der erzeugten Codes ist
riskant.

WARNING : RTOS - FILEHEAD MISSED
im erzeugten Output File konnte kein gültiger RTOS-Filehead
gefunden werden; Laden des Files ist riskant.

LINKER PASS 1 OVERFLOW ENTER P2
lokaler Overflow; Linker beschäftigt sich in diesem Linklauf nur
noch mit lokalen Symbolen und bindet die Files nicht.

IGNORING FILE WITH ABSOLUT ADRESSDEFINITIONS
ein Länge-Null File, das absolute Adressdefinitionen enthält,
wird vom Linker im non-romable Mode nicht bearbeitet, um kei-
nen rechnerabhängigen Code zu erzeugen.

WARNING: NO SKEW IN FILE NO: ...
im romable Mode wurde ein File gefunden, das keine Skews ent-
hielt. Skews plaziert der Compiler, um den Versatz zwischen logi-
scher und physikalischer Adresse zu fixieren. Höchstwahrschein-
lich wurde beim Übersetzerlauf das Einschalten der Compiler–-
Option für ROM-Code vergessen.

LINKER COMMAND ERROR
Die MODNAME-Anweisung wurde im ROM-Code-Mode verwen-
det, obwohl die Adressverwaltung nicht vom Linker durchgeführt
werden soll.

3.7 Beschreibung der Bedienbefehle 169

Load and Link Programm L O A D

LOADSYNTAX:
LOAD.sonprocname [PRIO integer3] [loadspeclist]
LOAD [PRIO integer3] [loadspeclist]

Beschreibung: Es wird ein Sohnprozeß generiert, dessen Name entweder durch
sonprocname vorgegeben wird oder mit Namen LOAD/xx vom
System gewählt werden soll. In beiden Fällen kann die Priorität
dieser Lader–Task durch eine max. 3–stellige Ganzzahl vorgege-
ben werden. Bei nicht angegebener Priorität wird ein Wert von
20 eingesetzt.

Fehlt der Zusatz loadspeclist, so wird ein Ladevorgang vom
Standard–Ladefile des Systems und des Nutzers eingeleitet. Es
wird auf den von unten nach oben gesuchten ersten freien pas-
senden Speicherbereich geladen.

Bleiben noch globale Symbole offen, so durchsucht der Lader
den Scan–Bereich des Systems nach 17er–Scheiben, um Referen-
zen ggf. von dort zu befriedigen. Sind dann immer noch globa-
le Bezüge offen, wird der Lader mit einer entsprechenden Mel-
dung suspendiert. Soll vorher auch das RAM noch nach 17–er–
Scheiben durchsucht werden, so ist der LOADX-Befehl (Seite 173)
zu verwenden.

Der Ladevorgang kann durch die Angabe der loadspeclist para-
metriert bzw. als bindendes Laden formuliert werden.

loadspeclist ist eine Liste von Geräte/File–Namen und Adreß–
oder Größenangaben. Die Elemente dieser Liste werden durch
Leerzeichen oder Kommata getrennt.

Adreßangabe: AD hexnum8 oder AD=hexnum8

Dabei steht hexnum8 für die maximal 8–stellige Hexadezimal-
zahl, bei der der Lade/Bindevorgang beginnen soll. Erst der hier
generierte Lader prüft später, ob der Adreßbereich überhaupt
zum Laden verfügbar ist. Diese Adreßangabe ist außer für Test-
zwecke (glatte Adresse) aus der Sicht von RTOS–UH ein un-
erwünschter Eingriff.

Programmgröße: SZ hexnum6 oder SZ=hexnum6

Mit hexnum6 wird die Größe des ersten zu ladenden Modules
vorgegeben und damit die Größenangabe — falls vorhanden —

170 3.7 Beschreibung der Bedienbefehle

im Ladereingabetext übersteuert. Dies darf natürlich nur so ge-
schehen, daß der SZ–Wert größer als die tatsächliche Modulgröße
ist.

Geräte/Filenamen: Es werden die Parameter SI (S–Rekord–Input), SC (Source
after Continuation), LO (List–Output) und CO (Code Output)
akzeptiert.

Wenn LO nicht angegeben wird, so werden nur fehlende Glo-LO
balsymbole auf dem Defaultgerät aufgelistet. LO /ED/LABEL
z. B. bewirkt, daß beim Ladeschluß die Zuordnungstabelle Sym-
bol/Adresse in die Edit–Datei LABEL geschrieben wird. Dieser
forcierte List-Output enthält auch jene Symbole, die der Lader
aus dem eigenen System-Eprom (bzw. dem in das RAM geboo-
teten Gesamtsystem) als 17er–Scheiben gefunden hat.

Mit Hilfe des Parameters SI kann eine Liste von ModulquellenSI
angegeben werden. Die einzelnen Quellen werden durch das Zei-
chen + getrennt. Soweit Querbezüge durch globale Symbole zwi-
schen den einzelnen Modulen existieren, werden sie vom Lader
durch einen integrierten Bindevorgang realisiert.

LOAD SI=/ED/LIB1+/ED/LIB2 (SI= kann entfallen)

Der Parameter SC (Source after Continuation) dient zur AngabeSC
einer ggf. benutzten ”Reservedatei“, die der Lader immer wieder
als Quelle zur Fortsetzung des Bindevorgangs anläuft, solange
noch unbefriedigte Globalreferenzen existieren. Nach der Mel-
dung ”xyz suspended loader input“ wird die Auffüllung die-
ser Datei bzw. der Defaultdatei /ED/LB bei fehlendem SC erwar-
tet und anschließend ein CONTINUE–Kommando für den Lader–
Sohnprozeß. Will man die Referenzen nicht nachreichen, weil
man absolut sicher ist, daß sie nicht benutzt werden, so sollte
aus Platzgründen der Lader–Sohnprozeß mit UNLOAD eliminiert
werden.

LOAD.X PRIO 5 AD 6000 SZ 2000 /B2+/B2+/F0/QUELLE

Name des Sohnprozesses ist X, Priorität des Ladevorgangs ist 5.
Das erste von Port 2 kommende Modul wird ab Adresse 6000 ge-
laden und auf die Größe von 2000 vergrößert. An dieses Modul
wird das nächste von Port 2 stammende Modul angebunden. Die
Ablageadresse dieses Moduls ist nicht bekannt. Das gleiche gilt
für das dritte von Floppy–Laufwerk 0, File QUELLE stammende
Modul, welches ebenfalls hinsichtlich der globalen Symbole an-
gebunden wird.

3.7 Beschreibung der Bedienbefehle 171

LOAD SZ 5000 /F1/TEST LO /A1 SC /B2

Der File TEST von Floppy Laufwerk 1 wird geladen und die Li-
ste der globalen Symbole samt Adressen über Port 1 ausgege-
ben. Der Lader hat den Namen LOAD/xx und läuft mit Priorität
20. Unbefriedigte Globalreferenzen können, falls vorhanden, über
das Port 2 ergänzt werden.

Mit Hilfe eines optionalen CO-Parameters kann der Lader einenCO
S-Rekord-File ausgeben, der als sogenanntes ”Null-size-Modul“
linkbare Adressinformation aller beim Laden abgelegten globa-
len Symbole enthält. Symbole aus den eigenen 17-er–Scheiben
werden jedoch nicht in den CO-File geschrieben. Der so erzeug-! →
te File kann zusammen mit dem LIBSET-Befehl eine enorme
Verkürzung der Turnaround-Zeit bei Multi-Modul-Bearbeitung
bewirken. Näheres siehe LIBSET auf Seite 160.

LOAD SI=PR1+PR2+PR3 CO=lkfile123

legt ein Null-size-Modul mit Filenamen lkfile123 unter dem ak-
tuellen Working-Directory an. Das könnte ein Unterprogramm-
paket sein, daß man in Zukunft öfter benutzten möchte, ohne
daß jedes Mal der Programmcode geladen werden muß.

Fehlermeldungen: Beim Laden von Dateien, die durch den PEARL–Compiler
erzeugt wurden, können bei fehlenden Programmmarken oder
anderen Fehlern unbefriedigte Vorwärtsbezüge zurückbleiben,
die von der Ladertask moniert werden. Daher dürfen nur als
fehlerfrei vom Compiler ausgewiesene Module geladen werden!
Doppelt definierte Globalsymbole werden während des Ladevor-
ganges aufgelistet.

Zeichen, mit denen der Lader nichts anfangen kann, führen zum
Abbruch des Ladevorgangs mit der Meldung ”wrong loader
input“.

Werden mehrere Module gleichzeitig geladen, muß die Shell
bei relativen Pfadnamen das Working-Directory voranstellen.
Reicht der Expansionspuffer der (implementationsabhängigen)
Shell nicht aus, erfolgt die Fehlermeldung capacity overflow.
Der Lader läuft in diesem Fall gar nicht erst an.

Ist der Abstand zwischen Aufruf einer PC-relativen Adresse und
ihrer Definition weiter als 32 KByte entfernt (z.B. bei der Ver-
wendung des CASE/ALT/FIN Konstruktes), kommt es trotz feh-
lerfreier Übersetzung beim Laden zur Fehlermeldung module

172 3.7 Beschreibung der Bedienbefehle

overflow label.

Die Anzahl vorgebbarer Modulquellen ist nur durch die Puffer-Hinweise:
grenze der aufrufenden Shell und nicht durch den Lader selbst
begrenzt.

Mit dem PEARL–Einphasencompiler ohne S= ... erzeugte Da-
teien enthalten in ihrem Kopf nicht die Programmgröße des Mo-
dules, sondern einen Pauschalwert (2000). Bei Programmen, in
denen nur ein PEARL–codiertes Modul vorkommt, sollte dieses
als erstes geladen werden und die tatsächliche Programmgröße
(s. Compilerbilanz) durch SZ vorbesetzt werden.

Es kann eine nahezu unbegrenzte Zahl solcher LOAD–Komman-
dos abgesetzt werden, die im Multitasking parallel bearbeitet
werden. Dabei dürfen diese Ladevorgänge keine gemeinsamen
Quellfiles benutzen, da sonst die Eingabedatei entweder zerfled-
dert gelesen wird oder es aber wegen des exklusiven Lesens nur
zum Überleben des ersten Ladeprozesses reicht.

Der von einem solchen Ladeprozeß gerade bearbeitete Speicher-
bereich wird während des Ladevorganges als Speichersektion
vom Typ PWSP in der Verwaltung von RTOS–UH geführt. Wird
der Laderprozeß terminiert (und zweckmäßigerweise auch mit
UNLOAD entfernt), so verschwindet auch das zuletzt angefangene
Modul aus der Verwaltung.

Werden dem Lader mehrere (S0–S9) S–Record–Blöcke in einerLinker:
Datei angeboten, so werden diese beim Laden ebenso gelinkt, als
wenn sie aus mehreren Dateien stammen würden, die mit + ver-
bunden wurden. Damit ist es möglich, bei größeren Projekten
die S-Records aller schon getesteten Module in einer Datei zu
vereinigen und nur noch die neuen S-Records aus einer eigenen
Datei zu laden. Allerdings ist hier zu prüfen, ob nicht das Vor-
linken mit Hilfe des Linkerbefehles LNK günstiger ist. Lesen Sie
dazu bitte auf den Seiten 163–168 nach.

3.7 Beschreibung der Bedienbefehle 173

Load extended L O A D X

LOADXSYNTAX:
LOADX.sonprocname [PRIO integer3] [loadspeclist]
LOADX [PRIO integer3] [loadspeclist]

Beschreibung: Es wird ein Sohnprozeß generiert, dessen Name entweder durch
sonprocname vorgegeben wird oder mit Namen LOADX/xx vom
System gewählt werden soll. In beiden Fällen kann die Priorität
dieser Lader–Task durch eine max. 3–stellige Ganzzahl vorgege-
ben werden. Bei nicht angegebener Priorität wird ein Wert von
20 eingesetzt.

Der Befehl ist funktionell völlig identisch zum normalen LOAD,
der ab Seite 169 genau beschrieben ist. Der einzige Unterschied
besteht darin, daß bei unbefriedigten Bezügen auf globale Objek-
te noch in allen geladenen Modulen nach 17er Scheiben gesucht
wird. Erst wenn auch das fehlschlägt, folgt die Selbstsuspendie-
rung. Die 17er Scheiben kann ein Assemblerprogrammierer ge-
neriert haben, oder aber der PEARL-Compiler hat sie mit der
/*+G */-Option innerhalb einer Prozedurdefinition erzeugt.

Sinn dieser erweiterten Ladeanweisung ist es, daß man sich ähn-
lich wie beim LIBSET-Befehl (Seite 160) eine private Unterpro-
grammbibliothek im RAM halten kann. Andererseits ist die Su-
che je nach Systemladezustand eventuell zeitaufwendig; aus die-
sem Grund, ist die Operation nicht als Standardoperation im
normalen LOAD enthalten.

Man beachte, daß bei der Benutzung des CO-Parameters keine
Einträge für globale Symbole aus den 17er Scheiben in die er-
zeugten S-Records geschrieben werden.

174 3.7 Beschreibung der Bedienbefehle

L U List User Task

LUSYNTAX:

Beschreibung: Die Anweisung wirkt wie das L–Kommando, jedoch werden die
beim Kaltstart des Systems bereits vorhandenen Systemtasks
nicht mit aufgelistet. Es werden alle im System befindlichen
User–Tasks gelistet, ohne Berücksichtigung der User-Nummer.
Das Kommando ist eine Kurzform für L -U, näheres ab Seite
153.

LUBeispiel:

3.7 Beschreibung der Bedienbefehle 175

Make Directory M K D I R

MKDIR pathlist–listSYNTAX:

Beschreibung: Der Befehl MKDIR erlaubt die Einrichtung von Subdirectories und
ermöglicht damit eine hierarchische Dateiverwaltung. Mit dem
Befehl RMDIR lassen sich vereinbarte Directories wieder löschen.

pathlist–list: Es sind alle Geräte erlaubt, bei denen das entsprechende Bit für
MKDIR im Device–Wort gesetzt ist (siehe SD–Befehl). Die ein-
zelnen Elemente der Liste werden durch Kommata oder Zwi-
schenräume getrennt.

1 bis 7 Buchstaben oder Ziffern pro Pfadelement sind erlaubtpathlist:
(unter MS-Verwaltung bis zu 8). Es gilt die übliche Syntax der
Pathlist: die Pfadelemente sind durch ”/“ zu trennen. Wird mit
der MS–DOS kompatiblen Dateiverwaltung gearbeitet, so kann
ein Element der Pathlist aus max. 8 Buchstaben oder Ziffern,
gefolgt von einem Punkt und weiteren 3 Zeichen bestehen.

MKDIR /F0/USER1Beispiele:

Auf der Diskette in Laufwerk /F0/ wird das Subdirectory USER1
angelegt. Dort können jetzt Dateien abgelegt werden, z. B. mit

COPY /ED/SI>/F0/USER1/DATEI1

MKDIR /F0/USER1/DATEN1

In dem Subdirectory USER1 wird ein weiteres Subdirectory
DATEN1 angelegt.

MKDIR /F0/PROG.PRL

Auf der Diskette im Laufwerk 0 wird das Subdirectory PROG.PRL
angelegt.

Mit DIR /F0/ bekommt man jetzt alle Dateien und Direc-Hinweise:
tories der Root–Ebene. Ein Directory ist am nachgestellten
Schrägstrich zu erkennen. Mit DIR /F0/USER1 erhält man die
Dateien und weiteren Subdirectories des Directorys USER1.

176 3.7 Beschreibung der Bedienbefehle

M S F I L E S DOS–filesystem definition

MSFILES device, device, ...SYNTAX:

Beschreibung: Das mit device bezeichnete Gerät — typischerweise eine Flop-
py oder ein Plattenspeicher — wird unter die Verwaltung des
MS–DOS-Filemanagers gestellt. Wurde z. B. bisher die Floppy
/F0/ als RTOS–UH–Diskette behandelt, so wird nach Abset-
zen des Befehles MSFILES /F0/ jetzt eine MS–DOS–Diskette im
Laufwerk F0 erwartet.

Eine Atari– oder MS–DOS–Diskette mit File PA.TXT soll aufBeispiel:
eine RTOS–UH–Diskette kopiert werden, ungeachtet der evtl.
späteren Nachbehandlung wegen anderer Sonderzeichen und Zei-
lenendekennung. Hinterher wird nur noch mit RTOS–UH–
Disketten gearbeitet.

MSFILES /F1 | unter MS–DOS–Verw.

RTOSFILES /F0 | unter RTOS–UH–Verw.

CP /F1/PA.TXT>/F0/PAPER | Kopiere

RTOSFILES /F1 | Wieder RTOS–UH–Verw.

Ob Ihr Filesystem nach dem Einschalten unter der RTOS–UH-Hinweise:
oder unter der MS–DOS-Verwaltung anläuft, hängt von Ihrer
Implementierung ab. Mit den neueren Filemanagern ist das nor-
malerweise nicht mehr wichtig, weil sie automatisch den jeweils
anderen auf den Plan rufen, wenn sie beim Zugriff auf das Me-
dium erkennen, daß das Medium unter der anderen Verwaltung
angelegt ist. Soll das Medium neu formatiert werden, so muß lo-
gischerweise die gewünschte Verwaltung explizit eingestellt wer-
den.

Wenn noch Files auf dem Gerät geöffnet sind, so wird der Be-
fehl nach Meldung ”... directory active ...“ zurückgewie-
sen. Man kann aber das ”Vergessen“ des nicht mehr benötigten
Filesystems genau wie beim CF (Change Floppy)–Befehl erzwin-
gen. Dies erfolgt durch eine spezielle Pseudo–pathlist:

SYNC /F0/ (siehe SYNC, zum Retten)

MSFILES /F0/FORGET (Vergiß alte Floppy)

Welches Filesystem auf der Floppy gerade gültig ist, kann man
jederzeit über den Befehl FILES (z. B. FILES /F0/) erfragen,

3.7 Beschreibung der Bedienbefehle 177

da bei dessen Ausgabe die Verwaltungsstruktur mit erscheint —
auch dann wenn kein File geöffnet ist.

Wenn nicht für alle Laufwerke einer Warteschlange der gleiche
Filemanager zuständig ist (wie im Bsp. oben), legt die Betreu-
ungstask im Speicher eine Transfertabelle für die Zuordnung
Laufwerk<->Filemanager an, die über das S-Kommando sicht-
bar ist, auch wenn kein File offen ist. Die Tabelle verschwindet
wieder, sobald der zuständige Filemanager eine Verbindung her-
stellt und danach alle Verbindungen auf ihn selbst zeigen. Im
obigen Bsp. ist der Block hinterher noch existent, weil das letz-
te RTOSFILES vom MS–DOS–Filemanager ausgeführt wird. Mit
RTOSFILES /F1,/F1 als letztem Befehl i. o. Bsp. spart man folg-
lich einige Bytes Speicher ein.

Neuere Treiber erledigen die Anpassung an das zuständige For-Hinweis:
mat automatisch. Die Anweisung ist dennoch nötig, wenn eine
Diskette neu formatiert werden soll! Beim FORM-Befehl würde
sonst die zufällig letzte benutzte Diskettenverwaltungsform auf
der neuen Diskette eingerichtet.

178 3.7 Beschreibung der Bedienbefehle

N O T R A C E No Tracing for specified Task

NOTRACE taskname,taskname ...SYNTAX:

Beschreibung: Die angegebene Task wird aus dem Trace–Mode entlassen (siehe
TRACE). Dabei wird die Breakpointadresse gelöscht.

Befand sich die angegebene Task nicht im Trace–Mode, so ist die
Anweisung ohne Wirkung.

Wie bei der TRACE–Anweisung wird der aktuelle Laufzustand der
Task durch diese Anweisung nicht geändert.

NOTRACE TEST XYZBeispiele:

NOTRACE INIT

3.7 Beschreibung der Bedienbefehle 179

Output–device specification O

O pathlistSYNTAX:

Beschreibung: Die Ausgabe der Shell wird auf das angegebene Gerät bzw. in den
angegebenen File umgeleitet. Die momentan gültige lokale Kopie
von ”Stdout“ wird verändert. Alle Ausgaben des ausführenden
Shellprozesses, (außer Fehlermeldungen), die durch die folgen-
den Kommandos dieser Zeile veranlaßt werden, erfolgen auf dem
angegebenen Gerät bzw. in den File.

Es werden alle der Shell Ihres RTOS–UH bekannten Devicespathlist:
akzeptiert, z. B. /A1/, /A2/, /ED/dir usw. Als Trennsymbol zum
nachfolgenden Kommando sind ein Semikolon und ein Leerzei-
chen erlaubt.

O /A2/;L;SBeispiele:

Es werden die Taskliste und die Speicherbelegung über den Port
2 ausgegeben.

O /ED/TEST DIR /F0/;O /F1/X S

Directory von Laufwerk /F0/ in die Datei /ED/TEST schreiben,
danach Speicherbelegung auf Floppyfile /F1/X.

180 3.7 Beschreibung der Bedienbefehle

P / P E A R L Compile PEARL–Programm

PEARL oder PSYNTAX:
PEARL.sonprocname [PRIO integer3] [parameterlist]
PEARL [PRIO integer3] [parameterlist]

Beschreibung: Es wird ein unabhängiger Sohnprozeß generiert, dessen Name
entweder durch sonprocname vorgegeben oder vom System mit
P/xx bestimmt wird. xx ist eine zweistellige Hexzahl mit automa-
tischer Weiterschaltung. Ebenso kann mit dem Kommando die
Priorität der Bearbeitung durch eine 3–stellige Ganzzahl festge-
legt werden. Fehlt die PRIO–Angabe, wird ein Standardwert von
20 eingesetzt. Fehlt die parameterlist, so wird ein Übersetzungs-
lauf gestartet, der von dem Standard–Inputfile des Nutzers liest
und auf dem entsprechenden Outputfile die S-Records ablegt.
Ein Listing wird auf das entsprechende Terminal ausgegeben.

parameterlist: ist eine Liste von Geräte/Filenamen und einer Größenangabe.
Die Elemente der Liste werden durch Leerzeichen oder Kommata
getrennt.

Arbeitsspeicher: SZ hexnum6 oder SZ=hexnum6

Mit hexnum6 kann der dynamische Arbeitsspeicher des Compi-
lers bestimmt werden. Der Mindestwert beträgt 500, vom System
wird ein Wert von 2800 (entspricht ca. 10 KByte) eingesetzt.
Maximal ist ein Wert von 10100 sinnvoll. Die gewählte Spei-
chergröße beeinflußt die Übersetzungsgeschwindigkeit praktisch
nicht. Faustregel für sehr lange PEARL–Programme (mehr als
4000 Zeilen):

SZ=(Max. Zahl lebender P-Symbole)*14 + 2000

Geräte/File: Es werden die Parameter SI (Source Input), LO (List Output)
und CO (Code Output) ausgewertet. Für fehlende Angaben wer-
den die Default–Werte des Systems und Nutzers eingesetzt. Bei
CO und LO ist zum Abschalten auch der Gerätebezeichner
NO bzw. /NO zulässig. Für LO kann nebeneinander ein ech-
ter Geräte/File- Bezeichner und LO=NO angegeben sein: der
Compiler wird dann die Kopfzeile, Fehlermeldungen, eventuelle
lokale Teillistings und die Schlußbilanz zum angegebenen Gerät
bzw. File senden. Zwischen den Parametern und den zugewie-
senen Objekten setzt man typischerweise einen Zwischenraum.
Auch das Zeichen ”=“ ist möglich, dann ist allerdings kein Zwi-
schenraum vor und hinter dem ”=“ mehr zulässig.

3.7 Beschreibung der Bedienbefehle 181

PEARL.X PRIO 40 SZ 5000 /F0/TEST>/F1/BCOD LO /A1/Beispiele:

Das Programm auf Floppylaufwerk 0 in der Datei TEST wird
übersetzt. Der Code wird in die Datei BCOD auf Floppylaufwerk
1 geschrieben. Das Übersetzungsprotokoll wird über die Schnitt-
stelle /A1/ ausgegeben. Name des Sohnprozesses ist X.

P

Mit den Defaultwerten für SI (/ED/SI für USER1), LO (/A1/ für
USER1) und CO (/ED/SR für USER1) wird ein Compiler (Name des
Sohnprozesses P/xx) gestartet.

P.PEARL /A2/>NO LO /ED/ERROR LO NO

Der Quelltext wird über Port /A2/ erwartet, es wird kein Code
erzeugt und die Ausgabe fehlerhafter Zeilen erfolgt in die Datei
/ED/ERROR. Name des Sohnprozesses ist PEARL.

Der Compilercode ist wiedereintrittsfest, so daß beliebig vieleHinweise:
— sofern Platz für den dynamischen Speicher ist — verschiede-
ne Übersetzungsvorgänge gleichzeitig im Multitasking ablaufen
können.

Fehlermeldungen, weitere Eigenschaften und Steuermöglichkei-
ten des PEARL–Compilers sind ab Seite 277 ausführlich be-
schrieben.

182 3.7 Beschreibung der Bedienbefehle

P E R Permanent Error Redirect

PER pathlistSYNTAX:

Beschreibung: Als Standard-Error Datenstation (Stderr) der primären Shell,
unter dessen Nutzer dieser Befehl zur Ausführung kommt, wird
fortan die durch pathlist bezeichnete Datensenke verwendet. Die
Wirksamkeit erfaßt nicht die Kommandos im Rest der Komman-
dozeile. Der Befehl ist im Gegensatz zum ”ER“-Befehl mit ge-
wissen Risiken verbunden: die Fehler der nächsten Befehlszeilen
schreibt die Shell in die neue Datenstation – wenn es geht. Kann
in die Station nicht geschrieben werden, entstehen neue Fehler-
meldungen, die wiederum nicht geschrieben werden können etc.

PER /H0/NIL;Beispiel:

Nach dieser Zeile bleiben einem fortan alle Fehlermeldungen er-
spart! Zu empfehlen ist das natürlich nicht.

Man beachte, daß die Shell vor dem Hineinschreiben in die Da-
tenstation ”Stderr“ den File nicht öffnet, das macht der Handler
der Datenstation notfalls automatisch. Auch wird der File am
Ende nicht geschlossen. Auf diese Weise ist das akkumulierende
Sammeln von Fehlermeldungen in einem File möglich, man muß
allerdings dafür Sorge tragen, daß der File irgendwann geschlos-
sen wird oder häufig genug SYNC-Befehle einstreuen.

Eine wichtige Bedeutung hat der PER-Befehl bei unbedienten Sy-! →
stemen: eine besondere Task kann sich um Unregelmäßigkeiten
im System kümmern, diese ggf. auch archivieren. Die Task kann
dabei am Ende einer Pipe (Station /VI bzw. /VO) sprungbereit
alle Fehlertexte entgegennehmen.

Im Gegensatz zum ER-Befehl werden hier alle Fehlermeldungen,
die dem Nutzer zugeordnet sind, umgelenkt. Auch die Ausgabe
von Laufzeitfehlern irgendwelcher Tasks des Nutzers erfolgt auf
das vereinbarte Gerät. Wird der Befehl von der Console gegeben
(User No.1), so werden auch Irregularitäten bei Interrupts etc.,
die keinem Nutzer zugeordnet sind, umgelenkt.

3.7 Beschreibung der Bedienbefehle 183

Permanent Input–device specification P I

PI pathlistSYNTAX:

Beschreibung: Als Standard-Input (Stdin) der Shell, die diesen Befehl ausführt,
wird fortan die durch pathlist bezeichnete Datenquelle verwen-
det. Die neue Vereinbarung gilt ab der nächsten Kommandozeile.

Warnung:

Der Befehl ist im Gegensatz zum ”I“-Befehl sehr
riskant: man kann damit die primäre Shell seines Ar-
beitsplatzes irreparabel unbrauchbar machen! Wird
der Input auf eine Station wegdirigiert, die man nicht
unter Kontrolle hat, so hilft auch kein Systemabort
aus der Klemme!

PI /WINA0/SHELL1;Beispiel:

Der Befehl ist für solche Systeme gedacht, bei denen eine primäre
Shell in ein Fenster umgelegt wird, oder bei denen im Hochlauf
dynamisch Nutzerarbeitsplätze (primäre Shells) entstehen. ”PI“
sendet zusätzlich einen speziellen I/O-Befehl ab, der auch den

”Ruf“ der Shell mit Ctrl A auf das neue Eingabegerät legt. (Nur
die in der Praxis in Frage kommenden I/O-Dämonen verstehen
diesen Befehl!).

184 3.7 Beschreibung der Bedienbefehle

P O Permanent Output Redirect

PO pathlistSYNTAX:

Beschreibung: Als Standard-Output Datenstation (Stdout) der primären Shell,
unter dessen Nutzer der Befehl zur Ausführung kommt, wird
fortan die durch pathlist bezeichnete Datensenke verwendet. Die
Wirksamkeit erfaßt jedoch nicht die Kommandos im Rest der
Kommandozeile. Der Befehl ist im Gegensatz zum ”O“-Befehl
mit gewissen Risiken verbunden: die Ausgabetexte der Bedien-
befehle aus den nächsten Befehlszeilen schreibt die Shell in die
neue Datenstation – wenn es geht. Kann in die Station nicht
geschrieben werden, entstehen Fehlermeldungen auf dem Error-
Kanal.

PO /NIL;Beispiel:

Nach dieser Zeile bleiben einem fortan alle regulären Textaus-
gaben der Shell erspart. Sinn macht das PO-Kommando nur in
Ausnahmefällen, etwa bei der Einrichtung eines Nutzerarbeits-
platzes in einem Fenster. Im allgemeinen ist man mit dem O-
Befehl besser bedient.

Man beachte, daß die Shell vor dem Hineinschreiben in die Da-
tenstation ”Stdout“ den File nicht öffnet, das macht der Handler
der Datenstation notfalls automatisch. Auch wird der File am
Ende nicht geschlossen. Auf diese Weise ist das akkumulierende
Sammeln von Ausgabetext in einem File möglich, man muß al-
lerdings dafür Sorge tragen, daß der File irgendwann geschlossen
wird oder häufig genug SYNC-Befehle einstreuen.

3.7 Beschreibung der Bedienbefehle 185

Prevent activation of Task P R E V E N T

PREVENT taskname-listSYNTAX:

Beschreibung: Alle Einplanungen auf Zeitpunkte oder Interrupts der einzel-
nen Tasks werden sofort gelöscht. Außerdem werden eventuell
bereits im Aktivierungspuffer stehende Neuaktivierungen durch
Ausräumen des Puffers verhindert. Die Tasknamen können durch
Kommata oder durch leere Zwischenräume getrennt werden.

PREVENT ABCD,TTBeispiele:

PREVENT init

prevent overflowtask reglerprozess

Trotz gelöschter Zeitplanung bleibt die Aufmerksamkeit der Pla-Hinweis:
nungsuhr für den in Aussicht genommenen Zeitpunkt erhalten.
Bei CLOCK wird also unter NEXT SCHED eventuell der Termin noch
aufgeführt, bleibt aber wirkungslos.

186 3.7 Beschreibung der Bedienbefehle

P R O M Prepare for Read Only Memory

PROM nameSYNTAX:
PROM name*

Beschreibung: Wenn kein Linker (siehe Seiten 163 ff.) zur Verfügung steht oder
aus irgendwelchen Gründen nicht eingesetzt werden soll, kann
mit Hilfe des PROM-Befehles alternativ auch durch die Shell ein S-
Rekord-Paket für ROM-residente Anwenderprogramme erzeugt
werden.

Aus in den RAM–Bereich geladenen Programmelementen (Mo-
dul oder Task) werden Scheibendaten für das RTOS–UH–
Autolink, die Systemkonfigurierung in der Kaltstartphase, er-
zeugt. Diese Scheibendaten werden als S-Records auf das Aus-
gabemedium der aufrufenden Shell (”Stdout“) ausgegeben; für
jeden zu ”prommenden“ Speicherbereich werden ein ”S0-Record“
(enthält Längenangabe), mehrere ”S2-Records“ und ein ”S9-
Record“ erzeugt. ”S2-Records“ werden von RTOS–UH stets
relativiert, d. h. die Adreßangabe im ”S2-Record“ zählt stets
relativ zur Ladeadresse. Mit den S-Rekords kann ein EPROM–
Gerät (etwa MODIPROG) direkt angesteuert werden, um die
Scheibe(n) im Scanbereich im ROM abzulegen (s. Seite 625:
Scanbereich ändern, oder Seite 637 neue Tabelle anschließen).

Beim Einsatz des PROM–Befehls sind zwei Einsatzfälle zu unter
scheiden:

1. Prommen normal compilierter und geladener PEARL–
oder Assembler–Programme. name kann ein Modul– oder
ein Taskname sein. Folgt einem Modulnamen ein Stern
* (keine Wildcard), so werden alle auf dieses Modul im
Speicher unmittelbar folgenden Tasks neben dem Modul
ebenfalls bearbeitet. Es werden Scheibendaten für 13–er
Scheiben erzeugt, d. h. es wird ein Speicherbereich quasi
als Dump im EPROM abgelegt. Beim Erzeugen des Schei-
bentextes werden Nulldatenblöcke durch die im 13–Code
vorgesehenen Datablöcke weggekürzt. Es empfiehlt sich da-
her unbedingt, nicht benötigte Initialdaten von Modulva-
riablen vor dem Absetzen des Befehles zu ”Nullen“, etwa
durch eine Hilfstask, die man vorher laufen läßt. Nach Ein-
bau der so erzeugten Scheibe generiert RTOS–UH beim
Kaltstart die entsprechenden Module bzw. Tasks an ge-
nau die gleichen Adressen, die die Objekte im Moment des

3.7 Beschreibung der Bedienbefehle 187

PROM–Befehles hatten. Es muß vom Anwender dafür ge-
sorgt werden, daß RAM–Plätze nicht doppelt belegt wer-
den! (RTOS–UH richtet dann den Block, der später vom
Scanner erfaßt wird, einfach nicht ein). Sollen Tasks beim
Warmstart automatisch loslaufen, so benutzen Sie vor dem
PROM–Befehl den Befehl AUTOSTART modulname,taskname.

2. Prommen von mit der CODE=$...,VAR=$...–Option er-
zeugten PEARL–Programmen. name kann nur ein Mo-
dulname sein; name* wird impliziert und muß nicht an-
gegeben werden. Nach dem Laden des kompilierten Pro-
grammes erscheint das Modul incl. aller eingeschlossenen
Tasks als Speicherblock mit der Kennung PMDL beim S–
Kommando. Es können keine Tasks aus dem Modul ge-
startet werden. Der PROM–Befehl erzeugt nun nur für den
Bereich der Modulvariablen eine 13–er Scheibe, die beim
Kaltstart des Systems den Modulvariablenblock auf der
mit VAR=$... angegebenen Adresse einrichtet. Nullda-
tenblöcke werden, wie im Fall 1, weggekürzt; daher sollte
das Programm mit einer Size–Angabe über die SC=–Option
(Size and Clear) übersetzt werden (spart EPROM–Platz).
Tasks werden in eine 1–er Scheibe umgesetzt, Prozeduren
ohne Scheibenkennung abgelegt. Es werden zwei S0-. . . S9-
Record–Blöcke erzeugt; der erste Block umfaßt die 13–er
Modulvariablenscheibe und kann auf beliebiger EPROM–
Adresse abgelegt werden, der zweite Block umfaßt den
Code–Bereich und muß im EPROM genau beginnend mit
der in der CODE=$...–Option angegebenen Adresse abge-
legt werden. Hierzu kann es ggf. sinnvoll sein, die Ausgabe
des PROM–Befehls zunächst in einen ED–File zu lenken, um
beide Blöcke mit Hilfe von Editor und COPY zu trennen.
Damit wird die Eingabe des Adreß–Offset beim EPROM-
mer erleichtert. Bei Systemen, die das Betriebssystem aus
dem RAM exekutieren, muß bei der CODE=$... –Option
die spätere tatsächliche Laufzeit–Adresse angegeben wer-
den. Dies betrifft alle Platten-Boot–Systeme und solche,
die beim Anlauf das EPROM in das RAM umkopieren
(wie es viele der 68020/30/40/60- und PowerPC- Systeme
tun). Für EPROM– und RAM–Layout orientiert man sich
an den Adreß– und Längenangaben der Compiler–Bilanz.
Sollen Tasks beim Warmstart automatisch loslaufen, so
benutzen Sie auch hier vor dem PROM–Befehl den Befehl
AUTOSTART modulname, taskname.

188 3.7 Beschreibung der Bedienbefehle

Die Operation erfolgt auf Ebene des Shellprozesses (!), ggf. sollte
mit O /ED/xyz der S-Recordtext daher aus Zeitgründen zunächst
in eine ED–Datei geschrieben werden. Drücken Sie in der Zeit
nicht die ”BREAK“–Taste, die Operation würde sonst abgebro-
chen! Sauberer ist es, einen sekundären Shellprozeß, z. B. mit
Hilfe von ”DEFINE“ mit der Aufgabe zu betrauen, insbesondere
wenn im Hintergrund noch andere Echtzeitaktivitäten ungestört
bleiben sollen.

O /A2/;PROM Lager*;O /A1/;CLOCKBeispiele:

Modul Lager und folgende Tasks an das Programmiergerät an
/A2/ senden, Uhrzeit erscheint wenn fertig.

DEFINE.xy PRIO 100--O /ED/Buffer--prom Maus1--UNLOAD xy

Ein sekundärer Shellprozeß (Name:xy) übernimmt die Aufga-
be und vernichtet sich anschließend selbst. Die Aktion läuft auf
niedriger Priorität ab: Modul Maus1 prommen, S-Records in ED–
File schreiben (für Fall 2, so lassen sich die Blöcke für Modulva-
riablen und Tasks einfacher trennen).

3.7 Beschreibung der Bedienbefehle 189

Print Working Directory P W D

PWDSYNTAX:

Beschreibung: Das mit dem Befehl CD vereinbarte Working-Directory kann mit
dem Befehl PWD (”Print Working Directory“) angezeigt werden.
Weiterhin werden die z. Z. gültigen Execution-Directories mit
ausgegeben.

PWD wenn die Shell darauf mitBeispiele:

WD=/-
XD=/-

antwortet, sind weder Working- noch Execution-Directory ver-
einbart.

PWD wenn die Shell darauf mit

WD=/ED/-
XD=/F0/cmmd

antwortet, ist das Working-Directory /ED/ und das Executing-
Directory /F0/cmmd vereinbart.

PWD wenn die Shell darauf mit

WD=/H0/TEX/DOCUS
XD=/H0/XD
+ /H1/XD2

antwortet, ist auf der Festplatte /H0 das Working-Directory
TEX/DOCUS vereinbart. Transiente Befehle und Skripte sucht die
Shell zunächst unter /H0/XD/... . Bei Mißerfolg wird anschlie-
ßend noch unter /H1/XD2/... gesucht.

190 3.7 Beschreibung der Bedienbefehle

Q A S Quick Assembling (optional)

QAS oderSYNTAX:
QAS.sonprocname [PRIO integer3] [parameterlist]
QAS [PRIO integer3] [parameterlist]

Beschreibung: Es wird der schnelle ”native coded“ (68K-) Assembler aufgeru-
fen. Dieser kann transient (Zeitverlust, wenn er öfter gebraucht
wird!) oder aus dem Speicher (vorher laden) benutzt werden.

Es gelten alle Angaben des normalen Assemblers, siehe dazu Sei-
te 103. Einziger Nachteil dieses ca. 2 bis 3 mal schnelleren Über-
setzers ist sein sehr viel längerer Code. Wenn man max. ca. 150
kByte verschmerzen kann, so sollte man ihn bevorzugen.

Speichern Sie den S-Rekord-File des QAS sinnvollerweise im übli-
chen Execution-Directory (z. B. unter /H0/XD). (Die Lizenz für
den normalen 68K-Assembler schließt die Verwendungsrechte des

”QAS“ mit ein).

3.7 Beschreibung der Bedienbefehle 191

Quick Link S-Records (optional) Q L N K

QLNK oderSYNTAX:
QLNK.sonprocname [PRIO integer3] [parameterlist]
QLNK [PRIO integer3] [parameterlist]

Beschreibung: Es wird der schnelle ”native coded“ Linker aufgerufen. Dieser
kann transient (Zeitverlust, wenn er öfter gebraucht wird!) oder
aus dem Speicher (vorher laden) benutzt werden.

Es gelten alle Angaben des normalen Linkers, siehe dazu Seite
163. Einziger Nachteil dieses ca. 2 bis 3 mal schnelleren Linkers
ist sein sehr viel längerer Code. Wenn man max. ca. 150 kByte
verschmerzen kann, so sollte man ihn bevorzugen.

Speichern Sie den S-Rekord-File des QLNK sinnvollerweise im
üblichen Execution-Directory (z. B. unter /H0/XD). (Die Lizenz
für den normalen Linker schließt die Verwendungsrechte des

”QLNK“ mit ein).

192 3.7 Beschreibung der Bedienbefehle

Q P Quick PEARL Compilation (optional)

QP oderSYNTAX:
QP.sonprocname [PRIO integer3] [parameterlist]
QP [PRIO integer3] [parameterlist]

Beschreibung: Es wird der schnelle ”native coded“ PEARL-Compiler aufgeru-
fen. Dieser kann transient (Zeitverlust, wenn er öfter gebraucht
wird!) oder aus dem Speicher (vorher laden) benutzt werden.

Es gelten alle Angaben des normalen Compilers, siehe dazu Seite
180. Einziger Nachteil dieses ca. 2 bis 3 mal schnelleren Über-
setzers ist sein sehr viel längerer Code. Wenn man max. ca. 300
kByte verschmerzen kann, so sollte man ihn bevorzugen.

Speichern Sie den S-Rekord-File des QP sinnvollerweise im übli-
chen Execution-Directory (z. B. unter /H0/XD). (Die Lizenz für
den normalen Maxi-PEARL-Compiler schließt die Verwendungs-
rechte des ”QP“ mit ein).

3.7 Beschreibung der Bedienbefehle 193

Release Semaphorvariable R E L E A S E

RELEASE hexnum8,hexnum8,...SYNTAX:
RELEASE taskname,taskname,...

Beschreibung: Durch hexnum8 werden Speicheradressen angegeben, die als
Semaphorvariablen in Benutzung sind. Wird dabei der Zustand

”Requested“ (und task waiting) verlassen, so wird — falls noch
nicht gestorben — die erste (= höchstpriorisierte) wartende Task
freigegeben, die auf diese Semaphore wartete. Die Semavariable
bleibt in diesem Fall im Zustand ”Requested“. Wird keine war-
tende Task ermittelt, so wird der Wert der Semavariablen um
eins erhöht.

Steht eine Task im Zustand ”Waiting for SEMA“, so kann die
Semaphore, auf der die Task hängt, ”released“ werden. Ist die
Semaphore danach frei, läuft die Task weiter. Damit entfällt das
unten beschriebene Ermitteln der Adresse der Semaphore.

Die Adressen müssen natürlich zunächst ermittelt werden, dazu
empfiehlt sich die Benutzung globaler Symbole und Inspektion
der Lader–Liste (LO–Option).

RELEASE 4020,10112Beispiele:

RELEASE TEST

Wenn die Task TEST im Rechner vorhanden ist und auf einer
Semaphore ”hängt“, wird diese Semaphore ”released“.

194 3.7 Beschreibung der Bedienbefehle

R E N A M E Rename File

RENAME /device/pathlist/old filename>new filenameSYNTAX:

Beschreibung: Es wird der Name der angegebenen Datei in den neuen Namen
geändert.

/device/old name: Der Devicebezeichner kann z. B. die Form Fx oder Hx haben.
Ein Working-Directory wird ggf. berücksichtigt. old name sollte
ein gültiger File–Name sein.

Es wird nur ein Filename ohne Pathlist akzeptiert.new name:

Existiert bereits eine Datei mit new name, so erfolgt eine Fehler-Hinweis:
meldung ”File in system“ und die Umbenennung unterbleibt.

RENAME /F0/MIST>HALLOBeispiele:

Die Datei MIST auf dem Laufwerk F0 wird in HALLO umbenannt.

Es existiert ein Working-Directory /H0/sub1/sub2:

RENAME DAT1>DAT2

Die Datei /H0/sub1/sub2/DAT1 wird in DAT2 umbenannt.

3.7 Beschreibung der Bedienbefehle 195

Return Files R E T U R N

RETURN pathlist–listSYNTAX:

Beschreibung: Eine Floppy-, Platten– oder ED-Datei wird aus der Verwaltung
von RTOS–UH entlassen. Vorher wird die Datei geschlossen.
Die Anweisung wird als Kommandofehler behandelt, wenn ein
angegebenes Objekt keine Floppy–, Platten– oder ED–Datei ist.

pathlist–list: Es handelt sich um eine Liste, deren Elemente durch Leerzeichen
oder Kommata getrennt werden. Ein Element der Liste besteht
aus einem Device–Bezeichner (z. B. /F0/) und einem Filenamen.
Ein eingestelltes Working–Directory wird entsprechend berück-
sichtigt.

Es ist die Option -A (oder -a) zugelassen. Damit können auchOptionen:
Files, die in exklusiver Belegung (auch anderer Nutzer!) sind,
bedingungslos zurückgegeben werden. Die Option ist nicht er-
forderlich, wenn das RETURN von einer primären Shell auf eine
dem Nutzer zugeordnete Datei ausgeführt wird.

RETURN /F1/QUELLE,/F0/XYZBeispiel:

RETURN mist bei eingestelltem WD:/F0/-

RETURN -A /ED/SOURCE1;

Wenn der angesprochene File nicht geöffnet ist, so antwortet das! →
System mit einer ”... not found“-Meldung. Die Ursache: der
Filehandler sucht bei diesem Befehl nur unter den von ihm geöff-
neten Files und Directories.

196 3.7 Beschreibung der Bedienbefehle

R E W I N D Rewind Files

REWIND pathlist–listSYNTAX:

Beschreibung: Die angegebenen Dateien werden zurückgespult. Die Anweisung
führt zum Kommandofehler, wenn das Device nicht rückspulbar
oder die Datei nicht vorhanden ist.

pathlist–list: Es handelt sich um eine Liste von Pfadlisten, deren Elemente durch
Leerzeichen oder Kommata getrennt werden. Jedes Element der
Liste beginnt wie üblich entweder auf der ”Root-Ebene“ mit ”/“
oder bezieht sich auf das aktuelle Working-Directory.

REWIND /F1/QUELLE,/F0/XYZBeispiele:

REWIND /ED/myfile

REWIND /SN7/ST29/H0/TEX/DOCU1

Im letzten Fall wird der Rechner /SN7 (im RTOS–UH ty-
pischerweise eine Ethernetkopplung) als Gateway zur Stati-
on /ST29 benutzt. Dort wird auf der Festplatte /H0 der File
TEX/DOCU1 auf seinen Anfang gesetzt.

Es können nur existierende Files zurückgespult werden. Neue Fi-! →
les können mit REWIND nicht angelegt werden. Beachten Sie auch,
daß der File nach dieser Operation geöffnet ist: die Plattenver-
waltung wird ”sprungbereit“ gehalten und schreibt nicht mehr
alle Änderungen an anderen Files sofort auf das Medium zurück.

3.7 Beschreibung der Bedienbefehle 197

Remove File R M

RM pathlist–listSYNTAX:

Beschreibung: Die in der Parameterliste angegebenen Dateien werden unwi-
derruflich aufgegeben. Die Dateien werden aus der Systemver-
waltung entfernt, so daß auf sie nicht mehr zugegriffen werden
kann. Bei ED-Dateien wird der zur Ablage der Datei benötig-
te Speicherplatz (Typ EDTF) wieder frei verfügbar, auf Massen-
speichern wird der entsprechende Platz frei. In der pathlist–list
werden vereinbarte Working-Directories mit berücksichtigt.

RM /ED/quelle, /ED/test, /F0/mistBeispiele:

RM /ED/SI

oder mit Working-Directory /ED/xyz:

RM mein löscht /ED/xyz/mein

Durch Angabe einer vollständigen Pathlist können Files außer-
halb eines vereinbarten Working-Directories gelöscht werden.

vereinbartes Working-Directory: /ED/xyz

RM /ED/nutz1/abc löscht angegebenen File

Die ausführende Shell übergibt die Kommandos an den jeweilsHinweis:
zuständigen File–Handler, nachdem überprüft wurde, ob das an-
gegebene Gerät überhaupt in löschbare Files untergliedert ist
(siehe SD, DD-Befehl). Ist letzteres nicht erfüllt, so wird die An-
weisung mitsamt dem Rest der Kommandozeile zurückgewiesen.
Wenn möglich erfolgt die Meldung von genaueren Fehlern durch
den File–Handler über dessen evtl. vorhandene ”Report-Error“-
Funktion.

Statt des Kommandos RM kann mit gleicher Wirkung auch ERASE! →
eingegeben werden.

198 3.7 Beschreibung der Bedienbefehle

R M D I R Remove Directory

RMDIR pathlist–listSYNTAX:

Beschreibung: Die mit dem Befehl MKDIR eingerichteten Directorys können mit
dem Befehl RMDIR wieder entfernt werden. Falls das Directory
noch ein Directory oder File enthält, erscheint die Fehlermeldung

... directory active.

In diesem Fall sind zunächst die in der Hierarchie weiter unten
stehenden Directories und Files zu entfernen.

pathlist–list: Es sind alle Geräte zulässig, bei denen das entsprechende Bit im
Device–Wort (RMDIR erlaubt, siehe SD–Befehl) gesetzt ist. Die
einzelnen Pfadlisten werden durch Kommata oder Leerzeichen
getrennt.

Die pathlist hat die übliche Syntax, insbesondere sind Be-pathlist:
schränkungen des verwendeten Filehandlers zu beachten. Siehe
dazu auch den Befehl MKDIR auf Seite 175.

Mit dem Befehl MKDIR wurde das DirectoryBeispiele:

/F0/USER1/PROJEKT1

vereinbart. Es besteht die Möglichkeit mit

RMDIR /F0/USER1/PROJEKT1

das Directory PROJEKT1 zu entfernen. Mit dem Befehl

RMDIR /F0/USER1

läßt sich danach auch das Directory USER1 entfernen.

3.7 Beschreibung der Bedienbefehle 199

RTOS–filesystem definition R T O S F I L E S

RTOSFILES device, device, ..SYNTAX:

Beschreibung: Das mit device bezeichnete Gerät — typischerweise eine Floppy
oder Winchester — wird unter die Verwaltung des RTOS–UH–
Filemanagers gestellt. Wurde z. B. bisher die Floppy /F0/ als
Fremddiskette, z. B. von einem MS–DOS–Rechner stammend,
behandelt, so wird nach Absetzen des Befehles RTOSFILES /F0/
jetzt wieder eine RTOS–UH–Diskette im Laufwerk F0 erwartet.

Eine Atari– oder MS–DOS–Diskette mit File PAPER.TXT sollBeispiele:
auf eine RTOS–UH–Diskette kopiert werden, ungeachtet der
evtl. späteren Nachbehandlung wegen anderer Sonderzeichen
und Zeilenendekennung. Hinterher wird nur noch mit RTOS–
UH–Disketten gearbeitet.

MSFILES /F1/ F1 unter MS–DOS–Verwaltung
RTOSFILES /F0/ F0 unter RTOS–UH–Verwaltung
COPY /F1/PAPER.TXT>/F0/ Kopieren
RTOSFILES /F1/ Beide wieder unter RTOS–UH–Verwaltung

Wenn noch Files auf dem Gerät geöffnet sind, so wird der Be-Hinweis:
fehl nach Meldung ... directory active ... zurückgewiesen.
Man kann aber das ”Vergessen“ des nicht mehr benötigten File-
systems genau wie beim CF (Change Floppy)–Befehl erzwingen.
Dies erfolgt durch eine spezielle Pseudo–Pathlist:

SYNC /F0/ (siehe SYNC, zum Retten)
MSFILES /F0/FORGET (Vergiß alte Floppy)

Welches Filesystem auf der Floppy gerade gültig ist, kann man
jederzeit über den Befehl FILES (z. B. FILES /F0/) erfragen,
da bei dessen Ausgabe die Verwaltungsstruktur mit erscheint —
auch dann wenn kein File geöffnet ist.

Wenn nicht für alle Laufwerke einer Warteschlange der gleicheHinweis:
Filemanager zuständig ist (wie oben im Bsp.), so legt die Be-
treuungstask im Speicher eine Transfertabelle für die Zuordnung
Laufwerk<->Filemanager an, die über das S–Kommando sicht-
bar ist, auch wenn kein File offen ist. Die Tabelle verschwindet
wieder, sobald der zuständige Filemanager eine Verbindung her-
stellt und danach alle Verbindungen auf ihn selbst zeigen. Im
obigen Bsp. ist der Block hinterher noch existent, weil das letz-
te RTOSFILES vom MS–DOS–Filemanager ausgeführt wird. Mit

200 3.7 Beschreibung der Bedienbefehle

RTOSFILES /F1,/F1 als letztem Befehl i. o. Bsp. spart man folg-
lich einige Bytes Speicher ein.

Mit welcher Fileverwaltung Ihr System startet, ist implemen-! →
tierungsabhängig. Das Kommando hat mit den modernen Fi-
lehandlern seine frühere Bedeutung verloren: nach Inspektion des
Bootsektors schalten die neueren Filehandler erforderlichenfalls
automatisch auf den jeweils anderen um. Will man jedoch eine
Festplatte oder Diskette für RTOS–UH formatieren, so sorgt
dieser Befehl, abgesetzt vor dem FORM-Befehl, für das gewünsch-
te Ergebnis.

3.7 Beschreibung der Bedienbefehle 201

Storage S

S [-A[O]|-C[O]|-E[O]|-F[O]|-M[O]|-T[O]][-O]SYNTAX:

Beschreibung: Es wird die Speicherbelegung des gesamten Systems aufgelistet.
Damit ist es jederzeit möglich, sich einen Überblick über die Sy-
stemauslastung und Belegung der einzelnen Speicherbereiche an-
zusehen. Aufeinanderfolgende gleiche ED–Blöcke werden zusam-
mengefaßt und bei adr2 mit einem + gekennzeichnet, um mehr
Übersichtlichkeit zu gewährleisten.

Durch die Angabe von verschiedenen Parametern kann dieParameter:
Speicherbelegung selektiv angezeigt werden, um z. B. bei größe-
ren Mehrnutzersystem einen kurzen Überblick zu bekommen.

A Kein Zusammenfassen von gleichen aufeinanderfolgenden
ED–Blöcken

C Nur Anzeige von CWSP–Segmenten

E Nur Anzeige von EDTF–Segmenten

F Nur Anzeige von FREE–Segmenten

M Nur Anzeige von MDLE– und PMDL–Segmenten

T Nur Anzeige von TASK– und ATSK–Segmenten

O mit einem angehängten O wird die Usernummer berück-
sichtigt, d. h. daß nur die ”eigenen“ Sektionen angezeigt
werden.

Die einzelnen Ausgabezeilen haben folgendes Format:

adr1 - adr2 type RESIDENT taskname filename

8–stellige hexadezimale Adresseadr1/adr2:

Siehe Tabelle auf der nächsten Seite.type:

202 3.7 Beschreibung der Bedienbefehle

MARK Am Anfang und am Ende des von RTOS–UH verwalteten Be-
reiches steht je eine Speichersektion dieses Typs.

FREE Diese Speichersektion ist nicht belegt.
TASK Es handelt sich um den Code–Körper (oder Scheinkörper bei

Tasks im ROM) einer Task mit dem nachfolgend angegebenen
Namen.

ATSK Es handelt sich um eine Auto–Start–Task, die sofort beim System-
start lauffähig ist.

TWSP Task–Workspace der angegebenen Task.
CWSP Communication–Element im Besitz der angegebenen Task. Falls

vorhanden, wird der File–Name des Elementes ausgegeben.
PWSP Prozedur–Workspace der angegebenen Task.
MDLE Es handelt sich um den Kopf eines Modules mit dem nachfolgend

angegebenen Namen. Dieser Name kann z. B. der bei PEARL–
Programmen mögliche Modulname sein.

EDTF Dieses Segment ist als Editor–Textfile mit dem nachfolgend ange-
gebenen Namen im Speicher abgelegt.

PMDL Das Segment ist ein PEARL–Modul, das mit den Optionen
CODE=$... ,VAR=$... des Compilers übersetzt wurde. Das Mo-
dul ist nur zur Bearbeitung mit Hilfe des PROM–Befehls geeignet.

SMDL Das Segment ist ein PEARL–Modul, das in der Sonderform
SHELLMODULE übersetzt wurde und mindestens einen in PEARL
codierten Bedienbefehl enthält.

???? Die Sektion ist nicht identifizierbar. Entweder liegt eine mehrfach
Blockierung einer Task vor oder das Betriebssystem ist durch eine
illegale Operation eines Nutzers praktisch unmittelbar vor dem
Zusammenbruch. Sie sollten — soweit möglich — Ihre Dateien
retten und einen RESET durchführen.

Tabelle 3.7: Kurznamen der Speichersektionen.

3.7 Beschreibung der Bedienbefehle 203

Set Device–Parameters S D

SD device [+ hexadd--expression] valueSYNTAX:

Beschreibung: Die Parametrierung der durch device bezeichneten Datenstati-
on wird durch das (die) Byte(s) in value ersetzt. Bereits in der
Warteschlange (von PEARL–Programmen, sonst nur in aktueller
Bearbeitung) des Gerätes stehende Ein– oder Ausgaben werden
dadurch nicht mehr verändert. Die Wirkung erfolgt nur durch
Information gewisser Softwarepakete über den DVDSC–Trap.

Ein dem System bekannter Stationsname. Dabei wird nur einedevice:
LDN generiert; /A1/ läßt sich also z. B. nicht anders als /B1/ oder
/C1/ parametrieren.

hexadd–expression: kann wie beim SM–Befehl benutzt werden, um z. B. das erste
Byte unverändert zu lassen etc.

Zur Zeit 2 Bytes mit funktionellen Bits. In der folgenden Tabellevalue:
ist in Klammern exemplarisch vermerkt, welche Systemfunktio-
nen das entsprechende Bit berücksichtigen.

$80 Die Station ist ”rückspulbar“ z. B. ED, Fx, Hx.1.Byte:

$40 Die Station muß vor der ersten Benutzung explizit mit

”open“ und nach der letzten mit ”close“ angesprochen wer-
den, etwa F0/F1.

$20 Jedem endenden Cr soll ein Lf angefügt werden, etwa
A1(=B1, C1).

$10 Die Station ist ein dialogfähiges Datenterminal, etwa A1,
A2.

$08 Das Echo soll explizit unterdrückt werden, nur bei den Ax,
Bx, Cx sinnvoll.

$04 Die Station erlaubt das Löschen bezeichneter Files, nur bei
Fx/Hx oder ED sinnvoll.

$02 Die Station erlaubt die Ausgabe von Daten.

$01 Die Station erlaubt die Eingabe von Daten.

204 3.7 Beschreibung der Bedienbefehle

$80 Die Station akzeptiert ein explizites DIR oder FILES–2. Byte:
Kommando, nur Fx/Hx und ED.

$40 Die Station akzeptiert ein explizites FORM-Kommando, z. B.
Fx, Hx.

$20 Das CF–Kommando ist zugelassen.

$10 RMDIR, MKDIR möglich.

$08 SYNC, SEEK, SAVEP, TOUCH möglich.

$04 Error-Report kann angefordert werden.

$02 Editor ED: Das angeschlossene Terminal macht keinen au-
tomatischen Wrap am Zeilenende.

$01 Editor ED: Der Cursor soll über ESC–Sequenzen gesteuert
werden (VT–52).

SD /A2/ 0BBeispiele:

A2 ist für Ein–/Ausgabe zugelassen, es wird kein Echo gemacht.
Diese Einstellung ist z. B. für eine Rechnerverbindung sinnvoll.

SD /A2/ 33

A2 ist ein dialogfähiges Gerät, das jedem Cr ein Lf anhängt und
für Ein–/Ausgabe zugelassen ist. Einstellung für ein Terminal.

SD /PP/ 02

Umparametrierung des Printer–Ports für einen Drucker, der
selbst ein Lf nach jedem Cr generiert oder Ausgabe einer MS–
DOS–Datei, in der jede Zeile mit Cr/Lf endet.

SD /A1/+1 01

Anpassung des Editors an ein VT–52 Terminal (Cursorsteuerung
über ESC–Sequenzen).

Im Umfeld dieses elementaren Bedienbefehles sind Skripte ge-Hinweis:
bräuchlich, die einem die mühselige Kodierung des Bitmusters
abnehmen.

3.7 Beschreibung der Bedienbefehle 205

Time–Sharing für Task’s S H A R E

SHARE [PRIO integer3]Syntax:

Beschreibung: Der Befehl SHARE dient dazu, ein gleichzeitiges Abarbeiten von
gleich priorisierten Tasks zu ermöglichen.

Sind z. B. zwei Compiler vom Nutzer gestartet worden, so werden
diese normalerweise nacheinander bearbeitet, da sie die gleiche
Priorität haben. Damit sie gleichzeitig bearbeitet werden, wird
SHARE mit der PRIO Taskprio - 1 aufgerufen. Nachdem dieses
erfolgt ist, wird die Prozessorkapazität auf beide Compiler auf-
geteilt.

Ab dem erstmaligen Aufruf bleibt für die angegebene Task–
Priorität die Time–Sharing–Funktion aktiv, bis die SHARE/xx–
Task entladen oder terminiert wird. Auch ein Abort unterbricht
nicht das Time–Sharing.

P xxxx > yyyy /* läuft mit Prio 20 */Beispiele:
P zzzz > uuuu /* läuft mit Prio 20 */
SHARE /* jetzt werden beide bearb.*/

Der Aufruf von SHARE richtet einen Sohnprozeß SHARE/xx ein,
der das eigentliche Scheduling ausführt, indem jedem Prozeß die-
ser Priorität der Prozessor für ca. 50 msec zugeteilt wird. Haben
Sie in Ihrem System noch Tasks auf höheren Prioritäten laufen,
so entziehen diese natürlich den Prozessor. Sind die höher priori-
sierten Tasks zyklisch eingeplant, kann der Eindruck entstehen,
das Timesharing funktioniert nicht, weil eine höher priorisierte
Task immer dann läuft, wenn eine bestimmte Task im Timesha-
ring an der Reihe ist.

Der Aufruf von SHARE muß mit einer um 1 höheren Priorität er-
folgen, als der Level, der beeinflußt werden soll, damit die Share–
Task sofort aktiv wird.

Um z. B. die Prioritätsstufe 30 zu beeinflussen mußWICHTIG:

SHARE PRIO 29 eingegeben werden.

Standard Priorität für SHARE–Task ist 20 (also ein implizites
PRIO 19 beim Aufruf).

Um verschiedene Prioritäts–Level im Time–Sharing Betrieb zu
nutzen, können beliebig viele SHARE–Kommandos abgesetzt wer-
den.

206 3.7 Beschreibung der Bedienbefehle

S H E L L Install Shell

SHELL [PRIO integer3] [SZ hexnum6] [path] [positpara]Syntax:

Beschreibung: Der Befehl SHELL dient dazu, eine skriptgesteuerte Shell ein-
zurichten und diese an die Stelle der bisherigen primären Shell
zu setzen. Mit path wird normalerweise das mitgelieferte Skript
adressiert, mit dem man sich eine Unix-ähnliche Shell erzeugen
kann. (siehe Seite 74)

Beim Aufruf dieses Skriptes über den Befehl SHELL gelten außer
beim Sohnprozeßnamen die gleichen Aufrufparameter wie beim
Aufruf über EX. Als Name erhält der Sohnprozeß ”#BSHxx“, wobei
xx die Usernummer des Aufrufers ist. Zusätzlich wird der Sohn-
prozeß als sekundäre Shell in das Userenvironment eingetragen
und damit beim Anschlag der Taste ”CTRL A“ des Users fort-
gesetzt. Die primäre Shell ist dann nur noch über die ”BREAK“-
Taste erreichbar. Das SHELL-Skript sollte in einer Endlosschleife
Befehle einlesen, ausführen und sich dann für den nächsten An-
schlag der Taste ”CTRL A“ suspendieren. Damit kann man sich
eine Shell mit eigenem Environment und geringerer Priorität ein-
richten. Die sekundäre Shell kann mit dem EXIT-Befehl beendet
werden. Nach einem Warmstart läuft das SHELL-Skript neu an
und bleibt als sekundäre Shell aktiv. Pro User ist nur eine se-
kundäre Shell einrichtbar, der SHELL-Befehl darf nicht gestapelt
abgesetzt werden.

SHELL /H0/XD/SHELL;Beispiel:

3.7 Beschreibung der Bedienbefehle 207

Show state of specified Task S H O W / S H

SHOW taskname,taskname,...SYNTAX:
SH taskname,taskname,... (Kurzform)

Beschreibung: Es wird eine Zustandszeile für jede der angegebenen Tasks ausge-
geben. Der Aufbau dieser Zustandszeile entspricht genau denen
beim L–Kommando. Wenn einzelne Tasks der Liste nicht vor-
handen sind, so erfolgt die Meldung ”... not loaded“.

SHOW abcd ASMB12Beispiele:

SH PCOM45

208 3.7 Beschreibung der Bedienbefehle

S M Set Memory

SM adr value value ...SYNTAX:

Beschreibung: Es kann der Inhalt einer oder mehrerer Speicherzellen verändert
werden. Ist value eine n–stellige Hexadezimalzahl, so werden
(n+1)//2 Bytes beginnend bei adr abgelegt, wobei der Abla-
gezeiger für den nächsten Wert value anschließend um diesen
Betrag weiterrückt.

1...8–stellige Hexadezimalzahl, mit der die Adresse der Speicher-adr:
zelle angegeben wird. Es können auch mehrere Hexadezimalzah-
len angegeben werden, die durch ein +/- Zeichen verbunden sein
müssen und vom System addiert/subtrahiert werden.

1...8–stellige Hexadezimalzahl, mit der der neue Inhalt der Spei-value:
cherzelle angegeben wird.

Der Prozessor greift im Usermode auf den Speicher zu. DamitHinweis:
sind je nach aktueller Hardware nicht alle Adressen erreichbar.
Man erkennt dies an der Shellreaktion ”... bus error“. Aus
diesem Grund existiert noch eine erweiterte Form als SMX-Befehl,
der typischerweise transient ausgeführt wird. Mit dem SMX sind
dann folgende Zusatzparameter (unmittelbar hinter dem Befehl,
vor der Adresse) möglich:

-Sx Es wird festgelegt, daß der Zugriff im Supervisor–Mode des
Prozessors ausgeführt wird.

-x Zugriff im User–Mode durchführen.

-xB Bytezugriff mittels Befehl MOVE.B.

-xW Wortzugriff mittels Befehl MOVE.W.

-xL Langwortzugriff mittels Befehl MOVE.L.

-xM Zugriff mittels Befehl MOVEP.W.

-xP Zugriff über POT–Trap — für Pbus Ausgabe.

V O R S I C H T !

Diese Anweisung darf nur mit größter Sorgfalt benutzt wer-
den, da der ausführende Shellprozeß nicht prüft, ob evtl. lebens-
wichtige Daten oder Zeiger des Systems zerstört werden. Diese
Zerstörungen können zunächst verborgen bleiben und sich erst
später bemerkbar machen.

3.7 Beschreibung der Bedienbefehle 209

SM 14EAF 02 AFFE12CD 3 4Beispiele:

Ab der Adresse $14EAF wird $02AFFE12CD0304 abgelegt.

SM 1000 (keine Operation)

SM 6000+10 4

Auf Adresse $6010 wird das Byte $04 abgelegt.

SMX -SB 400 45

Auf Adresse $400 wird mit einem Supervisor Byte–Zugriff das
Byte $45 abgelegt.

SMX -W 3000 5 6

Ab Adresse $3000 wird mit Wortzugriffen $00050006 abgelegt.

SMX-L 80000 1 2 30

Ab Adresse $80000 wird mit Langwortzugriffen
$000000010000000200000030 abgelegt.

210 3.7 Beschreibung der Bedienbefehle

S U S P E N D / S U Suspend Task

SUSPEND taskname,taskname,...SYNTAX:
SU taskname taskname ... (Kurzform)

Beschreibung: Die angegebenen Tasks werden in den Zustand ”blockiert“, war-
tend auf CONTINUE, gebracht.

Die ausführende Shell prüft, ob die angegebenen Tasks vorhan-
den sind, ggf. erfolgt die Meldung ”... not loaded“. Eine wei-
tere Analyse des aktuellen Taskzustandes findet nicht statt, d. h.
die Tasks werden im aktuellen Zustand eingefroren. Wartete die
angesprochene Task z. B. auf die Zuteilung einer Semaphore, so
hat sie anschließend eine Doppelblockierung. Ihr Zustand wird
dann vom L bzw. SHOW Kommando mit ???? gezeigt.

SUSPEND ABCD TESTBeispiele:

SU init

3.7 Beschreibung der Bedienbefehle 211

Synchronize File–System S Y N C

SYNC Floppy-/Winch-devicelistSYNTAX:

Beschreibung: Verwaltungsdaten im Speicher und Inhalt auf den bezeichneten
Geräten werden aktuell abgeglichen, so daß bei einem Netzausfall
die Daten gesichert sind. Die Zustände der Files werden dabei
nicht verändert, die Files also auch nicht geschlossen.

Solange auf einem Massenspeicher (Diskette, Festplatte) noch
geöffnete Files existieren, ist nicht gesichert, daß die zuletzt ge-
schriebenen Daten auch wirklich bereits auf dem Medium abge-
legt wurden. Die Filehandler sparen auf diese Weise erhebliche
Zeit für die Kopfpositionierung. Dieser Befehl erzwingt das Hin-
ausschreiben aller Daten, die bisher nur im Speicher des Rechners
(”Disc-cache“) angelegt oder verändert wurden.

Der Befehl darf gegeben werden, wann immer man das für sinn-
voll hält. Eventuell passiert auf den Befehl hin überhaupt nichts,
etwa wenn man nur von dem Gerät gelesen hat.

SYNC /H0/ /H1/ /H2/ /F0/Beispiele:

Hier werden alle ggf. offenen Files auf den Winchester– und Flop-
pylaufwerken synchronisiert, d. h. für diesen Zeitpunkt besteht
Übereinstimmung zwischen der File–Verwaltung im Speicher und
dem Inhalt auf dem Medium.

Der Befehl eignet sich auch, um eine Diskette in großer Eile ent-Hinweis:
nehmen zu können. Dabei wird nach dem SYNC die Verwaltungs-
information gelöscht, und man kann danach die Floppy heraus-
nehmen.

SYNC /F0/;CF /F0/FORGET;CLOCK;

Der anschließende Clock–Befehl dient nur dazu, um den Ab-
schluß der Aktion erkennbar zu machen.

Sie können mittels eines DEFINE–Befehles einen SYNC zyklischAchtung:
einplanen, um im Falle eines Rechnerabsturzes oder Stromaus-
falls die Gefährdung ihrer Daten auf der Festplatte zu verringern:

DEFINE.asyn PRIO 100--SYNC /H0/ /H1/;ALL 30 SEC asyn

Alle 30 Sec werden die Directories auf den Winchesterlaufwerken
auf den aktuellen Stand gebracht. Mit der Angabe der niedrigen

212 3.7 Beschreibung der Bedienbefehle

Priorität wird erreicht, daß ein evtl. laufender Datenstrom in
Richtung Platte nicht gestört wird.

3.7 Beschreibung der Bedienbefehle 213

Terminate Task T E R M I N A T E / T

TERMINATE taskname taskname ...SYNTAX:
T taskname,taskname ... (Kurzform)

Beschreibung: Die angegebenen Tasks werden beendet. Der von ihnen be-
legte Prozedur–Workspace wird an das System zurückgegeben.
Communication–Elemente, die nicht in einer Ausgabeschlange
oder in Bearbeitung einer Inputtask sind, werden ebenfalls sofort
an das System zurückgegeben. Die automatische Rückgabe aller
anderen Communication–Elemente nach Abschluß der Ein– oder
Ausgabe wird vorbereitet. Ist die Task nicht vom Typ RESIDENT,
so wird auch der von ihr belegte Task–Workspace an das System
zurückgegeben.

Semaphore, die von der Task belegt wurden, bleiben wie bei der! →
PEARL–Anweisung TERMINATE unberührt und können somit an-
dere Tasks dauerhaft blockieren.

Die ausführende Shell prüft nicht, ob die angegebene Task exi-
stiert oder ihr Laufzustand eine Terminierung ermöglicht, also
sie nicht im Zustand DORM ist. Eine Fehlermeldung wird ggf.
vom Betriebssystemkern erzeugt. Meldung: ”... not loaded
(terminate)“.

TERMINATE TEST INITBeispiele:

T RUN

214 3.7 Beschreibung der Bedienbefehle

T O U C H Touch a File

TOUCH pathlist–list (Form A)SYNTAX:
TOUCH timepara datepara pathlist–list (Form B)
TOUCH datepara timepara pathlist–list (Form B)
TOUCH -R pathlist–list (Form C)

Beschreibung: Mit diesem Befehl kann man den (scheinbaren) Erstellungszeit-
punkt von selektierten Files aktualisieren, willkürlich setzen oder
sich ausgeben lassen.

Die in der pathlist–list bezeichneten Files erhalten das aktuelleForm A:
Datum und die aktuelle Zeit aus dem Betriebssystem als neues
“Erstellungsdatum“. Inhaltliche Änderungen an den Files wer-
den nicht vorgenommen.

Die in der pathlist–list bezeichneten Files erhalten als neues ”Er-Form B:
stellungsdatum“ die mit timepara und datepara angegebenen
Werte. Die Syntax dieser Parameter entspricht derjenigen bei
CLOCKSET und DATESET. Bei der Uhrzeit dürfen die Sekunden feh-
len, da sie ohnehin nicht im Filesystem abgelegt werden können.
Fehlt einer der beiden Parameter, so wird er durch den aktuel-
len Wert aus dem Betriebssystem ersetzt. Will man z. B. nur die
Uhrzeit verändern, muß neben der neuen Uhrzeit das alte Datum
explizit angegeben werden.

Es wird für jeden File der pathlist–list Datum und Uhrzeit derForm C:
letzten Änderung bzw. die letzten mit TOUCH abgelegten Daten
ausgegeben.

Die Bedeutung des Befehles in der ”Form A“ liegt bei den so-Hinweis:
genannten ”Make“-Skripten: durch einen ”Touch“ kann man die
erneute Einbeziehung des Files in Übersetzerläufe erzwingen.

Die ”Form B“ kann für Archivierungszwecke interessant sein,
wenn auf Grund irgendwelcher Kopierwege das Erstellungsda-
tum nicht mehr mit Protokollangaben übereinstimmt. Auch läßt
sich damit natürlich ein ”ewig neuer“ File simulieren, wenn man
den Zeitpunkt in die Zukunft verlagert.

In der ”Form C“ schließlich ist der Befehl eine große Hilfe, wenn
man schnell prüfen möchte, ob ein bestimmtes Duplikat erneu-
ert werden muß, weil es inzwischen veraltet ist. Innerhalb von
Shellskripten ist diese Form des Befehles noch in anderem Zu-
sammenhang interessant: es ist die schnellste Möglichkeit, um! →

3.7 Beschreibung der Bedienbefehle 215

festzustellen, ob es einen bestimmten File überhaupt gibt. Der
File wird nämlich nicht geöffnet oder sonstwie in Status oder
Inhalt verändert. Im Gegensatz dazu wird bei einem versuchs-
weisen ”REWIND“ der erste Datenblock eingelesen, und der File
bleibt geöffnet.

Bei der Anwendung des Befehles in der ”Form C“ über das Netz
wird im Fehlerfall, wenn der File im fernen Rechner nicht exi-
stiert oder der Zugriff nicht erlaubt ist, Datum und Uhrzeit des
eigenen Rechners eingesetzt. Man kann daher über das Netz
mit TOUCH die Existenz des Files und die Zugriffsberechtigung
nicht sicher feststellen. Der Grund dafür liegt darin, daß ältere
Netzsoftware den zugehörigen I/O-Befehl nicht beherrschte und
nur durch diese Strategie der COPY-Befehl (er benutzt intern den
TOUCH-I/O-Befehl) auch mit solchen Zielrechnern möglich ist.

TOUCH /H0/TEX/DOCU2.TEXBeispiel:
TOUCH 12-01-1994 13:45:00 /F0/testfile /F0/backup
touch 12:00 /ed/test3 (Datum von heute einsetzen)
TOUCH -R /ED/GRAFF5 (hier antwortet die Shell)

216 3.7 Beschreibung der Bedienbefehle

T R A C E Switch Task to Trace Mode

TRACE taskname adr (Form A)SYNTAX:
TRACE taskname L linenr (Form B)
TRACE taskname L linenr,linenr (Form B)

Beschreibung: Die angegebene Task wird in den Hardware–Trace–Mode
überführt (Form A) bzw. die Programmzeilenüberwachung wird
eingeschaltet (Form B). Sobald die durch adr (Form A) angege-
bene Adresse, bzw. eine der max. zwei angebbaren Zeilennum-
mern (Form B) überlaufen wird, wird die Task durch das Be-
triebssystem suspendiert und die Meldung

taskname:adr BREAKPOINT (Form A) oder
taskname:L=linenr BREAKPOINT SUSPENDED (Form B)

ausgegeben. Das Erreichen des Haltepunktes löscht diesen nicht.
Nach einer CONTINUE–Anweisung kann also der gleiche Halte-
punkt erneut angelaufen werden.

Der Befehl ändert nichts am Taskzustand einer Task, d. h. auch
inaktive oder eingeplante Tasks dürfen angesprochen werden.

War die Task bereits im Trace–Mode, so werden alle alten
Haltepunkte gelöscht. Eine vollständige Aufhebung der Pro-
grammzähler– (Form A) oder Zeilenüberwachung ist nur mit Hil-
fe des NOTRACE–Kommandos möglich. Auch nach einem Warm-
start des Systems sind bei allen Tasks die Trace–Modi gelöscht.

Die Task läuft im TRACE–Mode wie in ”Zeitlupe“ ab. Jeder Ma-Form A:
schinenbefehl löst eine Trace–Exception aus, in der der Adreß-
vergleich erfolgt.

Instruktionen nach TRAPs können nicht als Haltepunkte er-
kannt werden.

Das Diese Variante eignet sich für PEARL-Programme undForm B:
Shellskripte. Ein PEARL-Programm muß zumindest in der Zei-
le, bei der die Task anhalten soll, mit der Markierungsoption
/*+M*/ ohne den Compiler-Mode NOLSTOP übersetzt sein.

Die Task wird suspendiert, sobald die erste in der angegebenen
Zeile (bzw. einer der beiden, falls zwei angegeben waren) be-
ginnende Anweisung erreicht wird. Die Anweisung wird jedoch
noch nicht ausgeführt, sondern als erste nach der CONTINUE–
Anweisung ausgeführt.

3.7 Beschreibung der Bedienbefehle 217

Die Laufgeschwindigkeit der Task wird durch das Zu- oder Ab-
schalten des Line–Trace–Modus praktisch nicht geändert. Aller-
dings ist das Compilat an sich bereits durch Benutzung der +M–
Option um ca. 5 bis 500% verlangsamt.

1...8–stellige Hexadezimalzahl, mit der die Adresse des Break-adr:
points angegeben wird.

1...5–stellige Dezimalzahl, die die Programmzeilennummer deslinenr:
Haltepunktes bezeichnet. Höhere Zeilennummern als 34575
können nicht mit Erfolg adressiert werden, da die interne, zu
früheren Systemversionen abwärtskompatible Codierung der Zei-
lennummer durch den Compiler dies nicht zulässt. Beide Halte-
punkte sind völlig gleichwertig. Wird nur einer angegeben, so
existiert ein ggf. früher eingegebener zweiter nicht mehr.

TRACE TEST 2346Beispiele:

Die Task TEST wird in den Hardware–Trace überführt und soll
bei Adresse $2346 suspendiert werden.

TRACE ABCD L 55 76

Die Hochsprachtask ABCD soll beim Erreichen der Zeilen 55 oder
76 suspendiert werden.

Mit dem Hardware–Tracer können durchaus auch Hochsprach–Hinweise:
Codierte Tasks überwacht werden, wenn folgendes beachtet wird:

• Virtuelle Befehle können nicht erkannt werden.

• Der erste Befehl nach einem virtuellen Befehl kann nicht
als Haltepunkt dienen.

• Der To–Virtual–Befehl kann benutzt werden.

Werden Adressen oder Zeilennummern in Prozeduren angewählt,
so beeinflußt die TRACE–Anweisung natürlich die anderen Tasks
nicht, die diesen Haltepunkt überlaufen.

Es ist möglich — bei unabhängig compilierten Modulen —, daß
Programmzeilennummern mehrfach vorhanden sind. In diesem
Fall — den man möglichst mit Hilfe der SETLINE-Option des
Compilers vermeiden sollte — ist nach Erreichen des Breakpoints
zusätzlich der PC (oder ersatzweise A6) zu inspizieren, um fest-
zustellen, welche der gleichnumerierten Zeilen getroffen wurde.
Gängige und bewährte Praxis ist hier, mit Hilfe von SETLINE die

218 3.7 Beschreibung der Bedienbefehle

Tausenderstelle der Startzeilennummer als Modulidentifikator zu
verwenden.

Mit der +M–Option übersetzte Programme können nur durch
Neucompilation ohne diese Option wieder auf maximale Lauf-
geschwindigkeit und minimalen Code gebracht werden.

Im Gegensatz zu anderen Konstruktionen wird der Code einer
Task oder Prozedur durch die Anwendung der TRACE–Anweisung
im Speicher nicht verändert.

3.7 Beschreibung der Bedienbefehle 219

Trigger Interupt T R I G G E R

TRIGGER EV hexnum8SYNTAX:

Beschreibung: Sämtliche Interrupts, die durch das Bitmuster von hexnum8 mit
einer ”1“ selektiert werden, passieren die durch ENABLE/DISABLE
eingestellte Interruptmaske des Systems. Ist dort keiner der
durch hexnum8 ausgewählten Interrupts freigegeben, so ist die
Anweisung ohne Wirkung. Das System unterscheidet nicht, ob
ein Interrupt durch TRIGGER oder durch die Hardware ausgelöst
wurde. Diese Anweisung eignet sich also hervorragend zum Aus-
testen eines interruptgesteuerten Programms.

1...8–stellige Hexadezimalzahl, die das 32 Bit Ereignismuster be-hexnum8:
schreibt. Bei weniger als 8 Stellen werden links Nullen ergänzt.

Vorgeschichte: WHEN EV 3 C TEST; ENABLE EV 7; WHEN EV 6Beispiele:
XYZ;

TRIGGER EV 1 die Task TEST wird fortgesetzt.

TRIGGER EV 4 die Task XYZ wird aktiviert.

TRIGGER EV 2 TEST wird fortgesetzt, XYZ aktiviert.

TRIGGER EV FFFFFFFF alle ”enabled“ Interrupts werden gefeu-
ert.

Die TRIGGER-Anweisung entspricht der gleichnamigen PEARL–Hinweis:
Anweisung.

220 3.7 Beschreibung der Bedienbefehle

T Y P E Type a File

TYPE device-file-specSYNATX:

Beschreibung: Es wird der durch die device-file-spec angegebene File auf dem
USER–Terminal ausgelistet. Das USER–Terminal ist immer die
Schnittstelle, von der der Befehl aufgerufen wurde.

TYPE /H0/mein/mistBeispiele:

Es wird der File mist von der Festplatte /H0/ im Subdirectory
mein auf dem Terminal ausgegeben.

Bemerkung: Mittels O–Kommando kann die Ausgabe auch umgelenkt werden.
In Wirklichkeit ist das Kommando ein ”COPY“-Befehl, nur mit
anderen Default-I/O-Parametern. Mit den Parametern SI, CO,
SC kann der Befehl alle Möglichkeiten von COPY nutzen. Siehe
dazu Seite 115, mit der Beschreibung von COPY.

3.7 Beschreibung der Bedienbefehle 221

Unload Tasks or Modules U N L O A D

UNLOAD [-A] taskname modulname ...modulname*SYNTAX:

Beschreibung: Es werden die in der Liste angegebenen Namen in der System-
verwaltung der Tasks und Module gesucht. Existiert ein Name
nicht, so wird die Meldung ”... not loaded“ abgesetzt und das
Kommando mit dem nächsten Element fortgesetzt. Wurde eine
Task oder ein Modul von einem anderen Nutzer geladen oder
zuletzt aktiviert, wird der Befehl nicht ausgeführt!

Soll ein Programmpaket, das von einem anderen Terminal (ande-Parameter:
rer User) geladen wurde, entladen werden, so ist der Parameter
-A anzugeben. Eine Überprüfung auf gleiche User findet dann
nicht mehr statt, so daß auch Tasks anderer User entladen wer-
den können. Ebenso sollte verfahren werden, wenn ein Programm
von mehreren Usern gemeinsam genutzt wird.

Die Task wird ausgeplant, gepufferte Aktivierungen werdentaskname:
gelöscht und anschließend wird, falls erforderlich, die Task termi-
niert. Dann verschwindet sie endgültig aus der Verwaltung von
RTOS–UH.

modulname: Folgt dem Modulnamen kein *, so wird nur die dem Modulnamen
zugeordnete Speichersektion entfernt. Vorsicht bei PEARL–
Modulen!! Dies kann zum Zusammenbruch des Systems führen,
falls anschließend noch Tasks auf Modulvariablen oder Daten-
stationen in dieser Sektion zugreifen.

Folgt dem Modulnamen ein *, so werden sowohl die Modulsekti-
on als auch sämtliche (!) in unmittelbarer Speicherfolge liegende
Tasks entfernt. Dieser Fall ist hauptsächlich für das großzügige
Aufräumen im System gedacht und verlangt eine gewisse Vor-
sicht, da man vorher feststellen muß, an welcher Stelle die er-
ste Nichttasksektion in der Kette steht. Eine logische Zugehörig-
keit der mitentladenen Folgetasks zu dem Modulnamen kann die
Shell nicht überprüfen! Allerdings kann nur durch das unglück-
liche Zuladen von assemblerkodierten reinen Tasksektionen hier
in der Praxis Ungemach entstehen.

UNLOAD TEST KALA* BAUERBeispiele:

Systemtasks können weder versehentlich noch absichtlich beein-Hinweise:
flußt werden. Bereits in der Ausgabeschlange stehende Com-
munication–Elemente einer Task verbleiben dort und werden

222 3.7 Beschreibung der Bedienbefehle

weiter bearbeitet, allerdings ist der Task–ID gelöscht, so daß als
Besitzer (RTOS) beim S–Befehl ausgegeben wird. Hängende Ein-
gaben müssen abgeschlossen sein, damit das ”CE“ frei wird.

3.7 Beschreibung der Bedienbefehle 223

Wait for following statements W A I T

WAITSYNTAX:

Beschreibung: Der Shellprozeß setzt sein individuelles ”Waitflag“. Alle fol-
genden Befehle bis zum Ende der Anweisungszeile werden nun
sequentiell abgearbeitet, solange sie den Fehlerstatus ”o.k.“
zurückgeben. Das Kommando zwingt den ausführenden Shell-
prozeß bei Befehlen, die Sohnprozesse generieren (z. B. P, COPY,
AS), in einen Wartezustand (”SEMA“) bis zum regulären oder ir-
regulären Ende des Sohnprozesses. Zum Unterschied zwischen
WAIT und ”--“ (Doppelminus) siehe Seite 66.

WAIT; P /ed/test lo liste; load;Beispiel:

Erst wenn der Compiler fertig ist und keinen Fehler festgestellt
hat kommt es zur Ausführung des ”load“-Befehles.

Gibt der Sohn, auf den der Shellprozeß wartet, den Fehlerstatus! →
”fehler“ zurück, so meldet die Shell sich mit ”.... operation
failed“ über Stderr und unterläßt die Ausführung der rest-
lichen Anweisungen in der Zeile. Auch wenn der Sohn durch

”TERMINATE“ von irgendwoher gewaltsam beendet wurde, gibt
dieser ebenfalls den Status ”fehler“ an die Shell zurück, und die
Shell ist ebenfalls wieder entblockiert. Gleiches gilt im Falle se-
kundärer Shellprozesse für beliebige Vater-Sohn-Ketten: die gan-
ze Kette wird rückwärts freigegeben.

Auch wenn die Shell scheinbar auf eine Semaphore (”SEMA“) war-! →
tet, so gibt es dennoch nirgendwo eine entsprechende Speicherzel-
le: Der Laufzustand des Sohnes selbst ist die blockierende Größe.
Nach System-Abort und auch nach dem ”Notruf“ der Shell über
die BREAK-Taste ist daher auch der Systemzustand wieder ganz
normal.

Auf die Beendigung freier Tasks, die nicht erst durch ein nach-! →
folgendes Kommando entstehen, kann mit diesem Befehl nicht
gewartet werden. Zwar benutzt WAIT intern den WFEX-Trap, wen-
det ihn aus Sicherheitsgründen jedoch nur eingeschränkt an.

224 3.7 Beschreibung der Bedienbefehle

W H E N When event activate or continue given Task

WHEN EV hexnum8 ACTIVATE taskname [PRIO integer3]SYNTAX:
WHEN EV hexnum8 CONTINUE taskname

WHEN EV hexnum8 taskname [PRIO integer3]
WHEN EV hexnum8 C taskname

Beschreibung: Bereits bestehende Einplanungen für eine Aktivierung (bei ...
ACTIVATE) bzw. zur Fortsetzung (bei ... CONTINUE) werden
gelöscht und die angegebene Einplanung für den mit hexnum8
bezeichneten Prozeßinterrupt wird eingetragen. Wird bei ...
ACTIVATE keine Priorität angegeben, so wird die taskeigene Prio-
rität eingesetzt. Die aktuelle Priorität einer gerade laufenden
Task wird dadurch jedoch nicht verändert, sondern erst, wenn
die Einplanung zur Aktivierung führt.

1...8–stellige Hexadezimalzahl, die das 32 Bit Ereignismusterhexnum8:
beschreibt. Die Aktivierung bzw. Fortsetzung erfolgt, wenn
das Bitmuster eines Interruptereignisses (bzw. einer TRIGGER–
Anweisung) mindestens ein gesetztes Bit gemeinsam mit dem
durch hexnum8 angegebenen Ereignismuster besitzt (d. h. wenn
die ”UND“–Verknüpfung nicht 00000000 ergibt. Bei weniger als
8 Stellen werden links Nullen ergänzt.

WHEN EV 2 XYZ PRIO 20Beispiele:

WHEN EV FFFFFFFF CONTINUE ABCD

ABCD wird bei einem beliebigen Prozeßinterrupt, sofern er ”ena-
bled“ ist, fortgesetzt.

3.7 Beschreibung der Bedienbefehle 225

Who has shell access W H O

WHOSyntax:

Beschreibung: Es werden alle Prozesse mit ihrem aktuellen Laufzustand und ih-
rer User-ID aufgelistet, die dem System als primäre Shellprozesse
bekannt sind. Sekundäre Shellprozesse kann man mit diesem Be-
fehl nicht erkennen. Wenn sich ein oder mehrere Nutzer über ein
Netz eingelogged haben, so erscheinen die entsprechenden tem-
porären primären Shellprozesse ebenfalls in der Liste. Das Aus-
gabeformat entspricht genau dem Zeilenformat beim L-Befehl,
der auf Seite 153 beschrieben ist.

WHO;Beispiel:

Wenn der primäre Prozeß mit Hilfe des optionalen SHELL-Befeh-! →
les abgehängt wurde, übernimmt ein sekundärer Shellprozeß sei-
ne Funktion. Weil der ursprüngliche (primäre) Shellprozeß wei-
terhin existiert, erscheint er auch noch in der ausgegebenen Liste.
Er kann ja auch durch BREAK noch immer gerufen werden. In der
Extrazeile mit dem Vorspann ”You:“ erscheint in solchen Fällen
jedoch nicht der primäre Prozeß, der zu dem Terminal gehört.

In der ”You:“-Zeile wird in jedem Fall der gerade tatsächlich
aktive Prozeß ausgegeben. Hier kann darum ausnahmsweise auch
ein sekundärer Shellprozeß beschrieben werden.

226 3.7 Beschreibung der Bedienbefehle

(Leere Seite vor neuem Kapitel)

Kapitel 4: Der Editor Rtos-Word

4.1 Einleitung

Der Editor Rtos-Word ermöglicht ein komfortables Editieren von beliebig
großen und einer sehr hohen Anzahl von Texten. Jeder zu bearbeitende Text
muß allerdings komplett im RAM gehalten werden, wobei eine Fragmentierung
des Textes erlaubt ist (macht RTOS-UH bei Bedarf automatisch). Liegen die
zu bearbeitenden Texte auf einer Floppy bzw. Harddisk oder auf einem über
ein Netzwerk angeschlossenen Rechner, legt Rtos-Word eine Textkopie auf
dem Device /ED des eigenen Rechners ab. Dadurch ist ein Verlassen ohne Ab-
speichern möglich. Liegt das File direkt auf /ED, arbeitet Rtos-Word direkt
auf der Datei und erspart RTOS-UH die Kopie im eigenen RAM. In diesem
Fall ist zwangsläufig ein Verlassen nur mit Abspeichern möglich.

Die maximal erlaubte Spaltenzahl des zu editierenden Textes beträgt 231 (au-
tomatische Quelltextanpassung durch Umknicken beim Einlesen), die Zeilen-
zahl ist nur durch den Speicherplatz begrenzt. Allerdings können nur die ersten
65500 Zeilen verändert werden. Der Text darf alle Textzeichen enthalten, aller-
dings werden nicht darstellbare Zeichen durch ein ”@“ im Fenster dargestellt.
Die Standardgröße des Fensters beträgt 80 Spalten mal 25 Zeilen.

Jedem Text ordnet Rtos-Word einen Zeilenpuffer zu, mit dem sehr schnell
gearbeitet werden kann. Weiterhin gibt es einen gemeinsamen Blockpuffer aller
Texte, der als Zwischenspeicher für verschiedene Blockoperationen und dem
Austausch von Blöcken zwischen den Texten dient.

Eine Besonderheit ist die Fernsteuerung. Über das Device /VO läßt sich der
Editor fernsteuern, d. h. beliebige Befehlskombinationen behandelt der Editor
wie Nutzereingaben. Eine Ausführung von Batch-Dateien ist ebenfalls möglich.

Der Editoraufruf WE beinhaltet eine Umschaltung auf ein eigenes Editorfen-
ster, falls ein Window-Manager (WiM) im System vorhanden ist. In diesem
Fall (Window-Modus) arbeitet der Editor mausunterstützt (Pull-Down-Menüs,
Cursorpositionierung, diverse Parametereinstellungen). Jeder Text erhält sein
eigenes in der Größe einstellbares Fenster, weiterhin gibt es ein Gruppenfenster,
das eine Übersicht aller gleichzeitig bearbeiteten Texte gibt und auch der Um-
schaltung zwischen den Texten dient. Der Nutzer hat dann auch eine weitere
Entscheidungsfreiheit bei der Bearbeitung mehrerer Texte. Er kann wahlweise

227

228 4.2 Erste Schritte

mehrere Editoren über WE aufrufen (verschiedene Editor-Tasks, kein gemeinsa-
mer Blockpuffer, kein gemeinsames Gruppenfenster) oder mehrere Texte mit
einer Editor-Task bearbeiten.

4.2 Erste Schritte

4.2.1 Öffnen einer Datei

Bereits beim Aufruf kann der Benutzer dem Editor einige Parameter übergeben.
An dieser Stelle sollen erst einmal die Aufrufformen beschrieben werden, die
maximal den Dateinamen als Übergabeparameter enthalten:

WE [device/][subdirectories/]filename (Form 1)
WE SC [device/][subdirectories/]filename (Form 2)
WE (Form 3)

Ist ein WiM im System vorhanden, kann ein eigenes Editorfenster durch die
folgenden Aufrufe unterdrückt werden1.

WD [device/][subdirectories/]filename (Form 1)
WD SC [device/][subdirectories/]filename (Form 2)
WD (Form 3)
WORD [device/][subdirectories/]filename (Form 1)
WORD SC [device/][subdirectories/]filename (Form 2)
WORD (Form 3)

Die folgenden Hinweise sollen diese drei Formen näher erläutern:

• WE unterscheidet sich von den beiden anderen Befehlen dadurch, daß
Rtos-Word ein eigenes Fenster für jeden Text öffnet, wenn ein WiM
im System vorhanden ist (Vorsicht, falls Sie sich an einem Rechner ein-
geloggt haben !!!). Das eigene Textfenster läßt sich gemäß Abschnitt 4.4
unterdrücken.

• Fehlt in Form 1 oder Form 2 die Deviceangabe, setzt die Shell das
Working-Directory und ein ”/“ vor den Übergabeparameter.

• In der Form 1 sind die Dateinamen SI, LO, SC, AD, SZ und PRIO
(auch kleingeschrieben) ohne Device oder Subdirectory verboten, da die-
se Schlüsselworte zur Spezifikation weiterer Übergabeparameter dienen
(Fehlermeldung: ”wrong command“). Als Dateinamen sind sie erlaubt,
wenn ein Device und/oder mindestens ein Subdirectory angegeben ist.

• Alle weiteren Übergabeparameter sind in Abschnitt 4.4 erläutert.
1Sobald RTOS-UH die Information bereitstellt, ob Rtos-Word auf einem Terminal oder

auf einer Terminalemulation eines WiMs läuft, verhalten sich die Bedienbefehle WD, WORD

genauso wie WE

4.2 Erste Schritte 229

• Das Device, auf dem die Datei liegt, muß rückspulbar sein. Ist das
nicht der Fall, erscheint die Fehlermeldung ”Sorry, can’t work on
this device. Bye, Bye!“

• In der Form 3 bearbeitet Rtos-Word das File /ED/SI, falls die aufru-
fende Shell die User-ID ”1“ besitzt, sonst /ED/SIx, wobei x die User-ID
darstellt.

Im Normalfall startet der Editor bei Beachtung der o. a. Hinweise ohne weitere
Fehlermeldungen. Sieht sich Rtos-Word gezwungen, weitere Fehlermeldungen
auszugeben, finden Sie eine Erklärung ab Seite 272.

Ist die Datei vorhanden, öffnet Rtos-Word diese, sonst erscheint in etwa
folgendes Bild:

RTOS-UH W O R D

Version 2.2-e
(c) 1988-1996 IRT, Hannover

Help with ^XH

[N] edit a new File
[X] exit before opening

Sie müssen nun wählen, ob Sie eine Programm-Datei editieren oder zum Be-
triebssystem zurückkehren wollen. Entscheiden Sie sich für eine Bearbeitung
einer Datei, öffnet Rtos-Word diese und schreibt in die erste Zeile ”*File
was opened by RTOS-WORD.“

Sollte wider Erwarten statt dem [N] ein ÖNÄ erscheinen, ist bei dem Terminal
oder dem Fenster der falsche ASCII-Satz eingestellt. Dieses stört Rtos-Word
nicht weiter, die eckigen Klammern werden nur anders angezeigt.

Wird eine bereits vorhandene Datei editiert, sind Zeichen gemäß Tabelle 4.1 in
der Datei erlaubt.

$20 ... $FF Normale ASCII-Zeichen
$0D Carriage return (CR): Zeilenende für RTOS-UH
$0A (nur hinter CR): Zeilenende für MS-DOS/MS-Windows
$04 Dateiende (EOT: End of Text) für RTOS-UH
$1A Dateiende für MS-DOS/MS-WINDOWS
$09 Tabulator: Wird beim Öffnen durch 3 Blanks ersetzt

Tabelle 4.1: Erlaubte Textzeichen für den Editor Rtos-Word

230 4.2 Erste Schritte

4.2.2 Statuszeile, Tabulatorleiste und Fensteraufbau

Hat Rtos-Word eine Datei geöffnet, ist ab Bildschirmzeile 3 der Textanfang2

dargestellt. In Bildschirmzeile 1 befindet sich die Statuszeile, über dem Text
eine Tabulatorleiste. In den ersten sieben Spalten der Textzeilen steht im Nor-
malfall eine nicht zur Datei gehörende Zeilennummer. Ihre Bedeutung ist hinter
den Hinweisen zur Tabelle 4.2 erklärt.

Die Statuszeile soll an Hand des Befehles WE /H0/TEST erklärt werden. Sie
sieht nach dem Öffnen der Datei in etwa wie folgt aus:

line 1 col 1 ins H+ a+ C w- m- /H0/TEST

Die einzelnen Elemente sind in Tabelle 4.2 erklärt. Dort sind ggf. Verweise
angegeben. Die Tabelle enthält auch die nicht angezeigten Modi.

Hinweise zu Tabelle 4.2:

• Lautet der Defaultstatus einmal nicht ins H+ a+ w- m-, ist ein Konfigu-
rationsmodul geladen. Die Erzeugung und Parametrierung eines solchen
Modules ist im Abschnitt 4.8 ab Seite 264 erläutert.

• Rtos-Word erkennt automatisch, ob die Datei MS-DOS/MS-Windows
kompatibel ist. Solange der Nutzer keine Änderung erzwingt, wird der
Status beibehalten.

• UNIX-kompatible Dateien werden nicht unterstützt.

• Funktioniert die inverse, bei einigen Terminals auch halbhelle, Schrift
nicht, muß ein Konfigurationsmodul erstellt werden (siehe Abschnitt 4.8,
Seite 264).

Im Normalfall (kein Konfigurationsmodul) sind neben den Textzeilen sieben
Spalten für die ”logische Zeilennummer“ reserviert. Solange Sie keine Zei-
len hinzufügen oder entfernen, stimmt die physikalische Zeilennummer immer
mit der logischen überein. Die logische Zeilennummer ist beim Beheben von
Übersetzerfehlern sehr wichtig, da das Einfügen von Zeilen die Zuordnung von
Text zu logischer Zeilennummer nicht ändert. Dazu ein Beispiel: Drücken Sie

”ˆXR“3, um den Cursor an den Anfang des Textes zu positionieren, und an-
schließend ”ˆM“, um eine Zeile einzufügen. Die logische Zeile 1 bleibt dem
Text zugeordnet, die physikalische Zeilennummer ändert sich. Dadurch können
Sie Zeilen beliebig hinzufügen und entfernen und trotzdem durch den Befehl

”logische Zeilennummer anspringen“ immer die vom Übersetzer angezeigten
Fehlerzeile anspringen (Solange Sie die Zeile nicht entfernt haben).

2Ausnahme: Sie benutzen das Hilfesystem (siehe Seite 250).
3Das Zeichen

”
ˆ“ vor einem anderen bedeutet, daß Sie gleichzeitig die Control-Taste, auch

Ctrl- und Strg-Taste genannt, und die angegebene Taste drücken sollen.

4.2 Erste Schritte 231

Status Anmerkung Bedeutung
line 1 ”line“ invers Cursor steht in physikalischer Textzeile 1
col 1 ”col“ invers Cursor steht in physikalischer Textspalte 1
ins invers Datei wird im ”Einsetzmodus“ bearbeitet (siehe

Seite 234). Gegenstück von rep.
rep invers Datei wird im ”Überschreibmodus“ bearbeitet

(siehe Seite 235). Gegenstück von ins.
H+ / H- ”H+“ invers Blockbefehle sind ein-/ ausgeschaltet (siehe Sei-

te 247).
a+ / a- ”a+“ invers automatisches Einrücken ist ein-/ausgeschaltet

(siehe Seite 233).
L invers Zeilenende ist Cr /Lf . (MS-DOS/-Windows

kompatible Datei) Gegenstück von C.
C invers Zeilenende ist Cr . Gegenstück von L.
w+ / w- ”w+“ invers Wortumbruch/kein Wortumbruch am rechten

Rand (siehe Seite 234).
m+ / m- ”m+“ invers Klingelsignal ”rechter Rand erreicht“ ein-/aus-

schalten (siehe Seite 233).
* Benutzer hat Dateiinhalt nach dem Öffnen bzw.

dem letzten Abspeichern geändert. Ist der Stern
nicht sichtbar, wurde Datei nicht geändert.

/H0/TEST Beispiel Name der editierten Datei einschließlich Devi-
ce und Subdirectories. Kann Rtos-Word den
kompletten Pfad nicht darstellen, wird ein Teil
aus dem Pfad herausgeschnitten und durch ”...“
ersetzt.

Tabelle 4.2: Statuszeilenelemente des Editors Rtos-Word

Ist eine Zeile länger als der Bildschirm, so wird in der letzten Spalte der Zeile
ein invers dargestelltes ”+“ gezeigt, um Ihnen zu zeigen, daß diese Zeile über
den Bildschirm herausragt.

Unter dem Textfenster wird ggf. der Zeilenpuffer eingeblendet.

Wenn Sie ein Menü aufrufen - z. B. mit ”ˆX“ - so wird der entsprechende
Buchstabe in der linken oberen Ecke angezeigt. Wird der zweite Buchstabe sehr
schnell nach dem ersten eingegebenen (z. B. Funktionstaste), so unterbleibt die
Ausgabe.

Als letztes soll die Tabulatorleiste erklärt werden. Sie sieht wie folgt aus:

L------!------!---------------------!--- ... ---------!- ... -R

(...) deutet an, daß einige ”-“ weggelassen wurden. Es bedeuten:

232 4.3 Bearbeitung von Texten

Zeichen Erklärung
L Linker Rand (nicht veränderbar)
- nicht gesetzter Tabulator (veränderbar: siehe Seite 249)
! gesetzter Tabulator (veränderbar: siehe Seite 249).
R Rechter Rand (veränderbar: siehe Seite 249)

Die Veränderung der Tabulator-Leiste bzw. die Benutzung der Tabulator-Taste
ist in Unterabschnitt 4.3.8 beschrieben.

4.2.3 Fenster-Elemente im Window-Modus

Im Window-Modus sind alle wichtigen Kommandos über Pull-Down-Menüs
ausführbar. Weiterhin können Sie verschiedene Befehle mit der Maustaste ab-
setzen. Folgende Regionen innerhalb eines Fensters unterscheidet Rtos-Word
bei der Benutzung der linken Maustaste:

• Den Text (Cursorpositionierung, Verlassen des Zeilenpuffers).

• Die Statuszeile (Änderung der Betriebsmodi, Zeilen und Spaltenände-
rung, Textwechsel, Dateinamensänderung (mit rechter Taste)).

• Die Tabulatorleiste (Setzen und Löschen von Tabulatoren sowie Verände-
rung des rechten Randes).

• Die Spalten links des Textes (Anspringen von Zeilen).

• Die beiden Zeilen unterhalb des Textes (Editieren des Zeilenpuffers, Cur-
sorpositionierung innerhalb des Puffers).

Die Verwaltung des Schließfeldes sowie die Rollbalken einschließlich der Pfeile
übernimmt Rtos-Word.

An dieser Stelle alle Befehle und Mausklicks zu erklären, würde eine doppelte
Erläuterung vieler Befehle bedeuten. Probieren Sie einfach aus, was Sie mit der
Maus erreichen können.

4.3 Bearbeitung von Texten

4.3.1 Beschreibung der Bedienbefehle

Die Bedienbefehle sind in der Befehlsbeschreibung mittels der folgenden Maske
erklärt:

Nr. Kurzbeschreibung Taste

Ausführliche Beschreibung

4.3 Bearbeitung von Texten 233

Die Titelzeile beginnt mit der sogenannten Befehlsnummer (Nr.). Sie dient zum
schnelleren Auffinden bei Verweisen, da i. a. auf die Befehlsnummer und nicht
auf die Seite verwiesen wird. Alle Befehle mit einer ausführlichen Erklärung
sind durchnumeriert. Ist bei einem Befehl keine Nummer vergeben worden, ist
er an einer anderen Stelle ausführlich erklärt. Der Befehlsnummer folgt die
Kurzerklärung des Befehls und anschließend die Tastenkombination, die den
Befehl auslöst. Sind mehrere angegeben, kann die in der Erklärung beschriebe-
ne Wirkung mit allen Kombinationen erreicht werden. Ein ”ˆ“ vor einer Taste
bedeutet, daß Sie die Ctrl-Taste und die darauf folgende gleichzeitig drücken
sollen. Ein Esc bedeutet, daß Sie die Esc-Taste und die darauf folgende hin-
tereinander drücken müssen. Bei angeschlagenen Buchstaben ist es egal, ob Sie
Groß- oder Kleinschreibung verwenden.

Bei einigen Befehlen sind drei Tastenkombinationen angegeben, von der die
mittlere ”...“ lautet. Lesen Sie in diesem Fall die ausführliche Erklärung zu
diesem Befehl.

4.3.2 Statusänderungen des Editors

1 Einsetzmodus ein-/ausschalten ˆ ˆ-

Mit diesem Befehl können Sie zwischen dem Einsetz- und dem Über-
schreibmodus wechseln, wobei ”ˆ-“ nur im Window-Modus erlaubt ist.
Die Unterschiede zwischen den beiden Modi sind in den Tabellen 4.3
und 4.4 erklärt.
Im Window-Modus können Sie statt Verwendung der Hot-Keys in das
Anzeigefeld in der Statuszeile klicken (inverses ”inv“ bzw. ”rep“), um
vom Einsetz- in den Überschreibmodus und umgekehrt zu wechseln.

2 Randauslösung ein-/ausschalten ˆOX

Bei eingeschalteter Randauslösung (inverses ”m+“ in der Statuszeile)
wird beim Erreichen des rechten Randes die Klingel Ihres Terminals
ausgelöst, das Zeilenendesignal entfällt allerdings, wenn der Editor im
Window-Modus ausgeführt wird. Mit diesem Befehl können bei einge-
schalteter Auslösung diese ausschalten (”m-“ in der Statuszeile) und
umgekehrt.
Durch einen Mausklick in das entsprechende Anzeigefeld der Status-
zeile können Sie im Window-Modus ebenfalls den Zustand wechseln.

3 Einrücken ein-/ausschalten ˆOU

Bei eingeschaltetem Einsetzmodus und eingeschaltetem Einrückmo-
dus (inverse ”ins“ und ”a+“ in der Statuszeile) wird beim Drücken
von Cr der Cursor unter das erste Nicht-Leerzeichen der vorherigen

234 4.3 Bearbeitung von Texten

Einsetzmodus
Text Ein eingegebenes Zeichen wird in den Text eingefügt, solange die

zulässige Zeilenlänge nicht überschritten wird.
Cr Beim Anschlagen des Cr wird die Zeile an der aktuellen Cursorposi-

tion beendet. Der eventuelle Rest der Zeile wird in die neu eingefügte
nächste Zeile kopiert. Ist automatisches Einrücken aktiviert, werden
am Anfang der neuen Zeile so viele Leerzeichen eingefügt, wie in der
alten vor dem ersten Nicht-Leerzeichen auch standen.

Tab Beim Anschlagen der Tab-Taste werden ab der Cursorposition so
viele Leerzeichen eingefügt, bis ein Tabulator erreicht wird. Steht
rechts des Cursors kein Tabulator, wird am rechten Rand – ”R“ in
der Tabulatorleiste – ein Cr, in der neu eingerichteten Zeile bis zum
Erreichen des ersten Tabulators Leerzeichen eingefügt. Ist überhaupt
kein Tabulator gesetzt, werden Leerzeichen bis zum rechten Rand
und anschließend ein Cr eingefügt.

Bs Steht der Cursor in der ersten Spalte und wird die Bs-Taste ange-
schlagen, wird das Cr aus der vorherigen entfernt und diese beiden
Zeilen unter Beachtung der zulässigen Zeilenlänge vereint. Die logi-
sche Zeilennummer wird aus der Verwaltung entfernt.

Del Steht der Cursor beim Drücken der Del-Taste in der letzten Spalte,
wird das Cr entfernt und diese Zeile mit der nächsten Zeile unter
Beachtung der zulässigen Zeilenlänge vereint. Die evtl. vorhandene
logische Zeilennummer der nächsten Zeile wird aus der Verwaltung
entfernt.

Tabelle 4.3: Der Einsetzmodus von Rtos-Word

Spalte gesetzt. Mit diesem Befehl wechseln Sie zwischen ein- und aus-
geschaltetem ”a-“ Einrücken.
Durch einen Mausklick in das entsprechende Anzeigefeld der Status-
zeile können Sie im Window-Modus ebenfalls den Zustand wechseln.

4 Wortumbruch ein-/ausschalten ˆOW

Bei eingeschaltetem Wortumbruch (inverses ”w+“ in der Statuszeile)
wird beim Eingeben eines Leerzeichens hinter diesem die Zeile been-
det, falls es sich hinter dem rechten Rand (”R“ in der Tabulatorleiste)
befindet. Mit diesem Befehl können Sie bei eingeschaltetem Umbruch
diesen ausschalten (”w-“ in der Statuszeile) und umgekehrt.
Durch einen Mausklick in das entsprechende Anzeigefeld der Status-
zeile können Sie im Window-Modus ebenfalls zwischen den beiden
Zuständen hin- und herwechseln.
Hinweis: Es ist geplant, in einer der nächsten Versionen den Umbruch

4.3 Bearbeitung von Texten 235

Überschreibmodus
Text Ein eingegebenes Zeichen überschreibt das unter dem Cursor stehen-

de, solange das Zeilenende nicht erreicht ist. Steht der Cursor auf der
Zeilenendemarkierung, wird das Zeichen vor dieser eingefügt.

Cr Beim Anschlagen des Cr wird der Cursor auf Spalte 1 der nächsten
physikalischen Zeile positioniert. Es wird keine Zeile eingefügt.

Tab Beim Anschlagen der Tab-Taste wird der Cursor auf den ersten Ta-
bulator rechts der Cursorpostition gesetzt. Steht rechts der aktuellen
Position kein Tabulator, wird der Cursor eine Zeile tiefer auf die er-
ste Spalte mit gesetztem Tabulator positioniert. Ist kein Tabulator
gesetzt, wird der Cursor in die erste Spalte der nächsten Zeile posi-
tioniert.

Bs Steht der Cursor in der ersten Spalte und wird die Bs-Taste ange-
schlagen, wird der Cursor hinter das letzte Zeichen der vorherigen
Zeile gesetzt.

Del Steht der Cursor beim Drücken der Del-Taste in der letzten Spalte,
wird der Tastenanschlag ignoriert.

Tabelle 4.4: Der Überschreibmodus von Rtos-Word

vor dem Wort durchzuführen. Verlassen Sie sich nicht darauf, daß
Rtos-Word den Umbruch hinter das Wort setzt.

4.3.3 Grundlegende Bearbeitung einer Datei

Dieser Abschnitt befaßt sich mit dem Einfügen und Löschen von Text sowie der
Cursorbewegung. Zusammen mit Abschnitt 4.3.5 beschreibt er die elementaren
Editierfunktionen.

Der Cursor kann am einfachsten mit den Cursortasten über den Text bewegt
werden. Rtos-Word läßt es nicht zu, daß der Cursor aus dem Schirm heraus-
scrollt. Im Zweifelsfall wird der bearbeitete Text geblättert. Zur Beschleunigung
der täglichen Arbeit gibt es spezielle Tastenkombinationen (und im Window-
Mode Menüoptionen), mit denen der Cursor positioniert werden kann.

Tabulator anlaufen Tab

Der Cursor wird auf den nächsten Tabulator gesetzt. Das genaue Ver-
halten ist wegen der Unterschiede im Einsetz- und Überschreibmodus
in den Tabellen 4.3 und 4.4 ab Seite 234 erklärt.

5 Zeichen löschen Del Esc← EscW

Löscht das Zeichen der aktuellen Cusor-Position. Steht der Cursor am
Zeilenende und ist der Einsetzmodus eingeschaltet, so wird das Zei-

236 4.3 Bearbeitung von Texten

lenende gelöscht und die beiden Zeilen werden unter Berücksichtigung
der zulässigen Zeilenlänge vereinigt.

6 Leerzeile einfügen EscL Esc↓ EscE

Dieser Befehl setzt vor die Zeile, in der der Cursor steht, eine Leerzeile
ein und positioniert den Cursor auf Spalte 1 (also das Zeilenende)
dieser Leerzeile.

7 Leerzeichen einfügen EscQ Esc→
Dieser Befehl fügt unter dem Cursor ein Leerzeichen unabhängig vom
Überschreib- oder Einfügemodus ein.

8 Sonderzeichen eingeben ˆPA ... ˆPW

Nach der Eingabe von ”ˆP“ können Sie ein Sonderzeichen in den Text
eingeben. Um das Zeichen einzugeben, können Sie entweder Tabelle
4.11 verwenden, um die Zuordnung zwischen Buchstaben und Sonder-
zeichen zu erhalten oder Sie addieren auf den ASCII-Wert ihres Zei-
chens $40 und geben den zu diesem Wert korrespondierenden Buchsta-
ben ein. Zulässig sind die Buchstaben ”A“ bis ”W“ mit Ausnahme des

”M“. Beispiele: Mit ”ˆPD“ können Sie also ein Eot eingeben. Steht
es in der ersten Spalte, können Sie hier das neue Dateiende (mit al-
len Konsequenzen) setzen. Mit ”ˆPL“ (Form-Feed) können Sie einen
Drucker dazu bewegen, hier einen Seitenvorschub zu forcieren.

9 Cursor nach links ˆH ← EscD

Der Cursor wird um ein Zeichen nach links bewegt. Steht der Cursor
am Anfang einer Zeile, so wird er an das Ende der vorherigen Zeile
positioniert.

10 Cursor nach rechts ˆL → EscC

Der Cursor rückt um ein Zeichen nach rechts. Steht er am Ende einer
Zeile, springt er an den Anfang der nächsten Zeile.

11 Cursor nach unten ˆJ ˆV ↓ EscB

Der Cursor springt um eine Zeile nach unten. Wenn möglich, bleibt er
in derselben Spalte. Ist die nächste Zeile kürzer, so springt der Cursor
an das Ende der Zeile.

12 Cursor nach oben ˆK ↑ EscA

4.3 Bearbeitung von Texten 237

Der Cursor springt um eine Zeile nach oben. Wenn möglich, bleibt er
in derselben Spalte, ansonsten springt er an das Ende der Zeile.

13 Cursor Wort links ˆA

Der Cursor wird an den Anfang des Wortes gesetzt, auf dem er steht.
Die Positionierung erfolgt über die Suche des ersten Wortendes links
vom Cursor, verbunden mit einer Positionierung hinter dem Wortende.
Das Wortende ist in Befehl 23 erklärt.

14 Cursor Wort rechts ˆF

Der Cursor wird auf den nächsten Wortanfang gesetzt. Die Positionie-
rung erfolgt über die Suche des ersten Wortendes rechts vom Cursor,
verbunden mit einer Positionierung hinter dem Wortende. Das Wor-
tende ist in Befehl 23 erklärt.

Die folgenden 4 Befehle dienen der Positionierung des Cursors an die Ränder
der gerade aufgeblätterten Seite. Die Buchstaben S, D, X und E bilden eine
Art Kreuz auf Ihrer Tastatur. An diesem können Sie sich orientieren, wenn Sie
den Cursor positonieren wollen.

15 Cursor an Zeilenanfang ˆXS

Der Cursor wird an den Anfang der Zeile positioniert.

16 Cursor an Zeilenende ˆXD

Der Cursor wird hinter das letzte eingegebene Zeichen der Zeile gesetzt.

17 Cursor an oberen Bildschirmrand ˆXE

Bewegt den Cursor in die zweite Bildschirmzeile. Der Text wird nicht
geblättert. Die Spaltenposition wird, wenn möglich, beibehalten.

18 Cursor an unteren Bildschirmrand ˆXX

Positioniert den Cursor in die vorletzte Bildschirmzeile. Der Text wird
nicht geblättert. Die Spaltenposition wird, wenn möglich, beibehalten.

19 Cursor an den Dateianfang ˆXR

Der Textanfang wird aufgeblättert und der Cursor an den linken Rand
der ersten physikalischen Zeile gesetzt.

20 Cursor an das Dateiende ˆXC

238 4.3 Bearbeitung von Texten

Das Textende wird aufgeblättert und der Cursor auf das Dateiende
gesetzt.

21 Zeile umbrechen (Hartes Cr) ˆN

Es wird an der aktuellen Cursorposition ein Zeilenende eingefügt. Der
eventuelle Zeilenrest wird unter Berücksichtigung der Einrückoption
in die neu eingefügte nächste Zeile kopiert. Der Cursor behält seine
relative Position zum Zeilenrest: Nach Anschlagen der Taste ”Cursor
rechts“ steht der Cursor auf dem ersten Zeichen des Zeilenrests.

22 Zeichen links vom Cursor löschen ˆG Bs

Es wird das Zeichen links vom Cursor gelöscht. Steht der Cursor in
Spalte 1 und ist der Einsetzmodus eingeschaltet, so wird das Zeilen-
ende der vorherigen Zeile gelöscht und die beiden Zeilen werden unter
Berücksichtigung der zulässigen Zeilenlänge vereinigt. Dieser Befehl
hat die gleiche Wirkung wie die Bs-Taste.

23 Wort ab Cursor bis Wortende löschen ˆT

Dieser Befehl löscht ab der Cursorposition den Rest des Wortes und
alle folgenden Leerzeichen. Steht der Cursor am Zeilenende, wird im
Einsetzmodus das Zeilenende gelöscht, die Zeilen unter Berücksichti-
gung der zulässigen Zeilenlänge vereinigt und alle Leerzeichen, die links
des ersten ”Nicht-Leerzeichens“, liegen, gelöscht. Ein Wortende ist in
Rtos-Word durch eins der folgenden Zeichen definiert: Ã , ; . : !
? = - * + / () ’ { } \ < > Cr.

24 Zeile, in der Cursor steht, löschen ˆY Esc↑
Es wird die gesamte Zeile, in der der Cursor steht, gelöscht. War eine
logische Zeilennummer für diese Zeile vergeben, wird diese aus der
Verwaltung entfernt und ist nicht mehr mit ”EscZ“ (siehe Nr. 33)
erreichbar. Alle nachfolgenden Zeilen rücken um eine Zeile nach oben.
Die Cursorposition innerhalb des Bildschirms bleibt, soweit möglich,
erhalten.

25 Zeile ab Cursor bis Zeilenende löschen ˆXY

Löscht ab der Cursorposition bis zum Zeilenende alle Zeichen. Die Zei-
lenendemarkierung wird nicht gelöscht, auch wenn der Cursor auf ihr
steht.

26 Zeile links vom Cursor löschen ˆXZ

4.3 Bearbeitung von Texten 239

Löscht links vom Cursor bis zur Spalte 1 alle Zeichen. Steht der Cursor
in Spalte 1, hat dieser Befehl keinerlei Wirkung.

Block löschen ˆEY

Befehl ist unter Nummer 55 erklärt.

27 Löschen rückgängig machen ˆU

Haben Sie eine Löschoperation irrtümlich ausgeführt, können Sie mit
sofort danach gedrücktem ”ˆU“ dieses rückgängig machen. Eine Aus-
nahme bildet der Befehl ”Block löschen“: Die ”Undo“-Funktion ist hier

”ˆEM“ (siehe Befehl 57). Wichtig ist, daß Sie ”ˆU“ sofort eingeben,
sonst kann Rtos-Word Ihren Wunsch nicht erfüllen und gibt statt
dessen eine Fehlermeldung aus. Lediglich der Aufruf eines Submenüs
und Abbruch mit einem Leerzeichen erlaubt weiterhin das ”Undo“.

28 Letzte gelöschte Zeile einfügen ˆXU

Haben Sie eine gesamte Zeile z. B. mit ”ˆY“ gelöscht, setzt dieser
Befehl die gelöschte Zeile vor die, in der z. Zt. der Cursor steht. Dieser
wird in die erste Spalte der eingesetzten Zeile positioniert.

4.3.4 Befehle zum Blättern

Cursor auf Marke positionieren ˆX0-9

Befehl ist im Unterabschnitt 4.3.9 als Nr. 70 erklärt.

29 Cursor zum Blockanfang bewegen ˆXB

Bewegt den Cursor auf den mit ”ˆEB“ markierten Blockanfang. Der
Text wird, falls nötig, so geblättert, daß der Cursor sichtbar bleibt. Die
Blockbefehle dürfen ausgeschaltet sein. Der Block darf ungültig sein
(Blockende vor Blockanfang oder gar nicht definiert).

30 Cursor zum Blockende bewegen ˆXK

Bewegt den Cursor auf das mit ”ˆEK“ markierte Blockende. Der Text
wird, falls nötig, so geblättert, daß der Cursor sichtbar bleibt. Die
Blockbefehle dürfen ausgeschaltet sein. Der Block darf ungültig sein
(Blockanfang hinter Blockende oder gar nicht definiert).

240 4.3 Bearbeitung von Texten

31 Cursor auf Start von Suchen/Ersetzen ˆXV

Der Cursor wird an die Stelle gesetzt, wo das letzte ”Suchen und/oder
Ersetzen“ gestartet wurde. Der Text wird, falls nötig, geblättert, so
daß der Cursor sichtbar bleibt.

32 Cursor auf physikalische Zeile EscY

Der Cursor wird, falls möglich, auf die von Ihnen eingegebene Zeile
positioniert. Der Versuch scheitert, wenn die Zeilennummer zu groß
ist. Der Text wird, falls nötig, so geblättert, daß der Cursor sichtbar
bleibt.
Durch einen Mausklick in die Zeilenanzeige der Statuszeile können Sie
diesen Befehl ebenfalls ausführen.

33 Cursor auf logische Zeile EscZ

Der Cursor wird, falls möglich, auf die von Ihnen eingegebene Zeile
positioniert. Der Versuch scheitert, wenn die Zeilennummer zu groß
ist oder Sie die Zeile entfernt haben. Der Text wird, falls nötig, so
geblättert, daß der Cursor sichtbar bleibt.
Diesen Befehl können Sie auch durch einen Mausklick im Bereich der
Zeilennumerierung des Textfensters ausführen.

34 Cursor auf physikalische Spalte setzen EscG

Der Cursor wird, falls möglich, auf die von Ihnen eingegebene Text-
spalte positioniert. Ist die von Ihnen eingegebene Zahl zu groß, wird
der Cursor an das Zeilenende gesetzt. Der Text wird, falls nötig, seit-
lich so geblättert, daß der Cursor sichtbar bleibt.
Im Window-Modus können Sie statt Verwendung des Hot-Keys in das
Spaltenanzeigefeld der Statuszeile klicken.

Mit den beiden nächsten Befehlen kann der Text ”feinpositioniert“ werden.

35 Text abwärts scrollen ˆZ

Scrollt den Bildschirm um eine Zeile nach oben. Die oberste Bild-
schirmzeile verschwindet und eine neue Zeile wird am unteren Bild-
schirmrand sichtbar. Der Cursor bleibt, sofern möglich, auf derselben
Stelle im Text stehen, wird also auch um eine Zeile aufwärts bewegt.
Steht er in der zweiten Bildschirmzeile, wird er nicht gescrollt.
Im Window-Modus können Sie statt Verwendung des Hot-Keys den
unteren Rollpfeil anklicken.

4.3 Bearbeitung von Texten 241

36 Text aufwärts scrollen ˆW

Scrollt den Bildschirm um eine Zeile nach unten. Die unterste Bild-
schirmzeile verschwindet und eine neue Zeile wird am oberen Bild-
schirmrand sichtbar. Der Cursor bleibt, sofern möglich, auf derselben
Stelle im Text stehen, wird also auch um eine Zeile abwärts bewegt.
Steht er auf der vorletzten Zeile, wird er nicht gescrollt.
Im Window-Modus können Sie statt Verwendung des Hot-Keys den
oberen Rollpfeil anklicken.

37 Folgende Textseite aufblättern ˆC

Der Text wird eine Bildschirmseite weitergeblättert. Nach dem
Blättern wird die sich an die z. Zt. unterste Zeile anschließende Zeile
die oberste sein. Der Cursor bleibt, falls möglich, in derselben Bild-
schirmzeile und -spalte.
Im Window-Modus können Sie in den unteren Rollbalken klicken, um
eine Seite vorwärts zu blättern.

38 Textseite zurückblättern ˆR

Der Text wird eine Bildschirmseite zurückgeblättert. Nach dem
Blättern wird die vor der z. Zt. obersten Zeile liegende Zeile die unter-
ste sein. Der Cursor bleibt, falls möglich, in derselben Bildschirmzeile
und -spalte.
Im Window-Modus können Sie in den oberen Rollbalken klicken, um
eine Seite rückwärts zu blättern.

39 Halbe Seite vorwärtsblättern EscF

Der Text wird um eine halbe Seite in Richtung Dateiende weiter-
geblättert. Der Cursor bleibt, falls möglich, in derselben Bildschirm-
zeile und -spalte.

4.3.5 Dateibefehle

Bei einigen Dateibefehlen erhalten Sie von Rtos-Word eine Eingabeaufforde-
rung. Den von Ihnen eingegebenen String können Sie mit den in Tabelle 4.5
angegebenen Tasten editieren.

Betrachten wir folgendes Beispiel: Sie wollen als zweites zu bearbeitendes Do-
kument ”/H0/TEX/WF.TEX“ öffnen. Nach der Eingabe von ”ˆEO“ (siehe Be-
fehl 42) fordert Sie Rtos-Word zur Eingabe des Dateinamens auf. Drücken
Sie ”ˆY“, um den vorgeschlagenen Pfad zu löschen, und geben Sie anschlie-
ßend ”/H0/TEX/WF.TEX“ ein. Nun stellen Sie fest, daß das File tatsächlich

242 4.3 Bearbeitung von Texten

Zeichen Bedeutung
Bs löscht das letzte Zeichen.
ˆD restauriert das letzte Zeichen
ˆY löscht die gesamte Eingabe
ˆR restauriert die gesamte Eingabe
ˆU bricht das Kommando ab

Tabelle 4.5: Korrektur von Dateinamen bei Rtos-Word

”WE.TEX“ heißt. Sie können die Eingabe korrigieren, indem Sie fünfmal die
Bs-Taste drücken – der Cursor steht dann hinter dem ”W“ –, anschließend
ein ”E“ und dann ”ˆR“. Nun müßten Sie den korrekten Pfad vor sich sehen
können. Drücken Sie nun ”ˆU“, um das ganze abzubrechen.

40 Editor unterbrechen ˆEU

Im Terminalmodus suspendiert sich der Editor und gibt die Shell frei,
damit Sie nach einem ”ˆA“ wie gewohnt Befehle an RTOS-UH ab-
setzen können. Den Tasknamen können Sie der Meldung ”taskname
suspended waiting“ entnehmen. Durch ein Fortsetzen der Task mit

”C taskname“ können sie mit dem Editieren fortfahren.
Im Window-Modus wird das aktuelle Fenster iconisiert4. Hier können
sie weiterarbeiten, indem Sie ein Textfenster des Editors öffnen.

41 Speichern und Verlassen ˆEX EscX

Rtos-Word speichert die Datei, falls Sie nach dem letzten Öffnen
bzw. Sichern geändert wurde. Anschließend entfernt er sie aus der Edi-
torverwaltung. Bearbeitet die Editor-Subtask keine weitere Datei, ter-
miniert und entlädt sie sich. Anderenfalls wird auf die folgende Datei
umgeschaltet.
Speichern bedeutet beim Bearbeiten einer Datei, die nicht als /ED-
Datei geöffnet wurde, daß die auf der Datenstation /ED abgelegte Ar-
beitskopie mit allen erfolgten Änderungen zurückgeschrieben wird.
Wurde die Datei neu angelegt (*File was opened by RTOS-WORD.)
und nicht geändert, wird sie gelöscht.
Wenn beim Zurückschreiben der Datei ein Schreibfehler auftritt, z. B.
das Zieldevice eine schreibgeschützte Diskette ist, bricht Rtos-Word
den Speichervorgang ab. Die temporäre Arbeitsdatei im RAM Ihres
Rechners wird nicht gelöscht. Den Namen dieser Datei teilt Ihnen
Rtos-Word bei der Fehlermeldung mit. Mit dieser Datei können Sie
nun machen, was Sie wollen: Erneut editieren, löschen, kopieren ...

4In einer späteren Version werden alle Texte iconisiert

4.3 Bearbeitung von Texten 243

42 Weitere Datei öffnen ˆEO

Geben Sie nach der Eingabeaufforderung den Dateinamen an. Ist die
Datei nicht vorhanden, kann sie neu angelegt werden. Danach können
Sie diese Datei bearbeiten. Im Window-Modus wird für den Text ein ei-
genes Fenster eingerichtet. Achtung: Bei Dateien, die im Netzwerk oder
auf einem Massenspeicher liegen, kann die gleiche Datei mehrmals edi-
tiert werden. Solange nur eine der Arbeitskopien geändert wird, kann
dieses manchmal von Vorteil sein. Rtos-Word kann beim Speichern
allerdings nur die Änderungen aus einer Arbeitskopie übernehmen!
Nämlich die der zuletzt mit Befehl Nr. 41 verlassenen Arbeitkopie.
Vorsicht: Ein zweifaches Öffnen einer /ED-Datei kann die Datei sofort
und endgültig zerstören!!

43 Arbeitstext wechseln ˆEN

Rtos-Word schaltet auf den folgenden Text um. Im Window-Modus
bekommt das entsprechende Fenster den Input-Focus. War es iconi-
siert, wird das Fenster geöffnet.

44 Verlassen mit Namensänderung ˆEZ

Mit ”ˆEZ“ können Sie das Originalfile mit Originalnamen unverändert
lassen und Ihren bearbeiteten Text unter anderen Namen abspeichern.
Eine Namensänderung (unter Beibehaltung des Originalfiles mit Ori-
ginalnamen) ist bei /ED-Dateien nur möglich, wenn Pfad und Name
mit ”ˆEL“ (siehe Befehl 48) erzeugt wurde.
Weiterhin besteht die Möglichkeit, Dateien vom Rtos-UH-Format ins
MS-DOS-Format und umgekehrt zu konvertieren (siehe auch Tabelle
4.1).
Sie können die Datei auch an eine schon bestehende anhängen. Dabei
darf am Dateiende, an die Sie Ihren Text anhängen wollen, kein Eot
stehen, da bei RTOS-UH die Dateiendekennung Eot zur Datei gehört
und Rtos-Word den Text hinter die Endekennung hängt! Sie ahnen
es schon: Nach dem ersten Kopieren oder Editieren ist der angehängte
Text verschwunden. Tip: Entfernen läßt sich das Eot durch Editieren
des Files und Entfernen des ”@“ am Dateiende.
Weiterhin haben Sie die Option, alle Leerzeichen, denen in einer Zeile
nur noch weitere Leerzeichen und das Cr folgen, aus Ihrem Text zu
entfernen.
Alle optionalen Parameter sind in Tabelle 4.6 erläutert. Sie sind in be-
liebiger Reihenfolge nach einem ”-“ an den Dateinamen anzuhängen.
Beispiel: Ein Verlassen einer Datei mit ”/H0/SYS/TEST -adl“ hängt
Ihren Text an die Datei ”/H0/SYS/TEST“ an. Alle Leerzeichen am

244 4.3 Bearbeitung von Texten

Parameter Bedeutung
c Abspeichern im Rtos-UH-Format
l Abspeichern im MS-DOS-Format
a An eine bestehende Datei anhängen
d Endende Leerzeichen löschen

Tabelle 4.6: Parameter von Rtos-Word beim Verlassen einer Datei

Zeilenende werden entfernt. Die Datei ist MS-DOS kompatibel (siehe
auch Anmerkung zu Befehl 58).

45 Verlassen ohne Speichern ˆEQ

Rtos-Word entfernt den Text aus seiner Verwaltung, ohne ihn ab-
zuspeichern. In der Datei steht der Originaltext bzw. der zuletzt mit

”ˆES“ abgespeicherte Text. Dieses ist bei /ED-Dateien nur möglich,
wenn Pfad und Name mit ”ˆEL“ (siehe Befehl 48) erzeugt wurde. Sie
können den Text nur nach einer Sicherheitsabfrage (”This File will
not be saved! (y/n)“) und Anschlagen des ”Y“ verlassen. Wur-
de die Datei neu angelegt (”*File was openened by RTOS-WORD.“),
wird die Datei gelöscht.

46 Speichern und weiterarbeiten ˆES

Dieser Befehl speichert Ihren Text und löscht alle Marken und die
Änderungskennung ”*“ in der Statuszeile, falls der Text nach dem
Öffnen bzw. letzten Speichern geändert wurde. Nach dem Speichern
können Sie mit dem Editieren fortfahren. Während des Speichervor-
ganges erscheint die Meldung ”Please wait: Saving!“ Der Befehl
kann benutzt werden, um bei einer längeren Editor-Sitzung die Datei
zu sichern, ohne Rtos-Word verlassen zu müssen. Im Window-Modus
können Sie Quelltexte bequem compilieren/assemblieren, ohne Rtos-
Word zu verlassen! Dieser Befehl ist bei /ED-Dateien nur möglich,
wenn Pfad und Name mit ”ˆEL“ (siehe Befehl 48) erzeugt wurde.

47 Automatisches Sichern ˆED

Rtos-Word kann Texte automatisch nach einem von Ihnen vorgege-
benen Zeitintervall zyklisch sichern. Geben Sie das Sicherungsintervall
in Minuten nach der Eingabeaufforderung ein. Die Sicherung erfolgt
entsprechend dem Befehl ”ˆES“ (Nr. 46). Zum Beenden des automa-
tischen Sicherns müssen sie diesen Befehl mit dem Zeitintervall ”0“
Minuten verwenden.

4.3 Bearbeitung von Texten 245

48 Neuer Dateiname ˆEL

Sie können Device und kompletten Pfad inklusive der optionalen Para-
meter des Befehles ”ˆEZ“ (Nr. 44), die beim Speichern berücksichtigt
werden, eingeben. Eine automatisch erzeugte Sicherung (siehe ”ˆED“,
Befehl Nr. 47) übernimmt ebenfalls den neuen Dateinamen und die
Parameter. Der Parameter ”a“ bewirkt allerdings bei jedem Speichern
ein Anhängen an das File.
Durch einen Mausklick mit der rechten Maustaste in den in der Sta-
tuszeile angezeigten Dateinamen können Sie diesen Befehl ebenfalls
ausführen.

49 Datei löschen ˆEJ

Die angegebene Datei wird, falls im Dateisystem vorhanden, gelöscht.
Es findet keine Überprüfung des eingegebenen Dateinamens statt, so
daß auch Dateien mit Sonderzeichen, die über die Rtos-UH-Shell nicht
eingegeben werden können, gelöscht werden.

4.3.6 Blockbefehle

Ein Block ist durch eine Anfangs- und Endmarke definiert, wobei die Anfangs-
vor der Endemarke liegen muß. Die Länge ist nicht begrenzt. Alle Blockopera-
tionen werden über den Blockpuffer ausgeführt. Er enthält immer den zuletzt
bearbeiteten Block. (Sehr vorteilhaft beim irrtümlichen Löschen eines Blockes!)

Die Größe des Blockpuffers paßt Rtos-Word während des Editierens auto-
matisch an. Kann ein Block nicht bearbeitet werden, weil der noch verbliebene
freie Speicherplatz nicht ausreicht, müssen Sie entweder den freien Speicher-
platz erhöhen oder den Block in mehrere kleine aufteilen.

Bei der gleichzeitigen Bearbeitung mehrerer Dateien können Blöcke zwischen
den Dateien ausgetauscht werden (siehe Befehle Nr. 56 und 57).

50 Blockanfang markieren ˆEB

Der Blockanfang wird auf die aktuelle Cursorposition verlegt. Waren
die Blockbefehle ausgeschaltet, werden sie wieder zugelassen und die
Statuszeile angepaßt.

51 Blockende markieren ˆEK

Das Blockende wird auf die aktuelle Cursorposition verlegt. Waren
die Blockbefehle ausgeschaltet, werden sie wieder zugelassen und die
Statuszeile angepaßt.

246 4.3 Bearbeitung von Texten

52 Block kopieren ˆEC

Der Block wird im Blockpuffer abgelegt und anschließend aus dem
Blockpuffer an die aktuelle Cursorposition kopiert.

53 Block verschieben ˆEV

Der Block wird zuerst im Blockpuffer abgelegt, danach aus der Da-
tei entfernt und anschließend aus dem Blockpuffer an der aktuellen
Cursorposition wieder eingefügt.

54 Block einrücken ˆEI

Mit diesem Befehl kann die Einrücktiefe der einzelnen Zeilen des
Blockes verändert werden. Geben Sie nach Absetzen des Befehles die
Anzahl der Spalten ein, um die die Zeilen des Blockes zu verschie-
ben sind. Bei einer positiven Zahl wird der Block nach rechts gescho-
ben (eingerückt), mit einer negativen können Sie den Block nach links
schieben (Es werden aber nur Leerzeichen entfernt: Steht z.B. in der
5. Spalte Text, führt eine Verschiebung um ”-10“ nur zum Löschen der
vier Leerzeichen). In einem Schritt können Sie maximal eine Verschie-
bung um 50 Zeichen vornehmen.

55 Block aus Text entfernen ˆEY

Der Block wird zuerst im Blockpuffer abgelegt, anschließend aus der
Datei entfernt. Ein irrtümliches Löschen läßt sich mit ”ˆEM“ (Nr. 57)
rückgängig machen. Achten Sie auf die Cursorposition.

56 Block in Puffer kopieren ˆEG

Der Block wird im Blockpuffer abgelegt und kann zu einem späteren
Zeitpunkt, der aber noch innerhalb der Editorsitzung liegen muß, aus
dem Blockpuffer an eine beliebige Stelle kopiert werden.

57 Block aus Blockpuffer kopieren ˆEM

Der Blockpuffer wird an die aktuelle Cursorposition kopiert.

58 Block in Datei schreiben ˆEW

Der Block wird im Blockpuffer abgelegt und – je nach Parametrierung
– anschließend in eine Datei geschrieben oder an eine Datei angehängt.
Steht das Zieldevice in der Stellung ”Nach endendem Cr ein Line-Feed
anfügen“, beendet Rtos-Word jede Zeile zusätzlich mit einem Line-
Feed. Der gerade bearbeitete Text bleibt unverändert. Nach Absetzen

4.3 Bearbeitung von Texten 247

des Befehles müssen Sie die Zieldatei angeben, danach, noch in der
gleichen Eingabezeile, eventuelle Parameter:

• ”-C“ speichert Block im Rtos-UH-Format. Steht Zieldevice im

”Line-Feed“ Modus, wird ”-C“ ignoriert.

• ”-L“ speichert Block im MS-DOS-Format.

• ”-A“ hängt Block an Datei an.

• Die Kombinationen ”-CA“ und ”-LA“ sind erlaubt.

59 Block aus Datei lesen ˆER

Geben Sie nach Absetzen des Befehles den Dateinamen ein. Der Da-
teiinhalt wird an die Cursorpositon kopiert. Die Quelldatei kann belie-
biger Herkunft sein, muß also nicht mit ”ˆEW“ erzeugt worden sein.
Die Blockmarkierungen und der Blockpuffer sind nach dem Einlesen
gelöscht. Waren die Blockbefehle ausgeschaltet, sind sie nun wieder
zugelassen.

60 Blockbefehle ein-/ausschalten ˆEH

Waren die Blockbefehle nicht zugelassen, sind sie nun wieder erlaubt.
Ein evtl. vorhandener Block wird invertiert angezeigt. Im anderen
Fall werden sie ausgeschaltet und ein evtl. vorhandener Block in Nor-
maltext dargestellt. Alle Blockbefehle, die sich nicht implizit selbst
einschalten (alle außer ”ˆEB“, ”ˆEK“, ”ˆER“) werden kommentarlos
ignoriert.

4.3.7 Befehle für den Zeilenpuffer

Der Zeilenpuffer erlaubt ein schnelles Kopieren und Verschieben einzelner Zei-
len. Eine Suchfunktion ist ebenfalls implementiert. Da der Puffer seitlich nicht
gescrollt wird, ist die Anzahl editierbarer Zeichen auf die dargestellte Spalten-
zahl beschränkt, auch wenn die Zeile selbst länger ist. Das Editieren erfolgt
immer im Überschreibmodus.

61 Zeilenrest in Zeilenpuffer kopieren EscO

Ab der aktuellen Cursorposition wird der Zeilenrest linksbündig in
den Zeilenpuffer kopiert. Steht der Cursor im Zeilenpuffer, führt dieser
Befehl zu einer Fehlermeldung.

248 4.3 Bearbeitung von Texten

62 Zeilenpuffer in Text einfügen EscI

Über der Zeile mit dem Cursor wird eine Leerzeile eingefügt und der
Zeilenpuffer in diese kopiert. Steht der Cursor im Zeilenpuffer, führt
dieser Befehl zu einer Fehlermeldung.

63 Nach Pufferinhalt suchen EscS

Steht der Cursor im Text, wird ab der Cursorposition nach dem Inhalt
des Zeilenpuffers gesucht. Steht der Cursor im Zeilenpuffer, wird ab
der Stelle gesucht, auf der der Cusor vor dem Befehl ”Zeilenpuffer
editieren“ (Nr. 64) stand.

64 Zeilenpuffer editieren EscK

Dieser Befehl positioniert den Cursor in Spalte 1 des Zeilenpuffers,
der ggf. neu dargestellt wird (falls er unsichtbar war). Anschließend
können Sie den Zeilenpuffer im Überschreibmodus editieren. Die er-
laubten Befehle sind in der hinter diesem Befehl folgenden Tabelle
zusammengefaßt.
Um den Puffer zu verlassen, können Sie ”↑“ (setzt Cursor an Position
vor dem Editieren), ”ˆXR“ (19), ”ˆXC“ (20), ”Esc S“ (63), ”Esc Y“
(32) und ”Esc Z“ (33) verwenden. ”ˆC“ (37) und ”ˆR“ (38) blättern
zwar den Text vor/zurück, der Cursor bleibt allerdings im Zeilenpuf-
fer.
Durch einen Mausklick in den Bereich unterhalb des Textes können
Sie diesen Befehl ebenfalls ausführen. Bearbeiten Sie den Zeilenpuffer
schon, bewirkt der Klick eine Änderung der Cursorspalte.

Bef. Nr. Bef. Nr. Bef. Nr. Bef. Nr.
← 9 → 10 ˆA 13 ˆF 14
ˆXS 15 ˆXD 16 ˆG 22 Del 5
ˆY 24 ˆXY 25 ˆXZ 26 Esc ← 5
Esc → 7 Esc ↑ 24 EscG 34

4.3.8 Tabulatorbefehle

Beim Öffnen einer Datei expandiert Rtos-Word jeweils ein Tabulatorzeichen
durch drei Leerzeichen. Beim Drücken der Tabulatortaste werden im Einsetz-
modus Leerzeichen eingefügt. Beim Speichern eines Textes werden beim Öffnen
expandierte Tabulatoren nicht zurückverwandelt. Die Wirkung der Tabulator-
taste ist, getrennt nach Einsetz- und Überschreibmodus, in den Tabellen 4.3
und 4.4 erklärt.

4.3 Bearbeitung von Texten 249

Eine Besonderheit besteht bei der Bearbeitung von /ED-Dateien: Die Tabu-
latorleiste wird beim erneuten Editieren nicht neu aufgebaut. Die Leiste, die
beim Verlassen gültig war, finden Sie wieder vor.

65 Tabulator anlaufen ˆI

Dieser Befehl ist mit dem Drücken der Tabulatortaste identisch. Diese
ist, getrennt nach Einsetz- und Überschreibmodus, in den Tabellen 4.3
und 4.4 erklärt.

66 Tabulator setzen ˆOI

Geben Sie nach der Eingabeaufforderung die Spalte zwischen linkem
und rechtem Rand an, in der der Tabulator gesetzt werden soll. Der
gesetzte Tabulator wird durch ein ”!“ in der Tabulatorleiste angezeigt.
In der dem Befehl folgenden Tabelle sind die zulässigen Sonderzeichen
erläutert.
Durch einen Mausklick in die Tabulatorleiste können Sie im Window-
Modus ebenfalls einen Tabulator setzen, wenn in der ausgewählten
Spalte noch kein Tabulator gesetzt ist.

Zeichen Bedeutung
Esc Der Tabulator wird in die aktuelle Cursorspalte gesetzt
A Neue Tabulatorleiste für Assembler-Quelltexte
P Neue Tabulatorleiste für PEARL- und C-Quelltexte

67 Tabulator löschen ˆON

Geben Sie nach der Eingabeaufforderung die Spalte zwischen linkem
und rechtem Rand an, in der der Tabulator gelöscht werden soll. Der
gelöschte Tabulator wird durch ein ”-“ in der Tabulatorleiste ange-
zeigt. In der nachfolgenden Tabelle sind die zulässigen Sonderzeichen
aufgeführt.
Durch einen Mausklick in die Tabulatorleiste können Sie im Window-
Modus ebenfalls einen Tabulator löschen, wenn in der angeklickten
Spalte ein Tabulator gesetzt ist.

Zeichen Bedeutung
Esc Der Tabulator der aktuellen Cursorspalte wird gelöscht
A Alle Tabulatoren werden gelöscht

68 Rechten Rand setzen ˆOR

Geben Sie nach der Eingabeaufforderung eine Spalte zwischen 2 und
einschließlich 231 an, die der neue rechte Rand werden soll. Wird der

250 4.3 Bearbeitung von Texten

neue rechte Rand kleiner als der linke, werden alle Tabulatoren rechts
davon gelöscht und bleiben es auch beim nächsten Vegrößern des rech-
ten Randes. Beim Drücken der Esc-Taste wird die aktuelle Cursorpo-
sition gelöscht.
Im Window-Modus können Sie einfach das ”R“ in der Tabulatorleiste
anklicken, um den rechten Rand zu verändern.

4.3.9 Marken

Die 10 Marken dienen dem schnellen Anspringen von Textstellen. Der Nutzer
kann sie frei im Text mit ”ˆEx“(Befehl Nr. 69) setzen, wobei x eine Ziffer ist.
Nach dem Verlassen des Textes sind alle Marken gelöscht und müssen beim
erneuten Aufrufen der Datei auch neu gesetzt werden.

69 Marke setzen ˆE0 . . . ˆE9

An der aktuellen Cursorposition wird eine Marke gesetzt. Steht der
Cursor direkt hinter einer Marke und wird das Kommando ”ˆEx“ er-
neut aufgerufen, wird die Marke versteckt, d. h. sie ist nicht mehr
sichtbar, kann aber immer noch angesprungen werden. Beispiel: ”ˆE3
ˆE3“ setzt und versteckt die Marke 3 links neben der aktuellen Cur-
sorposition.

70 Cursor auf Marke setzen ˆX0 . . . ˆX9

Der Cursor wird auf die entsprechende mit ”ˆE0-9“ (siehe Nr. 69) defi-
nierte Marke gesetzt. Der Text wird, falls so nötig, geblättert, daß der
Cursor sichtbar bleibt. Die Marke wird nach dem Anspringen sichtbar.
Beispiele:

• ”ˆX5“ setzt den Cursor auf die mit ”ˆE5“ gesetzte Marke. Die
Marke wird durch die Zeichen ”<5>“ links neben dem Cursor dar-
gestellt.

• ”ˆX5 ˆE5“ setzt den Cursor auf die zuvor mit einem ”ˆE5“ ge-
setzte Marke. Die Marke wird nicht angezeigt.

4.3.10 Das Hilfesystem

Rtos-Word stellt Ihnen ein kontext-sensitives Hilfesystem zur Verfügung.
Wenn Sie die Hilfestufe 2 gewählt haben und das Fenster mindestens elf Textzei-
len enthält, wird im oberen Teil des Fensters ein Hilfemenü eingeblendet, das
wichtige Kommandos anzeigt. Wenn Sie ein Untermenü anwählen und nicht
mehr genau wissen, wie das Kommando hieß, warten Sie einen kurzen Mo-
ment, dann blendet Rtos-Word die Untermenübefehle ein. Nun können Sie

4.3 Bearbeitung von Texten 251

das gewünschte Kommando heraussuchen und ausführen. Wenn Sie ein Kom-
mando zügig eintippen, wird das Hilfemenü für das Untermenü aus Zeiterspar-
nisgründen nicht eingeblendet.

71 Hilfemenü ein/aus ˆXH

Geben Sie nach der Eingabeaufforderung eine ”0“ ein, um das Hilfesy-
stem zu beenden bzw. ausgeschaltet zu lassen. Bei Eingabe einer ”2“
wird bzw. bleibt das Hilfesystem eingeschaltet.

4.3.11 Befehle zum Aufräumen

72 Bildschirm restaurieren EscV

Der Bildschirm wird komplett neu aufgebaut. Dieses Kommando soll-
te benutzt werden, wenn nicht klar ist, ob der Bildschirm noch den
aktuellen Ausschnitt des Textes zeigt. Diese Situtation kann z. B. auf-
treten, wenn eine andere Task Meldungen auf Ihren Bildschirm (im
Window-Modus: in Ihr Fenster) ausgibt.

73 Datei komprimieren EscH

Die Datei wird verdichtet, d. h. mit einer minimalen Anzahl von /ED-
Blöcken abgelegt, um Speicher an RTOS-UH zurückzugeben. Der
Cursor wird auf den Dateianfang gesetzt. Die Operation kann nach
längerem Arbeiten wieder etwas Platz im Rechner schaffen.

74 Blockpuffer löschen ˆET

Der Blockpuffer wird gelöscht und der reservierte Platz RTOS-UH
zurückgegeben.

75 Neue logische Zeilennummern EscN

Die logischen Zeilennummern werden neu vergeben. Nach dieser Ope-
ration stimmen die physikalischen wieder mit den logischen Nummern
überein.

4.3.12 Zusätzliche Befehle im Window-Modus

In diesem Unterabschnitt sind alle Fensterbefehle aufgeführt. Sie sind nur im
Window-Mode erlaubt und führen im Terminalmode zu einer Fehlermeldung.
Mit verschiedenen Befehlen dieses Abschnittes können Sie die Farben von
Rtos-Word ändern. Die Farben sind folgenden Zahlenwerten zugeordnet:

252 4.3 Bearbeitung von Texten

Zahl Farbe Zahl Farbe Zahl Farbe Zahl Farbe
0 schwarz 1 rot 2 grün 3 braun
4 marine 5 lila 6 türkis 7 grau
8 anthrazit 9 hellrot 10 hellgrün 11 gelb

12 blau 13 pink 14 hellblau 15 weiss

Tabelle 4.7: Farbzuordnungstabelle von Rtos-Word

76 Farbe der Statuszeile ändern ˆBI

Mit diesem Befehl können Sie die Vorder- und Hintergrundfarbe der
Statuszeile ändern. Geben Sie nach der Eingabeaufforderung die zu
der gewünschten Vordergrundfarbe korrespondierende Zahl an und
bestätigen Sie mit Cr. Danach können Sie die Hintergrundfarbe
auswählen. Sind beide Farben identisch, ignoriert Rtos-Word die
Eingabe. Haben Sie keine Zahl angegeben und nur Cr gedrückt, ent-
spricht dieses der ”0“ bzw. schwarz. Die ausgewählten Farben wirken
sich auf alle Textfenster aus, die Sie mit dieser Subtask bearbeiten.
Aus Geschwindigkeitsgründen wird die Änderung in anderen Fenstern
erst sichtbar, wenn Text neu aufgebaut werden muß oder Sie dieses
mit ”EscV“ (Nr. 72), im jeweiligen Fenster ausgeführt, erzwingen.

77 Farbe des markierten Blockes ändern ˆBM

Dieser Befehl ändert Vorder- und Hintergrundfarbe eines markierten
Blockes. Die Eingabe ist mit ”ˆBI“ (Nr. 76) identisch.

78 Textfarbe ändern ˆBT

Mit diesem Befehl können Sie die Vorder- und Hintergrundfarbe des
Textes ändern. Die Eingabe ist mit ”ˆBI“ (Nr. 76) identisch.

79 Farbe der Kommandozeile ändern ˆBK

Dieser Befehl ändert Vorder- und Hintergrundfarbe der Kommando-
zeile. Die Eingabe ist mit ”ˆBI“ (Nr. 76) identisch.

80 Textfensterbreite ändern ˆBS

Wollen Sie die dargestellte Textbreite ändern, können Sie neben der
Maus diesen Befehl verwenden. Geben Sie nach der Eingabeaufforde-
rung die Spaltenzahl des gesamten Fensters ein. Sind links die logischen
Zeilennummern dargestellt, verringert sich die dargestellte Textbreite
um acht Spalten. Die minimale Spaltenzahl ist z. Zt. auf 17 begrenzt.
Ist Ihr Wert kleiner, wird die Spaltenzahl auf 17 gesetzt. Die Maximal-

4.3 Bearbeitung von Texten 253

breite ist nach dem ersten Öffnen eines Textes 96 Spalten. Kann Ihre
Grafikkarte eine höhere Spaltenzahl darstellen, läßt sich die maximale
Textfensterbreite durch Aufziehen des Textfensters erhöhen.

81 Textfensterhöhe ändern ˆBZ

Mit diesem Befehl können Sie die dargestellte Texthöhe ändern. Ge-
ben Sie nach der Eingabeaufforderung die Zeilenzahl des dargestellten
Textes an. Die minimale Zeilenzahl ist auf drei begrenzt. Ist Ihr Wert
kleiner, wird die Zeilenzahl auf drei gesetzt. Die Maximalzeilenzahl ist
nach dem ersten Öffnen eines Textes 27. Kann Ihre Grafikkarte eine
höhere Zeilenzahl darstellen, können Sie die maximale Textfensterhöhe
durch Aufziehen des Textfensters erhöhen.

82 Dateiauswahlfenster anzeigen ˆBL

Dieser Befehl ist mit einem Klick in den Dateinamen identisch. Es wird
ein Fenster erzeugt, das die Namen aller bearbeiteten Texte einschließ-
lich der Änderungskennung ”*“ anzeigt.
Mit diesem können Sie zu einem anderen Text wechseln. Die Selektion
erfolgt durch einen Mausklick in den Textnamen, durch Anschlagen
der dem Text vorangestellten Ziffer oder durch ein Cr , welches den
markierten Text auswählt. Die Markierung wecheslt durch die Cursor-
tasten ↑ und ↓. Nach der Dateiauswahl, durch einen Mausklick in das
Schließfeld oder ein Esc verschwindet das Fenster.
War der selektierte Text iconisiert, wird das Fenster geöffnet.

83 Dateiübersichtsfenster anzeigen ˆBW

Das Dateiübersichtsfenster hat fast dieselbe Wirkung wie das Datei-
auswahlfenster (siehe ”ˆBL“, Nr. 82). Allerdings bleibt das Fenster
nach der Selektion erhalten, so daß es für weitere Textwechsel ver-
wendet werden kann. Dieses ist sehr vorteilhaft, wenn man gleichzeitig
mehrere Texte editiert und alle momentan nicht bearbeiteten iconi-
siert. Mit Hilfe dieser Box können Sie sofort den Richtigen auswählen.
Um das Dateiübersichtsfenster aus der Fensterverwaltung zu entfer-
nen, müssen Sie das Schließfeld anklicken.

84 Position des nächsten Textfensters ˆBA

Wollen Sie vor dem Öffnen eines weiteren Textes (siehe ”ˆEO“, Nr.
42) Fensterposition und -größe festlegen, können Sie diesen Befehl ver-
wenden. Geben Sie zuerst die Fensterposition in der Reihenfolge Spal-
te/Zeile an und bestätigen Sie jeweils mit Cr. Die linke obere Ecke
ist mit Spalte 0, Zeile 0 zu erreichen. Anschließend müssen Sie Fen-

254 4.3 Bearbeitung von Texten

sterbreite und -höhe eingeben und jeweils bestätigen. Dieser Befehl ist
vor allem für die Fernsteuerung gedacht, um das nächste zu öffnende
Fenster an der gewünschten Stelle mit der richtigen Größe zu öffnen.

4.3.13 Suchen und Ersetzen

Rtos-Word erlaubt ein komfortables ”Suchen“ sowie ”Suchen und Ersetzen“.
Die einzugebenden Strings und Suchoptionen können Sie mit den Befehlen
gemäß Tabelle 4.5 editieren. Beim Suchstring sind die folgenden ”Wildcards“
erlaubt:

Zeichen Bedeutung
ˆA Deckt sich mit jedem Zeichen
ˆT Deckt sich mit jedem Zeichen, das weder

Buchstabe noch Ziffer ist
ˆOx Deckt sich mit jedem Zeichen außer ”x“

Weiterhin gibt es die folgenden Suchoptionen:

Zeichen Bedeutung
B Es wird ab der Cursorposition rückwärts gesucht
G Beginnt am Dateianfang, beim Ersetzen: ”Alles“
N Unterdrückt beim Ersetzen die Frage nach einem Austausch
U Ignoriert im Suchstring Groß- und Kleinschreibung
W Gleichheit wird nur bei ganzen Worten gefunden
xx Suchen: Es wird das xx-te Auftreten gesucht

Ersetzen: Es werden xx Ersetzungen durchgeführt

Sowohl bei der Eingabe als auch während der Suche können Sie ein Abbruch
mittels ”ˆU“ erzwingen.

85 Text suchen ˆXF

Geben Sie nach der Eingabeaufforderung den zu suchenden Text (max.
30 Zeichen) ein. Ein Abschluß mit Esc beginnt die Suche sofort
(nächstes Auftreten ab Cursorposition vorwärts), ein Abschluß mit
Cr ermöglicht die Eingabe von Optionen gemäß obiger Tabelle.

86 Text suchen und ersetzen ˆXA

Geben Sie nach der Eingabeaufforderung den zu suchenden Text (max.
30 Zeichen) ein und bestätigen Sie diesen mit Esc oder Cr. Nach der
nächsten Eingabeaufforderung können Sie den Text, der den Suchtext
ersetzen soll, eingeben (bis 30 Zeichen). Ein Abschluß mit Esc beginnt
das Suchen und Ersetzen sofort (nächstes Auftreten ab Cursorposition

4.3 Bearbeitung von Texten 255

vorwärts mit Abfrage), ein Abschluß mit Cr ermöglicht die Eingabe
der Optionen gemäß obiger Tabelle. Achten Sie darauf, daß die An-
gabe der Option ”g“ alle Zahlenangaben übersteuert, also beliebig oft
gesucht/ersetzt wird.

87 Suchen und ggf. Ersetzen wiederholen ˆˆ

Das letzte Such- oder Austauschkommando wird wiederholt.

88 Ersetzungstext einfügen ˆXI

Der Text, der bei ”ˆXA“ (Nr. 86) den Suchtext ersetzen soll, wird an
der aktuellen Cursorposition eingefügt.

4.3.14 Ausführen von Batchdateien

Sie können Kommandos für Rtos-Word auch aus einer sogenannten ”Batch-
datei“ einlesen lassen. Dies ist kann nützlich sein, wenn Sie z. B. die gleichen
Änderungen in mehreren Dateien durchführen wollen. Sie können die Arbeit
dann von einem Batchprozeß durchführen lassen und sich eine kreative Pause
gönnen.

Soll Rtos-Word gleich mit der Abarbeitung einer Batchdatei beginnen,
müssen sie einen weiteren Aufrufparameter verwenden (siehe Abschnitt 4.4).
Rtos-Word liest diese Datei, in der Rtos-Word-Kommandos stehen müssen,
als ob Sie alle Eingaben über die Tastatur machen würden. Die Ausgaben wer-
den ganz normal exekutiert. Sie können also den Fortgang der Arbeiten am
Bildschirm beobachten. Rtos-Word beendet den Automatikbetrieb beim Da-
teiende. Zum vorzeitigen Abbrechen des Automatikbetriebes müssen Sie ”ˆU“
eingeben. Ein ”ˆEX“ bzw. ”EscX“ in der Batchdatei beendet den Automatik-
betrieb nur, wenn lediglich ein Text bearbeitet wird! Bei mehreren Texten wird
mit der nächsten Datei weiter gearbeitet.

Um eine solche Batchdatei zu erhalten, können Sie entweder den Protokoll-
Mode (”ˆEE“, Nr. 89) benutzen oder ein kleines Programm schreiben, daß so
eine Datei erzeugt. Während des Editierens können Sie die Batchdateien mit

”ˆEA“ (Nr. 90) abarbeiten.

89 Eingabeprotokoll ein-/ausschalten ˆEE

Ist das Mitprotokollieren ausgeschaltet, können Sie nach der Eingabe-
aufforderung den Dateinamen der Protokolldatei angeben. In ihr wer-
den alle Tastenanschläge mitprotokolliert, bis der Editor sich selbst
terminiert (siehe ”EscX“, Nr. 41) oder erneut ”ˆEE“ angeschlagen

256 4.4 Übergabeparameter des Bedienbefehles

wird: War vor der Ausführung dieses Befehles der Protokollmodus ein-
geschaltet, wird er beendet.

90 Batchdatei exekutieren ˆEA

Nach der Eingabe des Dateinamens liest Rtos-Word seine Einga-
ben aus dieser Datei so, als ob Sie sie über die Tastatur eingege-
ben hätten. Sie können am Bildschirm beoabachten, was passiert. Hat
Rtos-Word das Dateiende erreicht, beendet der Editor den ”Batch-
dateimodus“. Einen vorzeitigen Abbruch können Sie mit ”ˆU“ erzwin-
gen.

91 Makro zyklisch ausführen ˆXQ

Geben Sie nach der Eingabeaufforderung ein Makro aus maximal 30
Zeichen ein, welches zyklisch abgearbeitet werden soll. Bestätigen Sie
dieses mit Cr und geben Sie anschließend eine Ziffer ein. Diese wird
mit 0,5 sec multipliziert, um die Zykluszeit zu erhalten, wobei die ”0“
eine Abarbeitung ohne Pause ermöglicht. Während der Abarbeitung
können Sie die Zykluszeit durch Anschlagen einer Zifferntaste variie-
ren. Ein Abbruch ist mit ”ˆU“ möglich. Ein Makro wird allerdings
immer zu Ende ausgeführt.

4.4 Übergabeparameter des Bedienbefehles

In Abschnitt 4.2.1 haben Sie die Möglichkeit kennengelernt, beim Aufruf des
Editors gleich einen Dateinamen zu übergeben. Rtos-Word verfügt noch über
andere Parameter, die mit angegeben werden können. Die genaue Syntax lautet:

WE[[Ã].taskname][ÃPRIOÃprio][ÃADÃcursorzeile][[ÃSC]Ãtextname]
[ÃLOÃbatchdateiname][ÃSIÃDevice mit Terminal]

Die einzelnen Übergabeparameter haben folgende Bedeutung:

• ”.taskname“ legt den Namen der Editortask fest. Rtos-Word benutzt
im Window-Modus die ersten 6 Bytes von taskname für die Fensteradres-
sierung. Achten Sie also darauf, daß weder zwei Editortasks mit gleichem
Namen noch zwei Tasks existieren, bei denen die ersten 6 Buchstaben
identisch sind.

• ”prio“ gibt die Priorität des Editors vor. Sie darf zwischen 1 und 9999
liegen.

• ”textname“ ist die Datei, die Sie bearbeiten wollen. Beachten Sie bitte
auch die Anmerkungen in Abschnitt 4.2.1.

4.5 Die Fernsteuerung 257

• ”batchdateiname“ ist eine Batchdatei, die sofort nach dem Öffnen exeku-
tiert wird.

• ”cursorzeile“ gibt die Zeile an, auf der der Cursor nach dem Aufruf steht.
Die Zeile 1 hat eine Sonderbedeutung: Auch beim Aufruf mit WE wird
kein eigenes Window für den Editor eingerichtet.

• Weiterhin können Sie das Device ”Device mit Terminal“ vorgeben, an
dem Rtos-Word den Nutzer erwartet. Bei dem Device muß das Bit

”dialogfähiges Datenterminal gesetzt sein.“

4.5 Die Fernsteuerung

Soll Rtos-Word innerhalb eines größeren Programmpaketes benutzt werden,
kann das Programmpaket den Editor aufrufen und auch fernsteuern. Dadurch
sind alle Rtos-Word-Befehle auch von anderen Programmen nutzbar. Bei-
spielsweise können beliebige Stellen im Text angelaufen, markiert und auch
entfernt werden. Auch die Beendigung der Editortask ist möglich.

Eine Fernsteuerung ist über eine Ausgabe an die Datenstation /VO möglich.
Die Pipe, in die der Text hineinzuschreiben ist, lautet ”/VO/taskname“, wobei
taskname der Name der Editortask ist. Beispiel: Haben Sie den Bedienbefehl

”WE.FERNSTEUER /H0/TEST“ ausgeführt, bearbeiten Sie den Text ”/H0/TEST“
und können diesen über die Pipe ”/VO/FERNSTEUER“ ferngesteuert editieren.

Da RTOS-UH eine direkte Taskadressierung — in Assembler mittels des Traps
MSGSND, in PEARL demnächst auch in Hochsprache — erlaubt, wurde diese
Datenübertragung ebenfalls implementiert, zumal diese Ansteuerung elegan-
ter und schneller als der Umweg über /VO ist.

Die Ausführung von Befehlen ist von Hochsprachen aus nicht so einfach, da die

”Control-“ und ”Escape-Sequenzen“ nur umständlich auszugeben sind. Daher
gilt bei der Fernsteuerung folgende vereinfachte Regelung: Geben Sie das Zei-
chen ”ˆ“ und den Buchstaben, der normalerweise gleichzeitig mit der Control-
Taste anzuschlagen ist, einfach hintereinander aus. Rtos-Word faßt die bei-
den Zeichen zusammen. Sie können natürlich auch den richtigen Wert ausgeben
(z. B. den ASCII-Wert ”$05“ für ”ˆE“). Die Escape-Taste können Sie über die
Zeichen ”ˆ[“ nachbilden.

Damit während der Fernsteuerung kein Datensalat ensteht, wenn Nutzer und
fernbedienendes Programm gleichzeitig Rtos-Word füttern, arbeitet Rtos-
Word bei Eingaben aus /VI und der Tastatur prinzipiell immer einen Befehl zu
Ende ab, bevor er nachsieht, ob sich auf einem anderen Kanal etwas getan hat.
Bei der Direktadressierung ist ein Communication-Element eine Ausführungs-
einheit.

258 4.5 Die Fernsteuerung

Es gibt hierbei eine Ausnahme: Hat der Nutzer den Eindruck, daß die Fern-
steuerung wegen einer unsinnigen Sequenz hängt, kann er diese mit ”ˆU“ ab-
brechen.

An Hand des folgenden Beipieles soll die Fernsteuerung verdeutlicht werden.
Die Zeile 1000 soll markiert werden und in der Zeile 1000 die 30. Spalte ange-
laufen werden. Die Editortask habe wie oben den Namen ”FERNSTEUER“.

Zuerst ein Shellskript:

O /VO/FERNSTEUER; ECHO \27’Z1000’;: Identisch mit ^[Z1000
O /VO/FERNSTEUER; ECHO-N ^EB^J^EK;: Zeile 1000 markieren.
O /VO/FERNSTEUER; ECHO ^K^BC30; : Zurueck auf Zeile 1000 und

: Spalte 30 anlaufen.
EXIT(0);

Das gleiche leistet auch das folgende PEARL-Programm:

MODULE;
SYSTEM;

PIPE: /VO/FERNSTEUER;
PROBLEM;

SPC PIPE DATION OUT ALPHIC;
DCL ESC INV CHAR INIT(’’\1B\’’);

AA: TASK;
PUT ESC,’Z1000’ TO PIPE BY A,A,SKIP;
PUT ’^EB^J^EK’ TO PIPE BY A;
PUT ’^K^BC30’ TO PIPE BY A,SKIP;

END;
MODEND;

4.6 Alphabetisches Verzeichnis der Kommandos 259

4.6 Alphabetisches Verzeichnis der Kommandos

Befehl Nr. Kurzerklärung
Tab 65 Cursor auf nächste Tabulatorspalte (siehe Tab. 4.3 und 4.4)
Del 5 Zeichen unter dem Cursor löschen (siehe Tab. 4.3 und 4.4)
ˆA 13 Cursor ein Wort nach links
ˆC 37 nächste Bildschirmseite
ˆF 14 Cursor ein Wort nach rechts
ˆG 22 identisch mit Backspace
ˆH 9 Cursor ein Zeichen nach links
ˆI 65 identisch mit Tabulatortaste (siehe Tab. 4.3 und 4.4)
ˆJ 11 Cursor eine Zeile tiefer
ˆK 12 Cursor eine Zeile nach oben
ˆL 10 Cursor ein Zeichen nach rechts
ˆM identisch mit der Returntaste (Cr) (siehe Tab. 4.3 und 4.4)
ˆN 21 Zeilenumbruch (”harter“ Return)
ˆQ Xon schicken (siehe Seite 268)
ˆR 38 vorherige Bildschirmseite
ˆS Xoff schicken (siehe Seite 268)
ˆT 23 bis Wortende löschen
ˆU 27 Löschen rückgängig machen/Befehl abbrechen
ˆV 11 Cursor Zeile tiefer
ˆW 36 Text Zeile nach oben scrollen
ˆY 24 Zeile löschen
ˆZ 35 Text Zeile nach unten scrollen
ˆ 1 Insertmodus ein/aus
ˆˆ 87 Suchen / Suchen und ersetzen wiederholen

Tabelle 4.8: Rtos-Word-Kommandos mit einem Buchstaben

260 4.6 Alphabetisches Verzeichnis der Kommandos

Die Befehle des ˆB-Submenüs sind hinter denen des ˆX-Submenüs aufgeführt.

Befehl Nr. Kurzerklärung
ˆEÃ Menü beenden
ˆE0 69 Marke 0 setzen
ˆE1 69 Marke 1 setzen

...
...

...
ˆE9 69 Marke 9 setzen
ˆEA 90 Batch Datei abarbeiten
ˆEB 50 Blockanfang markieren
ˆEC 52 Block kopieren
ˆED 47 automatisches Sichern
ˆEE 89 Eingabeprotokoll ein/ausschalten
ˆEG 56 Block in Blockpuffer kopieren
ˆEH 60 Blockbefehle ein/aus
ˆEI 54 Block seitlich scrollen
ˆEJ 49 Datei löschen
ˆEK 51 Blockende markieren
ˆEL 48 Textnamen ändern
ˆEM 57 Blockpuffer einfügen
ˆEN 43 Text wechseln
ˆEO 42 weitere Datei öffnen
ˆEQ 45 Text ohne Abspeichern verlassen
ˆER 59 Datei einlesen
ˆES 46 Speichern des Textes
ˆET 74 Blockpuffer löschen
ˆEU 40 Editor suspendieren
ˆEV 53 Block verschieben
ˆEW 58 Block in Datei schreiben
ˆEX 41 Text speichern und verlassen
ˆEY 55 Block löschen
ˆEZ 44 Text unter neuem Namen speichern und verlassen

Tabelle 4.9: Rtos-Word-Kommandos im ”E“-Submenü

4.6 Alphabetisches Verzeichnis der Kommandos 261

Befehl Nr. Kurzerklärung
ˆOÃ Menü beenden
ˆOI 66 Tabulator setzen
ˆON 67 Tabulator löschen
ˆOR 68 rechten Rand verändern
ˆOU 3 automatisches Einrücken ein/aus
ˆOW 4 Wortumbruch ein/aus
ˆOX 2 Klingel ein/aus

Tabelle 4.10: Rtos-Word-Kommandos im ”O“-Submenü

Befehl Nr. Kurzerklärung
ˆPÃ Menü beenden
ˆPA 8 Soh ($01) einfügen
ˆPB 8 Stx ($02) – “ –
ˆPC 8 Etx ($03) – “ –
ˆPD 8 Eot ($04) – “ –
ˆPE 8 Enq ($05) – “ –
ˆPF 8 Ack ($06) – “ –
ˆPG 8 Bel ($07) – “ –
ˆPH 8 Bs ($08) – “ –
ˆPI 8 Ht ($09) – “ –
ˆPJ 8 Lf ($0A) – “ –
ˆPK 8 Vt ($0B) – “ –
ˆPL 8 Ff ($0C) – “ –
ˆPN 8 S0 ($0E) – “ –
ˆPO 8 S1 ($0F) – “ –
ˆPP 8 Dle ($10) – “ –
ˆPQ 8 Dc1 ($11) – “ –
ˆPR 8 Dc2 ($12) – “ –
ˆPS 8 Dc3 ($13) – “ –
ˆPT 8 Dc4 ($14) – “ –
ˆPU 8 Nak ($15) – “ –
ˆPV 8 Syn ($16) – “ –
ˆPW 8 Etb ($17) – “ –

Tabelle 4.11: Rtos-Word-Kommandos im ”P“-Submenü

262 4.6 Alphabetisches Verzeichnis der Kommandos

Befehl Nr. Kurzerklärung
ˆXÃ Menü beenden
ˆX0 70 Cursor auf Marke 0 setzen
ˆX1 70 Cursor auf Marke 1 setzen

...
...

...
ˆX9 70 Cursor auf Marke 9 setzen
ˆXA 86 Text suchen und ersetzen
ˆXB 29 Cursor auf Blockanfang
ˆXC 20 Cursor zum Dateiende
ˆXD 16 Cursor zum Zeilenende
ˆXE 17 Cursor zum oberen Bildschirmrand
ˆXF 85 Text suchen
ˆXH 71 Hilfestufe wählen
ˆXI 88 Replace-Text einfügen
ˆXK 30 Cursor auf Blockende
ˆXQ 91 Kommando wiederholen
ˆXR 19 Cursor zum Textanfang
ˆXS 15 Cursor zum Zeilenanfang
ˆXU 28 letzte gelöschte Zeile einfügen
ˆXV 31 Cursor an Position vor ”Suchen/Ersetzen“
ˆXX 18 Cursor zum unteren Bildschirmrand
ˆXY 25 ab Cursorposition bis Zeilenende löschen
ˆXZ 26 ab Cursorposition bis Zeilenanfang löschen

Tabelle 4.12: Rtos-Word-Kommandos im ”X“-Submenü

Befehl Nr. Kurzerklärung
ˆBÃ Menü beenden
ˆBA 84 Position des nächsten Textfensters
ˆBI 76 Farbe der Statuszeile ändern
ˆBK 79 Farbe der Kommandozeile ändern
ˆBL 82 Dateiauswahlfenster erzeugen
ˆBM 77 Farbe markierter Blöcke ändern
ˆBS 80 Textfensterbreite ändern
ˆBT 78 Textfarbe ändern
ˆBW 83 Dateiübersichtsfenster erzeugen
ˆBZ 81 Zeilenanzahl des Textfensters ändern

Tabelle 4.13: Rtos-Word-Kommandos im ”B“-Submenü

4.6 Alphabetisches Verzeichnis der Kommandos 263

Befehl Nr. Kurzerklärung
Esc Ã Menü beenden
Esc ↑ 24 Zeile löschen
Esc ↓ 6 Leerzeile einfügen
Esc → 7 Leerzeichen einfügen
Esc ← 5 Zeichen unter Cursor löschen
Esc A 12 Cursor aufwärts
Esc B 11 Cursor abwärts
Esc C 10 Cursor ein Zeichen rechts
Esc D 9 Cursor ein Zeichen links
Esc E 6 Leerzeile einfügen
Esc F 39 halbe Seite vorwärts blättern
Esc G 34 physikalische Spalte anlaufen
Esc H 73 Text komprimieren
Esc I 62 Pufferzeile einfügen
Esc K 64 Pufferzeile editieren
Esc L 6 Leerzeile einfügen
Esc M 24 Zeile löschen
Esc N 75 neue logische Zeilennummern
Esc O 61 Zeilenrest in Zeilenpuffer kopieren
Esc P 5 Zeichen unter Cursor löschen
Esc Q 7 Leerzeichen einfügen
Esc R 24 Zeile löschen
Esc S 63 ab Cursor nach Inhalt des Puffers suchen
Esc T 66 Tabulator an Cursorposition setzen
Esc U 67 Tabulator an Cursorposition löschen
Esc V 72 Bildschirm neu aufbauen
Esc X 41 Text speichern und verlassen
Esc Y 32 physikalische Zeilennummer anlaufen
Esc Z 33 logische Zeilennummer anlaufen

Tabelle 4.14: Rtos-Word-Kommandos im ”Esc“-Submenü

264 4.8 Das Konfigurationsmodul

4.7 Standardmäßig unterstützte Terminals

Rtos-Word unterstützt die Terminaltypen Televideo und VT52/100/220/
320. Die Ansteuerung dieser Terminals soll in diesem Unterabschnitt beschrie-
ben werden. Arbeiten Sie an einem Terminal, können Sie eine Anpassung mit
Hilfe von Unterabschnitt 4.8 vornehmen. Über den Rtos-UH-Bedienbefehl

”SD“ können Sie Rtos-Word ihren Terminaltyp mitteilen:

• ”SDÃ/TYAÃ3300“ für ein Televideo-Terminal

• ”SDÃ/TYAÃ3301“ für ein VT52-Terminal

• ”SDÃ/TYAÃ3302“ für ein Terminal der Typen VT100/220/320, das im
7 Bit Mode betrieben wird.

Rtos-Word benötigt für seine Arbeit die Steuersequenzen gemäß der nach-
folgenden Tabelle:

Funktion Televideo VT52 VT100/220/320
Bildschirm löschen 1B2A 1B481B4A 1B5B324A
Cursor positionieren 1B3Drrcc 1B59rrcc 1B5BRR3BCC66
inverse Darstellung 1B29 1B70 1B5B376D
normale Darstellung 1B28 1B71 1B5B306D
Zeilenende löschen 1B54 1B4B 1B5B304B

rr/cc steht für die Zeilen- und Spaltennummer in Binär-Darstellung mit einem
Offset von $20. Die linke obere Ecke wird mit z. B. bei einem Televideo-Terminal
mit ”1B3D2020“ adressiert. RR und CC sind die Zeilennummern in ASCII-
Darstellung mit einem Offset von 1. Bei einer zweistelligen Spaltenzahl ist also
die Steuersequenz um 1 Byte größer als bei einer einstelligen. Bei einem VT100
Terminal beispielsweise wird die linke obere Ecke mit ”1B5B313B3166“ erreicht,
mit ”1B5B31313B333266“ erreichen Sie die Position ”11. Zeile/32. Spalte.“

Sollte Ihr Terminal mit den obigen Squenzen nicht zurecht kommen, müssen
Sie eine eigene Anpassung gemäß Unterabschnitt 4.8 durchführen.

4.8 Das Konfigurationsmodul

Dieses Modul hat zwei völlig voneinander unabhängige Funktionen: Einerseits
können Sie eine Terminalansteuerung konfigurieren, die Rtos-Word nicht
standardmäßig unterstützt. Andererseits können Sie für den Window-Modus
die Startgröße und -position des ersten Fensters vorgeben sowie die Standard-
farben für Text, Blöcke, Kommando- und Statuszeile vorgeben. In beiden Modi
sind einige Defaultparameter veränderbar.

4.8 Das Konfigurationsmodul 265

4.8.1 Die Anpassung an Ihr Terminal

Rtos-Word benötigt die Funktionen ”Bildschirm löschen“, ”Cursor positio-
nieren“, ”normale Zeichendarstellung“, ”inverse Zeichendarstellung“ und ”ab
Cursor bis Zeilenende löschen.“ Die Sequenz zur Cursorpositionierung darf ma-
ximal 12 Byte lang sein, alle anderen Sequenzen haben die Maximallänge acht.
Die Sequenzen für Ihr Terminal finden Sie im dazugehörigen Handbuch.

Die Cursorpositionierung benötigt die anzusteuernde Zeile und Spalte. Daher
ist in die Befehlssequenz für die Positionierung mit Hilfe eines Codes einzubau-
en, wie Ihr Terminal die Zeilen- und Spaltendarstellung erwartet: $80 steht als
Platzhalter für die binäre Zeilenposition. Der auf die $80 folgende Wert ist der
Offset zu Zeile 0 und wird nicht ausgegeben, sondern auf den Wert der aktu-
ellen Zeile addiert. Ebenso steht die $81 als Platzhalter für die aktuelle binäre
Spalte. Auch hier wird der folgende Wert addiert. Die Ansteuersequenz lautet
also im Televideo-Modus 1B3D 8001 8101. Die Platzhalter für die Zeilen- und
Spaltenposition in ASCII-Darstellung lauten $83 und $82. Der darauf folgende
Wert ist wieder der Offset. Bei einem VT320-Terminal lautet die Befehlsse-
quenz zur Cursoransteuerung ”1B5B 8301 3B82 0166“.

Als weitere Parameter im Terminalmode stehen im Konfigurationsmodul die
Bildschirmzeilenzahl. Außerdem können Sie vorgeben, ob Rtos-Word im
Einsetz- oder im Überschreibmodus und im ein- bzw. ausgeschalteten Einrück-
modus anläuft. Sie können außerdem die Anzeige der logischen Zeilennummer
unterdrücken. Im Beispielmodul in Unterabschnitt 4.8.2 finden Sie die Erläute-
rungen zur Konfigurierung.

4.8.2 Beispielmodul

Das folgende Listing stellt ein Beispiel für ein Konfigurationsmodul dar.

--
* Muster-Konfigurationsmodul fuer WORD *
* Universalmodul mit allen moeglichen Parametern *
--

DC 0,0,0,0,$0010 Modul-Kopf *
DC.L NAME-$ Zeiger auf den Namen *
DC 0 Name ist relativ angegeben *

NAME DC.B ’WORD_para’,$FF Name des Moduls (alle User) *
*NAME DC.B ’WORD_par1’,$FF Name des Moduls (USER1) *

* Parameter Kommentar *
--
* Sektion ’TERMINAL’ *

266 4.8 Das Konfigurationsmodul

--
CLEAR DC $1B2A,0,0,0 Bildschirm loeschen *
POS DC $1B3D,$8020,$8120 Positionieren *

DC 0,0,0 *
INVERS DC $1B29,$0000,0,0 Schrift invers *
NORMAL DC $1B28,$0000,0,0 Schrift normal *
DELEND DC $1B54,0,0,0 Bis Zeilenende loeschen *

* Laenge des Bildschirms-4 (min. 7, max. 21) *
SCRELI DC 15 *

* Insert- oder Replace-Modus *
* Insert-Modus: $0 Replace-Modus: $FFFF *
INSMOD DC $FFFF Start im Replace-Modus *

* linker Rand mit Zeilennummer: 0 ohne: 8;<>0 *
LEFTMA DC 8 keine Zeilennummer *
--
* Sektion ’MODE’ *
--
* Diese Sektion gilt fuer WIM und TER-Modus
* $0 = Standardwerte laden *
* $FFFF = umgekehrter Modus (<>0) *

DC.B ’MODE’ Sektions-Kennung *
_INSMO DC $0 einfuegen (Standard) *
INDENT DC $0 einruecken (Standard) *
WRAP DC $0 kein Umbruch (Standard) *
_LEFTM DC $0 linker Rand MIT Zeilennummer *

DS 12 reserviert
--
* Sektion ’WINDOW’ *
--
* Diese Sektion gilt nur im WIM-Modus *
* Farben *
* 0,0 = Standardwerte laden *
---------------------- Farben ----------------------------
rot EQU 1
gruen EQU 2
braun EQU 3
marine EQU 4
lila EQU 5
tuerkis EQU 6

4.8 Das Konfigurationsmodul 267

grau EQU 7
anthrazit EQU 8
hellrot EQU 9
hellgruen EQU 10
gelb EQU 11
blau EQU 12
pink EQU 13
hellblau EQU 14
weiss EQU 15
schwarz EQU 0

DC.B ’WINDOW’ Sektions-Kennung *
BLOCK DC.B anthrazit,weiss Hinter-/Vordergrund Bloecke *
TEXT DC.B grau,schwarz Hinter-/Vordergrund Text *
STATUS DC.B grau,schwarz " " Statuszeile *
COMMND DC.B grau,schwarz " " Kommandozeile *
XPOS DC 5 Startposition: 5. Spalte *
YPOS DC 1 Startposition: 1. Zeile *
XSIZE DC 80 Startgroesse: 80 Spalten *
YSIZE DC 26 Startgroesse: 26 Textzeilen *
--

DS 12 reserviert
END

Beachten Sie die folgenden Erläuterungen:

• Ein Konfigurationsmodul WORD_par1 wirkt nur auf User 1. Entsprechen-
des gilt für die anderen User. Soll es für mehrere User gelten, muß es
WORD_para lauten. Sind sowohl ein userspezifisches als auch ein allge-
meingültiges Modul geladen, hat das userspezifische Vorrang.

• Die Terminalsektion wird nur ausgewertet, wenn die Device-Facilities der
seriellen Schnittstelle auf $3303 stehen.

• Alle anderen Sektionen werden ausgewertet, wenn das Modul zu dem
User gehört (s. o.).

• Die den einzelnen Labeln zugeordneten Bytelängen müssen auf jeden Fall
eingehalten werden.

• Mindestens eine Sektion muß im Modul enthalten sein.

• Innerhalb einer Sektion darf die Parameterreihenfolge nicht geändert wer-
den.

• Folgt hinter einem Komma ein weiterer Parameter, darf kein Leerzeichen
zwischen Komma und Parameter stehen.

268 4.9 Besonderheiten bei der Einbindung in das Betriebssystem RTOS-UH

• Terminalsektion: Ist Ihre Ansteuersequenz kürzer als die vorgegebene
Länge, müssen Sie Nullbytes/Nullwörter auffüllen. Rtos-Word igno-
riert diese bei der Ansteuerung des Terminals. SCRELI gibt die Anzahl
der darzustellenden Textzeilen an. Ihr Terminal muß mindestens 4 weite-
re Zeilen darstellen können. Statt INSMOD und LEFTMA sollten Sie Sektion

”MODE“ benutzen.

• Windowsektion: Sind Vorder- und Hintergrundfarbe gleich oder hat ei-
ne der beiden Farben einen ungültigen Wert, werden die Standardwerte
verwendet. Bei der Positionierung hat die linke obere Ecke des WiM den
Wert 1/1. Hat das zu öffnende Fenster keine Zeile oder keine Spalte, wird
die Defaultgröße verwendet. Sind Maße zu groß, werden die Maximalwer-
te verwendet.

4.9 Besonderheiten bei der Einbindung in das
Betriebssystem RTOS-UH

1. Arbeiten Sie an einem Terminal, wird die Schnittstelle im Xon/Xoff-
Protokoll betrieben. Trotzdem kann es zu Verwirrung auf dem Bildschirm
kommen. In einem solchen Fall können Sie mit ”EscV“ den Bildschirm
neu aufbauen lassen.

2. Es gibt VT52-Terminals, die Schriften nicht invers darstellen können. Die
in Unterabschnitt 4.7 angegebenen Sequenzen sind zwar korrekt und auch
korrekt programmiert, aber es gibt unterschiedliche VT52-Terminals. Auf
jeden Fall funktionieren alle Befehle korrekt. Rtos-Word kann jedoch
markierte Blöcke nicht anzeigen.

3. Haben Sie aus Versehen ”ˆS“ gedrückt, kann es vorkommen, daß ihr Ter-
minal dieses sofort abfängt und die Schnittstelle blockiert. Sollte es einmal
vorkommen, daß sich auf ihrem Terminal nichts mehr ändert, drücken Sie
erst einmal ”ˆQ“ zur Freigabe der Schnittstelle, bevor Sie glauben, daß
RTOS-UH abgestürzt ist.

4. Rtos-Word verhindert in den meisten Fällen, daß Sie mit ”ˆA“, ”ˆB“
und ”ˆC“ das Kommandointerface erreichen. Sehen Sie trotzdem einmal
den Eingabeprompt, kann dies zwei Ursachen haben: Das Drücken der
Break-Taste unterdrückt RTOS-UH absichtlich nicht, um immer noch
in das Betriebssysstem kommen zu können. Arbeiten noch andere Tasks
auf ihrer Schnittstelle – besonders gemein sind die, die ab und zu auf die
Tastatur pollen –, kann es dazu kommen, daß der Unterdrückungsmecha-
nismus ausgeschaltet wird. Wollen Sie genau danach eine Seite nach unten
blättern (”ˆC“ !!), haben Sie den Datensalat. Zum Beheben brauchen Sie
lediglich die Cr-Taste, gefolgt von einem ”EscV“ zu drücken.

4.10 Statusmeldungen und Eingabeaufforderungen 269

5. Erscheinen statt der eckigen Klammern ”[“ und ”]“ deutsche Buchsta-
ben, dann steht Ihr Terminal, Ihre Terminalemulation oder Ihr Fenster
auf deutschem Zeichensatz. Falls Sie diese Zeichenausgabe nicht stört,
brauchen Sie nichts weiter zu tun; Rtos-Word arbeitet weiterhin ein-
wandfrei. Wollen Sie die eckigen Klammern statt der Umlaute betrachten,
müssen Sie auf einen englischen Zeichensatz umstellen.

4.10 Statusmeldungen und Eingabeaufforderungen

Verschiedene Aktionen von Rtos-Word, wie z. B. das Suchen von Text, dauern
etwas länger. Damit Sie sich nicht wundern, warum Rtos-Word nicht mehr
auf Ihre Eingaben reagiert, geben Kommandos, die länger dauern können, eine
Statusmeldung aus. Diese sind im folgenden dargestellt.

Please wait: I’m searching. Es wird nach einem String gesucht. Die Mel-
dung verschwindet, wenn der String erreicht oder die Datei abgearbeitet
ist.

Please wait: I’m packing. Diese Meldung erscheint beim Verlassen incl.
Abspeichern des bearbeiteten Textes. Nach dem Verdichten der /ED-Datei
bzw. Zurückschreiben der Arbeitskopie auf das Original hat Rtos-Word
diesen Text aus seiner Verwaltung entfernt.

Please wait: I’m saving. Die Datei wird gesichert. Nach dem Sichern
können Sie mit der Bearbeitung fortfahren.

Please wait: I’m loading. RTOS-Word legt die lokale Arbeitskopie an.
Mit dem Aufblättern des Textes verschwindet diese Meldung.

taskname suspended waiting Im Terminal-Mode haben Sie den Editor mit

”ˆEU“ unterbrochen. Fahren Sie mit der Arbeit fort, indem Sie von der
Shell aus ”C taskname“ eingeben.

O. K., never mind! Sie wollten einen noch nicht vorhandenen Text editieren.
Bevor Sie jedoch damit begonnen haben, haben Sie sich anders entschie-
den.

Die folgende Auflistung enthält alle Eingabeaufforderungen. Sie müssen alle
Eingabeaufforderungen, die nicht mit ”(y/n)“ enden, mit Cr quittieren, es sei
denn, bei der Erklärung steht etwas anderes. Die Eingabeaufforderungen, die
direkt nach einer Befehlseingabe erscheinen, enthalten einen Verweis auf den
Befehl, der die Meldung ausgibt.

Set Tab at position: Sie wollen einen neuen Tabulator einfügen
(”ˆOI“, Nr. 66).

270 4.10 Statusmeldungen und Eingabeaufforderungen

Del Tab at position: Sie wollen einen Tabulator löschen (”ˆON“, Nr. 67).

Set right margin at: Sie möchten den rechten Rand neu setzen
(”ˆOR“, Nr. 68).

Enter steps (-)= left: Sie können einen Block ein-/ausrücken
(”ˆEI“, Nr. 54).

Destroy old file? (y/n) Sie wollen einen Block herausschreiben (”ˆEW“,
Nr. 58) und die von Ihnen angegebene Datei ist vorhanden. Wenn Sie
mit ”y“ antworten, wird sie überschrieben, sonst wird die Aktion abge-
brochen. Diese Meldung erscheint auch, wenn Sie einen Block an einen
Drucker schicken.

Enter search string: Sie wollen einen Text suchen oder suchen und ersetzen
(”ˆXF“, Nr. 85 bzw. ”ˆXA“, Nr. 86). Geben Sie bitte den Suchtext ein.
Eine Bestätigung ist auch mit Esc möglich.

Enter replace string: Erscheint nach beim Suchen und Ersetzen (”ˆXA“,
Nr. 86). Geben Sie bitte den Text ein, der den gesuchten ersetzen soll.
Eine Bestätigung ist auch mit Esc möglich.

Enter file name: Sie wollen etwas aus einer Datei lesen oder in Datei schrei-
ben. Geben Sie bitte den Namen dieser Datei an.

Options ? Sie können nun die Such- bzw. Such-und-Ersetz-Optionen einge-
ben. Die Ausführung kann auch mit Esc forciert werden.

Exchange ? (y/n) Rtos-Word hat beim ”Suchen und Ersetzen“ den Such-
text gefunden und fragt Sie nun, ob er ihn ersetzen soll. ”y“ ersetzt den
Text.

Enter repeat command: Sie wollen ein Makro zyklisch ausführen (”ˆXQ“, Nr.
91). Sie können eine Folge von Kommandos eingeben, die dann immer
wieder abgearbeitet wird.

Repeat rate (0-9): Bei der zyklischen Ausführung eines Makros gibt die von
Ihnen angeschlagene Ziffer die Zykluszeit in 0,5 sec an. Die Zahl darf nicht
mit Cr bestätigt werden.

Help level (0 oder 2): Die Hilfestufe (”ˆXH“, Nr. 71) wird festgelegt. ”0“
schaltet aus, ”2“ schaltet ein. Die Zahl darf nicht mit Cr bestätigt wer-
den.

This file will not be saved! (y/n) Sicherheitsabfrage, wenn Sie eine
geänderte Datei ohne Abspeichern verlassen wollen (”ˆEQ“, Nr. 45) .
Antworten Sie mit ”y“, so wird die Datei tatsächlich nicht gespeichert.

4.10 Statusmeldungen und Eingabeaufforderungen 271

No chance! You still want exit? (y/n) Sie haben Rtos-Word beim
Aufruf eine /ED-Datei übergeben oder mit ”ˆEO“ (Nr. 42) geöffnet. Diese
Datei können Sie weder umbenennen (”ˆEL“, Nr. 48) noch ohne Verände-
rung verlassen (”ˆEQ“, Nr. 45). Auch ein Verlassen mit neuem Namen
(”ˆEZ“, Nr. 44) ist nicht möglich.

Zoneselect-Enter Line: Nach einem ”EscZ“ (Nr. 33) können Sie die logi-
sche Zeilennummer eingeben, die Sie anlaufen wollen.

Enter save Time (Min): Erscheint nach dem Befehl ”Automatisches Si-
chern“ (”ˆED“, Nr. 47). Geben Sie den Abstand in Minuten an, nach
dem jeweils automatisch gesichert werden soll.

Set cursor to column: Nach dem Drücken von ”EscG“ (Nr. 34) können Sie
nun die Spalte angeben, auf die der Cursor positioniert werden soll.

Next open pos&size; X: Diese Meldung leitet die Koordinateneingabe und
Fenstergröße für das nächste zu öffnende Fenster (”ˆBA“, Nr. 84) ein.
Hier ist die Spaltenposition des nächsten Fensters gefragt.

Y: Geben Sie bitte die Zeilennnummer ein, in der das nächste Fenster geöffnet
werden soll.

width: Diese Meldung erwartet die Anzahl von Spalten, die das nächste zu
öffnende Fenster haben soll.

height: Hier können Sie die Zeilenzahl angeben, die das nächste zu öffnende
Fenster haben soll.

status line colors: foreground: Hier ist nach der Vordergrundfarbe der
Statuszeile (”ˆBI“, Nr. 76) gefragt. Die Zuordnung zwischen Farbe und
Zahl finden Sie in Tabelle 4.7.

Command line colors: foreground: Geben Sie bitte die Vordergrundfarbe
der Kommandozeile (”ˆBK“, Nr. 79) entsprechend Tabelle 4.7 ein.

Normal text colors: foreground: Sie wollen Textfarbe ändern (”ˆBT“, Nr.
78). Geben Sie bitte die Buchstabenfarbe entsprechend Tabelle 4.7 ein.

Selected text colors: foreground: Diese Meldung erwartet die Vorder-
grundfarbe markierter Blöcke (”ˆBM“, Nr. 77) entsprechend Tabelle 4.7.

background: Sie wollen die Farbe der Kommando- oder der Statuszeile, des
normalen oder des markierten Textes ändern. Geben Sie die Hintergrund-
farbe über eine Zahl gemäß Tabelle 4.7 ein.

Enter window columns: Diese Meldung erscheint bei einer Änderung der Fen-
sterspaltenzahl (”ˆBS“, Nr. 80). Geben Sie die neue Spaltenzahl ein.

272 4.11 Fehlermeldungen

Enter window lines: Sie wollen die Fensterhöhe verändern (”ˆBZ“, Nr. 81).
Geben Sie bitte die neue Höhe in der Anzahl von Textzeilen ein, die Sie
gleichzeitig sehen wollen.

4.11 Fehlermeldungen

Neben den hier aufgeführten Fehlermeldungen verwendet Rtos-Word für eini-
ge Bedienbefehle, die auf Dateien arbeiten, den Report-Error-Mechanismus von
Rtos-UH. Bei einem Fehler produziert Rtos-Word nicht eine Standardfeh-
lermeldung, sondern fragt die Betreuungstask nach deren Fehlertext und gibt
diesen aus. Diese Meldungen können Sie daran erkennen, daß sie mit einem #
und dem Namen der Betreuungstask beginnen.

Alle Fehlermeldungen, die mit (CR) enden, müssen von Ihnen mit einem Cr
quittiert werden.

No Workspace. Try later Ihr Rechner hat nicht genügend freien Speicher.
Um mit Rtos-Word arbeiten zu können, müssen Sie freien Speicher
durch Entladen oder Terminieren von Tasks oder Entfernen von Files der
Datenstation /ED schaffen.

***COMMAND-ERROR (CR): Sie haben eine unzulässige Taste oder Tastenkom-
bination gedrückt.

Command not avail.(CR) Sie haben im Terminal-Modus einen Befehl aufge-
rufen, der nur im Window-Modus erlaubt ist.

***NO MEM:SUSPENDED Rtos-Word benötigt noch eine ED-Speichersektion,
und RTOS-UH hat nicht mehr genügend freien Speicherplatz. Die Edi-
tortask hat sich selbst suspendiert. Zum Fortsetzen sollten Sie mindestens
4 KByte Speicher freigeben. Anschließend können Sie die Task mit dem
Bedienbefehl ”C taskname“ fortsetzen.

Sorry. Can’t find. (CR) Diese Meldung erscheint, wenn eine Textsuche
fehlschlug.

BAD POINTER/BREAKDOWN. Interne Zeigerstrukturen sind zusammengebrochen.
Die Editortask hat sich terminiert. Die /ED-Datei sollte allerdings noch
vorhanden sein. Sie können sie noch umkopieren, die Änderungen der
letzten auf dem Terminal sichtbaren Textseite sind aber verloren. Dieser
Fehler sollte eigentlich nicht vorkommen, laßt sich jedoch immer provozie-
ren, wenn der Nutzer über Befehle an die Datenstation /ED das Arbeitsfile
manipuliert.

Not implem. yet (CR) Sie haben eine Tastenkombination gewählt, die für
eine spätere Verwendung vorgesehen ist.

4.11 Fehlermeldungen 273

Block def. wrong (CR) Eine Ausführung des von Ihnen gewünschten Block-
befehles ist nicht möglich, da entweder die Blockende- vor der Block-
anfangmarke steht oder eine der beiden Marken nicht gesetzt ist.

Not enough memory (CR) Bei einer Blockoperation kann Rtos-Word man-
gels freiem Speicher keinen Plockpuffer einrichten.

Unable to open! (CR) Rtos-Word sieht sich nicht in der Lage, die ge-
wünschte Datei zu öffnen. Meist ist ein simpler Tippfehler schuld.

Unknown device! (CR) Das von Ihnen angegebene Device existiert auf diesem
Rechner nicht.

Read error! (CR) Die Datei konnte zwar geöffnet werden, aber der Filema-
nager, der das Device betreut, konnte die Datei nicht bis zum Dateiende
lesen.

Write error! (CR) Der Schreibvorgang wurde zwar korrekt begonnen, mußte
jedoch vorzeitig beendet werden (z. B. Diskette voll).

Line too long! (CR) Mit Ihrer Operation würde die Zeile zu lang, deshalb
wird sie nicht ausgeführt. Direkt nach dem Laden besagt diese Meldung,
daß die Datei zu lange Zeilen hatte, die Rtos-Word zwangsumgebrochen
hat.

**Aborted command (CR) Sie haben einen Kommando mit ”ˆU“ abgebrochen.
Rtos-Word bestätigt den Abbruch und bittet Sie diese Bestätigung zu
quittieren.

Unable to open file. Bye, Bye! Rtos-Word kann mit diese Datei nicht
öffnen. Kann z. B. auftreten, wenn ein Ordner des Pfades nicht existiert
oder der Dateiname der Betreuungstask des Devices zu lang ist. Diese
Meldung erscheint nur im Terminalmode.

Sorry, can’t work on this device. Bye, Bye! Die von Rtos-Word zu
lesende Textdatei steht auf einem nicht rückspulbaren Device. Da das
Lesen solcher Dateien problematisch für Rtos-Word werden kann, wird
dieser Versuch abgebrochen.

WRONG LDN (MODE) Sie wollen Rtos-Word von einem Device bedienen, wel-
ches nicht die Datenstationseigenschaft ”dialogfähiges Datenterminal“ be-
sitzt. Rtos-Word bricht ab und terminiert sich.

Can’t read input file. Bye, Bye! Die Eingabedatei ist zwar vorhanden,
kann aber nicht korrekt gelesen werden. Rtos-Word bricht ab und ter-
miniert sich.

274 4.11 Fehlermeldungen

Can’t write output file. Bye, Bye! Ihr Rechner hat zuwenig freien Spei-
cher. Die temporäre /ED-Datei kann nicht angelegt werden.

Write-error on filename! Please take /ED/name Beim Verlassen der Da-
tei kann Rtos-Word die lokale Kopie nicht zurückschreiben. Sie kön-
nen /ED/name – name bezeichnet die lokale Arbeitskopie – mit Hilfe des
Bedienbefehles ”CP“ kopieren.

Read-error on filename! Please take /ED/name Beim Verlassen der Da-
tei kann Rtos-Word die lokale Kopie nicht zurückschreiben. Sie können
/ED/name mit Hilfe des Bedienbefehles ”CP“ kopieren.

Can’t delete file (CR) Die angegebene Datei konnte nicht gelöscht werden.

4.12 Technische Daten 275

4.12 Technische Daten

Code: ca. 44 Kbyte; Hilfesystem: ca. 3 KByte
Code ist wiedereintrittsfest. Dadurch
können mehrere Editoren gleichzeitig laufen.

Datenbereich: 4 KByte + 12 KByte für jedes File
Platz für Blockpuffer je nach
Größe des Blockes
Bei Nicht-/ED-Dateien Platz für
lokale Textkopie

Betriebsmodi: Window-Modus:
Eigenes größeneinstellbares Fenster
für jeden Text
(Window-Manager notwendig)

Terminal-Modus:
Konsolenfenster als Arbeitsfenster
(Bei Terminals und Terminalemulationen)

Unterstützte Terminals: Televideo; VT52/100/220/330
Andere Typen über Konfigurationsmodul

Fenstergröße: Terminal-Modus:
Standard 80 Spalten / 24 Zeilen
Andere Größen über Konfigurationsmodul

Window-Modus:
Maximalgröße durch Grafikauflösung
bestimmt

Anzahl editierbarer Texte: Terminal-Modus:
nur durch Speicherplatz begrenzt

Window-Modus:
100 Texte pro Editortask

Textmaximalgröße: nur durch Speicherplatz begrenzt
die ersten 65500 Zeilen sind editierbar,
Textspalten auf 231 begrenzt

Erlaubte Zeichen: ASCII-Werte von $20. . . $FF,
fast alle Sonderzeichen

Farben: 16 Farben für Text und Block sowie
Kommando- und Statuszeile

Ansteuerung: Über Terminal oder Pipes
Ausführung von Batchdateien möglich

276 4.12 Technische Daten

(Leere Seite vor neuem Kapitel)

Kapitel 5: Programmieren in PEARL

5.1 Die PEARL-Compiler-Familie

5.1.1 Compilertypen und Zielprozessoren

Die Kompilation von PEARL90-Programmen kann auf jedem RTOS–UH-
Rechner, aber auch auf Fremdsystemen erfolgen. Für die handelsüblichen PCs
gibt es das sog. C-VCP-Paket, das den Original RTOS/PEARL-Compiler (es ist
wirklich Bit für Bit der gleiche binäre Code!) auf solchen Rechnern als Cross-
Compiler nutzbar macht. Für einige Unix-Systeme gibt es ein entsprechend
angepasstes C-VCP-Paket, für das die gleiche absolute Kompatibilität gilt. Mit
dem Paket sind auch Linker und Assembler auf Fremdsystemen einsetzbar.

Insgesamt existieren zur Zeit außer den Demo-Versionen anscheinend 6 ver-
schiedene PEARL90-Compiler. Alle Varianten decken exakt den gleichen
PEARL-Sprachumfang ab und haben die gleiche Revisionsnummer, weil sie in
Wirklichkeit aus dem gleichen Quellfile übersetzt wurden. Die Varianten sind:

Diese Variante kann nur Code für den Prozessortyp MC68000”MINI“:
generieren. Die so erzeugten (Code-) S-Rekords sind auf allen
68K-RTOS–UH-Zielsystemen ablauffähig. Es wird aber nicht
immer der jeweilige Prozessortyp optimal ausgenutzt. Als Gleit-
kommaformat wird das RTOS–UH eigene Format verwendet.

Dies ist der eigentliche professionelle Standardcompiler. Mit”MAXI“:
ihm kann wahlweise Code für die Zielprozessoren MC68000,
MC68020, MC68040 und MC68020+MC68881 erzeugt werden.

Als Defaulteinstellung dient der Prozessortyp des Rechners, auf
dem der Compiler läuft, der Entwicklungsrechner. Diese Einstel-
lung erfolgt automatisch beim Aufruf des Übersetzers. Der 68040
allerdings wird bei dieser Defaulteinstellung behandelt, als sei er
ein Gespann, bestehend aus 68020+68882. Von diesem Spezial-
fall abgesehen, wird immer optimal auf das Entwicklungssystem
abgestimmter Code erzeugt. Wenn man sicher ist, daß man die
68040-Welt mit den S-Rekords nie verlassen wird oder man harte
Echtzeitbedingungen einhalten muß, so sollte man mit der unten

277

278 5.1 Die PEARL-Compiler-Familie

beschriebenen Methode den Prozessortyp explizit auf ”P=68040“
einstellen. Gleiches gilt für den Typ 68060.

”PowerPC“: Dieser Compiler kodiert für den Prozessor PowerPC. Auch er
ist vom Sprachumfang her völlig identisch zu den anderen Va-
rianten. Er läßt sich sowohl auf Hardware-Float als auch auf
Software-Float einstellen.

”CROSS68“: In Wirklichkeit ist es der Maxi-Compiler, Tatsächlich ist er im
Binärcode Bit für Bit mit ihm identisch. Mit Hilfe des C-VCP
läuft er jedoch auf allen möglichen Fremdsystemen. Er defaul-
tiert als Prozessortyp, den er aus dem Gastsystem natürlich nicht
ermitteln kann, stets MC68000.

”CROSSPPC“: In Wirklichkeit ist es der PowerPC-Compiler, für ihn gilt
das über den ”CROSS68“ gesagte sinngemäß. Er defaultiert auf
Software-Float.

Auch dies ist der 68K-Maxi-Compiler. Er setzt den Defaulttyp”QUICK“:
an Hand des Entwicklungsrechners wie dieser. Weil der Com-
piler mit einem speziellen Übersetzer behandelt wurde, läuft er
jedoch mit sehr viel höherer Arbeitsleistung, mindestens doppelt,
meist sogar dreimal so schnell wie der Standard-Maxi. Aufgeru-
fen wird er mit ”QP“. Sein einziger Nachteil ist, daß er für seine
Arbeit deutlich mehr Speicher verbraucht, nämlich ca. 200 kByte
statt ca. 50 kByte zur Ablage seines Codes. Wenn man Pro-
gramme auf der Winston-68k-RTOS-Emulation entwickeln will
und häufig kompilieren muß, so kann man diesen Compiler ein-
mal laden und dann zeitsparend als residente Shellerweiterung
benutzen.

Eine Quick-Version für den PowerPC existiert noch nicht.

5.1 Die PEARL-Compiler-Familie 279

Meist ist das Zielsystem nicht identisch mit dem Entwicklungssystem, insbeson-
dere wenn einer der beiden CROSS-Compiler z. B. unter MS-DOS/Windows
oder Unix benutzt wird. Dann kann – außer beim ”Mini“ – die Zielprozessor-
Defaulteinstellung durch eine Prozessorzuweisung in der ersten PEARL--
Programmzeile übersteuert werden. Diese Übersteuerung kann mit Hilfe der
eingebauten benamten Konstanten P_68K oder P_PPC und dem Preprozessor-
befehl #IFDEF P_68K (bzw. #IFDEF P_PPC) vom verwendeten Zielprozessorsy-
stem abhängig gemacht werden. Dazu stehen mit P= ... folgende Steueran-
weisungen zur Verfügung:

”MINI“–kompatibler Mode, der erzeugte Code ist voll kompati-P=68000;
bel zum ”MINI“-Übersetzer.

Floatdarstellung: RTOS–UH-Format

Befehlsumfang: MC68000 + virtuelle Codes

nutzt Befehle des MC68020, daher ist der Code nicht kompatibelP=68020;
zum ”MINI“ und kann nur in Zielsystemen mit MC68020 und
darüber exekutiert werden.

Floatdarstellung: RTOS–UH-Format

Befehlsumfang: MC68020 + virtuelle Codes

nutzt Befehle, die speziell nur im 68040-System implementiertP=68040;
sind. Die Angabe führt dazu, daß die mathematischen Funktio-
nen, die der 68040 nicht ”on chip“ hat (sin, tan etc.), durch
echtzeitkonforme, besonders schnelle und jederzeit unterbrech-
bare Unterprogramme realisiert werden. Dies ist eine wichtige
Spezialität unseres 68040-RTOS/PEARL. Man beachte, daß oh-! →
ne diese Angabe auch in unserem System die in anderen Syste-
men übliche, zwar von Motorola vorgeschlagene, aber schlechte
Lösung mit F-line Emulation benutzt wird und so das Echtzeit-
verhalten ganz erheblich (Rechnung im Supervisorprozeß!!) ver-
schlechtert wird. Es ist noch in der Diskussion, ob später nicht
auch die automatische Anpassung diese 68040-Option generieren
soll.

Floatdarstellung: IEEE-Format

Befehlsumfang: MC68020 + MC68881 + virtuelle Codes + Son-
derfunktionen.

P=68040(n); Wie oben, jedoch werden nun n (3...8) Floatingpoint-Register als

280 5.1 Die PEARL-Compiler-Familie

Kontext gerettet. Man braucht diese Option, wenn eigene As-
semblerprogramme höher numerierte Register FPx benutzen. Die
Kontextswitchzeit wird im Gegensatz zum 68020+68881 beim
68040 normalerweise nicht relevant verschlechtert, wenn man zur
Sicherheit immer P=68040(8); einsetzt.

vermeidet einige Befehle, die auf dem Prozessor 68060 nichtP=68060;
vorhanden sind und emuliert werden müssen, ansonsten wie
P=68040. Die Modes 68040 und 68060 erzeugen Programme, die
auf beiden Prozessoren auch über Kreuz lauffähig sind. Lediglich
kleinere Optimalitätseinbußen können eintreten.

Floatdarstellung: IEEE-Format

Befehlsumfang: MC68020 + MC68881 + virtuelle Codes + Son-
derfunktionen.

P=68060(n); Wie oben, jedoch werden nun n (3...8) Floatingpoint-Register als
Kontext gerettet.

nutzt Befehle des MC68020 und des MC68881/2 (FPU), daherP=68881;
ist der übersetzte Code nur auf Systemen mit dieser Hardwa-
re einsetzbar. Auf Prozessoren des Typs 68040 und 68060 sind
die Programme lauffähig, jedoch nur über die im Echtzeitbe-
reich ungünstige und teilweise erheblich langsamere Trapemula-
tion des Motorola-Ansatzes.

Floatdarstellung: IEEE-Format

Befehlsumfang: MC68020 + MC68881 + virtuelle Codes
Zusätzliche MC68881 typische Einbaufunktionen

P=68881(n); ermöglicht eine Angabe der beim Taskwechsel zu rettenden FPU–
Register. Diese Angabe bezieht sich auf alle in dem Modul be-
findlichen Tasks, gilt also modulweit (1 ≤ n ≤ 8). Defaultwert
für n ist 1, es wird also das FPU–Register 0 gerettet.

ist die Standardeinstellung für die Prozessoren 603/604 ohne Be-P=MPC604;
nutzung der Gleitkommaeinheit.

Floatdarstellung: RTOS–UH-Format

P=MPC604+FPU(n); ist die Einstellung für die Prozessoren 603/604 bei Benut-
zung der Gleitkommaeinheit. Mit Angabe der Zahl n wird die

5.1 Die PEARL-Compiler-Familie 281

Anzahl der zu verwendenden Gleitkommaregister vorgegeben,
maximal möglich sind 32. Ist n Null, so wird die Gleitkommaein-
heit nicht benutzt. Eine hohe Zahl erfreut zwar – je nach Pro-
blem – unter Umständen den Compiler, verschlechtert jedoch die
Echtzeit-Performance des Systemes, da der zu rettende Kontext
bei der Taskumschaltung ziemlich großvolumig werden kann. Der
Compiler erhöht die angegebene Zahl bei Bedarf auf seine Min-
destzahl (typ. 4 Register).

Floatdarstellung: IEEE-Format (Wenn n > 0 ist)

ist die Standardeinstellung für die PowerPC-Prozessoren IBMP=MPC405;
405. Es wird Code generiert, der den sog. lwarx/stwarx flaw
(CPU-Fehler) umgeht. Werden 405-Prozessoren mit normalen
PowerPC-Compilern beschickt, ist mit sehr schwerwiegenden
Fehlern beim Handling mit Semaphoren und Bolts zu rechnen!
Der Code ist etwas weniger effizient aber korrekt auf normalen
PowerPCs lauffähig.

Linken Sie auf gar keinen Fall Module mit unterschiedlichenHinweis:
P= ...-Steueranweisungen zusammen! Schwer zu findende Fehl-
funktionen durch unterschiedliche Floatformate und/oder unter-
schiedliche Benutzung des Gleitkommarechenwerkes sind sonst
möglich. Auch Laufzeitparameterfehler beim Prozeduraufruf im
Test-Mode können dadurch entstehen.

5.1.2 Sprachliche Besonderheiten des UH–PEARL

Die Implementierung richtet sich nach dem ”PEARL90 Sprachreport“, der bei
der Fachgruppe 4.4.2 (Echtzeitprogrammierung, PEARL) der Gesellschaft für
Informatik verfügbar ist. Aus diesem Report wird die neue DIN-Norm 66253
hervorgehen. Allerdings ist die zur Zeit freigegebene Version des PEARL-
Compilers noch nicht vollständig mit dieser DIN-Norm 66253 kompatibel. Hi-
storisch bedingt gibt es auch noch Erweiterungen, die über die DIN-Norm und
den Sprachreport hinausgehen. Sie wurden wegen der Portabilität auf Basis des
CALL-Konstruktes realisiert (jedoch ohne den zeitaufwendigen Maschinencode),
damit RTOS–UH–PEARL–Programme auch auf anderen PEARL-Systemen
verwendbar gemacht werden können.

282 5.1 Die PEARL-Compiler-Familie

BEZEICHNER: Es sind — wie allgemein üblich — Ziffern, Kleinbuchstaben
und Großbuchstaben erlaubt. Bezeichner dürfen jedoch nicht mit einer Ziffer
beginnen. Zwischen Groß– und Kleinbuchstaben wird semantisch unterschie-
den. Die Bezeichner dürfen maximal aus 24 Zeichen zusammengesetzt werden.
Das Zeichen Underscore (” “) darf ebenfalls innerhalb von Bezeichnern be-
nutzt werden.

SCHLÜSSELWORTE: Alle Schlüsselworte müssen in Großbuchstaben ge-
schrieben werden (PEARL-Norm).

5.1.2.1 Datentypen im RTOS/PEARL

Typ Länge typ. Konstante/INIT
FIXED(1...15) 2 Bytes 21527 –500 100(15)
FIXED(16...31) 4 Bytes 471(31) 0(31) –2(31)
FLOAT(1...23) 4 Bytes 1.23456E–05 0.245
FLOAT(23...55) 8 Bytes 3.1414567893617(55)
CHAR(1...255) n Bytes ’Abcdefgh–XYZ’ ’a’
BIT(1...16) 2 Bytes ’01000100’B ’AFFE’B4
BIT(17...32) 4 Bytes ’AFFE1234’B4
DUR(ATION) 4 Bytes 2 HRS 5 MIN 0.4 SEC
CLOCK 4 Bytes 13:45:2.004

dur, clock ’Atom’ ist 1 msec!
SEMA 2 Bytes PRESET(2)
BOLT 2 Bytes Initial immer ”FREE“
STRUCT ? Bytes INIT komponentenweise
REF typ 4 Bytes INIT(Identifier)

Tabelle 5.1: Datentypen in RTOS–UH/PEARL

Bei den Verbunddaten (STRUCT) können Komponentennamen frei gewählt wer-
den. Der Übersetzer verarbeitet jedoch nur max. 1023 gleichzeitig ”lebende“
Verbundtypen: Verbundtypen, die bei Verlassen eines Blockes (Prozedur, Task,
Begin/End-Block) ungültig wurden, belasten diese Bilanz nicht weiter. Ge-
meint ist ja auch nicht die Anzahl der Datenobjekte sondern die Anzahl der
Datentypen. Diese 1023-er Grenze ist daher in der Praxis kaum je relevant.

Mit Hilfe der LENGTH–Anweisung kann die Defaultlänge der Objekte FIXED,
FLOAT, CHAR und BIT eingestellt werden. Ohne LENGTH–Statement gilt:

5.1 Die PEARL-Compiler-Familie 283

FIXED = FIXED(15)
FLOAT = FLOAT(23)
CHAR = CHAR(1)
BIT = BIT(1)

Defaultlängen der PEARL-Objekte

284 5.1 Die PEARL-Compiler-Familie

Das LENGTH–statement wirkt auch auf die FIXED und FLOAT Kon-Achtung:
stanten ohne nachgestellte Länge!

Beispiel:

LENGTH FLOAT(55); ! Defaultlaenge longfloat
DCL X FLOAT; ! Objekt ist longfloat
......
X=3.141567890123; ! Konstante ist doppelt genau

5.1 Die PEARL-Compiler-Familie 285

Eine Übersicht über den Implementationsstand
Objekt Abweichung

– SIGNALE Noch nicht implementiert
– ARRAYS Keine Total–E/A
– ARRAYS Keine Slices
– DATION Keine Stationsfelder,

keine Untergliederung (CYCLIC ...),
DCL nur in PROC/TASK

– BIT/CHAR Keine Slices
– BIT CAT für BIT nicht implem.
– PROCS Keine lokale Def. innerhalb PROCs/TASKs
– REF_CHAR Nicht implementiert
– BY TYPE Nicht implementiert
+ Arrays Volle 32 Bit adress., Totalzuweisung
+ BIT/CHAR Beliebige Expr./ im Selektor xy.CHAR(expr)
+ PROC(EDURE) Der Selbstaufruf (Rekursion) ist erlaubt
+ Multi–module Mehrere Systemteile können gebunden werden
+ E/A–Anweisung Ausdr./Functions mit eigener E/A möglich
+ Hilf/Test An/abschaltbare Hilfsfunktionen
+ TYPE Definition auch für Grunddatentypen und Arrays

erlaubt
+ Einbaufunktionen Für Basisgrafik, Ein–/Ausgabe
+ ST(dation) Statusabfrage Datenstation
+ SEMASET expr. Dynamische SEMA-Reinitialisier

Tabelle 5.2: DIN/PEARL90–Abweichungen

286 5.2 Preprozessor-Anweisungen

Wichtiger Hinweis:

Eine Totalzuweisung von Verbunddaten (Strukturen) ist nur
möglich, wenn sie vom gleichen benamten Typ sind. Gleiche
Verbunddatentypen also stets mit gleichem TYPE deklarieren,
bzw. spezifizieren! Als Prozedurwert ist daher logischerweise nur

”geTYPEter“ Mode sinnvoll!

5.2 Preprozessor-Anweisungen

In den Übersetzer ist ein kleiner Pseudo-preprozessor eingebaut, der nicht wirk-
lich einen extra Durchlauf erfordert, sondern begleitend zur Compilation in
diese eingreifen kann.

Preprozessorbefehle müssen stets am Anfang einer Zeile stehen, allerdings
dürfen sie eingerückt werden. (Wovon man bei geschachtelten #IF s auch Ge-
brauch machen sollte!)

Die Preprozessorbefehle lauten:

#DEFINE ... Definiere eine benamte Konstante
#INCLUDE ... File einbetten
#IF ... Compiliere Folgetext wenn Bedingung nicht Null ergibt
#IFDEF ... Compiliere Folgetext wenn Objekt existiert
#IFUDEF ... Compiliere Folgetext wenn Objekt nicht existiert
#ELSE; Alternativer Zweig zum #IF
#FIN; Beendet Wirkung letztes #IF..

Die Preprozessorbefehle werden im folgenden einzeln erläutert.

5.2 Preprozessor-Anweisungen 287

5.2.1 Die Preprozessoranweisung DEFINE

Mit Hilfe dieses Preprozessorbefehles können benamte Konstanten mit Namen
identifier definiert werden:

#DEFINE identifier = xcompconstexpression;

Die Wirkung entspricht compilerintern einer syntaktisch erweiterten Form der
Anweisung

DCL identifier INV FIXED INIT(xconstexpression);

Dabei steht xcompconstexpression für eine erweiterte Form von xconstexpres-
sion – wie unten erläutert. Ob eine Konstante vom Typ FIXED(15) oder
FIXED(31) angelegt wird, entscheidet der Preprozessor an Hand des Zahlen-
wertes.

Die mit #DEFINE definierten Objekte dürfen innerhalb des PEARL-Textes
überall dort benutzt werden, wo auch die Verwendung der mit DCL eingeführ-
ten benamten Konstanten erlaubt ist – zum Beispiel bei Feldgrenzenfestlegun-
gen, in CASE- Konstrukten – und natürlich in den Preprozessor-#IFs. .

Innerhalb des Ausdruckes xconstexpression sind die 3 (keine Division!) Ganz-
zahlgrundrechenarten mit Klammerung erlaubt. Als Objekte sind dabei andere
vorher definierte benamte Konstanten oder Zahlen zugelassen.

Der Ausdruck xcompconstexpression wird auf Basis von xconstexpression auf
4 alternative Arten gebildet (gezeigt an der benamten Konstante Test):

#DEFINE Test = xconstexpression oder
#DEFINE Test = xconstexpression > xconstexpression oder
#DEFINE Test = xconstexpression == xconstexpression oder
#DEFINE Test = xconstexpression \= xconstexpression

Die Vergleichsoperationen (größer, gleich, ungleich) sind nur auf der obersten
Ausdrucksebene zugelassen und erzeugen Ganzzahlwerte, nämlich 1 wenn die
Bedingung erfüllt ist und 0 wenn die Bedingung nicht erfüllt ist.

Steht ein #DEFINE innerhalb einer Task oder Prozedur, so ist! →
die Gültigkeit des damit eingeführten Objektes genau wie bei ei-
nem lokalen DCL auf den Prozedur- und Taskblock beschränkt,
in dem es definiert wird. Im Gegensatz zum DCL darf #DEFINE
allerdings auch noch spät zwischen Prozeduren und Tasks ge-

288 5.2 Preprozessor-Anweisungen

setzt werden und wirkt dann dauerhaft für den Rest des Mo-
dules. Ratsam ist eine solche Verwendung jedoch allenfalls zum
Nachdefaultieren mit Hilfe eines vorgelagerten #IFUDEF.

#DEFINE rownumber = 400;Beispiele:
#DEFINE columns = rownumber*6;
#DEFINE arraysize = rownumber*columns;
#DEFINE largecase = arraysize > 32767;

5.2.2 Die INCLUDE-Anweisung

Bei diesem Preprozessorbefehl schaltet der Compiler vorübergehend seinen In-
put auf einen anderen File um. Im Übersetzerprotokoll macht der Compiler
bei der Zeilennummer erkennbar, ob und im wievielten Level der Inclusion die
protokollierte Quelltextzeile gefunden wurde.

Der Substitutionsmechanismus umfaßt stets komplette Zeilen. Das INCLUDE-
Statement sollte darum allein in einer Zeile stehen. Wie bei allen Prepro-
zessorbefehlen darf ihm lediglich ein Leerfeld vorausgehen, sonst moniert der
Übersetzer einen Syntax-Fehler. Alle Zeilen des Textes im zu includenden File
werden vom Compiler an Stelle der INCLUDE-Zeile bearbeitet. Das Statement
hat folgende Syntax:

#INCLUDE filepathlist;

An der Stelle von filepathlist steht ein String, der von dem Betriebssystem,
auf dem der Compiler gerade läuft, akzeptiert wird und einen File mit dem
einzuschiebenden Text bezeichnet.

Wir nehmen einmal an, daß wir einen zu includenden File mit dem Namen
/H0/SPCs/Projekt1.P haben, der folgende 2 Zeilen enthalte:

SPC Einw() STRUCT(/Name CHAR(20),Alter FIXED/) GLOBAL;
SPC Haus() STRUCT(/Strasse CHAR(30),No FIXED/) GLOBAL;

5.2 Preprozessor-Anweisungen 289

Das zu übersetzende Programm laute wie folgt:

MODULE Test;
PROBLEM;
DCL ...
#INCLUDE /H0/SPCs/Projekt1.P;
DCL ...
...
...

MODEND;

Wir nehmen an daß beim Compilieren des Hauptfiles das Protokoll eingeschal-
tet war, dieses sieht wie folgt aus:

= 1 MODULE Test
= 2 PROBLEM;
= 3 DCL
a 1 SPC Einw() STRUCT(/Name CHAR(20),Alter FIXED/) GLOBAL;
a 2 SPC Haus() STRUCT(/Strasse CHAR(30),No FIXED/) GLOBAL;
= 4 #INCLUDE /H0/SPCs/Projekt1.P;
= 5 DCL ...
...

Im obigen Beispiel wurde der zu “includende“ File mit einer vollen RTOS-
Pathlist bezeichnet. Wenn man unter RTOS–UH oder MS-DOS entwickelt, ist
allerdings auch eine ”relative“ Fileangabe möglich: Bezugspunkt ist die Position
in der File-Hierarchie, in der der File, der das #INCLUDE enthält, selbst steht.
Eine relative Angabe liegt vor, wenn der String hinter #INCLUDE nicht mit dem
Zeichen ”/“ beginnt.

Angenommener Bedienbefehl: P /H0/TEXQ/ANALYS LO ...

Dann führt ein #INCLUDE DRAW innerhalb des Files ”ANALYS“ zur Inclusion des
Files, der unter /H0/TEXQ/DRAW steht.

290 5.2 Preprozessor-Anweisungen

Man kann sich im Filebaum sowohl in Richtung auf die Wurzel als auch hin
zu den Blättern bewegen. Mit #INCLUDE ../SS1/QU1 adressiert man bei obi-
gem Beispiel den File, der unter /H0/SS1/QU1 steht. Relative File-Inclusion
ermöglicht den Transport des Systemes in andere Ordner oder auf andere Me-
dien, ohne Änderung der Quelltexte. Auch eine Compilation des zusammenge-
setzten Textkonglomerates über das Netz ist damit ohne Eingriff in die Quell-
files möglich.

Wenn der Include-Text selbst wieder ein #INCLUDE enthält, so beginnt die Zei-
lennummerierung erneut bei 1, allerdings steht dann der Buchstabe ”b“ am
Zeilenanfang. Wir können also am Startbuchstaben erkennen, in der wievielten
Ebene der Include-Staffelung wir uns befinden.

Enthält das #INCLUDE im included Text eine relative Fileangabe, so wird re-
lativ auf den File, in dem dieses #INCLUDE steht, nach obigem Muster Bezug
genommen.

Ob der included Text protokolliert wird oder nicht, hängt davon ob, wie der
Compilerstatus bei Ausführung des #INCLUDE war. Wenn im included Text mit
/*+L */ oder /*-L*/ der Status geändert wird, so hat das nur für die Zeilen
des eingeschobenen Textes und als Startstatus für weitere Inludes im included
Text Wirksamkeit. Der Compiler rettet seinen Protokollstatus beim #INCLUDE
und restauriert ihn danach wieder.

Maximal können bis zu 8 Rekursionslevel bei der Tiefenstaffe-! →
lung des #INCLUDEs bearbeitet werden. Natürlich darf eine solche
INCLUDE-Kette nicht in sich selbst zurückführen.

5.2.3 Bedingte Kompilation: die Preprozessoranweisung IF

Mit dieser Anweisung kann der Compilerlauf in Abhängigkeit von Ausdrücken
mit benamten Konstanten bestimmte Teile des Quelltextes ignorieren. Wenn
die Bedingung wahr ist (was beim #IF-Argument einem Ganzzahlwert ungleich
Null entspricht), so wird der folgende Text ganz normal übersetzt. Ein eventuell
folgendes #ELSE unterdrückt dann den anschließenden Text bis zum #FIN. Ist
die Bedingung unwahr (d.h. das #IF-Argument ergibt einen Ganzzahlwert von
0), so wird entsprechend umgekehrt verfahren.

5.2 Preprozessor-Anweisungen 291

Es gibt 3 verschiedene #IF:

#IF xcompconstexpression;
#IFDEF identifier;
#IFUDEF identifier;

Die Bedeutung von xcompconexpression wurde bereits auf Seite 287 genauer
erläutert. Es handelt sich entweder um einen Ganzzahlausdruck oder um einen
der 3 zulässigen Elementarvergleiche (>, == oder \=).

Beim #IFDEF ist die Bedingung erfüllt, wenn das Objekt mit Namen identifier
dem Compiler bekannt ist, beim #IFUDEF genau dann, wenn es dem Compiler
nicht bekannt ist.

Wenn der Übersetzer ein Protokoll anfertigt, so wird bei einem #IF mit nicht
erfüllter Bedingung hinter dem #IF-statement Text zur Information ergänzt,
wie man an folgendem Beispielprotokollauszug sieht:

= 123 #DEFINE Test = 3;
= 124 #IF Test > 5; [Condition is false]

Der Text in eckigen Klammern wurde vom Compiler generiert und unter-
drückt gleichzeitig ein ggf. noch in der Zeile stehendes, aber nun totes PEARL-
Statement.

Im Gegensatz zum #INCLUDE darf bei diesen Anweisungen hin-! →
ter dem Preprozessorbefehl PEARL-Text stehen, der je nach Be-
dingung beachtet oder ignoriert wird. Natürlich dürfen dies keine
Preprozessorbefehle sein, weil diese immer am Anfang einer Zeile
stehen müssen.

292 5.2 Preprozessor-Anweisungen

#IFUDEF Arraysize;Beispiele:
#IFDEF defaultsize;
#DEFINE Arraysize=defaultsize;

#ELSE ;
#DEFINE Arraysize = 1000; ! Not-Default

#FIN;
#FIN; DCL Array(Arraysize) FIXED;

Mit einem kleinen Trick kann auch die Einhaltung bestimmter
logischer Bedingungen oder von Leistungsbeschränkungen über-
wacht werden:

#IF Datalen > Frame; ! Test limit, skip if illegal
**** Wrong configuration: Datalen > Frame **** ; ;
#ELSE; ! Compile normally
.....
#FIN;
MODEND;

Hier provoziert ein künstlich erzeugter Übersetzungsfehler die Ausgabe einer
(PEARL-syntaktisch falschen) Hinweiszeile. Innerhalb der Zeile darf es kein
Semikolon geben, am Ende muß mindestens eines (besser 2) stehen, damit der
Compiler neu aufsetzen kann.

5.2.4 Bedingte Compilation: Schaltbarer Kommentar

Ein einfacheres Mittel als die umrahmende Verwendung von #IF und #FIN ist
durch den ”schaltbaren Kommentar“ (switched comment) gegeben. Die syn-
taktische Konstruktion dazu ist ein normaler Zeilenkommentar, der wie üblich
durch das Zeichen ”!“ eingeleitet wird. Allerdings kann durch den nachfolgen-
den Text die Wirkung des Zeichens ”!“ in Abhängigkeit von Voreinstellungen
aufgehoben werden:

!:TS1 PUT x,y TO A1; ist Kommentar, wenn TS1 nicht definiert ist,
ist Kommentar, wenn TS1 < 1 definiert ist,
PUT wird übersetzt, wenn TS1 > 0 definiert ist.

Man beachte, dass das Symbol hinter dem Doppelpunkt nur in der Liste der
benamten 16-Bit Konstanten gesucht wird, dazu also bitte auf die Größe der
definierten Konstanten achten. Wenn der Compiler die benamte Konstante er-
kannt hat, so ersetzt er in der erzeugten Ausgabeliste das Zeichen ”:“ durch
das Zeichen ”-“ (= hinter ! steht Kommentar, Konstante < 1) oder das Zeichen

”+“ (= das ! ist wirkungslos, Anweisung dahinter ist gültig weil Konstante >
0). Diese Option ist ab den Compilerversionen 16.4 (Oktober 2003) implemen-
tiert. Von älteren oder fremden Compilern werden die Anweisungen stets nur
als Kommentar interpretiert.

5.3 Globale Sondereinstellungen des Compilers 293

5.3 Globale Sondereinstellungen des Compilers

5.3.1 SETLINE, MAXERR und MODE

Im Quelltextbereich vor dem ”MODULE“-Statement ist die modulglobale Verein-
barung bestimmter Betriebsmodi des Übersetzers möglich. Zwei davon betreffen
die Programmgröße und den ROM-Mode. Sie werden auf Seite 295 gesondert
beschrieben.

MAXERR=10; Bei Eintritt des 11.ten vom Compiler entdeckten Feh-
lers wird der Compilerlauf abgebrochen, mit der Meldung
MAXERR-limit. Mit MAXERR=0 erfolgt beim ersten Fehler
der Abbruch, usw.

SETLINE=1000; Die aktuelle Zeile des Compilerprotokolles erhält die
Nummer 1000. Auch der Linemarker für die Fehlerdiagno-
se verwendet die so manipulierte Zeilenzählung. Gedacht
war diese Option, um Fehler einfacher bestimmten Mo-
dulen zuordnen zu können. Beachten Sie bitte, daß der
Linemarker auf Zeilennummern unterhalb von ca. 32000
beschränkt ist. Mit der 2003 eingeführten Modul-ID gibt
es nun eine bessere Möglichkeit, das fehlerverursachende
Modul durch einen erweiterten SETLINE-Befehl ausfindig
zu machen:

SETLINE=1,453; Die Zeilennummerierung startet bei 1 und das Modul
erhält die Nummer 453. Der Compiler erzeugt nun bei
eingeschalteter Marker-Option (siehe Seite 299) zusätzli-
chen Code beim Beginn einer Prozedur und nach einem
Prozeduraufruf, der die aktuelle Modul-ID auf eine Zelle
im Task-Workspace schreibt. Diese sogenannte Modul-ID
wird beim DL-Shellbefehl sowie im Fehlerfall ausgegeben.
Allerdings muss dazu auf dem ausführenden System die
zugehörige Systemoption eingeschaltet sein - aus Gründen
der Kompatibilität zu alten Systemen ist das leider not-
wendig. Die Codeverlängerung ist meist nur sehr gering
und tritt hinter den Vorteil zurück. Bitte verwenden Sie
keine Modul-IDs, die oberhalb von 29999 liegen! Diese
Nummern sind für bestimmte kommerzielle Softwarepa-
kete reserviert.

294 5.3 Globale Sondereinstellungen des Compilers

MODE=FULLCC; Full character compare: Beim Vergleich von CHAR-Strings
werden andere Hyperprozessorbefehle benutzt, die bei
Längenungleichheit der Strings den kürzeren mit Blanks
verlängern und den Vergleich über die gesamte Länge
ausführen.

MODE=NOLSTOP; No line stop: An den Stellen des Programmes, die mit
eingeschaltetem Line-Marker (siehe Seite 298) übersetzt
werden, generiert der Compiler in diesem Mode nicht
den üblichen Trap, sondern eine ganz erheblich schnellere

”MOVE-Konstruktion“. Der zu zahlende Preis ist etwas
längerer Code und der Verzicht auf den Zeilenstop beim
Tracen des Programmes. Bei Fehlermeldungen erhält man
aber nach wie vor die letzte überlaufene Zeile angezeigt.
Auch das DL-Kommando funktioniert noch wie gewohnt.
Gedacht ist diese Option für ausgetestete Programme, die
in dieser Form an Kunden ausgeliefert werden können.
Ohne Geschwindigkeitsnachteile erhält man so im Falle
einer Fehlfunktion eine wertvolle Information vom An-
wender.

MODE=PAD;
MODE=NOPAD;

(No) Padding: Die neuen Compiler (ab 15.4-E) legen
FLOAT- und STRUCT- objekte auf durch 4 teilbaren Adres-
sen ab, da dies meistens höhere Geschwindigkeiten ergibt.
Im ”Padding“-Mode werden zusätzlich auch die relativen
Ablagen innerhalb von Strukturen bei Floats und Structs
auf durch 4 teilbare Werte erhöht. (Padding = Auffüllen
mit blinden Bytes). Das Ausschalten des Modes ist nur
zum Overruling nach Includes nötig, denn ohne Anga-
be ist der Padding-Mode nicht aktiv. Achtung: RISC-
Prozessoren sollten möglichst im padding-mode laufen,
denn sie verlieren wegen unklarer Zeigerinhalte sonst sehr
viel Effizienz – auch wenn gar keine Strukturen benutzt
werden! Denken Sie beim binären Schreiben und Lesen
von Strukturen sowie beim Linken von Modulen daran,
daß die Padding-Modes durchgängig gleichartig gesetzt
sein müssen.

5.3 Globale Sondereinstellungen des Compilers 295

5.3.2 Modulgröße, ROM-Code

MODULGRÖSSE: Der einphasige Compiler kann den für den RTOS–UH–
Lader erforderlichen Kopfeintrag der Modulgröße nur mit Hilfe des Program-
mierers schaffen. Dazu wird vor der MODULE–Anweisung ein spezielles Size–
Statement plaziert:

1. S=$6500; MODULE test; ... (Form 1)
2. SC=$6500; MODULE test; ... (Form 2)

Die Hexzahl hinter S wird als Kopfeintrag dem Lader übergeben und ermöglicht
ihm später die bedarfsgerechte Platzsuche. In der Form 2) wird der Speicher-
platz vor dem Ladevorgang gelöscht (auf $0000 gesetzt). Damit sind alle Varia-
blen mit einem definierten Wert initialisiert (wohlgemerkt: nur direkt nach dem
Laden, nicht vor jedem Start des geladenen Programms!). Besonders sinnvoll
ist der Einsatz dieser Option bei der Erzeugung ROM–fähigen Codes mit dem
PROM-Befehl (s. u.), da sonst u. U. Zufallsdaten platzraubend im EPROM
deponiert werden.

Wird der S–Parameter nicht angegeben, so wird ein Ersatzwert von $2000
eingesetzt.

Der Compiler prüft bei der Modulbilanz die Einhaltung der durch S=$... vor-
gegebenen Obergrenze. Wird sie überschritten, so wird ein SIZE-LIMIT-ERROR
ausgegeben, das Programm kann später nur mit zusätzlichem SZ–Parameter
beim LOAD–Befehl geladen werden (Sonst Fehlermeldung: >>LOAD/xy: wrong
address loader input). Die Modulgröße ist praktisch nach oben nicht be-
grenzt, da der Compiler automatisch auf Langadressierung umschaltet. Aller-
dings gibt es bei der Länge des Innencodes von REPEAT-Blöcken, IF/THEN/ELSE-
und CASE-Konstrukten eine Begrenzung auf 32 kB, die an dieser Stelle jedoch
normalerweise nicht erreicht wird. Die Klippe kann durch eine vernünftige Mo-
dularisierung umschifft werden.

Schlußbilanz: Der PEARL–Compiler gibt am Ende der Übersetzung eine
Bilanz über die Länge des erzeugten VARiablen– und CODE–Teils aus. Falls bei
Verwendung der CODE/VAR–Option der generierte Code frei verschieblich ist,
wird zusätzlich die Information SHIFTABLE ausgegeben. Dies bedeutet, daß der
CODE–Teil nicht unbedingt an der bei der Übersetzung angegebenen Adresse
im EPROM abgelegt werden muß, es ist dann jede beliebige Ablageadresse
im EPROM erlaubt. Die SHIFTABLE-Eigenschaft eines Modules geht durch das
Setzen von Marken, Aufrufe von weit entfernten oder weiter hinten stehenden
Prozeduren sowie durch globale Definitionen/Bezüge verloren.

296 5.3 Globale Sondereinstellungen des Compilers

ROM–CODE: Der Compiler erlaubt die RTOS–UH–kompatible Erzeugung
ROM–fähigen Codes mit Trennung zwischen (Modul–) Variablen– und Code–
Bereich. Der Compiler erkennt diese Betriebsart an der Angabe zusätzlicher
Code– und Variablen–Adressen, die allerdings vom Linker (nicht jedoch vom
PROM-Befehl) überschrieben werden können:

S=$size,CODE=$epromadresse,VAR=$ramadresse; oder:
SC=$size,CODE=$epromadresse,VAR=$ramadresse;

Die Hexzahl epromadresse gibt die Startadresse des Codes im EPROM an, die
Hexzahl hinter VAR die Adresse, mit der beginnend die Modulvariablen im RAM
abgelegt werden sollen. Beim EPROM– und RAM–Layout orientiert man sich
an den Code– und Variablen–Längenangaben des Compilers.

Der mit dieser Option erzeugte Code ist nicht im RAM ablauffähig; er kann
jedoch vom Linker ggf. mit anderen Modulen zusammen zu EPROM-tauglichen
S-Records konvertiert werden. Wie in der Anfangszeit von RTOS–UH ist es
aber auch weiterhin möglich, nach Laden solcher S-Records mit Hilfe des PROM–
Befehls aus ihnen Eprommer–geeignete S-Records zu machen.

5.3.3 Codegenerierung unterdrücken

Die Codegenerierung kann nur global unterdrückt werden. Dies geschieht bei
der Aktivierung des Compilers durch CO NO (siehe dazu Seite 180). Eine wesent-
liche Zeitersparnis ist damit normalerweise zwar nicht verbunden, man erspart
sich aber die Bereitstellung einer CO–Datei, wenn man zunächst nur an der
syntaktischen Prüfung seines Programmes interessiert ist.

5.4 Lokale Hilfs– und Testmodi des Compilers 297

5.4 Lokale Hilfs– und Testmodi des Compilers

Neben den rein ”global“ einstellbaren Modes gibt es mit Hilfe besonders aufge-
bauter Kommentarzeilen Möglichkeiten für ”lokale“ Einstellungen. Der einzige
global und lokal einstellbare Mode ist die Übersetzung mit bzw. ohne Über-
setzungsprotokoll. Dagegen kann die einmal global an- bzw. abgeschaltete Co-
degenerierung nicht mehr lokal beeinflußt werden. Typische rein lokale Modes
sind etwa die Markiereroption, die Testoption sowie die Maschinenkodeproto-
kollierung (s. u.). Einige der Modes nehmen nach Ende eines #INCLUDE-Files
wieder ihren alten Zustand vor der Inklusion ein.

Als steuernde Kommentare kommen nur die mit /* */ umrahmten Se-
quenzen in Frage. Der Zeilenkommentar (mit ! eröffnet) ist dafür nicht geeig-
net. Findet der Compiler einen Kommentar, der mit /*+ oder /*- beginnt,
den er aber nicht als Steuerkommentar versteht, so wird in der Compilerbi-
lanz eine Warnung erzeugt. Diese Warnung enthält die letzte Zeilennummer, in
der ein solcher unverständlicher Steuerkommentar gefunden wurde. Man soll-
te also z.B. zum Ungültigmachen des Protokollswitches (s.u.) aus /*+L nicht
/*+ L sondern /* +L machen.

5.4.1 Übersetzungsprotokoll ein–/ausschalten

Es wird (siehe Seite 180) global durch LO NO aus– bzw. mit LO /device/file
oder fehlender LO–Parameter eingeschaltet. Für die lokale Steuerung ist eine
Kommentaranweisung

/*+L ... beliebiger Text */; zum Einschalten, bzw.
/*-L ... beliebiger Text */; zum Abschalten vorgesehen.

Unabhängig davon, ob das Übersetzungsprotokoll eingeschaltet ist oder nicht,
werden Programmfehler in jedem Fall in das LO–Medium ausgegeben. Auch die
fehlerhafte(n) Zeilen erscheinen mitsamt dem Fehlerzeiger. Wird diese Option
innerhalb eines #INCLUDE-Files benutzt, so gilt sie nur für den eingebundenen
Text, bzw. weitere unterlagerte Inklusionen. Nach Ende des Files wird der alte
Mode wieder eingestellt.

5.4.2 Codeprotokollierung ein–/ausschalten

Urpsrünglich für die Überprüfung der korrekten Compilerfunktion gedacht,
dann aber im System belassen, existiert eine Option zur Auflistung des ge-
nerierten Maschinen– bzw. Hyperproccodes. Sie wird mit

/*+P ... beliebiger Text */; eingeschaltet und mit
/*-P ... beliebiger Text */; wieder ausgeschaltet.

298 5.4 Lokale Hilfs– und Testmodi des Compilers

In das Übersetzungsprotokoll eingebettet, erscheint bei dieser Option für jeden
generierten Befehl eine Zeile. Dabei wird der auf den Modulanfang relativierte
Programmzähler, der Befehlmnemo sowie die Liste der Operanden (unter Ver-
wendung der PEARL–Namen!) ausgegeben. Der generierte Code gehört jeweils
zur nächsten protokollierten PEARL–Programmzeile, wird also quasi mit die-
ser abgeschlossen. Die Hyperprocbefehle sind im Teil für Systemprogrammierer
weiter hinten erläutert, die 68000– bzw. PowerPC-Maschinenbefehle erscheinen
mit modifizierten Mnemos, etwa ADDX statt ADD.L (X=xtend 32 bit), können
in der Regel aber leicht identifiziert werden. Die entsprechende Liste befindet
sich auf Seite 599 im Abschnitt 8.7. Mit ”>>“ versehene Operationen sind sog.

”Loader-messages“, die i. a. nicht interessieren dürften. Dieser Mode nimmt
mit dem Ende eines #INCLUDE-Files wieder seinen alten Zustand ein.

5.4.3 Markierungsoption ein–/ausschalten

Der UH–Compiler ermöglicht mit Hilfe dieser Option die statische und dynami-
sche Einbettung von PEARL–Zeilennummern und ggf. Modul-IDs (siehe Seite
293) in das generierte Maschinenprogramm. Damit wird z. B. der Zeilenstop auf
Hochsprachebene (siehe TRACE, Seite 216) ermöglicht, aber auch die Ausgabe
der letzten exekutierten PEARL–Zeile – bei erweitertem SETLINE-befehl auch
der Modul-ID – im Falle von Laufzeitfehlern vorbereitet. Die Kommentare

/*+M ... beliebiger Text */; dienen zum Ein- sowie mit
/*-M ... beliebiger Text */; zum Abschalten der Option.

5.4 Lokale Hilfs– und Testmodi des Compilers 299

Zeilen, die nur ein Fragment einer mehrzeiligen Anweisung enthalten, können
nicht markiert werden. Der Compiler setzt vor den Code der ersten PEARL–
Anweisung jeder Zeile, die im Bereich eingeschalteter Option liegt, einen Spe-
zialbefehl. Dieser besteht aus einem TRAP oder Hyperprocbefehl mit nachfol-
gender Zeilennummer, die mit Hex–Digits dezimal zu lesen ist. Aufgabe dieses
Befehles ist, die Zeilennummer in eine spezielle Zelle der Task zu schreiben und
dabei zu prüfen, ob für die Zeile ein Zeilenstop vorliegt. Wenn es der Platz
erlaubt, sollte möglichst die komplette zu prüfende Task mit eingeschalteter
Option übersetzt werden, da sonst leicht Fehlinterpretationen über den Fehler-
ort möglich sind. Da die Zeilennummernkodierung aus Kompatibilitätsgründen
zu älteren (”PEARL80“) Systemen etwas eigenwillig erfolgen muß, können Zei-
lennummern größer als 34575 nur modulo 30000 kodiert werden, d.h. die Zeile
34566 erscheint als 4566 usw. Es ist besser, die Modul-ID (siehe Seite 293)
zu verwenden, statt – wie früher üblich – mit großen vorab vergebenen Zeilen-
nummernblöcken zu arbeiten. Die Geschwindigkeitsverluste durch diese Option
sind im Allgemeinen nur bei wenigen Prozent zu vermuten, können jedoch in
Sonderfällen untragbar hoch werden. Die +M–Option ermöglicht mit Hilfe des
DL–Befehles (S. 131) jederzeit Schnappschüsse der aktuellen Zeilennummer lau-
fender Tasks.

Hinweis:

Wenn der Compiler mit MODE=NOLSTOP arbeitet, so tritt durch die +M-Option ei-
ne erheblich geringere Verlangsamung als im Normalfall ein. Allerdings ist dann
das oben erwähnte Zeilentrace (Zeilenstop) nicht möglich. Diese Art der einge-
schränkten Zeilenmarkierung hat den Vorteil, daß sie in vielen Fällen dauerhaft
im Programm belassen werden kann. Auch später können dann Betriebsfehler
noch gut analysiert werden.

5.4.4 Seitenvorschub im Protokoll erzeugen

Mit Hilfe dieser Option kann im Programmprotokoll des Compilers auf einem
Drucker ein Seitenvorschub erzeugt werden. Damit können Programmdoku-
mente übersichtlicher gestaltet werden.

/*+N ... beliebiger Text */ Seitenvorschub

Nur mit dem Zeichen + vor dem N erfolgt die gewünschte Aktion. Steht die
Kommentarzeile als einzelne Zeile zwischen (und nicht innerhalb) von PEARL-
Anweisungen, dann wird sie im Protokoll normalerweise oben auf der neuen
Seite gedruckt.

300 5.4 Lokale Hilfs– und Testmodi des Compilers

5.4.5 Index–, Selektor– und Parametertest aktivieren

Mit Hilfe dieser T–Option generiert der Compiler einen modifizierten Code,
der zur Laufzeit die Einhaltung von Zugriffsgrenzen und die Korrektheit von
Prozedurparameterlisten überprüft. Nach Ende eines #INCLUDE-Files kehrt bei
dieser Option der alte Zustand vor der Inklusion zurück.

/*+T ... beliebiger Text */; Testmode einschalten.
/*-T ... beliebiger Text */; Testmode ausschalten.

Feldindex– und Characterselektor prüfen:

Bei mehrdimensionalen Feldern wird nicht jeder einzelne Index, sondern nur der
effektive 32 Bit lange eindimensionale Resultatindex überprüft. Damit kann die
Zerstörung von Code oder Daten ausserhalb des Feldes bzw. der Zeichenket-
te mit Sicherheit unterbunden werden. Charakterselektoren werden ebenfalls
überprüft, nicht jedoch Selektoren in Bitstrings. (Die Überschreitung von Bits-
elektorgrenzen erzeugt falsche Ergebnisse, richtet aber keinen Schaden an).

Bei Verletzung der durch das originäre DCL fixierten Grenzen wird eine System-
meldung abgesetzt, die entweder die letzte registrierte Zeilennummer oder —
falls nicht vorhanden — die Speicherstelle des Zugriffscodes enthält. Die Mel-
dung enthält einen Hinweis, ob der Index bzw. Characterselektor zu groß oder
zu klein ist (”Overflow“ bzw. ”Underflow“). Die Task wird angehalten, kann
aber mit CONTINUE fortgesetzt werden; der Zugriff erfolgt dann ersatzweise auf
das erste Element des Feldes bzw. der Zeichenkette.

5.4 Lokale Hilfs– und Testmodi des Compilers 301

Prozeduraufrufparameter prüfen:

Bei allen Prozeduraufrufen überprüft der Compiler schon zur Compilezeit, ob
jeder einzelne Parameter mit der ihm bekannten Definition oder Spezifikati-
on verträglich ist. Nun ist aber immer noch möglich, daß der Programmierer
eine falsche Spezifikation externer Prozeduren kodiert hat. Ist der Testmode
eingeschaltet, so erfolgt ein zusätzlicher Test zur Laufzeit, indem bei jedem
Funktions- und Prozeduraufruf der Parameterprüfeinstieg der Zielprozedur an-
gesprungen wird. Wenn die Zielprozedur vom PEARL-Compiler erzeugt wur-
de, oder korrekt in Assemblersprache abgefaßt wurde, so erfolgt dabei jetzt ein
sogenannter ”Signaturcheck“: Die Definition jeder Prozedur wird nach einem
Algorithmus in eine 32 Bit lange ”Signatur“ umgerechnet, die mit sehr großer
Wahrscheinlichkeit bei anderen Definitionen anders ausfällt. Stimmt die an der
Aufrufstelle für die Prozedur (bzw. des Zeigers auf eine Prozedur) gültige Signa-
tur (aus z.B. SPC GLOBAL) nicht mit der am Zielort aus der tatsächlichen
Definition der Prozedur errechneten Signatur überein, so erfolgt eine Laufzeit-
fehlermeldung ”... wrong parameterlist“.

Die Ursache für den Fehler ist fast immer die oben erwähnte falsche Spezifi-
kation der externen und später angelinkten Prozedur oder eine falsch besetzte
REF-Variable (Prozedurzeiger). Eine weitere mögliche Ursache kann sein, daß
auf Aufrufer- und Prozedurseite unterschiedliche Gleitkommaformate benutzt
werden.

Wichtiger Hinweis:

Wenn eine Task nach einem Parameterfehler vom System
angehalten wurde, so sollte sie auf gar keinen Fall fortge-
setzt werden. Das System kann anders als bei einem Index-
fehler hier keine Notreparatur durchführen. Wurden zum
Beispiel zu kleine Strukturen angeboten o.ä., so droht bei
Fortsetzung der Task eine Zerstörung wichtiger Speicher-
zellen. Der Effekt solcher Veränderungen kann dann erst
sehr viel später auftreten.

Eine Parameterüberprüfung bei C-kodierten Unterpro-
grammen ist mangels entsprechender Vorrichtungen in den
C-Compilern nicht möglich.

302 5.4 Lokale Hilfs– und Testmodi des Compilers

5.4.6 EPROM–Prozedur erzeugen

Es können Prozeduren global gemacht werden, um dann im EPROM oder auf
der Boot–Diskette als beständiger Teil des Systemes mit abgelegt zu werden.
Der Lader kann diese Prozeduren dann finden, wenn die Referenz nicht schon
vorher durch seine Inputdateien befriedigt wurde.

xyz:PROC /*+G*/ (.....); ! erzeugt 14er Scheibe
! Siehe dazu auch Scheibenkonzept Kapitel 9 Seite 625

Der Kommentar +G muß hinter dem Schlüsselwort PROC bzw. PROCEDURE kom-
men, nur dann wird er berücksichtigt und bewirkt die Erzeugung einer 17-er
Scheibe für das Symbol xyz des obigen Beispiels.

Wichtiger Hinweis:

Die Prozedur wird durch die Angabe der +G–Option nicht
im PEARL-Sinne global gemacht, dies muß, wie in PEARL
vorgeschrieben, mit dem Schlüsselwort GLOBAL erfolgen.

Es kann mit dieser Option eine ganze Bibliothek von Prozeduren erzeugt wer-
den, die dann im EPROM oder Boot–Bereich abgelegt werden können, damit
sie global zur Verfügung stehen. Allerdings werden nachträglich ins verwaltete
RAM geladene Module nur bei Benutzung von LOADX berücksichtigt.

5.4.7 Prozedurparameterstrukturanalyse unterdrücken

Im Normalmode wird bei jedem Prozeduraufruf bei der Übergabe von Daten-
strukturen (STRUCT[...]) an Prozeduren schon zur Compilezeit überprüft, ob
die aktuelle Struktur aus der gleichen Typdefinition wie der Formalparame-
ter hervorgegangen ist. Im alten PEARL80 wurde nur zur Laufzeit und nur
die Größe (in Bytes) der Formal- mit der Aktual-Struktur verglichen (max
32kB im alten System). Um die Übertragung alter PEARL80-Programme zu
erleichtern, kann die Compilezeitprüfung, ob Aktualstrukturen als Parameter
zugelassen sind, auf diesen Stand reduziert werden. Gegenüber der Verwendung
von VOID--Pointern hat man dann immer noch den Vorteil, daß garantiert die
Objektgröße genau paßt.

/*-S ... beliebiger Text */; Reduzierte Prüfung.
/*+S ... beliebiger Text */; Wieder volle Prüfung.

Dieser Mode kehrt nach einem #INCLUDE nicht in den alten! →
Zustand zurück.

5.4 Lokale Hilfs– und Testmodi des Compilers 303

xy:PROC(A STRUCT[a FLOAT(23),b FIXED(15)]);
.........
DCL X STRUCT[x FLOAT(23), y CHAR(2)];
/*-S Abschalten des pingeligen Tests */
CALL xy(X);

Im Normalmode würde der Compiler diesen Aufruf zurückweisen, jetzt akzep-
tiert er ihn, weil die Objekte in der Größe passen.

5.4.8 Prozedurarbeitsspeicher reservieren

In unserem PEARL-System gibt es bekanntlich keinen ”Stack“ und damit im
Gegensatz zu archaischen C–Systemen auch keinen Stacküberlauf. Wenn Pro-
zeduren aufgerufen werden, so bietet der Compiler ihnen zunächst den aktuell
noch freien Platz des Aufrufers an. Reicht dieser nicht aus, so holt die Rou-
tine sich bedarfsgerecht Speicher über den entsprechenden RTOS-Trap. Beim
Verlassen der Routine wird dieser wieder zurückgegeben. Jede Task erhält vom
Compiler standardmäßig etwa 1 kByte zusätzlichen Speicher im sog. A5-Space,
der für von dieser Task ausgehende Prozeduraufrufe vorgesehen ist. Durch
vor dem Prozeduraufruf angelegte und wieder verlassene BEGIN- ...END- oder
REPEAT- Blöcke kann der für Prozeduren verfügbare Speicherbereich im Auf-
rufmoment allerdings beliebig größer als 1 kB sein.

Mit der hier beschriebenen R-Option kann der Wert für die zusätzliche Re-
servierung von 1 kB auf jeden beliebigen Wert verändert werden. Damit kann
man bei Kleinstanwendungen Platz sparen oder aber beim Aufruf von Proze-
duren mit mächtigen lokalen Datenbereichen den Aufruf des Speicherhol-Traps
verhindern, was zu einer höheren Ablaufgeschwindigkeit führt. Eine kleine Mi-
nimalreserve von etwa 40 Bytes kann man jedoch nicht unterdrücken, auch
nicht durch Setzen von R=0.

/*+R=hexazahl nach Luecke bel. Text */;
/*-R=hexazahl nach Luecke bel. Text */; gleiche Wirkung.

304 5.4 Lokale Hilfs– und Testmodi des Compilers

hexazahl ist dabei eine max. 8-stellige Hexadezimalzahl mit oder ohne führendes
$-Zeichen am Anfang. Sie muß ohne Zwischenraum direkt hinter /*+R= oder
/*+R stehen und mit einem Blank abgeschlossen werden.

Da es sich um Kommentar handelt, werden syntaktische Fehler nicht angezeigt,
die Wirkung unterbleibt also u.U. ohne Warnung. Der eingestellte Wert gilt bis
zum Ende des Modules für alle Tasks. Er kann jedoch am Anfang jeder Task
(nach oder in der Definitionszeile) neu gesetzt werden. Der Compiler wertet
den aktuell eingestellten Wert bei der Bearbeitung des zum Ende der Task
gehörenden END aus.

/*+R=$5000 20 kByte vorhalten */Beispiel:
/*+R5000 Gleiche Wirkung */
/*+R$5000 ’’ */

5.4.9 Konstantenpool leeren

Der Compiler verwaltet normalerweise autonom seinen Konstantenpool derart,
dass es nicht zu oft zu eingestreuten Konstantenblöcken kommt, über die der
Programmcode mit Sprungbefehlen hinweg kommen muss. Trotzdem kann es
in extremen Situationen – eine Formel erstreckt sich über hunderte von Zeilen
- dazu kommen, dass Konstanten nicht mehr als PC-relative 16-Bit Adressen
erreichbar sind und der Lader / Linker das Programm nicht montieren kann.
Das Problem besteht nur beim 68K-Prozessor. Durch die eingeschobene Zeile

/*+F Flush constants */Beispiel:

gewinnt man durch das erzwungene Leeren des Konstantenpools – im günstig-
sten Fall – maximal einige wenige KB, um die dann die nachfolgende Anweisung
im 68k-Code länger sein kann.

5.4.10 Default-PRIO setzen

Wenn bei der Definition von PEARL-Tasks keine Priorität angegeben wird, so
setzt der Compiler den Wert auf den Defaultwert von 48. Dieser Defaultwert
kann jedoch verändert werden durch folgenden Kommentartext:

/*+D=1000 Set def. PRIO to decimal 1000 (low) */Beispiel:

5.5 Umgang mit Datenstationen in PEARL 305

Alle folgenden Task-Deklarationen ohne Prioritätsangabe verwenden nun den
neuen Defaultwert. Natürlich kann eine weitere Zeile später den Wert wie-
der anders besetzen. Das Gleichheitszeichen ist optional. Ist die Angabe durch
syntaktische Fehler für den Compiler unverständlich, so behandelt er sie oh-
ne Fehlermeldung wie einen Kommentar. Es wird aber in der Compilerbilanz
eine entsprechende Warnung ausgegeben. Der zulässige PRIO-Bereich ist 1 ...
32767.

Wichtig: In Shellmodulen kann dieser Mechanismus vor der Definition einer
Shell-Proc benutzt werden, um die Defaultpriorität des Shellprozesses vorzu-
geben.

5.5 Umgang mit Datenstationen in PEARL

5.5.1 Festlegungen im Systemteil

Die heutigen PEARL-Compiler können alle möglichen Datenstationen des Ziel-
systemes an Hand der im Zielsystem gültigen Bezeichner im Systemteil einbin-
den. Erreicht wird dieses dadurch, daß der Lader alle dem Compiler unbe-
kannten Gerätebezeichner an Hand der Liste innerhalb des Zielsystemes in die
richtigen LDN/DRIVE-Gespanne umsetzt. Wenn der Lader nicht fündig wurde, so
reagiert er mit einer Fehlermeldung. Im Gegensatz zu den früheren Compilern
sind nun nur noch wenige Bezeichner dem Übersetzer bekannt.

Auch wenn die Compiler immer noch die ältere Syntax mit Doppelpunkt oder
Punkt als Separator zwischen Gerätebezeichner und Pathlist beherrschen, so
sollte man bei Neuprogrammierung nur noch die Form mit ”/“ als Separator
verwenden. Nur diese Syntax wird hier beschrieben. Allgemein gilt:

XYZ:/device/pathlist(TFU=int,NE,MB=$hexno,AI=$hexno)->; oder
XYZ:/device/pathlist(TFU=int,NE,MB=$hexno,AI=$hexno)<-; oder
XYZ:/device/pathlist(TFU=int,NE,MB=$hexno,AI=$hexno)<->;

Hinweis:

Benutzen Sie möglichst keine Zusatzparameter MB oder AI bei Da-
tions, die mit <-> in beiden Richtungen betrieben werden

In solchen Fällen kann es Konflikte bei der Bedeutung der Mode-Bits geben.
Abhilfe ist möglich durch eine Aufteilung auf zwei richtungsgebundene DATIONs.

306 5.5 Umgang mit Datenstationen in PEARL

XYZ Logischer Name im Programm
device entweder compilerbekannter Name (s. u. z. B. A1, PP, ED)

oder Gerätename aus dem Zielsystem oder LD/ldn.drive/
mit

ldn Warteschlangennummer im Betriebssystem RTOS–UH.
drive Laufwerksnummer (Untergliederung) des Gerätes. Wenn

diese Angabe samt Punkt fehlt, ist drive=0.
pathlist Alphanum. string mit Separatoren ”/“, dient eventuell nur

als Platzhalter für OPEN ... BY IDF(...), dann lang ge-
nug vorsehen!!

TFU Größe des Communication–Elements, TFU=1 kann für Dia-
loggeräte sinnvoll sein (Terminal), belastet aber das Be-
triebssystem mit großem Overhead. Wenn TFU fehlt, so wird
der Wert von 128 angesetzt.

NE No Error–Message–Flag. Der Programmierer wird mit
der Funktion ST die Fehlerüberwachung in eigener Regie
durchführen. Fehlt NE, so werden Fehlermeldungen ausge-
geben.

MB=$ Es werden die Mode–Bits des Communication–Elements ge-
setzt! Bei AI muß dann das linke Byte null sein, sonst gibt es
eine Fehlermeldung. Hexno. ist 2 stellig (keine TIMEOUT
Angabe).

AI=$ Zusatzinformation $xxxx für E/A–Treiber laut beson-
derer Beschreibung. Fehlt AI=, so wird ein Wert von
Null angenommen. Das linke Byte toggelt beim Laden
(exklusiv–oder) die korrespondierenden MODE–Bits des
Communikation–Elements, das rechte ist zur Angabe ei-
nes Timeouts. Hexno. 2 (ohne TIMEOUT) oder 4 stellig
(inklusive TIMEOUT–Angabe).

Die Klammer (TFU ... AI=) darf wie einzelne Parameter fehlen, die Reihen-
folge der Parameter muß aber eingehalten werden. Es muß eigentlich keine
Station über LD/../ definiert werden. Wie oben erwähnt, kann der Lader dem
Compiler unbekannte Symbole später aus den Tabellen im Zielsystem selbst in
ldn/drive umwandeln. Am Ende des Compilerlistings bei der Schlußbilanz gibt
der Compiler alle sogenannten ”Extra–Devices“ aus. Diese müssen natürlich
im Zielsystem vorhanden sein.

5.5 Umgang mit Datenstationen in PEARL 307

Folgende Gerätebezeichner sind dem PEARL–Compiler vorab bekannt und
müssen darum in allen Zielsystemen auf der gleichen LDN/DRIVE liegen:

Gerätename Bedeutung Ldn Drive
A1 Console 0 0
A2 Serielles Port 2 0
ALDV Actual load device ? ?

Lader setzt Ldn/Drive
B1 Console buffered 0 2
B2 Serielles Port buffered 2 2
C1 Console scanned 0 6
C2 Serielles Port scanned 2 6
ED ED–Filesystem 0 0
NIL Schwarzes Loch 15 0
PP Printer Parallelport 10 0
TY.. Aktuelles Terminal, s.u. ? ?
VI Virtual Input 8 0
VO Virtual Output 7 0
XC Remote command 9 0

Tabelle 5.3: Compilerbekannte Gerätebezeichner in PEARL

Die Datenstationen mit Namen /TY, /TYA, ... etc. werden ebenfalls zur La-
dezeit durch das aktuelle Terminal des Nutzers ersetzt, wobei allerding nur LDN
und DRIVE übernommen werden, nicht eine evtl. vorhandene Pathlist.

Es ist zulässig, Usernamen gleich Systemnamen zu setzen, z. B. genügt ...;A1;
statt etwa ...;A1:/A1<->;

5.5.2 Beschreibung AI und MB-Parameter

Mit dem AI– oder MB–Parameter besteht die Möglichkeit, die Ein–/Ausgabe
umzuparametrieren. Dabei ist zu beachten, daß zwischem dem Verhalten des
Laufzeitsystems und des Device–Treibers Unterschiede bestehen können! Das
Verhalten des Laufzeitsystems ist ab Seite 313 beschrieben, die Beschreibung
der Device-Treiber beginnt auf Seite 389. Um zu verdeutlichen, was gemeint ist,
folgendes Beispiel: Es soll eine CHAR–Variable eingelesen werden. Die Eingabe
soll mit einem Lf beendet werden, es wird ein entsprechendes CE generiert.
Der Device–Treiber erkennt ein Lf, für ihn ist der Auftrag erledigt, er gibt
das CE an das Laufzeitsystem zurück. Für das Laufzeitsystem ist die Eingabe
erst bei der entsprechenden Anzahl Zeichen oder einem Cr beendet, es schickt
das CE wieder zum Device–Treiber, wo erneut auf eine Eingabe gewartet wird.
Zusammenfassend kann festgehalten werden, daß das Laufzeitsystem i. a. nur
ein Cr als vorzeitiges Eingabeende erkennt.

308 5.5 Umgang mit Datenstationen in PEARL

Um die Ein-/Ausgabekanäle getrennt zu beeinflussen, ist es sinnvoll, jeweils
getrennte DATIONs zu vereinbaren. Die Vorbesetzung des CE–Mode Bytes ist
abhängig von dem Deviceparameter (siehe SD–Befehl 1.Byte).

Output Input
für ein Device mit Echo : $40 $B8
für ein Device ohne Echo : $40 $BA

Mit AI werden die selektierten Bits getoggelt, mit MB dagegenMerke:
direkt gesetzt. MB beeinflußt nur das Mode-byte, während mit AI
im rechten Byte Time-out-parameter beeinflußt werden können.

Ausgabe
Für Ausgaben (->) erzeugt der Compiler ein CE, in dem im oberen Mode–
Byte nur das Bit für die Output–Direction gesetzt ist. Es gelten also keinerlei
Ende–Bedingungen, der Transfer wird über die tatsächliche Länge gesteuert.
Die Ausgabe wird ohne ”WAIT“ durchgeführt, d. h. das Programm wartet nicht
auf das Ende der Ausgabe, sondern läuft weiter. Folgende Veränderungen dieser
Standardeinstellung sind denkbar:

AI=$8000
MB=$80

Das Wait–Bit wird gesetzt. Das Programm wartet auf das En-
de einer Ausgabe, bevor es fortgesetzt wird. Der erfolgreiche
Abschluß der Ausgabe kann mit der ST–Funktion überprüft
werden.

AI=$4000
MB=$40

Diese Umstellung auf Eingaberichtung ist unsinnig und kann
vom System nicht richtig umgesetzt werden

AI=$2000
MB=$20

Die Ausgabe wird vorzeitig abgebrochen, wenn im Ausgabetext
ein Cr ($13) entdeckt wird.

AI=$1000
MB=$10

Die Ausgabe wird vorzeitig abgebrochen, wenn im Ausgabetext
ein Lf ($10) entdeckt wird.

AI=$0800
MB=$08

Die Ausgabe wird vorzeitig abgebrochen, wenn im Ausgabetext
ein Eot ($04) entdeckt wird.

AI=$0400
MB=$04

Bei seriellen Schnittstellen: Es wird verhindert, daß mit Ctrl
A, Ctrl B oder Ctrl C das Bedieninterface ”aufgeweckt“ wird.
Wenn über eine serielle Schnittstelle Ein– und Ausgaben
durchgeführt werden, wobei in den Eingabestrings ˆA/B/C vor-
kommen kann, so muß dieses Bit auch bei der Ausgabe gesetzt
werden.
Bei Floppy/Winch: Der Autoclose des Filemanagers wird un-
terdrückt, d. h. die Datei wird nicht mit dem Lesen des letzten
Bytes geschlossen.

5.5 Umgang mit Datenstationen in PEARL 309

AI=$0200
MB=$02

Für die Ausgabe ohne Bedeutung, aber — s. o. — wenn die
Eingabe ohne Echo läuft, muß das Bit auch bei der Ausgabe
gesetzt sein.

AI=$0100
MB=$01

Die Ausgabe wird binär durchgeführt, d. h. es werden alle Zei-
chen (von $00 bis $FF) übertragen. Es wird nicht mehr auf
Xon/Xoff reagiert, nur der Hardware–Handshake (RTS/CTS)
bleibt erhalten, falls die Hardware dazu in der Lage ist.

Eingabe
Für die Eingabe (<-) wird ein CE mit dem Standardmodebyte $B8 oder $BA
erzeugt. Damit wird auf das Ende der Eingabe gewartet ($80); die Eingabe wird
mit einem Cr ($20), einem Lf($10) oder einem Eot ($08) vorzeitig beendet.
Bei Geräten, deren Eigenschaft, die explizite Unterdrückung des Echos zuläßt,
wird zusätzlich $02 aufgeordert, ansonsten sind die rechten 3 Bit zunächst nicht
gesetzt, können aber (s.u.) aktiviert werden.

AI=$8000
MB=$80

Das Programm würde nicht auf das Ende der Eingabe warten.
Wird vom System unterdrückt, da ein Programm i. a. auf eine
Eingabe reagiert!

AI=$4000
MB=$40

Wird vom System abgefangen. Ein AI wirkt nun wie ein MB.

AI=$2000
MB=$18

Die Eingabe wird nicht mehr mit einem Cr ($13) beendet.

AI=$1000
MB=$28

Die Eingabe wird nicht mehr mit einem Lf ($10) beendet.

AI=$0800
MB=$30

Die Eingabe wird nicht mehr mit einem Eot ($04) beendet.

AI=$0400
MB=$x4

Serielle Schnittstelle: Mit einem ˆA, ˆB oder ˆC wird der Kom-
mandoprozessor nicht mehr aufgeweckt. Diese Zeichen werden
wie normale Zeichen behandelt. War bei der letzten Eingabe
eines Programms dieses Bit gesetzt, ist der Kommandoprozes-
sor auch weiterhin gesperrt! Sie kommen jetzt als User nur mit
einem BREAK wieder in das System.

Floppy/Winch: Der Autoclose des Filemanagers wird nicht
durchgeführt.

310 5.5 Umgang mit Datenstationen in PEARL

AI=$0200
MB=$02

Je nach Parametrierung der Schnittstelle wird das Echo ein
oder ausgeschaltet, bzw. bei Verwendung von MB definitv aus-
geschaltet. Vorsicht beim Filemanager: die Bits haben dort an-
dere Bedeutungen! Wenn nicht sicher ist, welche Schnittstel-
lenparameter beim Start des Programms gelten, sollte zuerst
ein SD–Befehl über den /XC/ bzw. mit Hilfe der EXEC-Funktion
abgesetzt werden.

AI=$0100
MB=$01

Es wird auf binären Transfer umgeschaltet, d. h. es werden
auch Zeichen mit gesetztem 8 Bit an das Programm wei-
tergeleitet. Sollen alle Zeichen weitergeleitet werden, müssen
auch die Ende–Bedingungen aus– und die Kommandounter-
drückumg eingeschaltet werden! Dann ist die Eingabe erst
beendet, wenn genau die erwartete Anzahl Zeichen (über
TFU=... einstellbar) eingelesen wurde. Es wird kein Software–
Handshake (Xon/Xoff) mehr durchgeführt. RTS/CTS wer-
den weiterhin unterstützt. Wenn die ”Gegenseite“ nicht auf
RTS/CTS reagiert, muß dafür gesorgt werden, daß der Ein-
gangspuffer (i. a. 31 oder 255 Zeichen) nicht überläuft, sonst
gehen Zeichen verloren! Vorsicht beim Filesystem: Das Bit hat
dort besondere Bedeutungen.

Beispiel: Die Schnittstelle ist auf $3300 gesetzt (siehe DD–Befehl). Es sol-
len binäre Daten über diese Schnittstelle empfangen werden.
Für den AI–Parameter ist dann AI=$3F00 oder MB=$87 (lies:
keine besondere Ende–Bedingung / kein Echo / kein Komman-
doprozessor / binärer Transfer) einzusetzen.

Timeout: Mit dem hinteren Byte des AI–Paramters kann ein Timeout für
den Transfer über eine serielle oder parallele Schnittstelle ge-
setzt werden. Der Timeout gilt für ein ganzes Communication–
Element, d. h. der Transfer muß in der angegebenen Zeit kom-
plett durchgeführt sein. Die ST–Funktion gibt Aufschluß über
das Auftreten eines Timeouts.

AI=$xx80 Das oberste Bit gibt an, daß ein Timeout gewünscht ist. Mit
den restlichen 7 Bit (0 bis $7F) kann die Länge des Timeouts
eingestellt werden. Die Zeitbasis sind 512 msec. Dies ist also
die kürzeste einstellbare Timeout Zeit. Die längste Zeit ist 128
∗ 0,512 sec entspricht 65,5 sec.

Beispiel: AI=$xx80 ! Timeout mit T = 512 msec
AI=$xxA5 ! Timeout mit T = 18,9 sec

5.5 Umgang mit Datenstationen in PEARL 311

Beispiel für die Anwendung von Datenstationen:

MODULE XYZ;
SYSTEM;

Myfile: /X0/dies/ist/nur/ein/platzhalter;
Winch1: /LD/3.2/USR/GE/test(TFU=400)<->;
! nach Moeglichkeit immer Mnemos anstelle von ’LD’ verwenden.
Terminal: /A1/Dialog (TFU=1,AI=$3C00)<->;
Termreset:/A1/Reset <->;
! i. a. ist ’/TYA’ besser als ’/A1’

PROBLEM;
SPC (Winch1,Myfile) DATION INOUT ALPHIC;
SPC Terminal DATION INOUT ALPHIC CONTROL(ALL);
SPC Termreset DATION INOUT ALPHIC CONTROL(ALL);

TS1:TASK;
DCL mist CHAR(20);
OPEN Myfile BY IDF(textvariable oder konstante);
/* Lies 20 Zeichen */;
GET mist FROM Terminal BY A(20);
.... /* im Sondermodus */;
/* normalmodus einschalten*/
GET FROM Termreset BY SKIP;

END;

Im allgemeinen besteht keine Notwendigkeit mehr, Datenstationen über das
oben benutzte LD-Konstrukt anzusprechen. Einzige Ausnahme sind Fälle, in
denen man EPROM-Software für ein fremdes Zielsystem entwickelt, weil dann
kein Lader involviert ist, der die Anschlüsse herstellt. Alternativ zum LD-
Konstrukt hat man dann allerdings noch den Linker (siehe Seiten 163 ff.) zur
Verfügung, der mit seiner DEVICE-Option die fehlende Laderfunktion ersetzen
kann.

Mit dem OPEN ... BY IDF (...) wird der Inhalt der Textvariablen oder Text-
konstante als aktueller Filename für die DATION (hier Myfile) eingesetzt. Durch
diese Anweisung kann eine Dation für verschiedene Files genutzt werden, ohne
die Notwendigkeit, das PEARL–Programm zu ändern.

Es ist zu beachten, daß bei Benutzung von OPEN ... BY IDF (...) im Sy-
stemteil ein genügend langer Dummy–Name für die Pfadliste als Platzhalter
vorgesehen wird. Je nach RTOS–UH-Implementierung sind 24, 48, 64 oder
mehr Zeichen bei der Pfadliste möglich.

312 5.5 Umgang mit Datenstationen in PEARL

Hinweis!

Eine Anweisung der Form OPEN ... BY IDF(’/H0/abcd’), also
mit einer auf der Root-Ebene beginnenden Pathlist, erlaubt in
neueren Systemen neben der Filenamensänderung auch das Neu-
bestimmen von LDN und DRIVE zur Laufzeit. Um dieses im Sy-
stemteil zu dokumentieren, wird empfohlen, bei derartigen Da-
tenstationen im Systemteil als Gerät /NIL zu verwenden!

Bei der im Beispiel angegebene Dation (hier /A1/Dialog mit Usernamen

”Terminal“) wird mit TFU=1 auf Einzelzeichenübertragung geschaltet. Mit
AI=$3C werden die normalerweise eingesetzten Mode–Bit’s des Compilers ($B8)
getoggelt, sodaß bei einer Eingabe (GET ... FROM Terminal;) ein CE mit ei-
nem Mode–Byte ($86) entsteht. Es wird auf die Zeichen Cr ($0D) , Lf ($0A)
und Eot ($04) nicht mehr gesondert reagiert, sie werden in die Inputvariable
eingetragen. Weiterhin ist die Funktion Supress–Command eingeschaltet, so-
daß der Kommandointerpreter nicht mehr durch ein ($01 – $03 , Ctrl A--C)
angestoßen wird, dieses gilt solange bis entweder ein BREAK oder ein weiteres
GET/PUT auf die gleiche DATION (hier A1.Reset) mit anderem Usernamen (hier
Termreset) und anderem AI ausgeführt wird.

5.5.3 Besonderheiten bei der formatierten Eingabe (”GET“) im
UH–PEARL

• Das System blockt die Eingabe in Sätze je nach der TFU
des Systemteiles, im Standard jeweils 128 Zeichen. Ein
vorzeitiges Satzende erzeugen im Standard: Cr, Lf und
Eot(Mode–Byte = $B8, mit Wait). Dies kann durch das
linke Byte von AI ggf. modifiziert werden (siehe dazu auch
Abschnitt 8.3.2 ”Die Modebytes“ auf Seite 562). Die AI–
Option ist mit allergrößter Vorsicht zu benutzen. Mit jedem
GET wird an der alten Stelle — im alten Satz! — weiter-
gelesen. Wenn das unerwünscht ist, sollte das Format mit
SKIP beginnen.

• Vorzeitige Eingabefeldbegrenzung bei E, F, B, T, D–For-
maten.

Steht in dem vereinbarten Eingabefeld (width) ein Kom-
ma, so beginnt hinter dem Komma das Eingabefeld für
das nächste Eingabedatum.

Bsp. GET i,j,k,l FROM A1 BY SKIP,(4)F(20);

Als Eingabe würde die Zeile -100,2,33,5, korrekt akzep-

5.5 Umgang mit Datenstationen in PEARL 313

tiert. Man braucht also nicht 4 mal 20 Zeichen vorzusehen.
Tut man es dennoch, so dürfen natürlich keine Kommata
vorkommen. Auch das Zeichen Cr beendet ein Eingabe-
feld.

• Vorzeitige Eingabefeldbegrenzung beim A–Format.

Sie findet überhaupt nur statt, wenn im Format des GET das
automatisch angepaßte A–Format steht (d. h. ohne Klam-
mer mit Parametern). Beim Format A(x) wird in jedem
Fall die vorgesehene Anzahl Zeichen gelesen.

Das Eingabefeld endet beim freien A–Format vorzeitig,
wenn das Zeichen Cr eingelesen wird. Dieses wird in Space
($20) verwandelt, auch der Rest des einzulesenden String
wird mit Spaces aufgefüllt.

Bsp. DCL C CHAR(70);
GET C FROM A1 BY SKIP,A;

Wenn nun ABCDEFGHI(CR) eingegeben wird, so steht hin-
terher im String C der Text ABCDEFGHI mit 61 folgenden
Spaces. Diese Option war nicht unumstritten, sie erleich-
tert aber die schnelle Kommandoanalyse für Dialoge mit
PEARL–Programmen.

5.5.4 Besonderheiten bei der formatierten Ausgabe (”PUT“) im
UH–PEARL.

Es wird in Sätzen mit Länge der TFU transferiert, im MODE–Byte
ist nur das Output–Bit (Mode–Byte = $40, ohne ”Wait“) ge-
setzt. Durch AI kann ggf. ein Warten auf Ausgabeende erzwun-
gen werden, in diesem Falle kann auch der Erfolg der Operation
mittels der ST(...)–Funktion abgefragt werden. Bei PUT ohne
WAIT wird der Wert der ST(...)–Funktion nicht beeinflußt.

5.5.5 Erweitertes OPEN/CLOSE–Statement

Das OPEN ... BY IDF(...)–Statement ist erweitert um die Op-
tionen [,(NEW | OLD | ANY) [,EXCLUSIVE]].

Es bedeuten:

Die Datei darf beim Aufruf noch nicht existieren.NEW:
Die Datei muß beim Aufruf schon existieren.OLD:
Existenz der Datei wird nicht überprüft. Ist die Datei schon vor-ANY:

314 5.5 Umgang mit Datenstationen in PEARL

handen, so wird sie nur geöffnet; ist sie noch nicht vorhanden, so
wird sie eingerichtet.
Die Datei wird für ausschließlichen Zugriff der aufrufenden TaskEXCLUSIVE:
geöffnet.

Das CLOSE–Statement ist erweitert um die Optionen
[BY CAN | BY PRM].

normales Schliessen mit Dateierhalt.BY PRM:
Schließen und Löschen der Datei.BY CAN:

5.5.6 E/A–Formate

Formate dienen zur formatierten Ein–/Ausgabe der verschiedenen Datentypen.
Datentyp und Konvertierungsformat müssen miteinander verträglich sein, sonst
gibt es zur Laufzeit Fehlerreaktionen. Das RTOS/PEARL Funktionsprinzip ist
dabei wie folgt zu beschreiben:

Der Ablauf des Geschehens wird von der mit dem Schlüsselwort BY ange-
schlossenen Formatliste gesteuert. Diese Seite ist also der treibende Part. Je
nach dort gefundenem Format besorgt der Prozessor sich aus der Objektliste
ein Objekt. Ist die Format-Liste abgearbeitet, verbleiben aber dabei noch un-
bearbeitete Objekte in der Objektliste, so beginnt die Konvertierung bei der
letzten Blockwiederholklammer oder ganz von vorne, wenn es eine solche nicht
gibt.

Die Argumente der Formate sind, der Syntax folgend, FIXED-Ausdrücke. Bei
der Formatbeschreibung werden folgende Symbole verwendet:

s: Vorzeichen. Bei Ausgabe wird ’+’ durch ’ ’ ersetzt, bei der Eingabe kann
’+’ entfallen (Default–Wert).

Z: Ziffer. Z– –Z meint eine beliebige, durch Argument und Format bestimmte
Anzahl von Ziffern.

[] kennzeichnet optionale Elemente.

5.5 Umgang mit Datenstationen in PEARL 315

5.5.7 Datenkonvertierungsformate

Bei der Eingabe von Daten wird ein Eingabefeld unabhängig von einer even-
tuell größeren Eingabefeldbreite durch ein Komma ’,’ abgebrochen, allerdings
nicht bei einer Eingabe im A–Format. Bei letzterem ist das Komma ein legales
Eingabezeichen.

F–Format

Das F–Format verarbeitet FIXED– und FLOAT–Zahlen. Syntax:

F (Feldbreite [, Nachkommastellen [, Skalierung]])

Ausgabe:

• Ausgabefeldaufbau: ’ sZ– –Z[.Z– –Z]’

• Es werden Feldbreite Zeichen erzeugt

• Die Ausgabezeichenfolge steht rechtsbündig im Ausgabefeld.

• Wird Nachkommastellen nicht angegeben, so entfällt auch der Dezimal-
punkt; bei FLOAT wird geROUNDet.

• Der ausgegebene Wert entspricht der auszugebenden Zahl, multipliziert
mit 10Skalierung.

• Unsignifikante führende Nullen werden durch Leerzeichen ersetzt.

Eingabe:

• Eingabefeldaufbau: ’ [[s]Z– –Z[.[Z– –Z]]] ’

• Ein leeres Eingabefeld ergibt 0.

• Die Eingabezeichenfolge kann beliebig im Eingabefeld stehen.

• Führende ’ ’ werden nicht ausgewertet.

• Nachkommastellen und Skalierung defaultieren zu 0.

• Nachkommastellen wird nicht ausgewertet, sondern von der tatsächlichen
Eingabe bestimmt.

• Abgespeichert wird der Eingabewert mit um Skalierung verschobenem
Dezimalpunkt.

316 5.5 Umgang mit Datenstationen in PEARL

E–Format

Das E–Format verarbeitet FIXED– und FLOAT–Zahlen. Syntax:

E (Feldbreite [, Nachkommastellen [, Signifikanz]])

Ausgabe:

• Ausgabefeldaufbau: ’ sZ– –Z.Z– –ZEsZZ’

• Es werden Feldbreite Zeichen erzeugt.

• Die Ausgabezeichenfolge steht rechtsbündig im Ausgabefeld.

• Es folgen Nachkommastellen Zeichen auf den Dezimalpunkt.

• Die Mantisse umfaßt Signifikanz Zeichen.

Eingabe:

• Eingabefeldaufbau: ’ [[s][Z– –Z.Z– –Z][E[s][Z[Z]] ’

• Die Eingabezeichenfolge kann beliebig im Eingabefeld stehen.

• Nachkommastellen wird nicht ausgewertet.

A–Format

Das A–Format verarbeitet Zeichenketten.

A [(Länge)]

Ausgabe:

• wird Länge nicht angegeben, so wird die deklarierte Länge der auszuge-
benden Zeichenkette verwendet.

• Es werden Länge Zeichen erzeugt.

• Die auszugebende Zeichenkette beginnt linksbündig im Ausgabefeld.

• ggf. wird nach rechts mit ’ ’ aufgefüllt.

5.5 Umgang mit Datenstationen in PEARL 317

Eingabe:

• wird Länge nicht angegeben, so wird maximal die Länge der einzulesenden
Zeichenkettenvariable verwendet. Die Eingabe von Carriagereturn (Cr)
beendet die Eingabe vorzeitig.

• wird Länge angegeben, so werden genau Länge Zeichen eingelesen.

• Die Zuweisung an die einzulesende Zeichenkette erfolgt linksbündig; ggf.
wird nach rechts mit ’ ’ aufgefüllt.

B–Format

Das B–Format verarbeitet Bitketten.

(B | B3 | B4) [(Länge)]

Die I/O ist in binärer (B), octaler (B3) oder hexadezimaler (B4) Form möglich.

Ausgabe:

• wird Länge nicht angegeben, so wird die genaue Länge der auszugebenden
Bitkette verwendet.

• Es werden Länge Zeichen erzeugt.

• Die auszugebende Bitkette wird rechtsbündig im Ausgabefeld eingetra-
gen.

• ggf. wird nach links mit 0 aufgefüllt.

Eingabe:

• wird Länge nicht angegeben, so wird die Länge der einzulesenden Bitkette
verwendet.

• Die Zuweisung an die einzulesende Bitkette erfolgt rechtsbündig; ggf. wird
mit 0 nach links aufgefüllt.

• Länge > Länge der einzulesenden Bitkette wird nicht unterstützt.

318 5.5 Umgang mit Datenstationen in PEARL

T–Format

Das T–Format bearbeitet Daten des Typs CLOCK.

T (Feldbreite [, Dezimalstellen])

Ausgabe:

• Die Ausgabe erfolgt rechtsbündig im Ausgabefeld.

• Dezimalstellen wird modulo 3 verwendet.

Eingabe:

• Dezimalstellen wird nicht verwendet.

• Die Eingabe kann beliebig im Eingabefeld stehen, Leerzeichen bei den
Doppelpunkten sind erlaubt.

D–Format

Das D–Format bearbeitet Daten des Typs DURATION.

D (Feldbreite [, Dezimalstellen])

Ausgabe:

• Die Ausgabe erfolgt rechtbündig in das Ausgabefeld.

• Dezimalstellen wird modulo 3 ausgewertet.

Eingabe:

• Dezimalstellen wird nicht verwendet.

• Die Eingabe kann beliebig im Eingabefeld stehen.

• HRS, MIN, SEC müssen mit mindestens einem Leerzeichen von den umge-
benden Zahlen getrennt werden.

5.5 Umgang mit Datenstationen in PEARL 319

LIST–Format

Das LIST–Format bearbeitet Daten jeden Typs.

LIST

Normalerweise tut dieses Format genau das, was man erwartet. (Zumindest
meistens, und bei nicht zu hohen Ansprüchen) Bei der Eingabe von Gleitkom-
mazahlen müssen diese allerdings einen Dezimalpunkt im Text besitzen, da
sonst durch die Defaultbesetzung ein Punkt dazwischen gequetscht wird.

LIST-Ersatzmechanismus für die einzelnen Datentypen:

Datentyp: Ersatzformat:
BIT(1 ... 32) B4(adapted len)
CHAR(x) A
CLOCK T(13,3)
DUR D(25,3)
FIXED(1 ... 15) F(7,0,0)
FIXED(16 ... 31) F(11,0,0)
FLOAT(1 ... 23) E(13,6)
FLOAT(24 ... 55) E(23,16)

Tabelle 5.4: Ersatzformate bei LIST

5.5.8 Steuerformate

Wiederholfaktor

Umklammerte Teile der Formatliste oder einzelne Formate können wiederholt
werden, indem ein umklammerter Wiederholfaktor vorangestellt wird.
Syntax:

(Ganzzahlkonstante) Einzelformat oder
(Ganzzahlkonstante)(formatliste)

Beispiele:

PUT I,K TO XY BY (2)(X(5),F(7));
PUT I,K TO XY BY (2)F(12);

320 5.5 Umgang mit Datenstationen in PEARL

R–Format

Das R–(Remote)–Format dient zur Abarbeitung vorher vereinbarter Formate.
Syntax:

R (Format–Label–Identifier)

In dem mit R angeschlossenen Format gilt wieder die normale Format-Syntax.
Dort sind weitere R-Formate erlaubt. Allerdings kellert das Laufzeitsystem nur
maximal 3 Rekursionsstufen. Bei Überschreitung erfolgt eine Laufzeitfehlermel-
dung.

X–Format

X [(Ganzzahl)]

Ausgabe:

• Es werden soviel Leerzeichen produziert wie die Ganzzahl angibt.

Eingabe:

• Es werden soviel Zeichen vom Eingabestrom überlesen und dabei ignoriert
wie die Ganzzahl angibt.

SKIP–Format

SKIP [(Ganzzahl)]

Ausgabe:

• Es werden soviel Carriage–Returns (CR) ausgegeben wie die Ganzzahl
angibt. Wenn für das Gerät die Eigenschaft ”Add Linefeed to CR“ ein-
gestellt ist, so erfolgt für jeden CR zusätzlich ein Linefeed.

Eingabe:

• Evtl. angebrochene, noch nicht zu Ende gelesene Eingabezeilen werden
überlesen, d. h. der Datenrest der Zeilen wird ignoriert.

5.5 Umgang mit Datenstationen in PEARL 321

PAGE–Format

PAGE [(Ganzzahl)]

Ausgabe:

• Es werden soviel Seitenvorschubsteuerzeichen ($0C) ausgegeben wie die
Ganzzahl angibt.

Eingabe:

• Die Wirkung entspricht dem SKIP-Format.

5.5.9 Report- und Positionierungsformate

Diese Formate erlauben die Statusabfrage bzw. Positionsabfrage oder Positi-
onsveränderung. Zur Zeit ist nur das RST-Format implementiert.

RST–Format

RST(Fixedvariable)

Von dem Moment an, in dem der Prozessor dieses Format überläuft, werden alle
zeitlich folgenden Fehler bei der E/A-Ausführung in der angegebenen Variablen
abgelegt. Es handelt sich um denselben Wertevorrat (0 = kein Fehler etc.), wie
er auch bei der ST-Funktion (siehe Seite 332) von einer Datenstation abgefragt
werden kann. Man kann auf diese Weise jeden einzelnen Konvertierungsschritt
einer formatierten E/A mit einzelnen Reportvariablen überwachen:

GET A,B FROM xyfile BY RST(stAconv),F(10),RST(stBconv),B4(4);

In diesem Beispiel wird das Konvertierungsprotokoll für das Einlesen von ”A“
in der Variablen ”stAconv“ und das Konvertierungsprotokoll für ”B“ in der
Variablen ”stBconv“ deponiert. Man kann also ggf. entscheiden, welche Anfrage
zu wiederholen ist.

Geradezu existenziell notwendig ist das RST-Format für das ”CONVERT“--
Statement“, in das ja bekanntlich keine Datenstation sondern statt dessen eine
CHAR-Variable involviert ist. Beim CONVERT gibt es somit keinen Status einer
Datenstation, den man mit ST abfragen könnte – hier hilft das RST–Format
ganz besonders.

322 5.6 Umgang mit Feldern und Zeigern

5.6 Umgang mit Feldern und Zeigern

5.6.1 Besonderheiten bei Feldzugriffen

Wie in der Norm vorgesehen können Arrays beliebig viele Dimensionen haben
und es ist bei jeder Dimension ein beliebiger Startindex vorgebbar. Der Compi-
ler rechnet grundsätzlich in einem 32 Bit Adreßraum, es gibt also dabei außer
Speicherplatzproblemen praktisch keine Beschränkungen hinsichtlich der Feld-
größen. Das gleiche gilt natürlich auch für Felder, die Komponenten innerhalb
einer Struktur sind.

In unserem PEARL90 dürfen die Feldindizes sowohl vom Typ FIXED(15) als
auch FIXED(31) sein. Beliebige Mischungen sind möglich, auch darf man eine
FIXED(15)-Größe einsetzen, wenn die zugehörige Feldobergrenze außerhalb des
16-Bit Zahlenbereiches liegt.

Der Zugriff auf Elemente mehrdimensionaler Felder erfordert im 32 Bit
Adressraum eine oder mehrere 32x32 Bit Multiplikationen, für die auf den
einfachen Prozessoren der 68000-Familie (68010, 68008, 68302 etc.) kein Ma-
schinenbefehl vorhanden ist. Ein zeitlich ungünstiger Unterprogrammaufruf ist
nötig und belastet diese Chips zusätzlich. Unser PEARL90-Compiler unter-
sucht daher bei allen Feldzugriffen, ob nicht vielleicht eine 16x16 Bit Multipli-
kation genügt, deren 32 Bit Ergebnis dann den Feldzugriff ermöglicht. Dazu
muß der Compiler das Feld als ”kleines“ Feld erkennen können. Leider funktio-
niert diese Untersuchung nicht, wenn Felder mit dem Mechanismus des virtuel-
len Feldes (,) bzw. (,,) etc. in Prozeduren importiert oder über (,) REF ..
angesprochen werden. Hier muß der Compiler sicherheitshalber immer mit 32
Bit-Arithmetik rechnen.

Die Kurzformel kommt genau dann zum Einsatz, wenn

1. die Feldgrenzen dem Compiler bekannt sind und
2. klein genug für 16-bit Arithmetik sind, sowie
3. alle aktuellen Indizes vom Typ FIXED(15) sind.

DCL stidx INV FIXED INIT(100);Beispiel:
DCL enidx INV FIXED INIT(-1);
....

DCL ar1(stidx:enidx,stidx:enidx) FIXED(31)
....

DCL (i,j) FIXED(15);
ar1(i,j)= ergibt 16 Bit Zugriffsrechnung.

5.6 Umgang mit Feldern und Zeigern 323

Tip:

Man kann etwas Geschwindigkeit gewinnen, wenn die definierten
unteren Feldgrenzen jeweils zu Null gewählt werden, wie das bei
der Programmiersprache C Standard ist. Es entfällt dann eine
Addition pro Feldzugriff. Dies gilt nur, wenn dem Compiler der
Feldaufbau bekannt ist.

5.6.2 Arbeiten mit Zeigervariablen

Zunächst eine WARNUNG: Wer mit REF–Variablen arbeitet, begibt sich in
einen Raum, in dem unser Compiler keinen Schutz vor Unfug mehr geben kann!
Eine Zeigervariable kann wer weiß wohin zeigen — und damit kann wer weiß
was im System zerstört werden. Gleichwohl sind aber mit REFs Konstrukte
programmierbar, die ihren (gefährlichen) Einsatz rechtfertigen.

Bis auf den Typ REF CHAR() sind Zeiger gemäß PEARL90 Standard implemen-
tiert. Sie dürfen also nicht nur auf einfache Objekte sondern auch auf Felder,
Prozeduren, Tasks, Semaphore, Datenstationen usw. zeigen.

Musterbeispiel:

TYPE MENSCH STRUCT[Name CHAR(10), Alter FIXED,
Nachbarlinks REF MENSCH,
Nachbarrechts REF MENSCH];

DCL (Maier,Mueller,Schulze) MENSCH;
DCL Arbeitszeiger REF MENSCH INIT (Maier);

5.6.2.1 Positionieren eines Zeigers

Auf der linken Seite einer Zuweisung steht dabei eine Zeigervariable. Die rechte
Seite muß in der Lage sein, eine Objektadresse zu erzeugen. Es darf rechts also
keine Konstante stehen. Auch Ausdrücke ergeben in der Regel keine Adresse, es
sei denn, ein Feldzugriff oder Prozeduraufruf liefert ein Ergebnis vom Typ REF
ab. Der Objekttyp muß exakt stimmen. Das Objekt NIL ist immer passend.

Arbeitszeiger = Maier ;
Maier.Nachbarlinks = NIL ;
Maier.Nachbarrechts = Mueller;
...
Schulze.Nachbarrechts = NIL ;

324 5.6 Umgang mit Feldern und Zeigern

5.6.2.2 Vergleich von Zeigern

IF Arbeitszeiger IS Maier THEN ...
IF Maier.Nachbarlinks ISNT NIL THEN ..

Im UH–PEARL muß nur einer der beiden Partner der Operatoren IS und ISNT
ein Zeiger sein. Der zweite Partner muß aber eine Adresse liefern können oder
das Element NIL sein.

5.6.2.3 Dereferenzierung

Beim Dereferenzieren wird auf das ”gezeigte“ Objekt zugegriffen. Auf der rech-
ten Seite einer Zuweisung wird eine Zeigervariable automatisch dereferenziert,
es sei denn, sie wird direkt der linken Seite, auf der wiederum eine Zeigervaria-
ble steht, zugewiesen. Es wird jedoch nicht dereferenziert, wenn eine Zeiger-
variable als Prozedurparameter eingesetzt wird und die Prozedur als Formal-
parameter einen Zeiger (per value oder per Ident) auf diesem Platz erwartet.
Zeiger, denen ein Selektor folgt, werden in jedem Fall (auch auf der linken Seite)
zunächst dereferenziert. Bei Strukturen kann dabei erneut ein Zeiger entstehen,
wie das folgende Beispiel zeigt.

Schulze.Nachbarrechts = Arbeitszeiger; ! Zeiger1=Zeiger2
Arbeitszeiger.Nachbarrechts.Alter = 25; ! Deref durch Selektor
Arbeitszeiger.Nachbarlinks.Nachbarlinks.Name =’Krueger’;! ’’

Das Dereferenzieren von Prozedurzeigern (s.u.) führt zur Ausführung der Pro-
zedur, auf die der Zeiger zeigt und kann einen Wert ergeben, wenn es sich um
eine Funktionsprozedur handelt. Wegen der Möglichkeit mehrstufiger Verwir-
rungen ist als Funktionsergebnis der Typ Prozedurzeiger jedoch nicht zugelas-
sen.

5.6 Umgang mit Feldern und Zeigern 325

5.6.2.4 Verschiebung

Mit Hilfe der Einbaufunktion REFADD kann ein Zeiger, der auf ein einfaches
Datenobjekt zeigt, auf das im Speicher folgende gleichartige Objekt verschoben
werden. Diese Verschiebung geht sehr schnell (Beim 68k mit addi constant to
memory) ist aber zumindest vorläufig eine Spezialität des UH–PEARL. Der
Verschiebewert kann vom Typ FIXED(15) oder FIXED(31) sein und bezeichnet
die Anzahl Objekte, um die geschoben wird. Er wird intern automatisch mit
der Länge des Objektes multipliziert. Eine Verschiebung von Feldzeigern (z.B.
REF (,)), Prozedurzeigern o.ä. ist nicht möglich und auch nicht sinnvoll.

DCL Zeiger REF FIXED(31);
....
CALL REFADD(Zeiger,2); ! 2 Elemente ueberspringen

5.6.2.5 CONT - Operator

Der Operator CONT ist nur auf der linken Seite einer Zuweisung sinnvoll und
darum auch nur dort implementiert. Ein einzelner Zeiger auf der rechten Seite
einer Zuweisung wird, wie oben erläutert, nicht dereferenziert, wenn links ein
Zeiger (ohne CONT davor!) steht.

CONT Arbeitszeiger = Mueller;

Hier wird das Objekt, auf das Arbeitszeiger zeigt, mit den Daten des Verbundes
Mueller besetzt.

5.6.2.6 Übergabe von Zeigern an Prozeduren

Bei Prozeduraufrufen und bei den Operatoren können Zeiger auch per IDENT
übergeben werden, d. h. der Prozedur wird nur die Adresse des Zeigers mitge-
teilt. Diese IDENT-Übergabe von Zeigern ist nur dann sinnvoll, wenn die Pro-
zedur den Zeiger selbst (und nicht die Inhalte, auf die er zeigt) verändern will.
Prozeduren oder Operatoren können auch Zeiger als Ergebnistyp erzeugen.

Wenn eine Prozedur explizit einen Parameter vom Typ REF IDENT erwartet, so
muß als Aktualparameter auch ein Zeiger angeboten werden. Bei Übergabe
per value genügt dagegen ein adreßerzeugendes Objekt, also keine Konstante
und kein Ausdruck.

326 5.6 Umgang mit Feldern und Zeigern

Zeiger auf Felder enthalten einen kompletten Feldbeschreibungsblock, in dem
implizit die innere Untergliederung des Feldes enthalten ist. Je nach Anzahl
der Dimensionen n ist das eine größere Anzahl von Bytes, nämlich (16+n*8).
Werden solche Zeiger VOID-Zeigern zugewiesen, so wird nur die Adresse des
ersten Feldelementes transferiert.

5.6.2.7 Zeiger auf Prozeduren

Zeiger auf Prozeduren sind streng typgebunden. Der Compiler weist einem
Prozedur-Zeiger nur dann die Einsprungadresse der Prozedur zu, wenn die zum
Zeiger gehörende Signatur exakt mit derjenigen der anzuschließenden Proze-
dur übereinstimmt. Dereferenzierung eines Prozedurzeigers bedeutet, daß die
Prozedur, auf die er zeigt, aufgerufen wird. Je nach Prozedurtyp ist dem Zeiger
eine umklammerte Parameterliste nachzustellen. Ein einsam hingeschriebener
Prozedurzeiger wird dereferenziert, die angeschlossene Prozedur damit aufge-
rufen.
DCL PP REF PROC(FIXED); Prozedurzeiger
TUES:PROC(a FIXED); Signatur wie oben
....

END; Ende von TUES

PP=TUES; Zuweisung an Zeiger
PP(5); Aufruf von TUES

Selbstverständlich überprüft der Compiler auch hier, ob die angebotenen Pa-
rameter geeignet sind. Dazu verwendet er die Informationen aus der Zeigerde-
finition bzw. -spezifikation.

5.6 Umgang mit Feldern und Zeigern 327

5.6.2.8 Wichtige Tips

Initialisieren Sie neu deklarierte Zeiger stets mit einer verwertbaren Objekt-
adresse, eventuell einen Dummy dafür anlegen. Nie langlebige Zeiger auf kurz-
lebige Objekte zeigen lassen!

In PEARL wurden absichtlich Funktionen wie MALLOC (’C’) oder NEW (’Pascal’)
nicht definiert, weil man unklare Zeitbedingungen bei der ”Untergrundarbeit“
befürchtete. Der Mangel läßt sich ja auch meist leicht umgehen. Legen Sie
sich dazu ein genügend großes Datenfeld an und kodieren Sie eine Routine, die
Zeiger zurückgibt. Beim Schaffen eines neuen Objektes holt diese Routine dieses
aus dem Vorrat. Auf diese Weise lassen sich vernetzte Datenbanken etc. sogar
auf Massenspeichern samt Zeigern retten, wenn dafür gesorgt wird, daß die
Basisadresse des raumspendenden Feldes stets gleich ist (DCL auf Modulebene
und mit Festadresse laden).

/* Pufferplatz f"ur MALLOC, NEW*/
TYPE MENSCH;
DCL ENORM(500000) MENSCH;
DCL GIBHER REF MENSCH, Nochfrei FIXED(31);
.......
GIBHER = ENORM(1); ! Auf erstes Objekt
CALL REFADD(GIBHER,-1); ! Einen Platz zurueck
Nochfrei = 500000(31); ! Alles noch frei
.......
MALLOC_MENSCH:PROC RETURNS(REF MENSCH);

CALL REFADD(GIBHER,1); ! Zeiger weiter
Nochfrei = Nochfrei - 1(31);
IF Nochfrei GE 0(31) THEN RETURN(GIBHER);
ELSE suche garbage ... RETURN(..);

oder PUT ’Leider kein Platz mehr...’
FIN;
TERMINATE; ! Abbruch

END; ! Ende von MALLOC_MENSCH
.......
Pointer=MALLOC_MENSCH(); ! Func call, not address assignm.
.......

328 5.6 Umgang mit Feldern und Zeigern

Die leere Parameterliste in der letzten Zeile oben ist notwendig, damit der
Compiler nicht irrtümlich vermutet, daß man die Adresse der Prozedur
MALLOC_MENSCH der Zeigervariablen Pointer zuweisen möchte, was zu einem
Typfehler führen würde. Durch die leere Parameterliste wird klar bestimmt, daß
die Prozedur zunächst aufzurufen ist und der zur Laufzeit abgelieferte Zeiger
bei der Zuweisung zu verwenden ist.

Ein pfiffigeres Programm würde natürlich im obigen Beispiel statt der ”garbage
collection“ eine Kette zurückgegebener Plätze anlegen und könnte so einzelne
Lücken ganz schnell wieder neu besetzen.

5.7 Einbaufunktionen 329

5.7 Einbaufunktionen

5.7.1 Mathematische Funktionen

Das System stellt wichtige, mathematische Elementarfunktionen zur Verfü-
gung. Diese werden syntaktisch wie PEARL–Funktionsprozeduren behandelt;
sie dürfen im Systemteil nicht spezifiziert werden, da der Zugang zu den Rou-
tinen sonst verschüttet ist. Die Argumente müssen vom Typ FLOAT(23) oder
FLOAT(55) sein; der Resultattyp entspricht dem Argumenttyp. Welche Funk-
tionen es gibt, ist der unten folgenden Tabelle zu entnehmen.

Neben dem Compiler bekannten Funktionen gibt es noch zwei wichtige Funk-
tionen außerhalb der PEARL-Definition: RANF und DRANF. Diese Funktionen
dienen zur Erzeugung von Zufallszahlen; sie müssen im Systemteil spezifiziert
werden. Die Beschreibung finden Sie auf Seite 344.

Im UH–PEARL sind neben den sogenannten ”monadischen“ Operatoren der
DIN–Beschreibung darüberhinaus die wichtigen mathematischen Funktionen
als ”Einbaufunktionen“ realisiert, d. h. sie werden vom Compiler eingebettet,
ohne daß zur Laufzeit Zeitverluste zur Parameterübergabe, Speicherplatzbe-
schaffung etc. auftreten können. Sie sind infolge der automatischen Anpassung
an einfache oder doppelte Floatgenauigkeit auch viel bequemer zu benutzen,
als dies mit Bibliotheksroutinen möglich wäre. Normalerweise ist der Code der
Einbaufunktionen als Scheibe (”mathx.y“) im RTOS–UH vorhanden. Aller-
dings können auch bei Fehlen der Scheibe (z. B. in kleinen Laufsystemen) über
den Lader oder Linker noch die nötigen Anschlüsse hergestellt werden. Aus die-
sem Grunde sind in der Tabelle rechts außen auch die internen Systemnamen
der Einsprungadressen angegeben.

ACOS(expression) Arcus Cosinus #SACOS #DACOS
ASIN(expression) Arcus Sinus #SASIN #DASIN
ATAN(expression) Arcus Tangens #SATAN #DATAN
COS(expression) Cosinus #SCOS #DCOS
EXP(expression) Exp. funktion Basis e #SEXP #DEXP
LD(expression) Logarithmus dualis #SLD #DLD
LG(expression) Logarithmus Basis 10 #SLG #DLG
LN(expression) Logarithmus naturalis #SLN #DLN
PI(expression) Zahl π #SPI #DPI
SIN(expression) Sinus #SSIN #DSIN
SQRT(expression) Quadratwurzel #SSQRT #DSQRT
TAN(expression) Tangens #STAN #DTAN

Tabelle 5.5: Mathematische Funktionen in PEARL

330 5.7 Einbaufunktionen

Alle in Tabelle 5.5 aufgeführten Funktionen sind dem Compiler bekannt, ihre
Spezifikation in PEARL-Modulen erübrigt sich damit. Verwendet ein Nutzer
gleichnamige Arrayvariablen oder Funktionsnamen, ist der Zugang zu den ent-
spechenden Einbaufunktionen verschüttet, d. h. diese sind nicht mehr zugäng-
lich.
Während der Compilation überprüft der Compiler den Mode (FLOAT!) des
in jedem Fall zu umklammernden Argumentes. Allen Funktionen müssen
FLOAT(23) oder FLOAT(55) Argumente bereitgestellt werden. Anhand der Ge-
nauigkeit des Übergabeparameters wird festgelegt, ob die mathematische Funk-
tion mit einfacher (3. Spalte Tabelle 5.5) oder doppelter (4. Spalte Tabelle 5.5)
Float-Genauigkeit ausgeführt werden soll. Bei der Funktion PI dient das Ar-
gument lediglich zur Genauigkeitsfestlegung und nicht zur Rechnung.

Beispiele:

X = SIN(a * b);
Z = LN(25.0(55)); Z muß vom Typ FLOAT(55) sein!
v = ASIN(SIN(y)); Hauptwerte beachten,nicht v = y!
a = PI(1.0(23)); Ermittle π in einfacher Float-Genauigkeit.

Erscheint nach dem Laden des PEARL–Programmes eines oder mehrere der
oben rechts angegebenen Internsymbole (das Numerozeichen ”#“ dient dazu
als Indikator) als undefiniert, so fehlt die ”Math–Scheibe“, und Sie müssen den
Einbaufunktionsfile beim Laden mit einbinden oder mit dem Linker vor dem
Laden einbauen.
Die Einbaufunktionen können Laufzeitfehlermeldungen erzeugen, die durch
Überschreitung von Grenzwerten verursacht sind. Dabei ist zu unterscheiden,
ob die FPU 68881 bzw. der 68040 oder das Software–Float–Paket zum Einsatz
kommt. Die Hardware produziert ”wrong operand“ etc., während die Softwa-
re meist eine namentliche Bezeichnung der Einbaufunktion liefert. In beiden
Fällen ist mit Hilfe des Tasknamens bei eingeschalteter Line-tracer-option der
Fehlerort jedoch i.a. gut zu ermitteln.

Im Compiler-Mode mit eingeschalteter FPU (Gleitkommahardware) sind zu-
sätzliche Einbaufunktionen vorhanden, die ursprünglich aus dem Koprozessor
MC 68881 stammen. Bei den Prozessoren 68040/60 und PowerPC werden diese
Sonderfunktionen durch Software nachgebildet. Alle Funktionen liefern Ergeb-
nisse des Typs FLOAT.

5.7 Einbaufunktionen 331

ATANH(expression) arcus Tangeshyperbolicus
COSH(expression) Cosinushyperbolicus
EXPM1(expression) (ex)− 1
INT(expression) runden auf nächstliegende Integer
INTRZ(expression) Fraktion abschneiden
LNP1(expression) LN(x)+1
NEG(expression) Negieren der Floatzahl
SINH(expression) Sinushyperbolicus
TANH(expression) Tangenshyperbolicus
TENTOX(expression) 10x

TWOTOX(expression) 2x

Tabelle 5.6: Mathematische Funktionen beim 68881-PEARL

Anmerkung: Die FPU ist auf den Mode ”round to nearest“ voreingestellt.

Wichtige Warnung!

Bei den 68040/60-Systemen sollte bei Gebrauch der mathemati-
schen Funktionen wenn irgendmöglich der Mode P=68040 oder
P=68060 im Compiler angewählt werden. Sonst wird der kom-
patible F-Line Emulationsmode gemäß Motorola-Vorschlag ge-
wählt, der bezogen auf RTOS–Standard aus prinzipiellen Grün-
den sehr schlechte Echtzeiteigenschaften (z. B. Berechnung des
SIN in einem Supervisorprozeß) ergibt!

5.7.2 Die Funktion ”ST“ zur Statusabfrage von Datenstationen

Durch das neue RST-Format in PEARL90 ist diese Funktion in vielen Fällen
entbehrlich geworden, zumal mit Hilfe des RST-Formates ein E/A-Vorgang ge-
nauer protokolliert werden kann. Dennoch werden die Statusinformationen hier
beschrieben, da sich das RST-Format intern auf die ST-Funktion abstützt. Man
beachte jedoch, daß man aus Kompatibilitätsgründen, wann immer neue Pro-
gramme geschrieben werden, das RST-Format bevorzugen sollte.

332 5.7 Einbaufunktionen

Aufruf: I=ST(Dationname) bzw.
CASE ST(Dationname)+1 wie skalares FIXED(15).

Beschreibung:

Der Compiler generiert einen Zugriff auf eine FIXED(15)–Zahl, die im SYSTEM–
Block der angegebenen Datenstation abgelegt ist. Diese Zahl gibt an, ob und
wenn welche Besonderheiten beim letzten PUT oder GET aufgetreten sind. Die
Zahlenwerte finden Sie in der Tabelle 5.7. Der ST–Wert wird zu Beginn jedes PUT
oder GET auf Null gesetzt. Der Wert ”Null“ bezeichnet daher den ereignislosen
Betriebsfall.

Mit Hilfe der ST–Abfrage ist es also möglich, z. B. syntaktisch falsche Eingaben
programmgesteuert zu erkennen und geeignet darauf zu reagieren, und zwar
unabhängig davon, ob die E/A-Fehlermeldungen der Station eingeschaltet sind
oder nicht.

Die Funktion kann auch das Ergebnis der Einbaufunktionen REWIND, SEEK,
SAVEP, APPEND und SYNC überprüfen. Der ST–Wert wird nicht auf Null gesetzt!
Zuweisung ST=0 über PUT(GET) TO(FROM) xy BY LIST.

ST-Wert Bedeutung
0 Korrekte ereignislose Funktion.
1 END–OF–FILE. Daten konnten nicht gelesen werden.
2 Read–Error. Verschiedene Ursachen, z. B. File nicht exist.
3 Falsche Eingabe–Syntax, z. B. Buchstabe bei Zahleneingabe.
4 Exponent (Float) out of range.
5 FIXED–Input Zahlenüberlauf.
6 B–Format Eingabestring zu lang.
7 Timeout
8 Anzahl auszuführender SKIPS negativ.
9 Anzahl auszuführender X oder PAGE negativ.

10 Überlauf öffnender Klammern im Format.
11 Datentyp und Format passen nicht zueinander.
12 Datum in der Liste, aber kein Datenformat im Format.
13 Überzählige schließende Klammer im Format.
14 Dieses Gerät ist für diese Operation nicht geeignet.
15 Pathlist zu lang. Liste gekürzt.

Tabelle 5.7: Standardwerte der ST-Funktion bei der PEARL-E/A

5.7 Einbaufunktionen 333

Wenn im PEARL–Programm ein Objekt mit Namen ST definiert wurde, so ist
der Zugang zur Einbaufunktion verschüttet. Die Funktion darf daher (wie alle
Einbaufunktionen) nicht mit SPC spezifiziert werden!

Bei der Übertragung eines solchen PEARL–Programmes auf andere PEARL–
Systeme kann man sich dann eine kompatible Funktion mit Hilfe dort (eventu-
ell) vorhandener Signale (ON–Blöcke) selbst definieren.

LBL: PUT ’Geben Sie bitte x ein’ TO TERM BY SKIP,A;Beispiel:
GET x FROM TERM BY SKIP,F(10);
IF ST(TERM) NE 0 THEN GOTO LBL; FIN;

5.7.2.1 Sonstige ST–Werte

Wird das NE–Flag gesetzt, so kann mit der ST–Funktion der Status nach einer
Operation abgefragt werden. Man erhält die Fehlernummern gemäß Tabelle
5.8.

334 5.7 Einbaufunktionen

ST Bedeutung /Fx /ED /VI /Ax
30 Framing Error x
31 sonst. Error serielle x
32 Parity error x
33 Data Adress Mark Error x
34 Track 000 not found x
35 Aborted Command Error x x x
36 Controller fault x
37 ID-Field not found x
38 CRC-Error in ID or Data x
39 Uncorrectable Data Error x
40 Bad Block found x
41 Drive not ready x
42 Device Write Protected x
43 Disk Changed x
44 Drive not Present x
45 No UHFM Disk x
46 Directory active x
47 Path List Error x
48 Directory in System x
49 Directory not found x
50 File not found x x x
51 Disk full Error x x
52 File System not consistent x
53 Drive busy (RAW) x
54 File in System x x
55 Root Directory or Disk full x
56 No DOS Disk x
57 Fatal Error in Block 0 x
58 Exclusiv open(no access right) x
59+ reserved

/VO ist wie /VI. Festplatten und Netzstationen siehe unter /Fx.

Tabelle 5.8: ST–Werte bei abgeschaltetem NE-Flag

5.7 Einbaufunktionen 335

5.7.3 Bitmapping Basis–Grafik

Es sind 3 elementare Basisroutinen integriert, die einfache Pixeloperationen un-
terstützen. Sie arbeiten auf dem für die ausführende Task aktuell vereinbarten
Grafikschirm, bzw. Grafikfenster.

CALL SETPIX(xpos, ypos, colour);
CALL GETPIX(xpos, ypos, colour);
CALL LINE(x1pos, y1pos, x2pos, y2pos, colour);

In Wirklichkeit handelt es sich hier nicht um Prozeduraufrufe (die Syntax mit
dem optionalen CALL ist nur wegen der PEARL–kompatibilität gewählt wor-
den), sondern um extrem schnelle Ansprünge (Nur JSR/RTS als overhead!)
der globalen Systemroutinen #SSETP/#SGETP/#SLINE wobei die FIXED(15)–
Parameter in die Register D0 ... D4 geladen werden. Falls in Ihrem System
diese Routinen nicht vorhanden sind, können sie leicht als Maschinenprogram-
me selbst geschrieben und beim Laden angelinkt werden. Dabei hat man in den
Routinen die Register D0-D7 und A0-A3 frei verfügbar. Im Standard ruft LINE
intern die Funktion SETPIX auf, so daß ggf. nur SETPIX und GETPIX angepaßt
werden müssen.

SETPIX und GETPIX sind zueinander komplementär, d. h. mit GETPIX wird
der dritte Parameter (muß variabel sein!) auf den mit SETPIX oder sonstwie
erzeugten Wert gebracht.

LINE führt eine Pixel–Interpolation durch, wobei Start– und Endpixel gesetzt
und durch Zwischenpixel verbunden werden.

Das Löschen von Punkten und Linien erfolgt durch Schreiben mit Anwahl der
Hintergrundfarbe.

Beispiel für einen Kasten:

CALL LINE(i,j,i+10,j,1);
CALL LINE(i,j,i,j+10,1);
CALL LINE(i+10,j,i+10,j+10,1);
CALL LINE(i,j+10,i+10,j+10,1);

336 5.7 Einbaufunktionen

Wenn alles in Ordnung ist, erscheint eine (wasserdichte) quadra- tische Kiste
mit der linken oberen Ecke auf Position (i,j).

Wie bei allen Einbaufunktionen, so dürfen auch hier die Objekte SETPIX,
GETPIX und LINE nirgends weder deklariert noch spezifiziert werden. Ande-
renfalls sind die Funktionen nicht mehr zugänglich.

Eine negative Farbe bedeutet, daß das Pixel durch Invertieren des Altzustandes
erzeugt wird, nach erneutem Aufruf erscheint dort also wieder das alte Bild.

Bitte beachten:

Bedenken Sie, daß der Ablauf dieser Funktionen je nach Rechner
evtl. mit sehr hoher Geschwindigkeit ausgeführt wird und unter
Umständen nichts zu sehen ist, wenn das Objekt zu früh wie-
der gelöscht wird! Mögliche Abhilfe: Operation mit dem Vertikal–
Prozeßinterrupt und WHEN ... synchronisieren, so daß mindestens
ein Vollbild abgewartet wird.

5.7.4 Besondere E/A–Operationen

Auch hier handelt es sich nicht um normale Unterprogrammaufrufe, sondern um
Sonderfunktionen des UH–Compilers, die aus Kompatibilitätsgründen zu an-
deren Systemen das CALL–Konstrukt benutzen. ST wird in jedem Fall geändert,
bei fehlerfreier Funktion auf ”Null“, sonst auf den entsprechenden Code gesetzt.

CALL REWIND(dationname); .Zurückspulen eines Files.
CALL SYNC(dationname); . Speicher–File–Synchronisation.
CALL SEEK(dationname,longfixed); Aufsuchen des x.Byte im File.
CALL SAVEP(dationname,longfixed); Position des Files retten.
CALL APPEND(dationname); Anhang an den File vorbereiten.

Der angegebene File wird zurückgespult. War er nicht vorhan-REWIND:
den, so wird er neu eingerichtet. Ist das Gerät nicht rückspulbar,
so erfolgt Meldung und ST = 14.

Der angegebene File sowie alle anderen Files dieses LaufwerkesSYNC:
(Drive) wird mit dem Inhalt auf dem Medium so abgeglichen, daß
z. B. danach alle Daten im Falle des Netzausfalles gerettet sind.
Der Positionszeiger des Files, der Öffnungszustand etc. bleibt
unverändert. Möglicherweise erfolgt überhaupt keine Aktion weil
Memory und Medium (Floppy/Winch) bereits übereinstimmen.
Im Fehlerfalle: Meldung und ST = 14.

5.7 Einbaufunktionen 337

Der File wird auf die Position gebracht, die durch den Parameter-SEEK:
wert vom Typ FIXED(31) bezeichnet wurde. Dies kann eventuell
sogar hinter die aktuelle Schreibschlußmarke geschehen, wenn
der File von früherer Schreibaktivität noch größer angelegt ist
als er zur Zeit benutzt wird!

Die aktuelle Position (das wievielte Byte des Files das nächste zuSAVEP:
schreibende sein wird) wird in der FIXED(31)–Variablen abgelegt
und steht dann für einen späteren SEEK zur Verfügung.

Das Paar SEEK/SAVEP ermöglicht den Aufbau verketteter Daten
auf den Massenspeichermedien mit schnellem Zugriff, weil immer
nur der Block der jeweils betroffenen Stelle wirklich eingelesen
wird. Meiden Sie möglichst die Nähe des File–Endes, da manche
Filehandler nach dem Einlesen des letzten Bytes einen Auto–
Close für den File durchführen und damit das Laufzeitsystem
so auf die (nach SEEK) falsche Fährte locken! Am besten unter-
drückt man die Autoclose-Operation durch MB=$04, näheres auf
Seite 308.

Verlängern des Files. Beim Aufruf dieser Funktion wird an dasAPPEND:
Fileende positioniert, danach kann mit PUT, WRITE der File
erweiternd geschrieben werden. Zur Zeit im UH– und DOS–
Filemanager implementiert. Im Fehlerfall: ST = 14.

Wie bei allen Einbaufunktionen, so dürfen auch hier die schein-
baren Prozedurnamen nicht deklariert oder spezifiziert werden,
da der Übersetzer dann die Nutzerobjekte benutzen würde.

CALL SAVEP(MyFile, I);Beispiel:
...
CALL SEEK(MyFile, I);

338 5.7 Einbaufunktionen

5.7.5 READ/WRITE

Prozeduren für den Binär–Transfer von Daten. Aus Gründen der Kompati-
bilität zum alten PEARL80-Compiler existiert hier neben dem PEARL90-
Statement noch die alte prozedurale Schnittstelle. Da polymorphe Prozeduren
(solche mit variabler Parameterliste) in PEARL90 nicht zugelassen sind, wird
der alte Aufruf durch Einbaufunktionen nachgebildet. Die im alten PEARL80
nötige Anweisung

SPC (WRITE,READ) ENTRY GLOBAL;

muß unbedingt entfernt werden. Für den nun veralteten Aufruf gilt ansonsten
die bisherige Syntax:

CALL WRITE (dationame,Variablenliste); . Schreiben
CALL READ (dationame,Variablenliste); . Lesen

Das CALL ist, wie generell in PEARL90, nur noch optional.

Bei neuen Programmen sind die Anweisungen zu ersetzen durch die PEARL90-
Anweisungen

WRITE Variablenliste TO dationexpression;
READ Variablenliste FROM dationexpression;

Die in der Variablenliste aufgeführten Variablen werden in der Reihenfolge ihres
Auftretens auf die angegebene Datenstation ”binär“ transferiert, bzw. von ihr
gelesen. Beim Abspeichern binärer Daten in /ED–Files ist zu beachten, daß
man diese Daten zwar nicht mit dem COPY-Befehl korrekt transportieren kann,
die interne PEARL-Welt davon jedoch unberührt bleibt und richtig arbeitet.

Variablenliste:

• ARRAY–Typen werden komplett übertragen (total E/A)

• es sind alle Variablen–Typen aus PEARL erlaubt

• es können verschiedene Typen gemischt werden

• die Länge der Liste ist nicht begrenzt

Beide Operationen arbeiten mit ”WAIT“’, d. h. auch beim WRITE wird auf das
Ende der Schreiboperation gewartet. Die Prozeduren setzen am Ende der I/O-
Operation das Status–Byte der DATION, welches mit der Funktion ST(...)
abgefragt werden kann (siehe Abschnitt 5.7.2).

5.7 Einbaufunktionen 339

Beispiel:

MODULE TEST;
SYSTEM;
FLOPPY: /F0/MIST <->;
...
PROBLEM;
SPC FLOPPY DATION INOUT ALPHIC;
...
task1: TASK;

DCL FELD (100,20) FIXED;
DCL ARR(3) FLOAT;
DCL R FLOAT(55);
....
WRITE FELD,ARR,R TO FLOPPY;
....
READ FELD,ARR,R FROM FLOPPY;
....

END;
...
MODEND;

Es ist darauf zu achten, daß beim Lesen und Schreiben der Daten die Datenty-
penfolge der Parameterlisten übereinstimmt, da sonst falsche Werte zugewiesen
werden.

Bei einem Zugriff auf die Floppy/Winch–Laufwerke (erkennbar am Device-
Parameter $40 im 2. Byte, siehe Seite 203) wird intern eine Blockgröße von
maximal 32766 Byte benutzt, ansonsten wird mit dem TFU-Wert aus dem
Systemteil gearbeitet. Dieser ist ohne TFU-Angabe meist 128.

Die Prozeduren führen kein REWIND durch, daher muß vor derHinweis:
Benutzung die Position im File durch ein REWIND oder SEEK
eingestellt werden. Die Integration der Positionierformate aus
PEARL90 in eine BY-Liste ist noch in Arbeit.

Die Funktionen READ/WRITE besetzen das Mode–Byte des CE’s! →
(Ein–/Ausgabeelemente) anders vor:

• READ: WAIT,BINÄR,SUPRESS CMMD

• WRITE: WAIT,OUTPUT,BINÄR,SUPRESS CMMD

Daher werden die Standardendekennzeichen Cr, Lf, Eot nicht
berücksichtigt.

340 5.7 Einbaufunktionen

Mit NE sind alle Fehlermeldungen abschaltbar. Bei verschiedenartigen Fehlern
werden die vom I/O-Dämonen angebotenen Meldungen präsentiert. Ist dieser
alt und zu einem solchen Report nicht in der Lage, so werden ersatzweise fol-
gende Meldungen ausgegeben:

>>...: I/O-Error_during_READ/WRITE ST=2
>>...: Time_out_during_READ/WRITE ST=7

Bei Fehlern, die mit dem File-Ende zusammenhängen, sind folgende Meldungen
möglich:

>>...: End_of_File(READ/WRITE) ST=1
>>...: Incomplete-transfer_READ/WRITE ST=1

Bei der letzten Meldung wurde festgestellt, daß die vom I/O-Dämonen
tatsächlich transferierte Anzahl Bytes kleiner ist als der Auftrag verlangte.
Tritt auf, wenn während des Lesens das File-Ende ereicht wurde.

5.7.6 READ/WRITE mit S-Format

Seit der P90-Compilerversion 15.9-M ist bei den READ/WRITE-Anweisungen
eine Steuerung und Kontrolle der übertragenen Datenlänge möglich. Dazu wird
das S-Format der P90-Norm genutzt. Dieses Format muss nach dem Schlüssel-
wort BY z.B. in der Form S(lvar1) stehen. Als Argument ist nur eine beschreib-
bare FIXED(31)-PEARL-Variable zugelassen. Durch Vorbesetzen der Variablen
kann die zu schreibende/lesende Anzahl der Bytes zu kleineren Werten hin be-
grenzt werden. Nach der Operation wird in der Variablen die Anzahl tatsächlich
transferierter Bytes abgelegt. Beispiele:

DCL x(4000) CHAR(1); Feldgröße 4000 Byte
lvar1=1000(31); Max 1000 Byte sollen gelesen werden
READ x FROM Infile BY S(lvar1); Legt die tatsächliche Länge in lvar1 ab

lvar1=1; lvar2=2; Zwei Vorbesetzungen
WRITE a,b TO Outfile BY Liste von Objekten

S(lvar1), S(lvar2); Von a max 1 Byte, von b max 2 Bytes
lvar1, lvar2 enthalten tatsächliche
Anzahl der geschriebenen Bytes.

5.7 Einbaufunktionen 341

Stehen mehrere S-Formate hinter BY, so werden diese in der Reihenfolge der
Objekte in der Ein-/Ausgabeliste zugeordnet. Überzählige S-Formate werden
ignoriert. In den einzelnen S-Formaten der Liste müssen logischerweise je-
weils individuelle Steuervariablen verwendet werden, wenn eine sinnvolle Ak-
tion entstehen soll. Sind weniger S-Formate als Listenobjekte vorhanden, so
werden die nicht zuzuordnenden Objekte automatisch mit dem ungesteuerten
READ/WRITE bearbeitet.

5.7.7 Die Einbaufunktion NOW

Bei Verwendung des Symboles NOW in Ausdrücken, E/A–Listen etc. wird ein
Objekt vom Typ CLOCK erzeugt, welches als Inhalt die aktuelle Uhrzeit erhält.
Der Anschluß ist sehr schnell.
Der Bezeichner NOW darf nicht anderweitig deklariert oder spezifiziert werden,
da der Compiler sonst die Nutzervereinbarung benutzt.

Beispiel:

PUT NOW TO A1 BY SKIP,LIST;
Starttime = NOW;
...
Elapsedtime = NOW - Starttime;

5.7.8 Die Funktion DATE zum Einlesen des Datums

Diese Prozedur muß spezifiziert werden:

SPC DATE ENTRY RETURNS(CHAR(10)) GLOBAL;

Der Aufruf lautet:

DCL datum CHAR(10);
...
datum = DATE;

Die Funktion weist der Zeichenkette datum das aktuelle Datum in der Form
dd-mm-jjjj zu. Es bedeuten

dd: Tag, 1. . . 31
mm: Monat, 1. . . 12
jjjj: Jahr, 1984. . . 2070

Ist das Datum nicht gesetzt, so wird eine nur aus Bindestrichen bestehende
Zeichenkette zurückgegeben.

342 5.7 Einbaufunktionen

5.7.9 Die Einbaufunktion REFADD

Um die in PEARL nicht explizit vorgesehene Manipulation von Zeigervaria-
blen zu ermöglichen, wurde die Einbaufunktion REFADD geschaffen. Es han-
delt sich allerdings keinesfalls um einen wirklichen Prozeduraufruf, die CALL–
Konstruktion wurde nur aus Kompatibilitätsgründen gewählt! Der Compiler
generiert hier einen geschwindigkeitsoptimierten Maschinencode ohne JSR etc.

CALL REFADD(Pointer,Shift);

Pointer: Eine REF–Variable beliebigen Typs.
Shift: Ein FIXED(15) oder FIXED(31) Ausdruck, bzw. Konstante.

Auf die Adreßvariable Pointer wird der Wert Shift · Objektgröße aufaddiert.
Objektgröße ist die Anzahl Bytes, aus der der Datentyp, auf den Pointer zeigt,
besteht.

Wenn Shift eine Konstante ist, so werden die notwendigen Rechnungen schon
zur Compilezeit erledigt und lediglich ein einziger ADD... bzw. SUB...–Befehl
entsteht. Daher für Shift nicht leichtfertig Ausdrücke oder Variablen verwenden!

Natürlich darf auch REFADD nicht anderweitig deklariert oder irgendwie spezi-
fiziert werden.

5.7.10 Die Funktion ASSIGN zum Ändern der Datenstation

Nicht für Neuentwicklung!

Diese Prozedur muß spezifiziert werden:

SPC ASSIGN ENTRY(DATION ALPHIC IDENT, CHAR(24))
GLOBAL;

Man beachte, daß gegenüber dem alten PEARL80 nun das Attribut INOUT fehlt.
Dies ist erforderlich, weil anderenfalls der Compiler beim Aufruf der Prozedur
für nur lesefähige oder nur schreibfähige Datenstationen einen Parameterfehler
anzeigen würde.

5.7 Einbaufunktionen 343

Für den Aufruf muß die folgende Syntax eingehalten werden:

CALL ASSIGN (Dation,newDation);

In PEARL werden den Datenstationen logische Namen zugewiesen, dieses er-
folgt im SYSTEM–Teil mit der Anweisung:

logName : PhysName.Filename <->;

Beispiel dazu: Plotter: /PP/DRUCK ->;

Mit der Anweisung OPEN logName BY IDF(newname) kann der Datenstation
ein neuer Filename zugewiesen werden, es ist erst in neueren Systemen möglich,
die Ein–/Ausgabe ohne Änderung des Quelltextes zu einer anderen Datensta-
tion zu schicken.

Hierzu wurde seinerzeit die Funktion ASSIGN eingeführt, sie erlaubt die Zuwei-
sung einer neuen Ein–/Ausgabe–Datenstation aus einem PEARL–Programm
heraus. Sie ist nur noch aus Kompatibilitätsgründen im System enthalten.
Neuere Programme sollten das erweiterte ”OPEN BY IDF“ benutzen.

Dazu betrachten wir ein Beispiel, in dem die Ausgabe der Datenstation Plotter
auf ein Floppy–File umgelenkt werden soll:

SYSTEM;
Plotter: /PP/PLOTT ->;

PROBLEM;
SPC ASSIGN ENTRY(DATION INOUT ALPHIC IDENT,

CHAR(24)) GLOBAL;
DCL newDation CHAR(24);
/* entweder : */
GET newDation FROM TERMINAL BY A,SKIP;
/* oder : */
newDation = ’F0’;
OPEN Plotter BY IDF(’/’ CAT ’newdation’);

! bei neuen Systemen
! CALL ASSIGN (Plotter,newDation);

! -> fuer aeltere Systeme
/* die Ausgabe kann auf die angegebene */
/* Datenstation umgelenkt werden. */

344 5.7 Einbaufunktionen

Falls bei newDation der String TY angegeben wird, so wird als Ein–/Ausgabe–
Station das eigene Terminal (von dem das Programm gestartet wurde) benutzt.
Außer TY ist auch TYD für die entsprechenden Duplex–Kanäle zugelassen. Für
newDation sind sämtliche dem System bekannten Datenstationsnamen, sowie
die Bezeichner Lx (x steht für die LDN der DATION) und das erwähnte TY, TYD
erlaubt.

5.7.11 Die Funktionen RANF und DRANF zur Erzeugung von
Zufallszahlen

Die Funktionen müssen im Systemteil spezifiziert werden:

SPC RANF ENTRY (FIXED(31) IDENT, FIXED(31) IDENT)
RETURNS(FLOAT(23)) GLOBAL;

SPC DRANF ENTRY (FIXED(31) IDENT, FIXED(31) IDENT)
RETURNS(FLOAT(55)) GLOBAL;

Nach Deklaration der Argumente mit dem korrekten Typ lautet der Aufruf:

DCL ZufallN FLOAT;
DCL (ZufallNM1, ZufallNM2) FIXED(31);
...
ZufallN = RANF(ZufallNM1, ZufallNM2);

Die Funktionen berechnen die neue ”Pseudo“–Zufallszahl mit dem Namen
ZufallN aus den beiden vorangegangenen Zufallszahlen gemäß folgender For-
mel:

Xn = k1 ·Xn−1 − k2 ·Xn−2(mod231 − 1)

mit k1 = 217828199 und k2 = 314159269

Die erzeugten Zahlen liegen gleichverteilt im Intervall [0,1).

Hat einer der beiden Parameter (oder beide Parameter) beim Aufruf den Wert
0, so wird er (oder werden beide) vor Ausführung der Rechnung auf die aktuelle
Uhrzeit (in Millisekunden) gesetzt. Durch gezielte Vorbesetzung der Parameter
lassen sich reproduzierbare Folgen von ”Pseudo“–Zufallszahlen erzeugen.

5.7 Einbaufunktionen 345

5.7.12 Die Funktion TASKST zum Feststellen eines Taskstatus

Diese Prozedur muß spezifiziert werden:

SPC TASKST ENTRY (CHAR(24)) RETURNS (BIT(32)) GLOBAL;

Der Aufruf lautet:

DCL Stat BIT(32);
...
Stat = TASKST (Taskname);

Die Funktion gibt den Wert ’FFFFFFFF’B4 zurück, wenn eine Task mit dem
angegebenen Namen dem System unbekannt ist. Ist eine derartige Task im
Speicher vorhanden, so hat Stat.BIT(1) folgende Bedeutung:

’0’B : Task ist in irgendwelche Aktivitäten verwickelt.
’1’B : Task ist weder eingeplant noch in irgendwelche Aktivitäten verwickelt,
jedoch dem System bekannt.

Genauere Information über den Taskstatus sind in den Bits 17. . . 32 enthalten.
Diese Informationen haben allerdings nur sehr eingeschränkte Aussagekraft,
da in dem Zeitraum zwischen Funktionsaufruf und Auswertung des Funktions-
wertes durchaus Statusänderungen möglich sind. Die Bedeutung der Bitstellen
finden Sie in Tabelle 5.9 auf Seite 346. Die Bits sind dabei in PEARL–Notation,
d. h. vom höchstwertigsten Bit (=Stat.BIT(1)) bis zum niederwertigsten Bit
(=Stat.BIT(32)) numeriert.

346 5.7 Einbaufunktionen

Bit-Nr. Aussage
2...16 keine Bedeutung

17 reserviert
18 Waiting for I/O. Task wartet auf Ein–/Ausgabe
19 Waiting for Activation. Sonderstatus: Task wartet auf Aktivie-

rung.
20 Suspend. Task ist suspendiert.
21 Waiting for CE. Task wartet auf ein CE (Kontingent erschöpft

oder Speicher voll).
22 Waiting for Workspace. Task wartet auf Zusteilung von

Workspace.
23 Waiting for Sema. Task wartet auf Sema (vergeblicher Re-

quest).
24 reserviert
25 Planned for Activation. Für die Task liegt eine Einplanung

irgendeiner Art vor.
26 reserviert
27 Timed Activate. Task ist zeitlich zur Aktivierung eingeplant.
28 Cyclic–Activate. Für die Task liegt eine Einplanung zur zykli-

schen Aktivierung vor.
29 WHEN . . . ACTIVATE. Task ist mit WHEN zur Aktivierung

eingeplant.
30 Timed Continue. Task ist zeitlich zur Fortführung eingeplant.
31 WHEN . . . CONTINUE. Task ist mit WHEN zur Fortsetzung

eingeplant.
32 Idle–Task. Task ist Idle–Task des Systems.

Tabelle 5.9: Taskstatus

5.7.13 Prozeduren zum Lesen und Ändern der Taskpriorität

Diese Prozeduren müssen spezifiziert werden:

SPC SETPRI ENTRY(FIXED) RETURNS(FIXED) GLOBAL;
SPC GETPRI ENTRY(FIXED) RETURNS(FIXED) GLOBAL;

5.7 Einbaufunktionen 347

Der Aufruf lautet:

DCL (OWNPRIO,PRIOSET,OLDPRIO,NEWPRIO) FIXED;
...
OWNPRIO = GETPRI(0); ! Default-Prioritaet lesen
OWNPRIO = GETPRI(1); ! Aktuelle Prioritaet lesen
OLDPRIO = SETPRI(NEWPRIO);

Diese Prozeduren dienen zur vorübergehenden Änderung der Priorität. Sie sind
für Tasks gedacht, die mit Semaphore arbeiten, die auch von Tasks höher-
er Priorität genutzt werden. Durch das vorübergehende Erhöhen der eigenen
Priorität ist gewährleistet, daß die normalerweise niederpriorisierte Task wei-
terarbeiten kann, während sie die Semaphore hält.

GETPRI liefert mit 0 als Übergabewert die Default-Priorität, mit 1 als Überga-
bewert die aktuelle Priorität der eigenen Task.

SETPRI ändert die Priorität der eigenen Task auf NEWPRIO und gibt den Wert
vor der Änderung zurück. Hat NEWPRIO den Wert 0, erhält die eigene Task ihre
Default-Priorität.

Beispiel: Die niederpriore Task AAT teilt sich mit einer hochprioren einen Va-
riablensatz, der durch das Semaphor S1 geschützt ist:

DCL HOCHPIO FIXED;
AAT2:TASK PRIO 10;

HOCHPRIO=GETPRI(1);
REQUEST S1;
... ! Variablensatz bearbeiten
RELEASE S1;

END;
AAT: TASK PRIO 200;

DCL OLDPRIO FIXED;

OLDPRIO=SETPRI(HOCHPRIO);! Hohe Prioritaet vor Request
REQUEST S1;
... ! Variablensatz bearbeiten
RELEASE S1;
OLDPRIO=SETPRI(OLDPRIO); ! Alte Prioritaet wiederherstellen

END;

348 5.7 Einbaufunktionen

5.7.14 Die Prozeduren TOIEES und TOIEED zur
Floatzahl–Wandlung

Diese Prozeduren müssen spezifiziert werden:

SPC TOIEES ENTRY(FLOAT IDENT) GLOBAL;
SPC TOIEED ENTRY(FLOAT(55) IDENT) GLOBAL;

Der Aufruf lautet:

DCL float FLOAT;
DCL float55 FLOAT(55);
...
CALL TOIEES(float);
CALL TOIEED(float55);

Die Funktionen wandeln Gleitkommazahlen aus der Darstellung des RTOS–
UH–Software–Float–Formats in die IEEE–Darstellung um. Der Einsatz dieser
Funktionen ist insbesondere zur Konvertierung binär abgespeicherter Daten bei
Systemerweiterung mit 68020/6888x–Prozessoren sinnvoll.

5.7.15 Die Prozeduren TORTOS und TORTOD zur
Floatzahl–Wandlung

Diese Prozeduren müssen spezifiziert werden:

SPC TORTOS ENTRY(FLOAT IDENT) GLOBAL;
SPC TORTOD ENTRY(FLOAT(55) IDENT) GLOBAL;

Der Aufruf lautet:

DCL float FLOAT;
DCL float55 FLOAT(55);
...
CALL TORTOS(float);
CALL TORTOD(float55);

Die Funktionen wandeln Gleitkommazahlen aus der Darstellung des IEEE–
Formates in das RTOS–UH–Software–Float–Format um. Der Einsatz dieser
Funktionen ist insbesondere zur Konvertierung binär abgespeicherter Daten bei
Systemerweiterung mit 68020/6888x–Prozessoren sinnvoll.

5.7 Einbaufunktionen 349

5.7.16 PEARL-Unterprogramme für Shellfunktionen

Viele Operationen, die man als Bediener mit Hilfe der Shell ausführen kann,
möchte man in ähnlicher Weise auch aus einem PEARL-Programm heraus zur
Verfügung haben. Dafür gibt es zwar die Station /XC (siehe Seite 415), jedoch ist
in vielen Fällen das Resultat nicht gut an die PEARL-Umgebung angepaßt. Oft
stört es auch, daß ein Dämon und nicht die PEARL-Task selbst die Operation
ausführt. Einige Prozeduren dieses Abschnittes schaffen da Abhilfe.

350 5.7 Einbaufunktionen

CMD EXW Bedienbefehl ausführen

Nicht für Neuentwicklung! Ersatz durch EXEC.

Bedienkommandos können über die Datenstation /XC (siehe Seite 415) an das
Betriebssystem abgesetzt werden. Dabei erhält das PEARL-Programm nur ein-
geschränkt eine Rückmeldung über Erfolg oder Mißerfolg der ausgeführten Ak-
tion. Mit der Prozedur CMD EXW können Kommandos an das Betriebssystem
weitergegeben werden, deren erfolgreiche Ausführung über ein Bit zurückge-
meldet wird. Es können alle Kommandos auf diese Art abgesetzt werden, auch

”PEARL-SHELLMODULE“ oder transiente Kommandos, die erst geladen wer-
den müssen. Der Kommandostring hat den gleichen Aufbau wie eine Eingabe
an die Shell. Wurde das Kommando erfolgreich ausgeführt, so wird der Status
’0’B zurückgemeldet, im Fehlerfall ist es eine ’1’B.

Die Prozedur muß spezifiziert werden:

SPC CMD_EXW ENTRY (CHAR(255)) RETURNS(BIT(1)) GLOBAL;

Beispiel:

DCL kommando CHAR(80);
DCL status BIT(1);

kommando = ’P LO NO’;
IF CMD_EXW(kommando) THEN

status = CMD_EXW(’UNLOAD mist*’);
status = status OR CMD_EXW(’LOAD’);
IF NOT status THEN

PUT ’fertig’ TO
FIN;

ELSE
status = CMD_EXW(’ED’);

FIN;

Diese Routine führt die Kommandos im ”WAIT“-Mode aus, siehe dazu Seite
223 die Beschreibung des WAIT-Befehles.

5.7 Einbaufunktionen 351

Environmentvariable abfragen ENVGET

Mit dieser Routine ist es möglich, einzelne oder mehrere Variablen des User-
Environment aufzulösen und den erhaltenen Textstring weiterzuverwenden. So
können PEARL-Programme oder PEARL-Shellmodule so kodiert werden, daß
sie sich automatisch an ihre Umgebung anpassen.

SPC ENVGET(CHAR(255)) RETURNS(CHAR(255) GLOBAL;

Die Routine erzeugt aus einem Eingabestring einen Ergebnisstring. Der Ein-
gabestring enthält Text, in dem ein oder mehrere Environment-Variablen mit
vorangestelltem $-Zeichen vorkommen. Die Routine ersetzt diese jeweils durch
ihre textlichen Werte und gibt den Resultatstring zurück.

Hatte man etwa irgendwann vorher

ENVSET TEXDIR=/H0/TEX; eingegeben, so wird nun bei

OPEN dation BY IDF(ENVGET(’$TEXDIR/OUT/HELPFILE’));

die Environment-Variable $TEXDIR in den entsprechenden textlichen Wert um-
gewandelt. Es wird daher der File /H0/TEX/OUT/HELPFILE geöffnet.

Die Routine versucht, alle mit $ beginnenden Variablen aufzulösen. Das muß
zwangsläufig scheitern, wenn die Variable im Environment nicht definiert ist.
In diesem Fall liefert sie einen Ergebnistring zurück, der mit dem $-Zeichen
beginnt und die erste nicht auflösbare Variable angibt.

z=ENVGET(’Trallala $michgibtsgarnicht’);

wird im Ergebnis zu

z=’$michgibtsgarnicht’; resultieren.

Im Sinne einer sicheren Programmierung sollte man das Ergebnis stets dar-
aufhin überprüfen, ob das erste Zeichen nicht ein $ ist. Einige wichtige
Environment-Variablen werden in normalen Systemen vom Hochlaufskript ein-
gerichtet und von der Shell aktualisiert, etwa

$WORKDIR Aktuelles Working Directory
$EXEDIR1 1. Exekution Directory
$EXEDIR2 2. Exekution Directory
$STDIN Standard Input
$STDOUT Standard Output
$STDERR Standard Error
$EDITOR Standard Texteditor

Geben Sie von der Shell kurz den Befehl ENVSET ein. Sie sehen dann, wie alle
Variablen Ihres Arbeitsplatzes besetzt sind.

352 5.7 Einbaufunktionen

EXEC Bedienbefehl ausführen

Bedienkommandos können über die Datenstation /XC (siehe Seite 415) an das
Betriebssystem abgesetzt werden. Dabei erhält das PEARL-Programm nur
eingeschränkt eine Rückmeldung über Erfolg oder Mißerfolg der ausgeführten
Aktion. Mit der Prozedur EXEC können Kommandos an das Betriebssystem
weitergegeben werden, deren erfolgreiche Ausführung über ein Bit zurückge-
meldet wird. Es können alle Kommandos auf diese Art abgesetzt werden, auch

”PEARL-SHELLMODULE“ oder transiente Kommandos, die erst geladen wer-
den müssen. Der Kommandostring hat den gleichen Aufbau wie eine Eingabe
an die Shell. Wurde das Kommando erfolgreich ausgeführt, so wird der Status
’0’B zurückgemeldet, im Fehlerfall ist es eine ’1’B. Man beachte diese vom
sonstigen Shellkonzept abweichende Polarität, die ihre Ursache in der Kompa-
tibilität zur veralteten Routine CMD_EXW hat.

Die Kommandos werden nicht im ”WAIT“-Mode ausgeführt. Eine Rückmel-
dung über die korrekte Operation eines Sohnprozesses ist nur möglich, wenn
ein expliziter WAIT-Befehl vorangestellt wird. Siehe Seite 223, Beschreibung des
WAIT-Befehles.

Die Prozedur muß wie folgt spezifiziert werden:

SPC EXEC ENTRY (CHAR(255)) RETURNS(BIT(1)) GLOBAL;

Beispiel:

DCL kommando CHAR(80);
DCL status BIT(1);

kommando = ’WAIT; P LO NO’;
IF NOT EXEC(kommando) THEN

status = EXEC(’UNLOAD mist*’);
status = status OR EXEC(’WAIT;LOAD’);
IF NOT status THEN

PUT ’fertig’ TO
FIN;

ELSE
status = EXEC(’WAIT;ED’);

FIN;

Wird EXEC aus einem PEARL-Shellmodul heraus aufgerufen, so wirken die
Befehle CD und CXD nur lokal und beeinflussen damit lediglich weitere Aufrufe
von EXEC.

5.7 Einbaufunktionen 353

Usernummer feststellen GET USER

Mit GET USER wird die Usernummer des aufrufenden Users zurückgeliefert.

SPC GET_USER ENTRY RETURNS(FIXED) GLOBAL;

Beispiel:

DCL usernr FIXED;

usernr = GET_USER;

Wurde das Programm von der Schnittstelle A1 vom User 1 gestartet, so ergibt
der Aufruf von GET USER eine 0, da die User intern ab 0 gezählt werden. Erfolgte
der Start des Programms z. B. von Schnittstelle A3 / User 3, so liefert GET USER
eine 2.

354 5.7 Einbaufunktionen

GET TASKNAME Eigenen Tasknamen feststellen

Die Funktion GET TASKNAME liefert den Namen der eigenen Task zurück. Wenn
es sich um eine normale PEARL-Task handelt, ist der Name bekannt, die-
se Funktion also nicht nötig. Etwas anders ist die Situation bei PEARL-
Shellmodulen, hier wird eine Subtask generiert, bestehend aus dem Kommando
und einer 2 stelligen Hexzahl.

SPC GET_TASKNAME ENTRY RETURNS(CHAR(24)) GLOBAL;

Beispiel: Es gebe ein Shellmodul, in dem das Kommando ”MORE“ enthal-
ten ist. Die Prozedur, die das Kommado aufruft, soll ”mp“ heißen.

mp : PROC ...
DCL taskname CHAR(24);

taskname = GET_TASKNAME; ! gibt ’MORE/xx’ mit xx
! zwischen 00 und FF

...

5.7 Einbaufunktionen 355

5.7.17 PEARL-Unterprogramme für Textstrings

In PEARL ist nur eine recht rudimentäre Stringbehandlung vorgesehen. Mit
den hier zur Verfügung gestellten Stringprozeduren ist ein leistungsfähiges
Werkzeug für die Stringbearbeitung gegeben. Die hier vorgestellten PEARL-
Unterprogramme für Textstrings gehören nicht zum RTOS–UH-Standard,
sind aber frei verfügbar und weit verbreitet. Testen Sie im zweifelsfall, ob diese
Unterprogramme nicht vielleicht doch im Lieferumfang Ihrer Implementierung
enthalten sind.

Alle Prozeduren benötigen keinen eigenen ”PWSP“ und arbeiten nur mit
den Registern und dem vom Aufrufer bereitgestellten Task- bzw. Procedure-
workspace. Dadurch sind sie sehr schnell und natürlich dennoch reentrant.

Die Funktionen dürfen bei Verwendung des PEARL90-Compilers nicht spezi-
fiziert werden. Die folgenden Spezifikationen dienen daher nur zur Information
und zur Verwendung beim alten ”PEARL80“-Compiler.

SPC BEG ENTRY (CHAR(255) IDENT) RETURNS (FIXED(15)) GLOBAL;

SPC INSTR ENTRY (CHAR(255) IDENT, FIXED(15) IDENT,
FIXED(15) IDENT, CHAR(255) IDENT, FIXED(15) IDENT,
FIXED(15) IDENT)
RETURNS (FIXED(15)) GLOBAL;

SPC LEN ENTRY (CHAR(255) IDENT) RETURNS (FIXED(15)) GLOBAL;

SPC MID ENTRY (CHAR(255) IDENT,FIXED(15) IDENT,
FIXED(15) IDENT)
RETURNS (CHAR(255)) GLOBAL;

SPC KON ENTRY(CHAR(255) IDENT, FIXED(15) IDENT,
FIXED(15) IDENT, CHAR(255) IDENT, FIXED(15) IDENT,
FIXED(15) IDENT)
RETURNS (CHAR(255)) GLOBAL;

SPC INSER ENTRY(CHAR(255) IDENT, FIXED(15) IDENT,
FIXED(15) IDENT, CHAR(255) IDENT, FIXED(15) IDENT,
FIXED(15) IDENT)
RETURNS (CHAR(255)) GLOBAL;

Die übergebenen Strings müssen nicht unbedingt eine Länge von 255 Zeichen
haben. Die Prozeduren erkennen an Hand der übergebenen Daten die tatsächli-

356 5.7 Einbaufunktionen

che Länge und verwenden diese als Maximalindex für einen Zugriff. Ein Über-
schreiben der einem String benachbarten Variablen ist mit diesen Funktionen
nicht möglich. Die verwendeten Variablen seien wie folgt deklariert:

DCL (pos, anf1, end1, anf2, end2) FIXED;
DCL string1 CHAR(x1);
DCL string2 CHAR(x2);
DCL string3 CHAR(x3);

! mit x1, x2, x3 = [1 ... 255]

AFORM

Diese Funktion ist nur noch aus Kompabilitätsgründen im System enthalten
und für neue Programme nicht mehr zu verwenden.

BEG

Aufruf: pos=BEG(string1);

pos wird die Position des ersten Zeichens innerhalb von string1 zugewiesen,
welches kein Blank ist. Falls string1 ein Leerstring ist, hat pos nach Aufruf
von BEG den Wert 0.

LEN

Aufruf: pos=LEN(string1);

pos wird die Position des letzten Zeichens innerhalb von string1 zugewiesen,
welches kein Blank ist. Falls string1 ein Leerstring ist, hat pos nach Aufruf
von LEN den Wert 0.

5.7 Einbaufunktionen 357

INSTR

Aufruf: pos=INSTR(string1, anf1, end1, string2, anf2, end2);

INSTR dient zur Suche von Teilstrings innerhalb eines Strings.
Der zu suchende String steht in string2 ab anf2 bis end2. Der zu untersu-
chende String ist der Teilstring aus string1, auf der Position anf1 beginnend
und der Position end1 endend. pos hat nach Aufruf von INSTR die Position des
ersten erfolgreichen Suchens. Ist der zu findende String nicht im zu untersu-
chenden enthalten, wird pos der Wert 0 zugewiesen.

Fehler Ergebnis
end2-anf2 > end1-anf1 pos = -1, der Suchstring ist länger

als der zu analysierende
anf1 < 1 string1 wird ab 1 untersucht
end1 > x1 string1 wird bis x1 untersucht
end1 < anf1 pos = -1
anf2 < 1 string2 wird ab 1 verwendet
end2 > x2 string2 wird bis x2 verwendet
end2 < anf2 pos = -1, es wurde ein ungültiger

Suchstring vorgegeben

MID

Aufruf: string2=MID(string1,anf1,end1);

Die Prozedur MID kopiert einen Teilstring.
anf1 und end1 sind Anfangs- und Endposition der zu kopierenden Zeichenkette
in string1, der angesprochene Teilstring wird string2 zugewiesen.

Fehler Ergebnis
anf1 < 1 string1 wird ab Position 1 ausge-

schnitten
end1 > x1 string1 wird bis x1 ausgeschnitten
end1 < anf1 string2 wird der Leerstring zugwie-

sen
end1-anf1+1 > x2 Die ersten x2 Zeichen ab anf1 werden

aus string1 ausgeschnitten

358 5.7 Einbaufunktionen

KON

Aufruf: string3=KON(string1,anf1,end1,string2,anf2,end2);

Mit der Prozedur KON lassen sich zwei Teilstrings zu einem dritten zusam-
menfügen.
string1 wird von anf1 bis end1 ausgeschnitten, der von anf2 bis end2 aus
string2 extrahierte String angefügt und das Ergebnis string3 zugewiesen.
Umfaßt der Zielstring string3 mehr Zeichen als die beiden ausgewählten Teil-
strings aus string1 und string2, wird string3 mit Leerzeichen aufgefüllt.

Fehler Ergebnis
anf1 < 1 string1 wird ab 1 ausgeschnitten
end1 > x1 string1 wird bis x1 ausgeschnitten
end1 < anf1 nur der Teilstring aus string2 wird

verwendet
anf2 < 1 string2 wird ab 1 ausgeschnitten
end2 > x2 string2 wird bis x2 ausgeschnitten
end2 < anf2 es wird nur der in string1 angespro-

chene Teilstring verwendet
end1-anf1+1 > x3 string3 ist der gewählte Teilstring

aus string1, wobei von string1 ab
anf1 die ersten x3 Zeichen verwendet
werden

end2-anf2+end1-anf1+2 > x3 ist der Teilstring aus string1 nicht
zu lang, wird dieser korrekt ausge-
schnitten und anschließend der Teil-
string aus string2 solange extra-
hiert, bis string3 aufgefüllt ist

5.7 Einbaufunktionen 359

INSER

Aufruf: string3=INSER(string1,anf1,end1,string2,anf2,end2);

Diese Prozedur fügt einen Ausschnitt von string2 in string1 ein und weist
den neu gebildeten String der Variable string3 zu.
Der einzufügende Teilstring aus string2 wird hierbei durch die Positionen des
ersten (anf2) und letzten Zeichens (end2) beschrieben und nach dem anf1.ten
Zeichen in string1 eingesetzt. Nach der eingeschobenen Passage wird string3
mit den ab end1 noch verbleibenden Zeichen von string1 fortgesetzt. Ist die
Länge von string3 größer als die der selektierten Teilstrings aus string1 und
string2, wird der Zielstring mit Leerzeichen aufgefüllt. Sollte string3 weniger
Zeichen als die zusammengefügten Teilstrings umfassen, bricht der Zielstring
nach der der Position x3 ab.
Wenn sich aus den Marken anf1 und end1 in string1 ein überschneidener
Bereich ergibt, werden die hierin enthaltenen Zeichen sowohl vor als auch nach
dem Einschub von string2 im Zielstring berücksichtigt. Hierzu ein Beispiel:

DCL STR1 CHAR(7) INIT(’ABCDEFG’);
DCL STR2 CHAR(7) INIT(’0123456’);
DCL STR3 CHAR(30);
...
STR3=INSER(STR1,3,6,STR2,3,4); /* STR3 ist ’ABC23FG’ */
STR3=INSER(SRT1,6,3,STR2,3,4); /* STR3 ist ’ABCDEF23CDEFG’ */

Fehler Ergebnis
anf1 < 1 string3 beginnt mit der einzufügen-

den Passage aus string2
anf1 > x1 string1 wird bis zum x1-ten Zeichen

angesprochen
end1 > x1 string1 wird bis x1 berücksichtigt
anf2 < 1 string2 ist an Position 1 markiert
anf2 > end2 ungültiger Teilstring angegeben, kein

Einschub aus string2 in string3
end2 > x2 der einzufügende String aus string2

endet bei x2

CMPW

Aufruf: test=CMPW(string1, anf1, end1, string2, anf2, end2);

CMPW dient zum Vergleich zweier Strings. Der erste String steht in string1
ab anf1 bis end1. Der zweite String steht in string2, auf der Position anf2

360 5.7 Einbaufunktionen

beginnend und der Position end2 endend.

In jedem String sind die Wildcards ”*“ (ASCII-Wert $1E im Gegensatz zun
dem sonst üblichen Wert $2A für den Stern) und ”?“ (ASCII-Wert $1F im
Gegensatz zu dem sonst üblichen Wert $3F für das Fragezeichen) zugelassen.
Die Bourne-Shell übergibt automatisch die ASCII-Werte der Wildcards, falls
diese nicht von Apostrophs (”’“) oder Gänsefüßchen (”““) umrahmt sind.

Die Wildcard ”?“ steht für genau ein beliebiges Zeichen an der Stelle des Auf-
tretens der Wildcard. Die Wildcard ”*“ dagegen läßt sich wesentlich flexibler
gebrauchen: Sie steht in dem jeweiligen String für eine beliebige Zeichenkette
beliebiger Länge an der entsprechenden Stelle. Die Länge kann sogar 0 sein; in
diesem wäre es egal, ob der ”*“ an dieser Stelle stünde oder nicht.

Sind beide Strings identisch, so wird test der Wert 0 zugewiesen; wenn sie
ungleich sind, der Wert 1.

Fehler Ergebnis
anf1 < 1 string1 wird ab 1 untersucht
end1 > x1 string1 wird bis x1 untersucht
anf2 < 1 string2 wird ab 1 untersucht
end2 > x2 string2 wird bis x2 untersucht
end1 < anf1 string1 wird wie ein Leerstring be-

handelt
end2 < anf2 string2 wird wie ein Leerstring be-

handelt

5.7 Einbaufunktionen 361

5.7.18 PEARL-Unterprogramme für Datenstationen

Device-Mnemo erzeugen DEVMNEMO

DEVMNEMO liefert den zu LDN und DRIVE gehörigen Mnemo.

SPC DEVMNEMO ENTRY (/* LDN */ FIXED, /* DRIVE */ FIXED)
RETURNS(CHAR(24)) GLOBAL;

LDN enthält eine logische Device-Nummer.

DRIVE enthält die Untergliederungsnummer des Devices.

Sind LDN oder DRIVE dem System nicht bekannt, so gibt DEVMNEMO den
allgemeine Form /LD/x.y zurück, wobei ”x“ der Inhalt von LDN und ”y“ der
Inhalt von DRV ist. Sind LDN oder DRV > 255, wird ein Leerstring zurückgegeben.

Beispiele:

DCL DEVICE CHAR(24);

DEVICE = DEVMNEMO(1,0); ! DEVICE= ’/ED’
DEVICE = DEVMNEMO(100,129); ! DEVICE= ’/LD/100.129’ (falls

! nicht doch ein Mnemo im System)
DEVICE = DEVMNEMO(10,0); ! DEVICE= ’/PP’
DEVICE = DEVMNEMO(257,1); ! DEVICE= ’’

362 5.7 Einbaufunktionen

GET DEVICE Device-Mnemo erzeugen

GET DEVICE liefert zu einer LDN und DRIVE den passenden Mnemonic zurück.

SPC GET_DEVICE ENTRY (/* LDN */ FIXED IDENT,
/* DRIVE */ FIXED

) RETURNS(CHAR(24)) GLOBAL;

LDN muß eine logische Device-Nummer enthalten.

DRIVE muß die Untergliederungsnummer des Devices enthalten.

Sind LDN oder DRIVE dem System nicht bekannt, so wird ein Leerstring zurück
geliefert und LDN ist auf -1 gesetzt.

Beispiele:

DCL (ldn,drv) FIXED;
DCL device CHAR(24);

ldn = 0; ! Schnittstelle USER 1
drv = 2; ! B-Betriebsart

device = GET_DEVICE(ldn,drv); ! device= ’/B1/’

ldn = 10; ! Druckerschnittstelle
drv = 0; ! keine Untergliederung

device = GET_DEVICE(ldn,drv); ! device= ’/PP/’

ldn = 55; ! unbekannte LDN
drv = 2; !

device = GET_DEVICE(ldn,drv); ! device= ’ ’,ldn=-1

5.7 Einbaufunktionen 363

Work- und Exe-Directory lesen GET WORK/EXEC-DIR

Nicht für Neuentwicklung. Ersatz durch ENVGET!

Die folgenden Funktionen gestatten das Einlesen des Working- oder Execution-
Directorys.

SPC GET_WORKDIR ENTRY RETURNS(CHAR(128)) GLOBAL;
SPC GET_EXECDIR ENRTY RETURNS(CHAR(128)) GLOBAL;

Es wird der komplette String inklusive Devicebezeichner und Pathlist zurück-
gegeben.

Beispiel: Es sei CD = /H0/user eingestellt und CXD = /H1/cmd

DCL (wdir,edir) CHAR(128);

wdir = GET_WORKDIR; /* wdir = ’/H0/user’ */
edir = GET_EXECDIR; /* edir = ’/H1/cmd’ */

Soll das Directory nicht als kompletter String eingelesen werden, sondern nach
LDN, DRIVE und Pathlist getrennt, so stehen die folgenden Funktionen zur
Verfügung:

SPC GET_WORKPATH ENTRY (/* LDN */ FIXED IDENT,
/* DRIVE */ FIXED IDENT
) RETURNS(CHAR(128)) GLOBAL;

SPC GET_EXECPATH ENTRY (/* LDN */ FIXED IDENT,
/* DRIVE */ FIXED IDENT
) RETURNS(CHAR(128)) GLOBAL;

Beispiel: Es sei CD = /ED/user eingestellt und CXD = /F0/cmd

DCL (wdir,edir) CHAR(128);
DCL (wldn,eldn,wdrv,edrv) FIXED;

wdir = GET_WORKPATH(wldn,wdrv);
/* wdir = ’user’ , wldn = 1, wdrv = 0 */

edir = GET_EXECPATH(eldn,edrv);
/* edir = ’cmd’ , eldn = 3, edrv = 0 */

364 5.7 Einbaufunktionen

IDF DATION Parameter einer Datenstation

Mit der Prozedur IDF DATION ist es möglich, alle Parameter einer Datenstati-
on zu erhalten oder zu manipulieren. Es muß aber sichergestellt werden, daß
nur konsistente Datensätze verwendet werden, da es sonst zu unkontrollierten
Systemabstürzen kommen kann!

SPC IDF_DATION ENTRY (/* dation */ DATION ALPHIC IDENT,
/* name */ CHAR(128) IDENT,
/* AI */ BIT(16) IDENT,
/* TFU */ FIXED(15) IDENT,
/* LDN */ FIXED(15) IDENT,
/* DRIVE */ FIXED(15) IDENT

) GLOBAL;

dation bezeichnet die Datenstation, auf deren Parametersatz zugegriffen
werden soll. Gegenüber PEARL80 fehlt hier das Attribut INOUT,
da der PEARL90-Compiler hier bei reinen Lese- bzw. Schreibsta-
tionen sonst einen Parameterfehler anzeigt.

name gibt Pathlist+Dateinamen ohne Device an (kann auch mit OPEN
BY IDF ... geändert werden). Beim Lesen wird bis ”maxpath“
mit Blanks aufgefüllt.

AI enthält die Bits des AI-Parameters aus dem SYSTEM-Teil.
TFU gibt die Transferlänge an.
LDN liefert die logische-Device-Nummer (Nummer der Warteschlange).

Wird für LDN eine negative Zahl eingesetzt, werden die Parameter
der Dation ausgelesen und können zu einem späteren Zeitpunkt
zurück geschrieben werden.

DRIVE enthält die Untereinheit der Datenstation.

Die Prozedur IDF DATION setzt den ST-Parameter, so daß eine Überprüfung der
Operation erfolgen kann:

ST = 0 kein Fehler aufgetreten
ST = 2 Es wurde keine gültige Dation gefunden.
ST = 15 Die Pathlist incl. Dateinamen ist zu lang.

5.7 Einbaufunktionen 365

Fortsetzung IDF DATION

Beispiel:

DCL name CHAR(128);
DCL AI BIT(16);
DCL (tfu_alt,tfu,ldn,drv) FIXED;

ldn = -1; ! Datenstationsparameter lesen
CALL IDF_DATION(term,name,AI,tfu,ldn,drv);

! Die Parameter der Dation term sind ausgelesen
tfu_alt = tfu;
tfu = 1; ! nur noch Einzelzeichen lesen
CALL IDF_DATION(term,name,AI,tfu,ldn,drv);

! ab jetzt werden Einzelzeichen ueber term gelesen
...
CALL IDF_DATION(term,name,AI,tfu_alt,ldn,drv);

! alte Transferlaenge wiederherstellen

Die Routine ist besonders hilfreich, wenn man sich mit DCL eine Station zur
Laufzeit in einer Task oder Prozedur erzeugt hat und nun spezielle Parameter
einstellen will oder von einer anderen Station übernehmen will.

366 5.7 Einbaufunktionen

SET DATION Datenstation neu setzen

Nicht für Neuentwicklung!

SET DATION analysiert einen Textstring und macht daraus einen Parametersatz
für eine Datenstation. Damit kann nicht nur der Dateiname, sondern auch die
LDN und das DRIVE einer Dation geändert werden. Ist in dem Textstring kein
Gerätename vorhanden, wird das eingestellte Working Directory berücksichtigt.

Auch diese Funktion ist in der PEARL90-Welt inzwischen überholt, da man
sich mit der Funktion ENVGET (siehe Seite 351) das Working Directory holen
und mit OPEN BY IDF einarbeiten kann.

SPC SET_DATION ENTRY(/* dation */ DATION INOUT ALPHIC,
/* string */ CHAR(128)

) GLOBAL;

Die Prozedur SET DATION setzt den ST-Parameter, so daß eine Überprüfung der
Operation erfolgen kann:

ST = 0 kein Fehler aufgetreten
ST = 2 Es wurde keine gültige Dation gefunden.
ST = 15 Die Pathlist incl. Dateinamen ist zu lang.

Beispiel: Es sei ein Working-Directory = /H0/user eingestellt.

DCL string CHAR(128);

string = ’lib/myfile’;

CALL SET_DATION(dat,string);

OPEN dat; /* jetzt kann auf /H0/user/lib/myfile */
/* zugegriffen werden. */

5.7 Einbaufunktionen 367

368 5.8 Aufruf von C-kodierten Unterprogrammen

5.8 Aufruf von C-kodierten Unterprogrammen

In der PEARL–Welt werden mit dem GNU-C Compiler übersetzte C-
Unterprogramme nicht anders aufgerufen als PEARL-Unterprogramme, die
mit dem PEARL–Compiler übersetzt wurden – es gibt allerdings massive Ein-
schränkungen bei den transferierbaren Parametern. Die aufzurufende Prozedur
wird außerdem anders spezifiziert, wobei zwangsläufig das Attribut ”GLOBAL“
erforderlich ist.

Darüberhinaus können auch andere globale Objekte zwischen dem C-Modul
und dem PEARL-Modul ausgetauscht werden, z. B. FIXED–Variablen. Dazu
sind Werkzeuge von anderen Anbietern zu verwenden, die die Objektcode-
Dateien aus der C-Welt in S-Rekords der RTOS–UH- Welt umsetzen, z. B.
etwa OBJ2SR von esd.

Ein Aufruf von PEARL-Unterprogrammen aus der C-Welt ist dagegen nicht
möglich, weil die C-Compiler nicht das besondere Umfeld (Index-Test, Parame-
tertest zur Laufzeit, kein Stack etc.) für PEARL-Unterprogramme bereitstellen.

Bei der Spezifikation wird statt der Schlüsselworte PROC, PROCEDURE oder
ENTRY ein um das Anhängsel _C erweitertes Schlüsselwort, also PROC_C,
PROCEDURE_C oder ENTRY_C verwendet. Der PEARL-Compiler generiert nun
das für diese C-Programme erforderliche (wegen des Stacks wie bei allen C-
Programmen sehr unsichere!) Umfeld zum Aufruf der C-Prozedur bei jedem
Aufruf.

Beispiel:

MODULE ... ; SYSTEM; ... ;
PROBLEM;
SPC Hilf ENTRY_C(FIXED(31) IDENT) RETURNS(FLOAT) GLOBAL;
...
task1:TASK; ...
...
x=Hilf(i);
...
END;
MODEND;

Das C-programm Hilf wird übersetzt, in S-Records umgesetzt und kann da-
nach normal mit dem Linker eingebunden werden oder durch den Lader hin-
zugenommen werden. Ein Ladebefehl könnte hier etwa

LOAD /ED/SR+/ED/Hilfe

lauten, wenn im File /ED/Hilfe das in S-Records übersetzte C-programm ab-
gelegt wurde.

5.8 Aufruf von C-kodierten Unterprogrammen 369

Warnung!

Vergewissern Sie sich, daß das C-Programm mit genügend Stack-
Speicher ausgestattet wird! Es ist – wie leider in der C-Welt
üblich – keine Instanz da, die eine Stacküberschreitung verhin-
dern kann. Man kann lediglich mit Hilfe eines entsprechend über-
dimensionierten Prozedurarbeitsspeichers der ausführenden Task
(/*+R-Kommentar, siehe Seite 303) die Wahrscheinlichkeit für
einen Stacküberlauf beliebig verringern. Eine weitere Unsicher-
heit: es ist keine Überprüfung der Parameter zur Laufzeit möglich!
Stimmt die Spezifikation nicht mit der Definition in C überein, so
sind schwer erkennbare Fehlfunktionen denkbar.

Die Parameterübergabe sollte sich auf die Typen FLOAT(23),FLOAT(55),
FIXED(31), deren Zeiger (IDENT) oder Zeiger auf Strukturen beschränken. Bei
Strukturen ist auf ggf. unterschiedliche Padding-Modes zu achten. Padding wird
z.B. benutzt, wenn nach einer Komponente vom Typ CHAR(1) eine Komponen-
te vom Typ FLOAT(55) folgt. Je nach System werden dabei 1 oder 3 Bytes als
Füllung eingefügt. Eine gewisse Anpassung des PEARL-Compilers ist möglich,
siehe Seite 294.

370 5.9 Aufruf von Assembler–Unterprogrammen

5.9 Aufruf von Assembler–Unterprogrammen

In der PEARL–Welt werden Assembler-Unterprogramme nicht anders behan-
delt als solche, die mit dem PEARL–Compiler in anderen Modulen übersetzt
wurden. Das Objekt ist korrekt zu spezifizieren, wobei der Zusatz ”GLOBAL“
erforderlich ist.

Darüberhinaus können auch globale Objekte im Nicht–PEARL–Modul, z. B.
FIXED–Variablen im Assemblerprogrammodul, durch das Linking des Laders
aus der PEARL–Welt adressiert werden.

Versuchen Sie stets, die Einbeziehung von Assemblerunterprogrammen auf Aus-
nahmefälle zu beschränken. In jedem Fall sollten Sie nur transferassemblierba-
ren Maschinenkode benutzen, damit eine Hardwareabhängigkeit weitgehend
vermieden wird. Assemblerprogramme können in unserem System ja bekannt-
lich ohne Emulation sowohl auf dem 68k als auch auf dem PowerPC laufen.

Hinsichtlich der korrekten Codierung des Assemblerprogrammes wird auf das
Kapitel über den Assembler und Transferassembler verwiesen.

Beispiel:

MODULE ... ; SYSTEM; ... ;
PROBLEM;
SPC Hilf ENTRY(FIXED IDENT) RETURNS(FLOAT) GLOBAL;
...
task1:TASK; ...
...
x=Hilf(i);
...
END;
MODEND;

Das Assemblerprogramm Hilf kann mit dem Linker eingebunden werden oder
durch den Lader hinzugenommen werden. Ein Ladebefehl könnte hier etwa

LOAD /ED/SR+/ED/Hilfe

lauten, wenn im File /ED/Hilfe das übersetzte Assemblerprogramm abgelegt
wurde.

5.9 Aufruf von Assembler–Unterprogrammen 371

Warnung!

Vergewissern Sie sich, daß das Assemblerprogramm wiederein-
trittsfest ist! Im Gegensatz zu den Unterprogrammen, die der
Compiler generiert, sind Assemblerprogramme keineswegs auto-
matisch für eine Multitaskingumgebung geeignet.

Wenn allerdings gesichert ist, daß nur eine Task das Unterprogramm be-
nutzt, brauchen Sie sich theoretisch nicht um dessen Wiedereintrittsfestigkeit
zu kümmern. Dennoch sei davon abgeraten: es zeigt sich immer wieder, daß oft
uralte Unterprogramme wiederverwendet werden und man dabei leicht deren
Wiedereintrittsrestriktionen übersieht. Die in diesem Handbuch beschriebenen
systemeigenen Assemblerunterprogramme sind wiedereintrittsfest – es sei denn,
daß ausdrücklich etwas anderes angegeben wird.

372 5.10 Ausnahmebehandlung und Signale

5.10 Ausnahmebehandlung und Signale

5.10.1 Vorgänge im Systemkern

Zunächst soll die betriebssystemseitige Bearbeitung von Ausnahmesituationen
betrachtet werden. Dabei wird von einem normalen System mit dem Standard
Error-Dämon #ERRDM ausgegangen. Es sind 3 unterschiedliche Ausnahmesitua-
tionen zu unterscheiden:

1 Hardwareinduzierte Ausnahmen: Die Rechnerhardware wurde mit einer
nicht korrekt lösbaren Aufgabe betraut. Klassisches Beispiel: Es soll von
einer nicht existenten Speicherzelle gelesen werden oder der gelesene Ma-
schinenbefehl ist illegal kodiert. Aus der Sicht der gerade laufenden Soft-
ware kommt das Ereignis unvorbereitet, wenngleich es an einen Maschi-
nenbefehl gekoppelt ist - im Gegensatz zu von der Außenwelt getriebenen
Interrupts. Der Prozessor wird bei dieser Ausnahmesituation wie bei ei-
nem Interrupt der höchsten Priorität nun zu einem speziellen Stück Code
(im Supervisormode) geführt, welches den individuellen Errorcode erstellt
und darin vorgibt, ob der verursachende Prozess anzuhalten ist. Der Ver-
ursacher kann hier sowohl eine Task als auch ein Supervisorprozess (kernel
mode) sein. Supervisorprozesse dürfen aber keinesfalls angehalten werden
sondern müssen zu einem funktionserhaltenden Ende geführt werden.

2 Softwareinduzierte Ausnahmen: Der Rechner funktioniert hardwareseitig
korrekt, aber es ist eine (typischerweise datenabhängige) Fehlersituation
aufgetreten. Klassisches Beispiel: die Software soll die Wurzel aus einer
negativen Zahl bestimmen. Die Ausnahmesituation wird von der Soft-
ware durch einen Betriebssystemaufruf (ERROR-Trap) eingeleitet. Durch
die Kodierung des dem System mitgegebenen Error-Codes wird ein in-
formeller Text erstellt. Auch hier wird dem System damit mitgeteilt, ob
der laufende Prozess angehalten werden muss: Während man die Wurzel
aus einer negativen Zahl ersatzweise mit Null beantworten kann (und die
Task weiterlaufen kann), ist es nicht möglich, einer Prozedur übergebe-
ne (falsche) Zeiger (wrong parameterlist) zu reparieren. Im letzteren Fall
muss die Task angehalten werden und sollte nicht entblockiert sondern
beendet werden – eventuell durch einen Bedienerprozess oder manuell.
Der Fehler kann stets einer Task angelastet werden.

5.10 Ausnahmebehandlung und Signale 373

3 Mischformen: Es gibt in fast allen Prozessoren Maschinenbefehle, die
abhängig vom inspizierten Datum eine Ausnahmesituation auslösen oder
auch nicht. Klassisches Beispiel: Der Indextester des PEARL-Compilers
überprüft im Test-Mode mithilfe des CHECK-Traps ob der errechnete li-
neare Feldindex eine Zelle innerhalb des Feldes adressiert. Liegt das Ele-
ment außerhalb, feuert der Maschinenbefehl eine Ausnahme. (Neben-
bei: Beim PEARL-Indextester repariert das Ausnahmebehandlungspro-
gramm den Fehler und addressiert das erste Element des Feldes - Fort-
setzung möglich!). Der Fehler kann typischerweise immer einer Task an-
gelastet werden, wird daher wie eine softwaregetriggerte Ausnahme be-
handelt.

Im Nukleus ist für alle drei Ausnahmesituationen eine Behandlungsroutine inte-
griert. Diese kann man – für alle Fälle, in denen der Fehler einer Task zugeord-
net werden kann – so parametrieren, dass die verursachende Task gezwungen
wird, selbst auf den Fehler zu reagieren. Dabei kann das zentrale Fehlermel-
desystem (#ERRDM = Error-Dämon) ausgeschaltet werden. So arbeitet z.B. die
Shell mit einem eigenen Handler und verwendet das Fehlermeldesystem nicht.

Das Involvieren des Error-Dämonen erfolgt über einen Ringpuffer, der in der
Shell des verantwortlichen Users angelegt ist. Bei den Ausnahmesituationen,
die nicht einer Task zugeordnet werden können, erfolgt die Fehlermeldung auf
der Konsole – der Anschlusss eines eigenen Exception-Handlers ist für diese
Situation nicht möglich und auch nicht sinnvoll. Aber: alle Interruptprozesse
bringen zwangsweise (über den Malfunction-Exit) einen eigenen Handler mit.
Dies ist eine markante Eigenschaft von RTOS–UH, die die Überlebenswahr-
scheinlichkeit erhöht.

Im folgenden Flussbild wird der Ablauf mit einer Ausnahme vom Typ 1 (Hard-
warefehler) begonnen. Die Fälle 1,2 und 3 treffen sich an einem Sammelpunkt
– immer dann, wenn eine Task als Verursacher feststeht.

374 5.10 Ausnahmebehandlung und Signale

Einstieg Fall 1
Interrupts off.

Teste IID (IR-Identifier)
Fehler im Interruptprozess?

– ja –>

Bestimme Malfunction address.
Informiere Error-Dämon, damit
Text über Konsole ausgegeben
wird. Exit über Malfunction.

nein

Teste:
Fehler im Intertask-State?

– ja –>
Entferne ggf. DSP-Monitortool.
Informiere Error-Dämon: Text

auf Konsole. Exit.

nein

Wurde Supervisordienst für eine
Task unterbrochen?

– ja –>
Beende den Dienst, reinige den

Systemstack.

nein

–> Auch Einstieg Fälle 2,3: Ausnahme ist an eine Task gebunden.

Ist ein validierbarer
Signal-Frame im Taskkopf

angeschlossen?
– ja –>

Fülle den Signalframe mit dem
Errorcode und weiteren Daten.
Ersetze den Rückkehr-PC durch

die Adresse des
Exception-Handlers. Falls im

Signalframe angefordert:
Zusätzlich Error-Dämon

involvieren. Exit über den
Exception-Handler.

nein

Wenn ein schwerer Fehler
vorliegt: Suspendiere die

verursachende Task. Involviere
den Error-Dämon. Exit.

5.10 Ausnahmebehandlung und Signale 375

5.10.2 Exception-Händler in PEARL

Die Signalbehandlung ist über den Anschluss sogenannter ON-Blöcke möglich.
Bei der Definition des Bearbeitungsmodes kann auf Wunsch der normale Error-
Dämon neben dem eigenen Handler seine Meldung machen, allerdings wird die
Task dann in keinem Fall mehr suspendiert.

Neben dem Bearbeitungsmode muss eine Variable (die RST-Struktur) angege-
ben werden, in die das Betriebssystem im Fehlerfall Daten einschreiben kann.
Dazu gehört die letzte überlaufene Zeilennummer, die letzte registrierte Modul-
nummer, der Errorcode, der Program Counter und ggf. der Induceparameter.

Es gibt zwei Stufen der Auslösung, die angewählt werden können.

• Nur schwere Fehler:
Der PEARL-Code im ON-Block wird nur angesprungen, wenn es sich
um eine Ausnahme mit gesetztem Suspend-Bit handelt. In diesem Fall
kann die Task nicht an der Fehlerstelle fortgesetzt werden. Es ist aber
möglich, per EXIT-Anweisung auf den Task-Grundlevel zurückzukehren
oder Prozeduren abzubrechen. Über die Shell per INDUCE-Befehl gefeu-
erte Ausnahmen werden wie schwere Fehler behandelt, wenn der Indu-
ceparameter negativ ist. Auch wenn der Exception Handler bei einem
leichten Fehler nicht angesprungen wird, so gibt es dennoch alle üblichen
Einträge in die RST-Struktur. Nach Aufruf einer Prozedur kann man also
abfragen, ob in ihr Fehler aufgetreten sind – auch wenn diese nicht zum
Abbruch geführt haben.

• Alle Fehler:
Jede Auslösung wird wie ein schwerer Fehler behandelt.

Sinnvollerweise wird die RST-Struktur als statisch alloziertes Objekt definiert.
Damit kann sie am einfachsten auch von Prozeduren aus erreicht werden.

376 5.10 Ausnahmebehandlung und Signale

#DEFINE X_ERRDM 1; ! Invoke #ERRDM
#DEFINE X_SEO 2; ! Invoke Exception handler Severe Errors Only
#DEFINE X_ALL 4; ! Catch all errors

MODULE EXCDEMO; ! A simple demo prog
SYSTEM; A1;
PROBLEM;
SPC A1 DATION OUT ALPHIC;
DCL RS STRUCT(/Lino FIXED, ! Last registered line number

Mono FIXED, ! Last registered module number
Ecount FIXED, ! Exception counter (all)
Errcode BIT(16), ! 16-Bit error code
PC BIT(32), ! Program counter to exception
Indpar FIXED, ! Induce parameter
Buffer(100) FIXED ! Reserve for later extensions
/);

/* +P */
TA:TASK;
DCL I FIXED;

ON E_(X_ALL+X_ERRDM) RST(RS); ! Catch all, invoke #ERRDM too
! Task will go here if exception handler is executed

PUT ’Exception fired at PC:’, RS.PC TO A1 BY SKIP,A,B4(8);
SUSPEND;
! Do whatever may be necessary
EXIT -1; ! Step one procedure level down if not on task level
END;

!.... Task may be here for the first time or after exception

IF RS.Ecount > 0 THEN
PUT ’Restarted’, RS.Ecount TO A1 BY SKIP,A,F(4);

ELSE
PUT ’Initial Start’ TO A1 BY SKIP,A;

FIN;

I=2//0; ! Diese Barriere wird nicht ueberwunden

END; ! TASK

MODEND;

5.11 Fehlermeldungen zur Compile–Zeit 377

5.11 Fehlermeldungen zur Compile–Zeit

Obwohl die Meldungen durchweg selbsterklärend sind, soll im Folgenden spezi-
ell dem Systemneuling eine Hilfestellung gegeben werden. Es werden die Mel-
dungen des PEARL90-Compilers mit der Version P15.4-A beschrieben. Die
älteren Compiler erzeugen ähnliche Meldungen. Diese Beschreibung kann auch
für sie benutzt werden.

Zu unterscheiden sind ”lokal detektierbare“ Fehler und ”bilanz–detektierbare“
Fehler.

5.11.1 Lokal detektierbare Fehler

Der Compiler bettet in das Übersetzungsprotokoll einen Fehlerprompt * in ei-
ner nach der falschen Zeile stehenden Zusatzzeile ein, diese Zeile enthält am
linken Rand die Kennzeichnung <ERROR>, um ein Auffinden im Listing zu er-
leichtern. Der Prompt steht in der unmittelbaren Nähe der Stelle, an der die
Abweichung endgültig — auch unter Ausnutzung möglicher anderer Interpre-
tationen — festgestellt werden kann. Auch bei abgeschaltetem Übersetzerpro-
tokoll erscheint die fehlerbehaftete Zeile zusammen mit der Zusatzinformation.

In der Regel gilt eine fehlerhafte Anweisung als insgesamt nicht vorhanden.
Dadurch können Folgefehler entstehen. Mit der Vereinbarung von MAXERR kann
man einen frühen Abbruch der Kompilation erzwingen.

/Syntax violation/ Es wurde keine PEARL–Produktionsregel gefunden.
Das kann z. B. durch ein falsches Zeichen, etwa in einer Kon-
stanten 3.14.2, oder falsch geschriebenes PEARL Schlüsselwort
(TUSK statt TASK etc.) verursacht werden. Dabei gelten gewisse
Schlüsselworte nur in der richtigen Blockumgebung als bekannt,
z. B. wird bei der Sequenz MODULE; PUT xyz TO ... das PUT
nicht akzeptiert, weil es nur auf Task/Prozedur–Ebene benutzt
werden kann.

/Data- or object-types do not match/ Bei der Verknüpfung von Da-
ten oder Zeigern wurden Objekte, die nicht verknüpfbar sind,
benutzt. Zum Beispiel wurde der DURATION–Variablen x der
Wert der FLOAT–Variablen z durch x=z; zugewiesen. Meist
steht der Fehlerprompt hier am rechten Ende der Anweisung,
weil der Compiler erst bei der Zuweisung die Zulässigkeit nach
Auswertung der rechten Seite feststellen kann.

Es ist auch möglich, daß eine Zeigervariable oder ein adresslie-
ferndes Objekt erwartet wird und vom Compiler nun nicht vor-
gefunden wird, z. B. bei der Operation CONT, IS etc.

378 5.11 Fehlermeldungen zur Compile–Zeit

/Undefined/ Die Variable bzw. der Prozedurname etc. wurden dem Compiler
nicht durch DECLARE oder SPECIFY bekannt gemacht.

/Double-defined/ Der Identifier ist bereits im Gebrauch und kann nicht neu
verwendet werden.

/Limit/ Der Wert einer Konstanten liegt außerhalb der zulässigen Grenzen,
z. B. X = 45196(15) etc.

/Number of subscripts incorrect/ Beim Zugriff auf ein Feld stimmt die
Anzahl der Indizes nicht mit denen der Felddefinition bzw. -
Spezifikation überein, z. B. DCL A(2,3) FIXED; A(I,J,K) = 5.

/Dation use or direction incorrect/ Die Datenstation ist per Definiti-
on/Spezifikation oder auf Grund von Kenntnissen des Compilers
nicht in der Lage, wie im Text beabsichtigt zu funktionieren.
Beisp: SPC xyz DATION OUT ...; ...; GET ... FROM xyz.

/Excessive INIT-data/ Es wurden im INIT mehr Objekte gefunden als in der
zugehörigen Deklarationsliste. Der Compiler kann die überzähli-
gen Elemente nicht zuordnen, sie werden ignoriert.

/You cannot modify invariant objects!/ Einem Objekt mit INV–Attribut
soll zur Laufzeit ein Wert zugewiesen werden. Das kann auch
durch Einsetzen als Prozedurparameter entstehen, wenn im
IDENT-Mode transferiert wird. Der Compiler weiß dann natürlich
nicht, ob die Prozedur das Objekt im konkreten Fall wirklich
verändert. Immerhin könnte sie es tun.

/Blockstructure/ Block–Struktur verletzt, z. B. IF ... THEN ... END;
oder BEGIN; FIN;. Tritt häufig als Folgefehler auf.

/INIT-list too short/ Es soll eine benamte Konstante mit DCL definiert
werden, jedoch fehlt in der INIT-Liste ein zugehöriger Wert.

/Parameter(list) incorrect/ Eine Prozedur kann mit der angegebenen Pa-
rameterliste nicht aufgerufen werden. Oft steht der Marker am
rechten Ende der Anweisung und zeigt nicht auf den verursa-
chenden Parameter, weil der Fehler erst in einer späten Phase
beim Feinabgleich von Aktual- und Formalparametern (Struk-
turinnenleben etc.) erkannt wurde.

/Parameterlist: mismatch with earlier SPECIFY/ Eine Prozedur wurde
mit SPC vorab bekannt gemacht. Bei der jetzt erfolgenden Proze-
durdefinition stimmen Parameterliste oder Ergebnistyp nicht mit
der Vorabspezifikation überein. Der Fehler tritt bei der Übertra-

5.11 Fehlermeldungen zur Compile–Zeit 379

gung von PEARL80-Programmen häufig auf, weil der alte Com-
piler die Vorabspezifikation nicht wirklich benutzte.

/Missing parameterlist/ Die Benutzung der Prozedur oder des Operators
erfordert an dieser Stelle eine Parameterliste, z.B. muß ein Zei-
ger auf eine Prozedur dereferenziert werden, es fehlt jedoch die
Parameterliste.

/You must write ’ACTIVATE..’ !/ Ein Taskname oder ein Zeiger auf ei-
ne Task wurde als Instruktion hingeschrieben, wie es zwar bei
Prozeduren, nicht aber bei Tasks erlaubt ist.

/Size of object undefined for compiler/ Der Compiler benötigt für die
Operation die Anzahl Bytes, die für das Objekt erforderlich ist,
hat diese Information hier aber nicht verfügbar. Wird z.B. ein
virtuelles Feld in einem DCL .. benutzt oder die Totalzuweisung
eines solchen Feldes versucht, so erscheint diese Fehlermeldung.

/Cannot store result/ Es wurde eine Funktion aufgerufen, die einen Wert
oder einen Zeiger zurückgibt. Durch die Art des Aufrufes kann
jedoch kein Ergebnis abgespeichert werden.

/Too many large parameters by value/ In der Praxis nie zu sehen, aber
prinzipiell möglich. Beim Aufruf einer Prozedur oder Funktion
wurden zu viele platzverbrauchende Parameter mit knapp we-
niger als 256 Byte Größe per value übergeben, sodaß der dafür
vorgesehene ”Parameterspace“ von ca. 16 kByte nicht ausreicht.
Tritt auf, wenn z.B. mehr als 63 Parameter vom Typ CHAR(255)
per value übergeben werden. Sollte das tatsächlich einmal ein
Problem sein, so sollten Sie zunächst versuchen, diese giganti-
sche Parameterliste zu verkürzen. Vielleicht können Sie ja auch
einige Parameter in Strukturen zusammenfassen oder per IDENT
übergeben. Große Objekte (Strukturen mit Feldern darin etc.)
mit mehr als 256 Bytes belasten den Parameterspace in beiden
Übergabemodes nur mit 4 Bytes. Gleiches gilt für kleinere Ob-
jekte im IDENT-Mode. Der Compiler fertigt im ”per value“ Mode
bei großen Objekten nämlich auf der Aufruferseite eine Kopie im
Variablenraum des Aufrufers an und übergibt lediglich einen 4
Byte Zeiger an die Prozedur.

/REF by IDENT: actual no REF./ Die aufgerufene Prozedur erwartet
auf einem Platz eine Zeigervariable by IDENT doch das aktuell
angebotene Objekt ist keine echte Zeigervariable. Kann es nur
eine Adresse liefern, so reicht dies für eine REF by value zwar
aus, nicht jedoch für den hier erforderlichen Zeigerbezug auf eine

380 5.11 Fehlermeldungen zur Compile–Zeit

Zeigervariable.

/Sorry! Compilerlimit exceeded/ In der Praxis nie zu sehen, aber prin-
zipiell möglich. Zuviele kleine lokale Objekte überlasten den
32 kByte Raum für sehr schnell adressierbare kleine lokale
Prozedur- oder Taskobjekte. Platz für ein weiteres Objekt dieser
Art ist nicht mehr vorhanden. Abhilfe durch Verlagerung von
Aufgaben auf Prozeduren, die dann ja weiteren eigenen schnel-
len lokalen Speicherraum haben. Auch die Zusammenfassung zu
Datenstrukturen kann helfen, ist aber meist weniger schnell: Lo-
kale Felder und größere Strukturen legt der Compiler stets in
einen besonderen lokalen Adressraum, der zwar (speziell bei den
RISC-Prozessoren) nicht ganz so schnell erreichbar, dafür aber
nur durch den vorhandenen Speicher begrenzt ist.

/Not(yet)Implemented/ Der Compiler hat ein Konstrukt zwar erkannt, die-
ses ist in der aktuellen Version aber noch nicht implementiert.
(Baustelle der PEARL90-Norm)

/Internal Compiler-Error/ Der komplexe interne Selbsttest des Compilers
hat einen Fehler entdeckt. Wir hoffen, daß Sie diese Meldung
nicht zu sehen bekommen. Bleibt sie bei einem neu gebooteten
System bestehen, so sollten Sie uns informieren.

5.11.2 Bilanzdetektierbare Fehler

MISSING PROC/TASK Dem Compiler wurde durch SPECIFY vorgeschwin-
delt, daß die angegebenen Prozedur/Task weiter unten im Modul
noch definiert werden. Nun — zum MODEND — wird dem Compi-
ler klar, daß er nicht mehr hoffen darf.

MISSING LABELS Die angegebenen Marken wurden zwar angesprochen,
aber nicht oder nicht blockkonform definiert.

SIZE LIMIT–ERROR Die tatsächliche Größe des Modules übersteigt den
durch S=... (bzw. default) festgelegten Kopfeintrag. Das Mo-
dul kann nur mit zusätzlichem SZ–Parameter beim LOAD geladen
werden.

5.11.3 Nicht sprachbedingte Abbruchkonditionen

Maxerr: Limit exceeded. Mit dem letzten aufgetretenen Fehler wurde die
gesetzte Grenze überschritten. Die Kompilation wird vorzeitig
abgebrochen.

5.11 Fehlermeldungen zur Compile–Zeit 381

Local scalars >32kB In der Praxis nie zu sehen, aber prinzipiell möglich.
Der Übersetzungslauf wurde abgebrochen, weil sich erst bei
der Codegenerierung zum letzten PEARL-Statement herausge-
stellt hat, daß der kleine schnelle lokale Prozedur- oder Task-
Workspace infolge weiterer intern benötigter Hilfsobjekte nicht
ausreicht. Die Abhilfe ist die gleiche wie beim oben beschriebe-
nen ”/Sorry! Compilerlimit exceeded/“.

INCLUDE-file ended inside statement Mitten in der aktiven Überset-
zungsphase einer Anweisung wurde das Ende des zu ”includen-
den“ Files erreicht. Vielleicht fehlt ein Semikolon am Ende oder
die letzte Anweisung ist falsch.

Cannot open INCULE-file Der einzufügende File ist nicht vorhanden oder
steht in einem anderen Verzeichnis.

Outp. failed Der Compiler kann nicht schreiben, typischerweise wegen einer Ir-
regularität beim Code-Output (Platte voll?). Beim List-Output
unterbleibt meistens diese Meldung, gelegentlich kann sie über
den Standard Error Kanal ausgegeben werden.

Cannot read from input-file Der Eingabefile produzierte einen Lesefehler.

Premature end of input-file File zu Ende, bevor MODEND akzeptiert wurde.

Internal Compiler-error Bitte schreiben Sie uns, wenn klar ist, daß Ihr Sys-
tem ansonsten in Ordnung ist!!

Insufficient memory. SZ-Para? Nicht genügend Listenplatz, möglicherweise
war der Parameter SZ beim P–Kommando zu klein. Man beachte,
daß es beim Compiler keine eigene Limitierung der Länge einer
Anweisung gibt. Eine Formel, die sich über hunderte von Zeilen
hinzieht, kann bearbeitet werden, solange genügend Listenplatz
verfügbar ist. Ein Aufbrechen von solchen Riesenstatements ent-
spannt logischerweise die Situation.

382 5.11 Fehlermeldungen zur Compile–Zeit

5.11.4 Warnungen

Wird nach einem öffnenden Kommentar ein weiterer öffnender Kommentar ge-
funden, bevor der erste Kommentar geschlossen wurde, gibt der Compiler eine
entsprechende Warnung aus. Sind mehrere solcher Stellen in einem Modul, wird
die letzte gefundene Zeile angegeben. Solche Warnungen sind zu beherzigen und
das Konstrukt sollte elimiert werden!

Beispiel: /** / ALT x=5; ... /* */;

Im Beispiel wurde der erste Kommentar versehentlich nicht beendet. Ohne die
Warnung des Compilers würde die komplette Alternative einfach verschluckt,
und der Nutzer müßte eine sehr langwierige Fehlersuche starten.

5.11.5 Abschlußmeldungen

In der Compilerschlußbilanz werden folgende Informationen ausgegeben:

TASKS:

(INT) im Modul vereinbarte Task
(EXT) extern angesprochene Task
(***) angesprochen, aber nicht als globale Task spezifiert.

Internal Procedures/Functions:

(FUN) im Modul vereinbarte Funktion
(PRO) im Modul vereinbarte Prozedur

Extra Devices:

Einige wenige Standardgeräte sind dem Compiler bekannt, so etwa
/ED, /A1 etc. Unter dieser Rubrik werden alle Datenstationen des
Systemteiles aufgelistet, die ihm nicht bekannt sind. Man muß später
beim Laden dafür Sorge tragen, daß diese im Zielsystem unter ge-
nau dem Gerätebezeichner vorhanden sind oder aber vor dem Laden
mit Hilfe des Linkers die notwendigen Informationen über LDN und
DRIVE anfügen.

VAR(RAM):...

Länge des für RAM übersetzten VARiablenbereiches

5.11 Fehlermeldungen zur Compile–Zeit 383

VAR(ROM): ...

Für EPROM übersetzter VARiablenbereich, mit Angabe des Adreß-
bereiches in dem beim Systemstart aus dem EPROM der VAR-
iablenbereich als Modul angelegt wird.

CODE(RAM): ...

Für RAM übersetzter CODE, mit Angabe des relativen Offsets in
den S-Records.

CODE(ROM): ...

Für EPROM übersetzter CODE, mit Angabe des absoluten Adreß-
bereiches im EPROM, auf den der Code abgelegt werden muß (Aus-
nahme siehe Ausgabe SHIFTABLE).

$... BYTES

Gesamtlänge der erzeugten S–Records (VAR+CODE).

(FOR 68...[+68881])

Angabe des Prozessortypes, für den der Code übersetzt worden ist.

...ERRORS

Angabe der bei der Übersetzung ermittelten Fehler.

SIZE LIMIT ERROR

Falls mehr Platz für VAR+CODE bei der Übersetzung ermittelt wur-
de, als in der S[C]–Option angegeben wurde, wird diese Meldung
ausgegeben (zählt als 1 Fehler in der Bilanz).

384 5.11 Fehlermeldungen zur Compile–Zeit

Wenn der Compiler ROM-Code erzeugen soll, so gibt es eine weitere Angabe
darüber, ob der erzeugte Code frei verschieblich ist. Dann kann er an beliebiger
Stelle im EPROM und nicht nur ab der Adresse, die bei CODE= ... angegeben
wurde, abgelegt werden. In der Schlußmeldung wird dann

SHIFTABLE

ausgegeben. Falls der Code nicht verschieblich ist, wird die Meldung

HARDWARE ADRESS

in der Schlußbilanz erscheinen.

Bei der Übersetzung von Shell–Modulen wird ebenfalls angegeben, ob die er-
zeugte Shellerweiterung später an feste Adressen gebunden ist oder nicht. Bei
der Schlußmeldung:

>>USABLE ALSO INSIDE RTOS KERNEL ...

kann das übersetzte Modul nach einem Linkerlauf oder mit Hilfe des PROM-
Befehles in (Programmier-) gerätegeignete S-Records verwandelt werden. Der
Code kann danach auf beliebigen Stellen im EPROM oder im Boot-Memory
des Systemes plaziert werden.

Lautet dagegen die Schlußmeldung:

>>USE ONLY AS LOADED RAM SHELL

so ist eine freie Ablage innerhalb des EPROM oder Boot-RAM nicht möglich.
Mit Hilfe des PROM-Befehles werden die Ablageadressen (CODE, VAR) des Quell-
files fest eingearbeitet. Mit dem Linker an Stelle des PROM können diese zwar
auch später noch verändert werden, doch sind die erzeugten S-Records nur an
den exakten physikalischen Adressen in den EPROMS bzw. dem Boot-Memory
verwendbar.

5.12 Fehlermeldungen zur Laufzeit 385

5.12 Fehlermeldungen zur Laufzeit

Bei Auftreten eines der unten aufgelisteten Fehler wird die entsprechende Mel-
dung ausgegeben und die verursachende PEARL–Task läuft nach den beschrie-
benen Aktionen weiter. Einige Fehler führen zu einer Terminierung oder Sus-
pendierung der PEARL–Task, dies ist bei den entsprechenden Meldungen ver-
merkt. Wenn das Programm mit der Markierungsoption /*+M*/ übersetzt wur-
de (zumindest teilweise), so wird vor der Fehlermeldung die letzte registrierte
Hochsprachzeilennummer ausgegeben. In Programmbereichen mit abgeschalte-
ter Markeroption werden keine neuen Nummern registriert!

DV/0 Divided by zero. Es wurde versucht, durch Null zu teilen. Für das Re-
sultat wird die größte mögliche Zahl eingesetzt.

END–OF–FILE Das Ende eines Files ist beim Lesen überschritten worden.
Der File wurde vor dem Lesen nicht auf den Anfang gesetzt
(REWIND(dation) vergessen?).

FL.OV Floating overflow. Betrag des Resultates ist größer, als es der verwen-
dete Gleitkommadatentyp zuläßt.

INPUT–SYNTAX Input–character violates format–syntax. Das Zeichen
paßt nicht zum Eingabeformat, z. B. Buchstabe bei FIXED–
Format.

ILL) Illegal character ’)’ in FORMAT → destructed machine-code. Die An-
zahl rechter Klammern stimmt nicht. Kann nur bei falscher Hy-
perprozessor–Benutzung im Assemblerprogramm oder zerstör-
tem Programmcode passieren.

IOFM I/O–FORMAT does not conform to data–type in list. Das Format
paßt nicht zum Datentyp des Elements.

IONS I/O not set up → Destructed machine–code. I/O nicht eröffnet! Kann
nur bei zerstörtem Code oder fehlerhaftem Assemblerprogramm
passieren. Terminiert die Task.

NDSF No data–spec. in FORMAT found. (PUT X TO ... BY SKIP;) Die
Formatanweisung für das Datum fehlt völlig.

NDUR Negative duration (AFTER ..., ALL ... etc.). Die Zeitdauer ist ne-
gativ.

NIEX Negative input–exponent for FIXED number. Der Exponent für die
Eingabe einer FIXED–Zahl ist negativ.

NIM–D0 Not implem. hyperproc–instruction. Opcode in register D0 oder
r0. Die V–Number in D0 ist nicht implementiert. Die geladenen

386 5.12 Fehlermeldungen zur Laufzeit

S–Records stammen wahrscheinlich von einem neuen Compiler,
für dessen Code das veraltete Laufsystem nicht mehr ausreicht.
Bitte ggf. Systemupdate besorgen.

OBIN Overflow B–formatted input. Die Binärziffernfolge ist länger als das
angegebene Format.

OEXI Overflow exponent on (numeric) input. Der Exponent ist zu groß oder
zu klein.

OPNDIF Open by IDF ... Syntax or length error. Die Zeichenkette beim
IDF ist fehlerhaft.

PNUM Tritt nur noch beim veralteten PEARL80 Compiler auf: Parameter–
numbers on caller–/proc–side not equal. Die Anzahl der Para-
meter auf der Aufruferseite stimmt nicht mit Anzahl der Pro-
zedurseite überein. Terminiert die PEARL–Task. In PEARL90
wird der Test zur Compilezeit gemacht.

PTYP Tritt nur noch beim veralteten PEARL80 Compiler auf: Parameter–
types on caller–/proc–side: no match. Der Parametertyp stimmt
nicht überein. Terminiert die Task. In PEARL90 wird der Test
zur Compilezeit gemacht.

PXFR Tritt nur noch beim veralteten PEARL90 Compiler auf: Parameter

”xfer“ illegal. (IDENT–proc + INV–call) Der Aufruf stimmt nicht.
Terminiert die PEARL–Task. In PEARL90 wird der Test zur
Compilezeit gemacht.

X/PAG– X or PAGE –count negative. (A=--3 ... X(A),PAGE(A), ...). Die
Anzahl Blanks oder PAGE ist negativ.

PATHLT: TOO LONG In der angegebenen Pathlist wurde ein zu lan-
ger Bezeichner gefunden, d.h. der im Systemteil angelegte Platz
reicht nicht aus.

READ Can’t read from inputfile. (GET + file empty etc.). Es kann nicht vom
Eingabefile gelesen werden.

RND/EN ROUND/ENTIER overflow. Result > FIXED(15). Das Resultat einer
Rundung paßt nicht in eine FIXED(15) Zahl.

SKP– SKIP–count is negative. (A=--3; ... SKIP(A),...). Die Anzahl
SKIPs ist negativ.

SUSP: TASK NOT FOUND Extern zu suspendierende Task wurde nicht
gefunden. Tritt bei einem Fremd–Suspend auf.

5.12 Fehlermeldungen zur Laufzeit 387

TIME–OUT Time out error. Nur bei bestimmten I/O–Treibern: Die Zeit-
überwachung hat angesprochen, Gerät antwortet nicht.

XIOV FIXED–number input–overflow. Die einzulesende Zahl paßt nicht in die
FIXED–Variable.

(OVF Left bracket or ”R“–FORMAT nesting overflow. Zuviele öffnende Klam-
mern beim Format.

5.12.1 Fehlermeldungen der implementierten mathematischen
Einbaufunktionen

Die folgenden Fehlermeldungen werden von den mathematischen Einbaufunk-
tionen zur Laufzeit eines Programmes generiert. Die Task, die den Fehler ver-
ursacht, läuft weiter. Es wird versucht, ein möglichst sinnvolles Resultat der
entsprechenden Operation zu liefern.

ASIN/ACOS OVERFLOW Das Argument eines ASIN oder ACOS ist größer
1.0. Als Ergebnis der Operation wird das Argument zurückge-
liefert.

EXP OVERFLOW Das Ergebnis der Funktion ex wird zu groß. Als Ergebnis
wird die größtmögliche Zahl zurückgkeliefert.

LOG OVERFLOW Das Argument der LOG–Funktion ist ≤ 0. Als Ergebnis
wird die größte mögliche negative Zahl zurückgeliefert.

DSC OVERFLOW Das Argument einer SIN– oder COS–Berechnung ist
größer als 223. Es wird eine 0 als Ergebnis zurückgeliefert.

SQR OVERFLOW Das Argument einer Quadratwurzel ist negativ. Es wird
die positive Wurzel berechnet.

TAN OVERFLOW Das Argument einer TAN–Berechnung ist größer als 223.
Das Ergebnis ist eine 0.

Wird ein 68881/68882 Coprozessor zur schnelleren Rechnung eingesetzt,
können folgende Fehlermeldungen auftreten:

ZERO–DIV FPU–68881 Es wurde versucht, durch 0 zu teilen.

WRONG OPERAND FPU–68881 Der Operand ist z. B. zu groß/klein,
keine Zahl o. ä.

OVERFLOW FPU–68881 Das Ergebnis der Operation ist zu groß.

Bei einem FPU–Fehler wird die ”schuldige“ Task suspendiert!!!! →
Die Meldungen gelten für den PowerPC ganz analog.

388 5.12 Fehlermeldungen zur Laufzeit

(Leere Seite vor neuem Kapitel)

Kapitel 6: Datenstationen

6.1 Datenstationen Ax, Bx, Cx, UL

Bei diesen Stationen handelt es sich entweder um emulierte Terminals oder
um serielle Schnittstellen (RS 232, RS 458 etc.). Für /Ax, /Bx, /Cx gilt —
bei gleichem x — stets eine gemeinsame LDN, die Buchstaben A, B, C werden
also lediglich in eine Untergliederungsnummer (=Betriebsart) umgewandelt.
Die Datenstation /UL kennzeichnet eine Sonderbetriebsart der Station mit x=2.

!

Da für beide Übertragungsrichtungen nur eine Warteschlange zur
Verfügung steht, ist ein echter Vollduplexbetrieb mit diesen Sta-
tionen nicht möglich (siehe /Dx-Station). Solange also etwa eine
Eingabe ”hängt“, tritt in der Warteschlange Stillstand ein. Um
wenigstens die Operation ”mal sehen, ob was da ist“ für die Ein-
gabe machen zu können, wurde die Betriebsart C geschaffen.

Ausgabe

Es gibt zwischen /Ax, /Bx, /Cx und /UL keinen funktionellen Unterschied. Die
Ausgabe kann vom Empfänger jederzeit mit Hilfe eines ausgesendeten Xoff

(Ctrl S) angehalten werden. Mit Hilfe des Xon (Ctrl Q) wird dann die Wie-
deraufnahme der Sendung angefordert (Xon/Xoff–Protokoll). Auch emulierte
Terminals, etwa beim Apple Performa oder innherhalb von Textfenstern des
Window-Managers, können auf diese Weise angehalten werden.

In den meisten Systemen kann über besondere Bedienbefehle die Baudrate
verändert werden.

Zusätzlich zum Softwareprotokoll (Xon/Xoff), das bei binärer Betriebsart der
Schnittstelle abgeschaltet ist, wird ein Hardwareprotoll mit RTS/CTS un-
terstützt. Diese beiden Leitungen sind zu brücken, wenn kein Hardwarepro-
tokoll erwünscht ist.

389

390 6.1 Datenstationen Ax, Bx, Cx, UL

!

Die zugehörige I/O–Task ”merkt sich“, ob sie als letzte Anforde-
rung über A oder über B/C angesprochen wurde. Dies steuert ihr
Verhalten hinsichtlich des unten beschriebenen Eingabekanales.

Eingabe ohne Initiative der I/O–Task

1. Die Station war zuletzt als /Ax–Station in Benutzung.

Die unaufgefordert empfangenen Daten werden in einen implementie-
rungsabhängigen Eingabepuffer (Ringpuffer) geschrieben. Es wird keine
Reaktion zum Sender ausgesendet.

2. Die Station war zuletzt als /Bx oder /Cx in Benutzung.

Auch hier werden die unaufgefordert empfangenen Daten in den begrenz-
ten Ringpuffer (≥ 31 Zeichen) genommen, allerdings wird nun ab dem
Moment, in dem der Ringpuffer zur Hälfte gefüllt ist, für jedes Zeichen,
das auf den Puffer geht, ein Xoff zum Sender zurückgesendet, um die-
sen zu stoppen. Außerdem wird der Sender auch über die Hardware–
Handshake Leitung aufgefordert, seine unerwünschte Datensendung zu
unterbrechen.

Eingabe mit Initiative der I/O–Task

1. Expliziter Lesebefehl für die Station /Ax.

Die evtl. im Eingaberingpuffer befindlichen Daten werden eliminiert (Puf-
fer wird gelöscht) und sind damit verloren. Wurde ein Xoff ausgeschickt,
so wird jetzt wieder ein Xon geschickt bzw. über die Handshake Leitung
wird der ”gegnerische“ Sender wieder freigegeben. Die I/O–Task hängt
sich jetzt auf (SUSP), bis die angefordete Anzahl von Daten eingetroffen
ist. Beim Lesen mehrerer Sätze und ständig laufendem Eingabestrom ge-
hen bei dieser Betriebsart in den DORM–Phasen der I/O–Task zwangsläufig
Daten verloren, denn es wird kein Protokoll erzeugt. Die /Ax sind als Ein-
gabestationen praktisch nur für die Terminaleingabe des Bedieninterface
geeignet, weil es dort gerade erwünscht ist, daß evtl. in der inaktiven Pha-
se angeschlagene Zeichen (Affe, der auf die Tasten hämmerte. . .) keine
Auswirkungen haben.

6.1 Datenstationen Ax, Bx, Cx, UL 391

2. Expliziter Lesebefehl für die Station /Bx, /UL.

Die im Eingaberingpuffer befindlichen Zeichen werden übertragen. Falls
diese bereits die Anforderung erfüllen konnten, so ist die Operation —
ggf. mit aufgehobenem Rest im Eingaberingpuffer — beendet.

Beim Lesen von der Station /UL, entsprechend der Station /B2, wer-
den empfangene Lf’s nicht übernommen. Diese Option ist hauptsächlich
zum Laden von S–Records von einem Host–Rechner geeignet (/UL = Up–
Load), kann aber auch immer dann eingesetzt werden, wenn vom Host
zusätzliche Lf’s generiert werden (”Aufblähen“ des Cr zur Kombination
Cr/Lf). Reichen die im Puffer befindlichen Daten nicht aus, so geht die
I/O–Task in den Zustand SUSP bis zu dem Zeitpunkt, zu dem die erforder-
liche Anzahl Daten erreicht wird. Beim Lesen mehrerer Sätze und einem
fortlaufenden Eingabestrom kommt es hier nicht zu einem Datenverlust,
da die Betriebsart B das Xon/Xoff bzw. RTS/CTS Protokoll benutzt und
damit auch in den DORM–Phasen der I/O–Task keine Daten verloren gehen
(sofern der Sender rechtzeitig mit Senden aufhört!!).

3. Expliziter Lesebefehl für die Station /Cx.

Wenn keine Daten im Eingaberingpuffer stehen, so wird dem Auftrag-
geber nur das Zeichen NUL ($00) mit der Satzlänge 1 (RECLEN = 1)
übermittelt, und der Auftrag wird als erledigt behandelt.

Stehen im Eingaberingpuffer weniger Zeichen als angefordert, so werden
diese übertragen, und die erreichte Satzlänge wird dem Auftraggeber mit-
geteilt. Der Auftrag gilt danach als erledigt.

Stehen im Eingaberingpuffer ausreichend Zeichen, so wird — unter Erhalt
eines evtl. Restes — der Auftrag daraus erledigt.

Eine Steuerung des Senders erfolgt auch auf dem C-Port mit dem Soft-
wareprotokoll über Xoff und Xon bzw. mit den Hardwaresignalen RTS
und CTS. In diesem Punkt gibt es keinen Unterschied zur Betriebsart B.

Die Betriebsart C ist also gedacht, um ohne Risiko des Aufhängens das
Eingabeport abzufragen, ob denn ”Daten da sind“. Beim Lesen aus Hoch-
sprachprogrammen über C muß der Programmierer selbst auf die NUL
abprüfen — dann waren noch keine Daten eingetroffen. Danach kann ru-
hig ein kleines Päuschen (AFTER x SEC RESUME) eingelegt werden, um
den Rechner nicht nur mit der Abfrage der Datenstation zu beschäfti-
gen! Besser ist aber der Verzicht auf die C–Station und Benutzung der

392 6.1 Datenstationen Ax, Bx, Cx, UL

Time–Out Funktion.

Die C–Station kann genutzt werden, um den Eingaberingpuffer definiert
zu leeren und trotzdem keine Zeichen zu verlieren. Es wird ein GET vom
C–Port mit einer TFU von 128 gemacht.

Das Bedienkommando COPY (s. Seite 115) ist auf das NUL–Zeichen und
die Satzlänge 1 abgerichtet: Nach Einlesen des NUL–Zeichens legt sich
COPY für 8 Millisekunden ”aufs Ohr“, um danach die Abfrage zu wieder-
holen.

Mit COPY.W /C1/>/B2/; COPY.R /C2/>/B1/

kann man seinen Rechner in so etwas wie ein Terminal für den angeschlos-
senen Host verwandeln. Mit Ctrl A wird dann bei Bedarf die Verbindung
zum RTOS–UH wiederhergestellt.

Auch das Lesen vom /Cx kann zum Aufhängen führen, nämlich dann,
wenn die Schlange durch eine liegengebliebene Ausgabe oder durch eine
Eingabe der Betriebsart A bzw. B ”verstopft“ ist.

Time–Out

Für die seriellen Schnittstellen steht eine Time–Out Funktion zur Verfügung.
Das Time–Out bezieht sich immer auf ein komplettes Auftragselement (CE).
Das Zeitraster für ein Time–Out kann in 512 msec Schritten eingestellt werden.
Die maximale Anzahl Schritte ist 127, so daß das längste mögliche Time–Out
auf 65,024 sec gesetzt werden kann.

Wenn das Time–Out eintritt, wird die Fehlermeldung TIME-OUT (mit NE unter-
drückbar) ausgegeben und ST=7 gesetzt. Das betroffene CE wird vom Treiber
an den Aufrufer zurückgegeben oder — bei gesetztem Verschrottungsbit (z. B.
Ausgabe ohne Wait) — in freien Speicher verwandelt. Die evt. bei einer Ein-
gabe schon gelesenen Daten sollten nicht mehr verwendet werden. Das Setzen
des Time–Outs in PEARL wird im Systemteil des erledigt. Der Assembler–
Programmierer muß die Anzahl Schritte im linken Byte des DRIVE–Wortes ein-
tragen (siehe CE-Beschreibung ab Seite 559).

Bedieninterface

Stationsname ist /Ax, /Bx, /Cx, z. B. /A1, /C2, /B2. Ein eventuell angegebe-
ner Pfadname wird voll in die Verwaltung übernommen (S–Befehl), hat aber

6.1 Datenstationen Ax, Bx, Cx, UL 393

keinerlei Funktion.

Beispiel: O /B2; DM 1000 2000
P >/B2; COPY /B3>/B1

PEARL–Programm

Systemname ist /Ax, /Bx, /Cx z. B. /A1; /C2; /B2;. Eine eventuell nachge-
stellte pathlist wird voll in die Verwaltung übernommen (S–Befehl), hat aber
keine funktionelle Bedeutung.

Beispiel: SYSTEM; Output:/B3− >;
Inputdevice:/B2< −;
A1; /* Kurzform username=systemname*/;
...
PROBLEM;
...
SPC A1 DATION INOUT ALPHIC;
SPC Inputdevice DATION IN ALPHIC;
SPC Output DATION OUT ALPHIC CONTROL(ALL);
...
GET ... FROM Inputdevice BY ...
PUT ... TO Output BY ...

Weitere Einzelheiten sind beim Sprachumfang des PEARL–Compilers zu fin-
den.

394 6.2 Datenstation BU

6.2 Datenstation BU

Die Datenstation /BU läßt den direkten Zugriff auf Prozeßperipherie über all-
gemeine Peripherieadressen oder über den Unterbus (P–bus, nicht bei allen
Systemen implementiert) zu. Zu dieser Station existiert keine Betreuungstask,
da über die Peripherieadressen bzw. den Unterbus nur ungepuffert und un-
quittiert ein-/ausgegeben werden kann. Das Betriebssystem ist an dem Trans-
port nicht beteiligt. Die /BU–Stationen können also nicht vom Bedieninterface
angesprochen werden (Ausnahme: DM-P für P–bus). In Systemen, die Mehr-
rechnerbetrieb zulassen (z. B. VMEbus), können Synchronissationsmaßnahmen
unterstützt werden, die wie globale Semaphore wirken.

PEARL–Programm

Der Systemname ist BU(hexadr8, Zugriffscode), alternativ (bei 68000–er
Rechnern, die nur 6–Byte–Adressen verarbeiten können) BU(hex8), wobei der
Zugriffscode zweistellig vor der Peripherieadresse angegeben werden muß. Die
Datenstation gilt als vom Typ BASIC. Die Übertragungsrichtung muß angege-
ben werden. Das Bitmuster hexadr8 muß in Kodierung und Adresse der aktuell
angeschlossenen Hardware entsprechen.

Um möglichst viele unterschiedliche Peripheriekarten verwenden zu können,
wurden folgende Zugriffsmöglichkeiten geschaffen:

In der Anweisung

VENTIL: BU(y,x) − >;

bedeuten: y = Adresse des Peripheriebausteins in hex8.
x = Kodierung der Zugriffsart, einstellig dezimal.

Folgende Kodierungen sind zugelassen:

6.2 Datenstation BU 395

CODE Übertragung wird abgelegt auf
0 P–Bus, WORD oder LSB
1 8 bit, MSB (MOVE.B) y
2 16 bit, MSB (MOVE.W) y, y+1
3 32 bit, MSB (MOVE.L) y, y+1, y+2, y+3
4 16 bit, MSB (MOVEP.W) y, y+2
5 32 bit, MSB (MOVEP.L) y, y+2, y+4, y+6
6 8 bit, LSB (MOVE.B) y
7 P–Bus, WORD oder MSB
8 GLOBAL SEMA (TAS)

Alle einfachen Datentypen sind zugelassen (Ausnahme: Kodierung $08). Bei
Float–Variablen wird normalisiert bzw. denormalisiert. CHAR-Variablen werden
linksbündig beschrieben und ggf. mit Leerzeichen aufgefüllt.

Bei Kodierung $08 ist eine BIT(1)–Variable zu verwenden. Die TAKE–
Anweisung benutzt den Assembler–Befehl TAS und liefert den Wert ’1’B1,
wenn der Pseudo–Request erfolglos war (dann stand bereits eine ’1’ an der
getesteten Speicherstelle) oder ’0’B1, wenn der Pseudo–Request erfolgreich
war (dann stand bisher eine ’0’ an der Speicherstelle, die vom TAS–Befehl mit
einer ’1’ überschrieben worden ist). Die Kodierungen $04 und $05 sind für
einige Bausteine aus 8–Bit–Prozessor–Familien erforderlich.

Beispiel 1: Zugriff über Peripherieadressen

SYSTEM;
FUEHLR: BU(0240FFFC) <-;
/* MC 68000: Adr=$40FFFC, Zugriffscode=2 */;
...

PROBLEM;
SPC FUEHLR DATION IN BASIC;
...
R: TASK;

DCL TEMP BIT(16);
TAKE TEMP FROM FUEHLR;

396 6.2 Datenstation BU

Beispiel 2: Zugriff über den Unterbus

SYSTEM;
VENTIL: BU(42) ->;
...

PROBLEM;
SPC VENTIL DATION OUT BASIC;
...
T: TASK;

SEND ’008F’B4 TO VENTIL;

Beispiel 3: Globale Pseudo-Semaphore

SYSTEM;
S1: BU(FF0F0006,8) <->;
/* MC 68020, Adr=$FF0F0006, Zugriffscode=8 */
...

PROBLEM;
SPC S1 DATION INOUT BASIC;
...
INIT: TASK;

SEND ’01’B1 TO S1;
...

X: TASK;
DCL FLAG BIT(1);
...
FOR I TO MAX WHILE FLAG REPEAT;

TAKE FLAG FROM S1;
END;
... (geschuetzter Bereich)
SEND ’0’B1 TO S1; (Peudo-Release)

Warnung!

Da sich die Peripherieadressen nicht von Speicheradressen un-
terscheiden, können durch falsche Adreßangaben in der /BU–
Anweisung auch Zugriffe auf den von RTOS–UH benutzten
Speicherbereich erfolgen. Mit SEND auf diesen Bereich ist das Über-
schreiben von System– und Anwendersoftware möglich.

6.3 Eigene BU–Datenstation 397

6.3 Eigene BU–Datenstation

Sind die vom Compiler zur Verfügung gestellten /BU–Datenstationen einmal
nicht ausreichend, z. B. weil ein Zugriff im Supervisormode notwendig ist, so
kann eine eigene Datenstation generiert werden. Man hat dazu im Prinzip alle
Register mit Ausnahme von A4, A5, A6 und A7 zur freien Verfügung. Beim
PowerPC dürfen die Register r12, r13, r14 und r15 nicht verändert werden.
Das Register D0 (r0 beim PowerPC) dient zum Datentransfer. Der Stack hat
nur noch Platz für einen weiteren BSR-Level.

Bei den RISC-Prozessoren (PowerPC) legt der Compiler zur Geschwindigkeits-
steigerung die Rückkehradresse zunächst nicht auf den Stack sondern in das
Link-Register. Daher ist als Rücksprungbefehl nicht RTS sondern XRTS zu ver-
wenden, der vom 68K-Assembler wie ein RTS übersetzt wird. Bei den RISC-
Transferassemblern jedoch wird aus dem XRTS ein sehr schneller Sprung mit
dem Link-Register als Zeiger. Das Link-Register wird leider schnell zerstört,
sowohl durch PC-relative Operationen des Transferassemblers als auch durch
Systemtraps und Unterprogrammaufrufe. Mit dem XSL-Befehl (Xtended Save
Link) kann sichergestellt werden, daß die Rückkehradresse anschließend in je-
dem Fall auf dem Stack steht: die Rückkehr kann dann mit dem normalen RTS
korrekt erfolgen. (Da bei den 68K-Prozessoren die Rückkehradresse immer auf
dem Stack steht, wird der XSL vom 68K-Assembler ignoriert.)

Bei der PEARL-Verwendung einer benutzerdefinierten BU-Station wird deren
Beschreibung im SYSTEM–Teil weggelassen, die Station wird lediglich im Pro-
blemteil GLOBAL spezifiziert. Mit Hilfe eines kleinen Maschinenprogrammes in
Transferassemblersprache kann der Zugriffscode realisiert werden. Im folgen-
den sind die Code–Sequenzen angegeben, die der Compiler bei den Standard
BU-Stationen generiert:

PEARL–System Definition: sta1: BU(adr1,1);

(Transfer-) Assembler Realisierung:

>sta1 BRA.S IN Einsprung für Einlesen
ASR.W =8,D0 rechtsschieben um ein Byte

_MOVE.B D0,adr1 Zugriff auf Peripherie unter adr
XRTS Rücksprung (by stack or linkreg)

IN CLR.L D0 löschen
MOVE.B adr1,D0 Wert einlesen

_ASL.W =8,D0 in high-Byte schieben
XRTS Rücksprung (by stack or linkreg)

398 6.3 Eigene BU–Datenstation

PEARL–System Definition: sta2: BU(adr2,2);

(Transfer-) Assembler Realisierung:

>sta2 BRA.S IN Einsprung für Einlesen
_MOVE D0,adr2 Zugriff auf Peripherie unter adr
XRTS Rücksprung (by stack or linkreg)

IN CLR.L D0 löschen
_MOVE adr1,D0 Wert einlesen, no condition code
XRTS Rücksprung (by stack or linkreg)

PEARL-System Definition: sta3: BU(adr3,3);

(Transfer-) Assembler Realisierung:

>sta3 BRA.S IN Einsprung für Einlesen
SWAP D0 Wort tauschen

_MOVE.L D0,adr3 Zugriff auf Peripherie unter adr
XRTS Rücksprung (by stack or linkreg)

IN _MOVE.L adr3,D0 Wert einlesen
_SWAP D0 Wort tauschen
RTS Rücksprung (by stack or linkreg)

PEARL-System Definition: sta4: BU(adr4,4);

Assembler Realisierung (nur 68K-Prozessoren, wegen MOVEP):

>sta4 BRA.S IN Einsprung für Einlesen
LEA adr4,A0 Adresse laden
MOVEP.W D0,0(A0) Zugriff auf Peripherie
RTS Rücksprung

IN LEA adr4,A0 Adresse laden
CLR.L D0 löschen
MOVEP.W 0(A0),D0 Wert einlesen
RTS Rücksprung

6.3 Eigene BU–Datenstation 399

PEARL-System Definition: sta5: BU(adr5,5);

Assembler Realisierung (nur 68K-Prozessoren, wegen MOVEP):

>sta5 BRA.S IN Einsprung für Einlesen
LEA adr5,A0 Adresse laden
SWAP D0 Wort tauschen
MOVEP.L D0,0(A0) Zugriff auf Peripherie
RTS Rücksprung

IN LEA adr5,A0 Adresse laden
MOVEP.L 0(A0),D0 Wert einlesen
SWAP D0 Wort tauschen
RTS Rücksprung

PEARL-System Definition: sta6: BU(adr6,6);

(Transfer-) Assembler Realisierung:

>sta6 BRA.S IN Einsprung für Einlesen
_MOVE.B D0,adr6 Zugriff auf Peripherie unter adr
XRTS Rücksprung (by stack or linkreg)

IN CLR.L D0 löschen
_MOVE.B adr1,D0 Wert einlesen
XRTS Rücksprung (by stack or linkreg)

PEARL-System Definition: sta7: BU(adr7,8);

Assembler Realisierung (nur bei 68K-Prozessoren):

>sta7 BRA.S IN Einsprung für Einlesen
LSR.W =8,D0 rechtsschieben um ein Byte
ANDI.B =$0080,D0 maskieren
MOVE.B D0,adr7 Zugriff auf Peripherie
RTS Rücksprung

IN TAS adr7 testen und ggf. setzen
SNE D0 Ergebnis übertragen
ANDI.B =$80,D0 maskieren
LSL.W =8,D0 in high-Byte schieben
RTS Rücksprung

400 6.3 Eigene BU–Datenstation

Beispiel: Es soll ein Wort–Zugriff auf die Adresse $FE0000 im Supervisor–
Mode des Prozessors stattfinden. Dies entspricht der Zugriffsart 2.
Die Datenstation soll den logischen Namen DIGO bekommen. Wir
codieren die Station in Transferassemblersprache wie folgt:

OFF OPD $4E4F Trap-Definition
DPC OPD $4E43

DC.L 0,0 Modul-Kopf
DC $0010 Type = Module
DC.B ’Dation’ Name = Dation

>DIGO BRA.S IN Einsprung für Lesen
XSL save return link
OFF In Supervisor
MOVE D0,$FE0000 Daten schreiben
DPC Dispatcher Start
RTS Rücksprung

IN XSL save return link
OFF In Supervisor
MOVE $FE0000,D0 Daten lesen
DPC Dispatcher Start
RTS Rücksprung
END Ende

Der XSL-Befehl ist bei den 68K-Prozessoren ein Leerbefehl, d.h. es wird nichts
generiert. Bei den RISC-Prozessoren sichert er die Rückkehr-adresse auf den
Stack. Dies ist notwendig, weil in der obigen Sequenz Systemtraps aufgerufen
werden, die bei den RISC-Prozessoren das Linkregister zerstören.

In einem PEARL–Programm könnte die neue Datenstation jetzt wie folgt be-
nutzt werden:

PROBLEM;
SPC DIGO DATION INOUT BASIC GLOBAL;
...
TAKE wert FROM DIGO;
...

Das übersetzte PEARL-Modul muß nun nur noch mit dem assemblierten (bzw.
transferassemblierten) obigen Maschinenprogramm gelinkt werden.

6.3 Eigene BU–Datenstation 401

Hinweis:

Die Kodierung von Supervisormodesequenzen ist ein sicherheits-
relevanter Bereich und sollte nur im Notfall und mit äußerster
Vorsicht erfolgen! So darf keinesfalls der DPC vergessen werden,
da sonst eine Rücksprungadresse vom System–Stack des Prozes-
sors geholt wird, die aber nicht dort, sondern auf dem Userstack
abgelegt wurde. U. u. kann es zu einem Systemabsturz kommen.
Die Zeit zwischem dem OFF und dem DPC sollte nicht länger als
wenige µsec betragen, da sonst die Echtzeiteigenschaft des ganzen
Systemes merkbar leidet. U.a. könnten Einplanungen verschlafen
werden, auch der Verlust hochfrequenter Interrupts wäre sonst
möglich!

402 6.4 Datenstation Dx

6.4 Datenstation Dx

Die Datenstation /Dx ist im System eingerichtet, um mit den Schnittstel-
len einen Voll–Duplex–Betrieb fahren zu können. Sie stellen einen zusätzli-
chen Ausgabekanal für die seriellen Schnittstellen dar. Bisher wurde mit einer
nicht erfüllten Eingabeanforderung die Warteschlange der seriellen Schnittstelle
blockiert, und es konnten keine Ausgaben auf die Schnittstelle gemacht wer-
den, solange die Eingabe nicht erfüllt wurde. Da für die Datenstation /Dx eine
getrennte Warteschlange genutzt wird, kann ihre Ausgabe jederzeit bearbeitet
werden.

Die /Dx Datenstationen sind nur für die Ausgabe vorgesehen, eine Eingabe
wird mit einer Fehlermeldung (WRONG I/O) quittiert.

Bedieninterface:

Stationsname ist /Dx z. B. /D1, /D2. Eine dem Systemnamen zugefügte Pathlist
wird in die Verwaltung übernommen (S–Befehl), hat aber keine funktionelle
Bedeutung.

Beispiel: COPY /H0/bla>/D2

PEARL–Programm:

Der Systemname entspricht dem des Bedieninterfaces.

Beispiel: SYSTEM;
TYdup: /D1 ->; TY:/A1;
...

PROBLEM;
SPC TYdup DATION OUT ALPHIC;
SPC TY DATION INOUT ALPHIC;
...
ALARM: TASK;

PUT ’Alarm’ TO TYdup;
END;
...
INPUT: TASK;

DCL in CHAR(1);
GET in FROM TY BY SKIP,A;

END;

6.4 Datenstation Dx 403

In diesem Beispiel wird die Funktion der Datenstation /Dx verdeutlicht. Trotz
nicht erfüllter Eingabeanforderung der Task INPUT, kann die Task ALARM ihre
Alarmmeldung auf die Schnittstelle ausgeben.

404 6.5 Datenstationen ED/EDB

6.5 Datenstationen ED/EDB

Zu dieser Station gehört die Betreuungstask #EDFMN. Damit können — solange
genügend Speicher vorhanden ist — beliebig viele benannte Textdateien ähnlich
wie auf einem Massenspeicher verwaltet werden. Die Betreuungstask #EDFMN
kennt keine Wartephasen, da ja kein physikalisches Gerät in dem Transport
verwickelt ist.

Der Text wird im Speicher in untereinander vernetzten Blöcken (EDTF) ab-
gelegt. Es wird, soweit möglich, eine Verdichtung durch eine Sonderform des

”Run-length-Encoding“ durchgeführt und eine Zeilennumerierung mitgeführt.
Bei binären Daten ist die Verkürzung allerdings meist eher bescheiden. Die
Station /EDB unterscheidet sich heute nicht mehr wirklich von /ED, lediglich
die ”Laufwerksnummer“ ist ”1“ statt ”0“.

Man beachte, daß man binäre Daten nicht mit dem Bedienbefehl COPY zwischen
Platte/Floppy und /ED oder /EDB kopieren kann. Dieser Befehl bereitet den File
für den Editor auf und stoppt das Kopieren beim ersten EOT-Zeichen. Dagegen
ist die Ablage von binären Daten aus PEARL- oder Assemblerprogrammen
heraus möglich.

Der in den /ED–Dateien abgelegte Text kann durch Einloggen in den bildschirm-
orientierten Texteditor (siehe ED–Kommando) verändert werden – natürlich
nicht, wenn er binäre Daten enthält.

Erlaubte Operationen sind:

DIR, ERASE, FILES,FIND, READ, REWIND, RM, SAVEP, SEEK, TOUCH, WRITE.

Bedieninterface:

Name der Station ist /ED oder /EDB. Die Angabe eines Filenamen (bis zur im-
plementierungsabhängigen maximalen Länge, meist 64 oder mehr Zeichen) ist
notwendig, da andernfalls der Ersatzname ”–“ eingesetzt wird. Nur bei FILES
oder DIR kann auf einen Filenamen verzichtet werden.

Beispiel: ERASE /ED/Test /ED/Kopie
REWIND /ED/Data
TOUCH -R /ED/Test
COPY ... > /ED/Program

6.5 Datenstationen ED/EDB 405

PEARL–Programm:

Systemname ist /ED oder /EDB, wenn man die binäre Benutzung damit do-
kumentieren möchte. Wird kein Filename zugefügt, so wird der Filename ”-“
eingesetzt.

Beispiel 1: Station /ED normale ASCII–Zeichen
MODULE M;

SYSTEM;
POOL: /ED/SAVE ->;
...

PROBLEM;
SPC POOL DATION OUT ALPHIC;
...

AA: TASK;
...
OPEN POOL;
CALL REWIND (POOL);
PUT x,x**2 TO POOL BY (2)E(20,10);
...
CLOSE POOL;
...

END;
MODEND;

406 6.5 Datenstationen ED/EDB

Beispiel 2: Station /EDB binäre Daten
MODULE M;

SYSTEM;
DATA: /EDB/BIN ->;
...

PROBLEM;
SPC DATA DATION OUT ALPHIC CONTROL(ALL);
SPC WRITE ENTRY GLOBAL;
...

AB: TASK;
DCL SSS(1000) FLOAT;

OPEN DATA;
CALL REWIND(DATA);
/* Daten binaer speichern */
CALL WRITE (DATA,SSS);
...
CLOSE DATA;

END;
MODEND;

Hinweise

Wird nach einer REWIND–Operation erneut in den File geschrieben, so wird
die Länge des Files bis auf den Stand des Schreibzeigers gekürzt, ggf. früher
eingeschriebene Daten (Text) gehen somit verloren.
Dies gilt jedoch nicht, wenn der File mit SEEK vorher positioniert wurde. In
diesem Fall ersetzt der /ED-Handler die Zeichen genauso, wie es ein Handler
für die Platte tut.

Falls bei einer Schreiboperation kein Platz für die Anforderung eines weiteren
Blockes mehr zur Verfügung steht, so wird eine Fehlermeldung und der Re-
turncode RECLEN=0 (wichtig für Assemblerprogrammierer) abgesetzt. Die zu
schreibenden Daten gehen dabei verloren.

Die Datenstationen /ED und /EDB verfügen über einen ”auto-close“-Mechanis-
mus. D. h. nach jedem Filezugriff, außer bei einer ”Exclusiv-Öffnung“, wird die
angesprochene Datei selbstständig geschlossen, so daß praktisch keine geöffne-
ten Dateien zurückbleiben können.

6.6 Datenstationen Fx/Hx 407

6.6 Datenstationen Fx/Hx

Der Fileaufbau ist hierarchisch, es besteht aber kein Zwang zur Benutzung einer
solchen Baumstruktur. Insbesondere können uralte Disketten des nichthierar-
chischen Filehandlers immer noch einwandfrei gelesen werden.

Die Platte kann scheinbar in verschiedene Laufwerke aufgeteilt sein (Partitio-
nierung). Zu diesen scheinbaren Laufwerken gehören dann auch eigene Directo-
ries. Grundsätzlich gibt es keinen Unterschied beim Umgang zwischen Disketten
und Festplatten.

Studieren Sie bitte die Kommandos FORM, FILES, FREE, CF (evtl. auch für Fest-
platte), SYNC, REWIND, RM/ERASE, MKDIR, RMDIR, RETURN, MSFILES, RTOSFILES
und DIR.

Warnung

Wichtig ist, daß nicht versehentlich Files geöffnet zurückbleiben
oder bei geöffneten Files die Diskette gewechselt wird, weil das
den Verlust der gesamten Daten nach sich ziehen kann!!! Dies wird
u. U. erst später nach außen sichtbar.

Unsere Floppy- und Plattenhandler erlauben einen wahlfreien Zugriff von
PEARL–Programmen aus mit Hilfe der Einbaufunktionen SEEK und SAVEP.

Wird bei einer Datei bis zum Dateiende gelesen, schließt der Filemanager diese
Datei automatisch. Wird danach noch ein CLOSE versucht, ist die Datei schon
geschlossen, und es gibt eine Fehlermeldung. Wenn das automatische Schließen
der Datei stört, da in jedem Fall noch eine CLOSE–Operation durchgeführt wer-
den soll, kann es unterdrückt werden: Im SYSTEM–Teil des PEARL–Programms
muß mit Hilfe des AI/MB–Parameters das Suppress–Command–Bit (= $0400)
gesetzt werden.

Mit dem Kommando MSFILES kann auf eine DOS–kompatible Dateiverwaltung
umgeschaltet werden. Am Zugriff auf die Diskette oder Festplatte ändert sich
nach außen nichts, Sie können also weiterhin DIR /F0 eingeben, obwohl im
entsprechenden Laufwerk eine DOS–Diskette steckt. Der DOS–kompatible Fi-
lemanager unterstützt alle Features des RTOS–UH–Filemanagers. Zum For-
matieren von DOS–Disketten ist das Format C5 (9 Sektoren je 512 Bytes)
einzugeben.

Sollen zwischen RTOS–UH und DOS Dateien kopiert werden, so ist zu be-
achten, daß unter RTOS–UH ein Record mit Cr, unter DOS hingegen mit

408 6.6 Datenstationen Fx/Hx

Cr/Lf endet.

Bedieninterface:

Stationsname ist /Fx (x=0, 1, . . .) für die Disketten und /Hx (x=0, 1, . . .) für
die Festplatte.

Beispiele: LOAD /H0/usr/games/kalaha
SYNC /F1; CF /F1/FORGET; (bei eiligem Aufbruch)

PEARL–Programm:

Der PEARL–Compiler übergibt diese Geräte als Extra-Devices an den Lader
bzw. Linker.

Beispiel: SYSTEM;
Wfile1:/H0/platzhalter12345<->;
...

PROBLEM;
SPC Wfile1 DATION INOUT ALPHIC;
...

OPEN Wfile1 BY IDF(’mueller/daten’);
CALL REWIND(Wfile1);
PUT x,y TO Wfile1;
CALL SAVEP(Wfile1,Pos);
...

6.7 Stationszugriff über
”
LD“ 409

6.7 Stationszugriff über
”
LD“

Wenn eine Station keinen mnemotechnischen Namen besitzt, so kann sie über
das Bedieninterface durch Angabe ihrer Warteschlangennummer (LDN) adres-
siert werden. Es kann ebenso wie beim PEARL–Compiler sowohl LDN als auch
das DRIVE eingegeben werden.

Beispiel: COPY /ED/test > LD/5.3/abc/xyz

PEARL–Programm:

Die Station wird über das Schlüsselwort LD angesprochen. Dahinter erfolgt,
durch / abgetrennt, die Angabe von Warteschlangen– und Drivenumber. Ein
Beispiel:

SYSTEM;
Flop2:LD/5.2/xxxxxxxxxx<->;/*LDN=5,DRIVE=2*/

PROBLEM;
SPC Flop2 DATION INOUT ALPHIC CONTROL(ALL);
...
PUT data1,data2 TO Flop2 BY (2) LIST;

Natürlich können über diesen Weg Warteschlangennummern angegeben wer-
den, zu denen gar keine Betreuungstasks existieren (systemintern ist dann kein

”Task–Identifier“ TID in der LDN--TID Tabelle eingetragen). In solchen Fällen
meldet sich das System beim verantwortlichen User mit

>> taskname: WRONG LDN (XIO)

und es findet keine Operation statt.

410 6.8 Datenstation NIL

6.8 Datenstation NIL

Die Datenstation /NIL ist die ideale Datensenke und Datenquelle. Sie kann
behilflich sein bei einem funktionellen Test eines PEARL–Programmes, um
den Ablauf eines Programmes zu testen.

Alle Eingaben von der Datenstation /NIL werden mit einem Cr (ASCII
$0D) beanwortet. Somit können alle Eingabeanforderungen eines PEARL–
Programmes erfüllt werden, da ein Cr von allen Eingabeformaten akzeptiert
wird. Alle Ausgaben auf die Datenstation /NIL werden verschrottet, so daß sie
eine ideale Datensenke darstellt.

Soll zum Beispiel der Datenstrom von /B2 verschrottet werde, so gebe man ein:

COPY /B2>/NIL

Will man einen unendlichen Strom von Carriage-Returns auf die Schnittstelle
/B2 senden, so gelingt das mit

COPY /NIL>/B2

PEARL–Programm

Systemname ist /NIL. Eine dem Systemnamen zugefügte Pathlist wird in die
Verwaltung übernommen (S–Befehl), hat aber keine funktionelle Bedeutung.

6.8 Datenstation NIL 411

Beispiel: SYSTEM;
dummy: /NIL<->;

PROBLEM;
...
SPC dummy DATION INOUT ALPHIC CONTROL(ALL);
...
ALARM: TASK;

PUT ’Alarm’ TO dummy;
END;
....
INPUT: TASK;

DCL in CHAR(1);
GET in FROM dummy BY SKIP,A;

END;

In diesem Beispiel wird die Funktion der Datenstation /NIL verdeutlicht. Bei-
de Task laufen bis zu ihrem END durch, da die Datenstation /NIL die Ein–
/Ausgaben der Tasks befriedigt.

412 6.9 Parallel–Port

6.9 Parallel–Port

Die parallele Druckerschnittstelle des Rechners wird angesprochen, und die
Daten werden im Handshakemode interruptgesteuert übertragen. Die Drucker-
bereitschaft kann geprüft werden, wenn ein PUT mit WAIT generiert wird. In
diesem Fall erhält man eine Fehlermeldung oder kann über ST den Status abfra-
gen. Andernfalls, wenn also kein Gerät angeschlossen oder dieses nicht bereit ist,
bleibt die Betreuungstask #PPORT so lange hängen, bis ein Data–Acknowledge
empfangen wird.

Bedieninterface:

Name der Station für den normalen Texttransfer ist /PP. Ein evtl. angegebe-
ner Filename bleibt ohne Wirkung. Das Gerät ist dem System nur als Aus-
gabeeinheit bekannt. Mit Hilfe des SD–Befehles kann das Auto–Linefeed den
Erfordernissen entsprechend parametriert werden.

Zur Übertragun binärer Daten, etwa zur Ausgabe von Grafikbildern, ist in
vielen Systemen noch der Stationsname /PN installiert. Hier unterbleibt eine
Veränderung des Datenstromes durch Anfügen von Line–feeds etc.

Beispiel: COPY /ED/Test>/PP/

PEARL–Programm:

Der Systemname ist /PP. Dazu ein Beispiel:

SYSTEM;
PRINT: /PP ->;
...

PROBLEM;
SPC Print DATION OUT ALPHIC CONTROL(ALL);
...
PUT message TO Print BY ...;

6.10 Datenstationen VI, VO 413

6.10 Datenstationen VI, VO

Die Stationen /VI (Virtual Input) und /VO (Virtual Output) besitzen je-
weils eigene prioritätengeordnete Warteschlangen, aber nur eine Betreuungs-
task #VDATN, die deren Betreuung übernimmt. Alle Ausgabe–Communication–
Elements (CE), die nach /VO geschrieben werden, sowie alle Eingabe-CE’s, die
von /VI gelesen werden, werden in eine betreuungstask–eigene Warteschlange
übernommen. Die Übertragung der Daten von den /VO–CE’s in die /VI–CE’s
erfolgt, sobald auf beiden Seiten CE’s vorhanden sind. Die Stationen arbeiten
nach dem FIFO–(First In/First Out) Prinzip, d. h. die zuerst erfolgte Ausgabe
an eine /VO–Datei wird als erste Eingabe von der gleichen /VI–Datei gelesen.

/VI und /VO bilden ein Instrument zur synchronisierten Task-Kommunikation.
Erzeuger können ihre Daten zu einem beliebigen Zeitpunkt in die Datenstation
/VO schreiben und ohne Unterbrechung weiterarbeiten; auch eine Terminierung
des Erzeugers führt nicht zum Datenverlust. Verbraucher können jederzeit Da-
ten von /VI anfordern, werden aber bei gesetztem Waitbit (das ist die Regel)
bis zur Erfüllung der Eingabeanforderung angehalten.

Z. B. können Compiler und Lader über /VI und /VO verbunden werden, um
das Compilat nicht als (speicher– oder floppy–) residente Datei abzulegen.

Bedieninterface:

Die Stationen heißen /VI und /VO, der Dateiname kann einen Path enthalten.
Es können beliebig viele Dateinamen gleichzeitig verwendet werden. Dazu 2
Beispiele:

LOAD /VI/Loader; PEARL ...>/VO/Loader
RM /VO/Mist (wenn /VO/Mist überflüssig ist)

PEARL–Programm:

Systemnamen sind /VI (nur Eingabe) und /VO (nur Ausgabe). Wird kein Fi-
lename angegeben, so wird der am weitesten rechts stehende Nutzername ver-
wendet; wird kein Nutzername angegeben, so wird der Filename ”–“ eingesetzt.

414 6.10 Datenstationen VI, VO

Ein Beispielprogramm:

SYSTEM;
PRODUCE: /VO/mypipe ->;
CONSUME: /VI/mypipe <-;

PROBLEM;
SPC PRODUCE DATION OUT ALPHIC CONTROL(ALL);
SPC CONSUME DATION IN ALPHIC CONTROL(ALL);
T1: TASK;

...
PUT ... TO PRODUCE BY ...;
...

END;
T2: TASK;

...
GET ... FROM CONSUME BY ...;
...

END;

6.11 Datenstation XC 415

6.11 Datenstation XC

Zu dieser Station gehört die Task #XCMMD, die die Betreuung der Ausgabe-
schlange (prioritätsgeordnet) übernimmt. Mit dem an dieser Station eintreffen-
den Text wird das Bedieninterface beschickt, die Kommandos werden also auf
der Prioritätsebene der Task #XCMMD ausgeführt, sofern nicht Subtasks gebildet
werden. Die an der Station eintreffenden Sätze sollten jeweils mit Cr oder Lf
abgeschlossen werden. Leere Sätze haben keine Wirkung.

Bedieninterface:

Name der Station ist /XC. Ein hinzugefügter Filename wird zwar in die Verwal-
tung übernommen und erscheint beim S–Befehl des Bedieninterfaces, er nimmt
aber auf den Ablauf keinen Einfluß.

Beispiel: COPY ...>/XC/

PEARL–Programm:

Systemname ist /XC. Wird kein Filename zugefügt, so wird der Filename ”-“
eingesetzt. Wie beim Bedieninterface hat der Filename jedoch keine Wirkung
auf den Ablauf. Ein Beispiel:

SYSTEM;
BEDIEN: XC;
...

PROBLEM;
SPC BEDIEN DATION OUT ALPHIC CONTROL(ALL);
...
TT: TASK;

...
PUT ’UNLOAD TEST’ TO BEDIEN BY A,SKIP;
...

Zum Thema ”ausführen von Bedienbefehlen“ siehe auch die Anmerkungen zur
Shellsprachanweisung EXEC auf Seite 90 oder die Erläuterungen zum PEARL-
Unterprogramm CMD EXW im Abschnitt 5.7.16 auf Seite 350.

416 6.12 Prozeßinterrupts

6.12 Prozeßinterrupts

RTOS–UH verwaltet maximal 32 Prozessinterrupts, die eine hohe zeitliche
Auflösung ermöglichen, da die Interruptroutine typischerweise in weniger als
100µs durchlaufen werden kann. Für einige Implementierungen von RTOS–
UH gibt es fest zugeordnete Leitungen zu einzelnen Bits des Interruptbitmu-
sters. Diese Zuordnungen entnehme man den Hardwareunterlagen.

Ein Interrupt wird in RTOS–UH nur wirksam, wenn sein zugehöriges Bit in
der ”ENABLE“–Maske des Systemes gesetzt ist. Bei einem Kaltstart von RTOS–
UH werden zunächst alle Prozessinterrupts abgeschaltet.

Bedieninterface:

Siehe Anweisungen ENABLE, DISABLE, TRIGGER und WHEN.

PEARL–Programm:

Systemname ist EV(hexnum8). Das Bitmuster hexnum8 gibt an, auf welche Bits
reagiert werden soll. Ein Beispiel:

SYSTEM;
Limit: EV(00000006);
...

PROBLEM;
SPC Limit INTERRUPT;
...
TS: TASK;

...
WHEN Limit ACTIVATE XYZ;

Sowohl das Interruptbit 00000002 als auch das Bit 00000004 führen jetzt zur
Aktivierung von XYZ (logisches ’oder’).

Tip

Mit Hilfe der TRIGGER–Anweisung kann die Wirkung eines äußeren
Ereignisses exakt simuliert werden, da systemintern die gleichen
Programmteile angestoßen werden.

6.13 Einbindung eigener Prozeßinterrupts 417

6.13 Einbindung eigener Prozeßinterrupts

Der Nutzer schreibt eine Interruptroutine und versorgt den Interruptvektor so-
wie die sogenannte ”Malfunction“ (s. dazu Extrabeschreibung ab Seite 611)
mit Hilfe einer Task oder des GO–Befehles. Dabei müssen genau die angegebe-
nen Register gerettet werden, da sonst der Rückfallmechanismus zum Absturz
führen kann.

Der Anschluß könnte bei einem 68k-Prozessor etwa wie folgt aussehen:

DC.L 0,0 Fuer RTOS-Lader ! *
DC $0010 Modulkopf ’’ *
DC.B ’Prozir’ Name des Modules ’’ *

IID EQU $7FE Interrupt-identifier *
IRVEC EQU ???? Vector-link je nach Hardware*
TERV OPD $A010 Terminate and vanish *
.... Hier Einstieg fuer ’GO’-Befehl

MOVE.L =IRP,IRVEC Einsetzen *
TERV ’GOTO’-Subtask killen. *

DC IRPE-IRP Anschluss zu Fehlerrueckfall*

IRP MOVE IID,-(A7) Save old Interruptidentifier*
MOVE =IRVEC,IID For any malfunction-process *
MOVEM.L D1/D6/D7/A1,-(A7) ist vorgeschrieben!!*

* *
* Interruptbitmuster vom Coupler lesen *
* und den Interruptrequest des Couplers *
* zuruecksetzen (IR-Ursache beseitigen). *
* Triggerbitmuster nach D1.L schaffen. *
* *

MOVE.L =$00001000,D1 Bitmuster fuer EV *
MOVEA.L $80E,A1 Zieladresse innerhalb RTOS *
JMP (A1) Zum Systemkern *

.... Malfunction
IRPE MOVEM.L (A7)+,D1/D6/D7/A1 Reload registers *

MOVE (A7)+,IID Rueckladen des Interrupt-ID *
RTE Rueuckfallabschluss *

Durch einmalige Exekution von GO auf den Platz (Ladeadresse+$10) wird
die neue Prozessinterruptbehandlung aktiviert. Dies ist die platzsparendste
Lösung, bequemer wäre es, eine richtige Anschlußtask zu schreiben und die-

418 6.13 Einbindung eigener Prozeßinterrupts

se namentlich zu starten.

Hinweis

Nach Abort/Reset wird dieser Anschluß wieder aufgehoben, es
muß also ein erneuter GO–Befehl abgesetzt werden.

Vor dem Entladen des angeschlossenen Interruptcodes muß umgekehrt das alte
Link wieder hergestellt werden, eben z. B. mit Abort. Für dauerhafte Son-
derbehandlung wird eine Einbettung in den EPROM–Code empfohlen. Siehe
dazu Beschreibung der Scheibe 14, Seite 654. In diesem Fall ändert sich am
Code der Interruptroutine nichts, lediglich der Vektoranschluß wird durch die
Scheibe automatisiert.

Bei den RISC-Versionen von RTOS–UH (PowerPC) sieht der Mechanismus
in der Struktur ganz ähnlich aus. Dort gibt es jedoch keine Vektorinterrupts.
Außerdem ist die Hardwareumgebung vor dem einen (!) Interrupteingang des
Prozessors je nach Prozessorboard sehr unterschiedlich. Die Vektorinterrupts
der 68k-Welt werden in einem Implementierungsmodul nachgebildet. Eine uni-
verselle Darstellung an dieser Stelle ist zur Zeit wenig sinnvoll, bitte informieren
Sie sich zu gegebener Zeit bei uns.

Kapitel 7: Der RTOS–UH Assembler

7.1 Allgemeine Eigenschaften

RTOS–UH verwendet seit der Integration der RISC-Prozessoren (PowerPC)
eine prozessorunabhängige Maschinensprache, der wir den Namen ”T-Code“ ge-
geben haben. Niemand sollte über diese neue Philosophie erschrecken: Bisheri-
ge 68k-Maschinenprogramme können natürlich in der 68k-Version unverändert
weiterbenutzt werden! Erst wenn man diese 68k-Programme auf den PowerPC
portieren möchte, sollte man sich mit dem T-Code beschäftigen. Das ist kein
großer Aufwand, denn der T-Code unterscheidet sich nur minimal von der 68k-
Assemblersprache. Oft kann man komplette 68k-Programme sogar ohne Ände-
rungen als T-Code verwenden.

Zur Zeit existieren für den T-Code 2 Übersetzer:

• Der T-Code-Übersetzer für den 68k ist durch kleine Erweiterungen aus
dem 68k-Assembler entstanden und ersetzt diesen vollständig. Der alten
Gewohnheit folgend nennen wir ihn weiterhin ”68k-Assembler“.

• Der T-Code-Übersetzer für den PowerPC ist ein neues Produkt, ein echter

”Transferassembler“. Der zugehörige Bedienbefehl ist TAPP, ein Acronym
für Transfer-Assembler PowerPC.

Alle Assembler sind virtuell codiert, sie verhalten sich daher unabhängig von
der Gastmaschine in allen Implementierungen in gleicher Art und Weise. Den
68k-Assembler gibt es in zwei unterschiedlich leistungsfähigen Varianten: Die

”MAXI“- ist gegenüber der ”MINI“-Version um die Befehle des 68020/68881 er-
weitert. Der Transferassembler TAPP entspricht bezüglich Befehlsumfang und
Adressierungsarten der Mini-Version.

Ausgegeben werden S–Records in einem gegenüber dem Original (Motoro-
la) erweiterten Format. Die Ausgabe ist abgestimmt auf das PEARL–System
RTOS–UH und dort bindefähig. Bei entsprechender Selbstbeschränkung (kei-
ne relativen Langadressen, keine globalen Symbole) ist jedoch Motorola–
Kompatibilität erreichbar.

Bei der Codierung richte man sich nach dem Hardwarereference Manual von
Motorola für den 68k. Man beachte dabei, daß die Immediateadressierung durch

”=“ statt ”#“ spezifiziert werden muß.

419

420 7.2 Programmzeilenaufbau

Der Assembler benötigt 2 Durchläufe. Das Quellprogramm muß zweimal an-
geboten werden, wenn die Quelldatei nicht ”rückspulbar“ ist, es sei denn, der
Assembler arbeitet im ”automatic scratch–pad“–Mode, bei dem er selbst eine
Zwischendatei anfertigt. Die Betriebsparameter werden über das Bedieninter-
face besetzt:

CO /Dev/File Senke für die S–Records.

LO /Dev/File Senke für die Liste mit Zeilennummer und Hexcode.
Auch bei LO NO werden die fehlerhaften Zeilen aufgelistet.

SC /Dev/File Scratch–Device. Ist die Input–Datei rückspulbar, so muß SC nur
angegeben werden, wenn eine neue Quellendatei erstellt werden soll. Wenn
SC angegeben ist, so wird es in jedem Fall benutzt. Bei SC NO muß bei nicht
rückspulbaren Dateien der Quellcode zweimal angeboten werden.

SI /DEV/FILE Eingabe–Datei.

Bei Betrieb unter RTOS–UH kann zusätzlich noch der Speicherbereich und/-
oder die Bearbeitungspriorität angegeben werden.

7.2 Programmzeilenaufbau

Jede Zeile enthält entweder eine Anweisung an den Assembler oder beschreibt
einen Maschinenbefehl. Sie zerfällt in 4 Sektionen:

Labelfeld Operationsfeld Operandenfeld Kommentarfeld.

Mehrere Anweisungen pro Zeile sind nicht zugelassen. Als Feldtrennung wird
die Lücke (mind. 1 Blank), bei Befehlen, die mit und ohne Operand auftreten
können, ein Block > 10 Blanks benutzt.

7.2.1 Labelfeld

Das Feld ist leer (mind. 1 Blank) oder enthält ein max. 24 Zeichen langes

”Labelsymbol“. Solche ”Labels“ können auf vier Arten definiert werden:

1. In Spalte 1 bedeutet ”∼“: Das folgende Symbol wird als globales
PEARL90-Symbol definiert und ist dem Lader später in dieser Kategorie
namentlich bekannt. Weitere Behandlung wie unter 3.

2. In Spalte 1 bedeutet ”>“: Das folgende Symbol wird als allgemeines glo-
bales Symbol definiert und ist dem Lader später namentlich bekannt. In
der alten PEARL80-Welt wurden auch vom Compiler generierte PEARL-
Globals dieser Kategorie zugeordnet. Weitere Behandlung wie unter 3.

7.2 Programmzeilenaufbau 421

3. In Spalte 1 steht ein Buchstabe oder das Buchstabenersatzzeichen #. Es
wird ein bis zu 24 Zeichen langes Symbol definiert und ihm der Wert
des Location–Counter (REL oder ABS) zugewiesen. Danach darf ein : fol-
gen, muß aber nicht — eine Feldtrennung genügt. Zwischen Groß- und
Kleinschreibung wird bei den Symbolen unterschieden.

4. Spalte 1 enthält ein Leerzeichen. Das Symbol darf weiter hinten im Feld
beginnen, aber es muß das Zeichen : folgen, damit erkennbar ist, daß kein
OP–Code gemeint sein kann.

Innerhalb des Symboles sind Ziffern erlaubt.

7.2.2 Operationsfeld

Im Operationsfeld wird zwischen Groß- und Kleinschreibung nicht unterschie-
den. Es enthält eine der folgenden Anweisungen:

1. Semikolon

Die Zeile dient nur zur Definition eines Labels und enthält keinen Ope-
rationscode. Wegen des freien Anweisungsaufbaues würde bei einfachem
Weglassen des Operationscodes sonst ein eventueller Kommentar als Be-
fehl interpretiert. Das Semikolon ist nicht erforderlich, wenn die Zeile
dahinter leer ist.

2. Bedingungsanweisung für Assembler

Diese beginnen mit einem Punkt, dahinter folgt einer der Mnemos IF,
ELSE oder FIN. Nur wenn der Ausdruck hinter IF zur Assemblierzeit(!)
einen Wert ungleich Null ergibt, wird der folgende Text vom Assembler
bearbeitet. Mit dem ELSE Zweig kann der komplementäre Fall kodiert
werden.

Mit der bedingten Assemblierung können zur Übersetzungszeit Source-
textabschnitte ausgeblendet werden, dieses geschieht mit den angegebe-
nen Schlüsselworten. Die ausgeblendeten Sourcetextabschnitten werden
auch in der LIST–Ausgabe unterdrückt. Die auszulassende Länge des
Sourcetextes ist nicht begrenzt.

Syntax: .IF expr.

... Anweisungsfolge 1

.ELSE

... Anweisungsfolge 2

.FIN

...

422 7.2 Programmzeilenaufbau

Die Expression wird zur Übersetzungszeit ausgewertet und in Abhängig-
keit von ihrem Wert die entsprechende Anweisungsfolge bei der Überset-
zung berücksichtigt. Falls der .ELSE–Teil leer ist, kann das Schlüsselwort
.ELSE weggelassen werden.

expr. = 0 der .ELSE–Zweig wird bei der Übersetzung berücksichtigt.
expr. 6= 0 der .IF–Zweig wird bei der Übersetzung berücksichtigt.

2 Beispieltexte dazu:
...

source EQU 1
...

.IF source
MOVE.B (A0)+,D0

.ELSE
MOVE.B D0,(A0)+

.FIN

Nur die Anweisung MOVE.B
(A0)+,D0 wird hier für die
Codeerzeugung berücksich-
tigt, weil source=1 ist.

...
S1 EQU 1
S2 EQU 1

...
.IF S1-S2
MOVE.B (A0),D0

.FIN
...

MOVE.B (A0),D0 wird nicht
berücksichtigt, da die Expres-
sion gleich 0 ist.

Eine Schachtelung dieser Strukturen ist zulässig. Am Ende des Program-
mes muß natürlich die Anzahl der IF mit der Anzahl der FIN überein-
stimmen. Vorsicht: Liegt die END-Direktive im abgeschalteten Bereich, so
bricht der Übersetzer mit ”end of input-file“ ab!

3. Prozessorswitch

Um Anweisungen optimal an den jeweiligen Zielprozessor anpassen zu
können, kam mit dem T-Code eine Umschaltemöglichkeit, die in etwa
den Bedingungsanweisungen entspricht, jedoch als Argument spezielle
Schlüsselworte verwendet. Es gibt folgende Umschalter:

.IF_PROCTYPE processorname

.IF_TATYPE processorname

Der Wirkungsbereich kann wie bei den normalen IF mit .ELSE unter-
gliedert werden und endet wie diese mit dem .FIN.

Als processorname sind zur Zeit folgende Strings zugelassen:

7.2 Programmzeilenaufbau 423

MPC601 oder MPC604 identisch, ganze PowerPC-Familie
M68K ganze 68xxx-Familie

IF_PROCTYPE:

Wenn beim .IF_PROCTYPE vom Transferassembler festgestellt wird, daß
er für die fragliche Maschine processorname kodiert, so erfolgt eine Um-
schaltung in den ”native mode“ des Zielprozessors mit der zu dessen As-
semblersprache gehörender Syntax. Erst beim passenden .ELSE bzw.
.FIN wird wieder in die T-Code-Sprache zurückgeschaltet. Stimmt der
Prozessorname nicht mit der tatsächlichen Zielmaschine überein, so wird
der .IF_..-Zweig ignoriert.

Mit dieser Option kann man hochoptimierten prozessorspezifischen Kode
erzeugen. Sie wird an einigen Stellen des Systemkernes, etwa beim Pro-
zessumschalter, benutzt. Ein Umschalten von der ersten Programmzeile
bis zum Ende verwandelt z.B. den PowerPC-Transferassembler in einen
reinen PowerPC-Assembler.

IF_TATYPE:

Wenn der ausführende Transferassembler für den angegebenen Zielpro-
zessor kodiert, so wird das im .IF-Zweig Stehende transferassembliert,
sonst wird es ignoriert. Eine Mode-Umschaltung findet nicht statt. Damit
kann man gewissen Prozessoreigenheiten Rechnung tragen, dabei jedoch
weiterhin in T-Code kodieren.

4. INCLUDE-Anweisung

Mit einem Statement der beispielhaften Form

.INCLUDE /H0/SOURCE/X1.AS

kann ein Quellfile an Stelle der Zeile eingefügt werden. Es ist nur die Sub-
stitution kompletter Zeilen möglich. Hinsichtlich der Möglichkeiten beim
Filezugriff wird hier auf die Beschreibung beim Compiler verwiesen. Le-
sen Sie dazu bitte ab Seite 288 nach. Da der gleiche Unterbau (VCP)
auch beim Assembler benutzt wird, gelten alle Angaben (relative Posi-
tionierung etc.) einschließlich der Markierung der Zeilennummern auch
beim Assembler.

5. Hardware–Instruktion

Alle Mnemos der Motorola 68k Hardwarebeschreibung sind zugelassen.
Eine Längenspezifikation (.L, .B, .W) ist nur hinter solchen Mnemos zuge-
lassen, bei denen überhaupt eine Wahlfreiheit besteht. Fehlt die Längen-
angabe, so wird die dem Mnemo eingeprägte Länge — z. B. .L bei LEA —
oder .W bei Wahlfreiheit substituiert. Bei dem Befehl MOVE muß daher im

424 7.2 Programmzeilenaufbau

Ausnahmefall MOVE ...,USP die Länge MOVE.L ...,USP explizit angege-
ben werden, da sonst ein Längenfehler diagnostiziert wird. Bei Sprung-
befehlen (BRA, BGE, BPL etc.) ist die Angabe .L, .S oder .B möglich. Sie
nimmt dem Assembler die Wahlfreiheit bei der Codierung dieser Befehle.

Alle Hardware–Befehle werden auf geraden Positionszählerstand gesetzt,
so kann z. B. nach einem DC.B vom Assembler automatisch ein nicht be-
setztes Byte eingefügt werden, wenn der nachfolgende Befehl eine gerade
Adresse verlangt.

6. Virtueller PEARL–Laufzeit–Befehl (Hyperprozessor)

Diese Instruktionen haben den folgenden Aufbau

V... OP1,OP2,OP3,OP4

Dabei steht ... für eine max. 3–stellige Dezimalzahl im Bereich 0. . . 255.
Es sind 0. . . 4 Operanden möglich, deren Syntax z. T. von der der realen
Befehle abweicht (s. u.). Gleiches gilt bei Verwendung eines mit OPD.V
definierten virtuellen Benutzermnemos.

7. Assembler–Direktive

Dies sind Anweisungen an den Assembler, zur Assemblierzeit etwas be-
stimmtes zu tun. Solche Anweisungen erzeugen in der Regel keinen
ausführbaren Maschinencode. Die Direktiven finden Sie ab Seite 427 ge-
nauer beschrieben.

8. Aufruf eines vorher definierten Formates

Statt der in den meisten Assemblern zu findenden Makrodefinition gibt es
in den RTOS–UH-Assemblern eine sogenannte Format-definition. For-
mate beschreiben Bauschablonen für Bytestrings. Am Ort des Formatauf-
rufes können bis zu 9 Parameter mitgegeben werden, die nicht als Text
(wie bei den primitiveren Makros) sondern mit ihren numerischen Wer-
ten den Bau des Bytestrings steuern. Eine allgemein verfügbare Format-
Bibliothek ermöglicht z.B. das Generieren von Prozedurköpfen von as-
semblercodierten PEARL90-Unterprogrammen usw. Die Kodierung der
Formatdefinitionen wird auf Seite 432 beschrieben.

7.2.3 Operanden–Feld

Die Adressierungsarten werden kleinlich mit den Hardwaremöglichkeiten ver-
glichen. Fehlerdiagnose: MODE-ERROR. Es gibt einige Besonderheiten bei den
Adressierungsarten:

Zur Verwendung in Hyperprozessorbefehlen und zur besseren Lesbarkeit nor-
maler Befehle wurden folgende Abkürzungen eingeführt:

7.2 Programmzeilenaufbau 425

Die Adressierungsart label(A4) ist ersetzbar durch label.T
Die Adressierungsart label(A5) ist ersetzbar durch label.X

Bei MOVEM ist eine Ordnung der Registerliste von D0 in Richtung A7 zwingend
vorgeschrieben (Schutz vor Tippfehlern).

Adr.Art Syntax Bemerkungen
Absolut–Short AE Absolut Expression
Absolut–Long AE Wenn AE in Pass 1 > $FFFF

x AE.L Wertunabhängig Long
x Extern global EG Wie Abs.–Long, kein Ausdruck
x Relativ–Long RE.L Rel. durch Lader. Wie AE.L

Reg. direkt RG RG=Register–Symbol.
Indirekt Reg. (AR) AR=Adreßregistersymbol.
Predecrement -(AR) —- “ —-
Postincrement (AR)+ —- “ —-
Ind.Reg+Disp. AE(AR) AE muß in 16 Bit passen
Ind. A4+Disp. AE.T Task–Workspace–Adressierung

x Ind. A5+Disp. AE.X Prozedur–Workspace–Adr.
v Ind(Ind.A5+Disp) AE.Z 32 Bit–end–adr. nur bei V!

Disp+AR+Ind. AE(AR,RG) .W–Index, AE 8 Bit!
” AE(AR,RG.W) —- “ —-
” AE(AR,RG.L) .L–Index, ”

x PC–Relativ RE RE=REL.Expression, s. u.
PC–Rel+Ind. RE(RG) .W–Index
” RE(RG.W) — “ —
” RE(RG.L) .L–Index
Label AE Im ORG–Mode. Bcc, BRA, DBcc
” RE Im RORG–Mode. ” ” ”
Immediate tt =AE,RE Achtung: ”=“ statt ”#“!

Die mit ”x“ gekennzeichneten Adressierungen sind bei realen und bei virtu-
ellen Befehlen zulässig. Die mit ”v“ gekennzeichnete Adressierung ist nur bei
virtuellen (Hyperprozessor-) Befehlen erlaubt.

426 7.2 Programmzeilenaufbau

7.2.4 Ausdrücke

AE ist ein Ausdruck, dessen Wert lageunabhängig ist

EG ist ein Bezug auf ein extern definiertes Symbol:

EG := >symbol oder
EG := ∼symbol oder
EG := >symbol+offset. EG := ∼symbol+offset.

symbol repräsentiert das übliche max. 24 Zeichen lange Symbol.

offset ist ein nicht lageabhängiger Ausdruck, der zur Assemblierzeit be-
rechnet werden kann. Er darf auch einen negativen Wert liefern.

Beispiel: JMP >TEST+$200

Im eigenen Programmodul definierte Globalsymbole können zwar, sollten
aber nicht über diese Konstruktion angesprochen werden, um den Lader
zu entlasten. Um Verwirrungen mit den globalen PEARL90-Symbolen
(∼-Zeichen am Anfang) zu vermeiden, empfiehlt sich die Verwendung
von internen Aliasnamen.

RE ist ein Ausdruck, dessen Wert von der Lage des Programmes abhängig
ist, wobei im Adressausdruck die spätere Ladeadresse nur einfach additiv
eingehen darf. Damit ist z.B. X+Y verboten, wenn beide Symbole relativ
positionierte Objekte sind.

In beiden Typen von Ausdrücken sind Klammerungen erlaubt, ebenso die Vor-
anstellung monadischer Operatoren (+ oder -). Ausdrücke werden grundsätz-
lich mit 32–Bit Arithmetik berechnet und erst in Pass 2 auf Einhaltung der
zulässigen Grenzen überprüft.

Bei AE in Immediate und DC–Anwendungen wird zusätzlich zwischen ”logisch“
und ”arithmetisch“ unterschieden. Ein AE ist ”logisch“, wenn in ihm minde-
stens eine Sedezimalzahl auftritt. Eventuell muß man also die Zahl $0 addieren.
Damit ist z. B. 40126+$0 auch bei Beschränkung auf 16 Bit legal, da ”logisch“.

Elemente in Ausdrücken:

7.2 Programmzeilenaufbau 427

Dezimalzahlen 24,108637 (immer als AE)
Hexadezimalzahlen $0,$AFFE,$2CDE3
Textstrings ’a’,’AB’,’xyz’,’Mist’

liefern 8,16 oder 32 bit, bei Bedarf
links mit Nullen aufgefüllt.

Symbol X,AB23 (Max. 24 Zeichen)
(kein Register!) Können RE oder AE sein.
Loc. counter = $ Ohne folgende Ziffern, ist

RE im RORG–Mode, sonst AE.

Dyadische Operatoren:

+ Addition ABS+ABS = ABS, ABS+REL = REL,
REL + ABS = REL, REL + REL nicht
erlaubt!

− Subtraktion REL−REL = ABS, REL−ABS = REL,
ABS − ABS = ABS, ABS − REL nicht
erlaubt!

∗ Multiplikation nur bei zwei AE erlaubt. Es wird in signed
32 Bit Arithmetik gerechnet.

/ Division Wie bei Multiplikation, nur AE etc.

Die Prezedenz der Operatoren ist wie üblich, d. h. ∗, / geht vor +, −. Durch
Klammerung wird die Prezedenz übersteuert.

7.2.5 Die Assemblerdirektiven

Etliche der oben bereits erwähnten Assemblerdirektiven benutzen Ausdrücke.
Die Bedeutung von AE und RE in der folgenden Aufstellung wurde oben bereits
erläutert.

DC ... Datenablage wie bei Maschinenbefehlen, aber bei
DC.B keine Positionsrundung.

DC AE,... Ablage der 16–Bit Daten (Wert AE).

DC.W AE,... Wie oben. (.W ist Defaultbesetzung).

DC.L AE,... Ablage von 32 Bit Daten mit Wert AE.

DC.L EG,... Adresse des externen globalen Symbol ablegen.

DC.B AE,... Ablage der 8 Bit Daten ohne vorherige Positions-
rundung.

428 7.2 Programmzeilenaufbau

DC.B ’str’,.. Ablage des Textstrings ’str’ mit fortlaufenden A-
dressen. Das Zeichen ’ ist durch ’’ zu ersetzen.
Bsp: DC.B ’AB’’CD’,’’’’ → AB’CD’ Mischung
’str’,’AE’,’ str’,... ist erlaubt.

DS AE Define storage, mit AE angegebene Zahl von Bytes
freihalten. Inhalt der Bytes nach dem Laden unde-
finiert.

END Ende dieser Assembliereinheit. Zwischen END und
Kommentar mind. 10 Blanks!

END RE Rückbezug für RTOS–UH herstellen.

LBL EQU AE Definition von LBL mit Wert AE absolut. VOR-
SICHT: Die Eigenschaft ”logisch“ wird nicht durch
das EQU übertragen.

LBL EQU RE Definition von LBL mit Wert RE relativ.

LBL EQU RG Definition von LBL als Registersymbol.

LBL EQU SR Definition von LBL als Statusregister.

LBL EQU CCR Definition von LBL als Condition–Coderegister.

LBL EQU USP Definition von LBL als USER–A7.

MNE FORMAT Beginn Formatdefinition. Alle folgenden Zeilen, die
mit ”/“ beginnen, werden bis zur Endekennung zur
Definition herangezogen. Der genauere Aufbau ist
auf Seite 432 beschrieben.

LOCK AE Sperren bestimmter Register für den Transferassem-
bliervorgang, bei 68k-Zielmaschine ignoriert.

MNE OPD AE Definition des Nutzer–Mnemos (ohne Operanden)
MNE durch das 16 Bit–Wort AE.

MNE OPD.V AE Definition des Nutzer–Mnemos MNE als virtueller
Laufzeitbefehl. AE muß im Bereich 0. . . 255 liegen,
da sonst bei der späteren Benutzung ein LIMIT–
Error erzeugt werden kann. Der so definierte Befehl
kann 0. . . 4 Operanden haben und und unterliegt der
bei den V–Befehlen üblichen Syntax.

ORG AE AE muß in Pass 1 definiert sein, der Wert wird in den
Positionszähler geladen. Das Programm ist nun im
ABS–Mode und kann vom RTOS–UH–Lader nicht
korrekt geladen werden, sofern nicht ausschließlich
relativ adressiert wird.

7.3 Besonderheiten des T-Code 429

PAGE New Page. Es wird ein Seitenvorschub ausgegeben.

PRINT AE Ist in Pass 2 der Wert von AE ungleich Null, so wird
das Übersetzungsprotokoll ab dieser Zeile einge-
schaltet, anderenfalls wird das Listing unterdrückt.
Fehlermeldungen erscheinen aber auch dann noch

RORG
RORG

AE
RE

Wie bei ORG jedoch ist das Modul jetzt verschiebbar
und kann korrekt vom Lader geladen werden.

MNE UNLOCK AE Hebt selektierte Registersperren für den Transferas-
sembler auf. Gegenteil von LOCK. Die Selektion er-
folgt mit Hilfe der Maske in AE.

7.3 Besonderheiten des T-Code

7.3.1 Problematische 68k-Befehle

Adressierungsarten:

Im T-Code sind nur die Adressierungsarten des 68000 erlaubt. Die erweiterten
Möglichkeiten, die mit dem 68020 hinzugekommen sind, wurden nicht in den
T-Code aufgenommen. Sie werden vom Mini-Assembler und vom PowerPC-
Transferassembler als Fehler erkannt und angezeigt.

Es ist wahrscheinlich, daß PC-relative Bezüge, die in der 68k-Welt so eben noch
mit einem 16-bit Verschiebungswort auskommen, auf einem RISC-Prozessor
wegen der Codeverlängerung nicht mehr in 16 Bit passen. Der .V–Zusatz (V =
Very far) hinter den Befehlen

Bcc.V, BSR.V, LEA.V und PEA.V

zwingt den Transferassembler, statt eines 16-bit langen Displacements – wie es
in der 68k-Welt genügen würde – schon im Pass 1 Platz für ein 32-bit langes
Displacement vorzusehen. Damit der Transferassembler nicht unnötigerweise
den längeren Code erzeugt, sollte man nur die zuvor von ihm angemahnten
Befehle und wacklige Kandidaten mit der Option versehen. Der 68k-Assembler
ignoriert den .V-Anhang.

Maschinenbefehle:

Es sind nur die Maschinenbefehle des Nutzerprogrammiermodelles des 68000
erlaubt. Supervisorinstruktionen wie z.B. RTE werden von den reinen T-Code-
Übersetzern als Fehler angezeigt und nicht umgesetzt.

Strukturelle Restriktionen:

430 7.3 Besonderheiten des T-Code

Wenn Programme implizit von der Länge bestimmter Maschinenbefehle Ge-
brauch machen, weil sie z.B. PC-relativ mit Displacement im Code-Bereich
adressieren, so kann dies oft nicht vom Transferassembler erkannt werden und
es entsteht ein falsches Umsetzergebnis. Werden derart dubiose Codierungen
vom Übersetzer erkannt (Meldung ”peculiar coding“), so erfolgt keine Umset-
zung. Ansonsten ist es leider Aufgabe des Programmierers, solche Program-
mierverfehlungen aufzuspüren und zu eliminieren.

7.3.2 Optimierter T-Code

Die 68k-Hardware führt bei Befehlen zum Transport sowie zur arithmeti-
schen oder logischen Verknüpfung automatisch ein Update des Condition-Code-
Registers (CCR) aus. Dies ist bei den RISC-Prozessoren jedoch nicht der Fall.

Bei der Transferassemblierung eines alten unveränderten 68k-Programmes muß
der Transferassembler diesen Update mit einer Folge von Extrabefehlen nach-
bilden. Im Transferassembler ist ein Mechanismus eingebaut, der prüft, ob der
nachfolgende Maschinenbefehl nicht vielleicht selbst wieder einen neuen Inhalt
in das CCR schreibt. Ist dies der Fall, unterbleibt beim aktuellen Befehl die
Generierung von Extrabefehlen.

Dennoch wird bei üblichen Programmen schnell eine Fülle im Grunde nutzlo-
ser CCR-Updates erzeugt, insbesondere vor allen Sprüngen und Rücksprüngen,
aber auch vor Befehlen wie LEA, ADDQ, SUBQ, MOVEA, DBcc usw. Gleiches gilt
vor allen Traps, Formaten und Assemblerdirektiven. Die T-Code-Syntax sieht
darum eine Möglichkeit vor, um bei jedem Maschinenbefehl explizit die Gene-
rierung des CCR-Updates unterdrücken zu können. Dies geschieht durch Vor-
anstellen des Underscore-Zeichens ”_“ vor den Befehlsmnemo:

_MOVE D3,D7 Unterdrücke CCR-Update
BSR SUBRO Weil in subro nicht gebraucht

Man kann im Protokoll (Listing) des Transferassemblers leicht erkennen, ob
bei der Generierung der Befehlssequenz der CCR-Update unterdrückt war oder
nicht: Zwischen der hexadezimalen relativen Ablageaddresse und dem Hexco-
de, der dort abgelegt wurde, wird ein ”_“ eingestreut, wenn die Unterdrückung
aktiv war. Dabei wird nicht unterschieden, ob die Unterdrückung durch Ei-
genintelligenz des Übersetzers oder durch Befehl des Programmierers ausgelöst
wurde.

7.3 Besonderheiten des T-Code 431

Im Sinne einer kompakten und schnellen Kodierung sollte man seine T-Code-
Programme mit Hilfe dieser Option optimieren. Der 68k-Assembler (der ein
Transferassembler für den 68k ist) ignoriert den Unterdrückungsbefehl.

7.3.3 Zielmaschinenkonditionierte Befehle

Diese Gruppe von Maschinenbefehlen entstand neu bei der Definition des T-
Codes. Je nach Zielprozessor wird eine hinsichtlich des Datenflusses unter-
schiedliche Maschinenbefehlssequenz (bzw. evtl auch nur ein oder kein Befehl)
erzeugt. Diese Option soll den unterschiedlichen Stackphilosophien der RISC-
und CISC-Prozessoren beim Unterprogrammaufruf Rechnung tragen.

XBSR (Zielmaschinenkonditioniert) Branch to subroutine. Bei
Übersetzung für die 68k-Familie wird hier ein normaler
BSR-Befehl erzeugt. Bei Übersetzung für die PowerPC-
Familie entsteht ein reiner (sehr schneller) ”Branch and
link“. Die Rückkehradresse steht dann ausschließlich im
Link-Register und es ist Aufgabe des Programmierers,
dafür zu sorgen, daß sie dort sicher ist. Mit XSL kann sie
notfalls später noch gerettet werden.

XJSR (Zielmaschinenkonditioniert) Branch to subroutine. Bei
Übersetzung für die 68k-Familie wird hier ein normaler
JSR-Befehl erzeugt. Bei Übersetzung für die PowerPC-
Familie entsteht ein reiner (sehr schneller) ”Branch and
link“. Die Rückkehradresse steht dann ausschließlich im
Link-Register und es ist Aufgabe des Programmierers,
dafür zu sorgen, daß sie dort sicher ist. Mit XSL kann sie
notfalls später noch gerettet werden.

XRTS Return from Subroutine. Bei 68k Prozessoren entsteht hier
ein normaler RTS-Befehl. Bei Übersetzung für den Po-
werPC wird ein Branch by Link-Register generiert, d.h. der
Stack ist nicht involviert (sehr schnell).

XSL Save link on stack. Bei Übersetzung für die 68k-Familie
wird hier nichts generiert, da die Rückkehradresse bereits
auf dem Stack steht. Beim Prozessor PowerPC wird der
aktuelle Wert des Link-Registers auf den Stack geschrieben.

432 7.3 Besonderheiten des T-Code

Vorsicht!

Die Ersetzung von BSR-Befehlen durch XBSR etc. darf nur in be-
sonderen Fällen erfolgen, bei denen das Linkregister weder explizit
noch implizit (z.B. durch den Transferassembler bei PC-relativer
Adressierung) zerstört wird. Sicherer – aber langsamer – ist die
Beibehaltung der Original-68k Befehle. Der PEARL-Compiler für
den PowerPC springt dennoch alle Unterprogramme mit XJSR an.
Folglich muß man selbstgeschriebene Maschinenunterprogramme
für PEARL90 typischerweise mit XSL beginnen und mit norma-
lem RTS verlassen, wenn sie in beiden Prozessorfamilien korrekt
laufen sollen.

7.3.4 Formatdefinition

Die Formatdefinition entspricht einer Prozedurdefinition, jedoch mit der Beson-
derheit, daß diese Prozedur zur Assemblierzeit – also bei der Übersetzung des
Assemblerquellfiles – an einer oder mehren Stellen zur Ausführung kommt. Das
Innenleben der Formatprozedur besteht aus einer einfachen Folge von Befeh-
len einer sehr einfachen 32-Bit Akkumulatormaschine. Diese beherrscht Befehle
zum Addieren, Subtrahieren, Segmentieren von Bitsequenzen und zur Ablage
von Daten.

Formatnamen dürfen maximal aus 6 Zeichen bestehen, die bei der Definition
aus Großbuchstaben bestehen müssen und beim Aufruf wahlweise – wie Be-
fehlsmnemos – in Groß- oder Kleinschreibung ansprechbar sind.

Formate können bis zu 9 Parametern haben, davon können die letzten beiden
– oder nur der letzte – sogenannte ”Defaultparameter“ sein. Das sind Parame-
ter, die nur bei der Definition und später nicht mehr bei der Benutzung des
Formates als Aktualparameter angegeben werden. Erkennbar sind die Deafult-
parameter an den umschließenden runden Klammern bei der Formatdefinition
(siehe Beispiel unten). Als Aktualparameter können nur zur Assemblierzeit be-
rechenbare 32-Bit Ausdrücke benutzt werden. Diese können entweder absolut
AE oder relativ RE sein. Bei der Definition des Formates muß dies für jeden
einzelnen Parameter durch die Buchstaben ”a“ oder ”r“ angegeben werden.
Beim Aufruf des Formates muß die Anzahl der Aufrufparameter und deren
Typ exakt mit der Definition übereinstimmen.

7.3 Besonderheiten des T-Code 433

Formate müssen stets so gestaltet werden, daß sie insgesamt einen Bitstring
erzeugen, dessen Länge ein Vielfaches der Zahl 8 ist, weil Assembler und Trans-
ferassembler das Byte als kleinste Ablageeinheit verwenden. Man kann bei der
Definition durch Nachstellen von .B, .W oder .L an das FORMAT-Mnemo
angeben, ob vor Beginn der Bytegenerierung durch das Format der relative
Ablage-PC auf eine Byte-, Wort- oder Langwortgrenze positioniert werden soll.
Beim Aufruf des Formates nimmt der Assembler dann die nötige Einstellung
der Ablageadresse selbständig vor. Wird keine Adressjustage vordefiniert, so
verwendet der Assembler oder Transferassembler diejenige, die für die Maschi-
nenbefehle seiner Zielhardware vorgesehen ist. Bei Datentabellen – die in den
verschiedenen Prozessorwelten gleich aussehen müssen – wird daher die explizi-
te Angabe von .B, .W oder .L dringend angeraten. In diesem Fall ist zusätzlich
noch eine Verschiebung der Zuordnung des eventuell vor dem Format stehen-
den Labels um eine maximal 2 (dezimal-)stellige Anzahl von Bytes nach hinten
möglich:

ABCD FORMAT.L+16 ...
...

Test ABCD ... Test liegt 16 byte oberhalb Ablage-PC

Die mit unserem System mitgelieferten Dateiein PROCS.FOR, SUPERVIS.FOR
und GENERAL.FOR enthalten zahlreiche Formatdefinitionen, die man zum Ken-
nenlernen dieser Assembleroption verwenden kann. Hier studieren wir eine hy-
pothetische Formatdefinition zur Generierung eines Tabelleneintrages für eine
Tabelle, deren Einträge jeweils aus einer 16-bit Konstanten ($AFFE), einer 5-bit
Zahl, einer 27-bit Zahl, einer 16-bit Differenz dieser Zahlen und einer relativen
32-bit Adresse bestehen:

TABLX FORMAT.W a,a,r,($AFFE) definiert Format TABLX, Wortgrenze
/ #4(16:31) lege das Bitmuster $AFFE ab.
/ #1(27:31)#2(5:31) Ablage par1 5 bit, par2 27 bit
/ #A=#2#A-#1#A(16:31) Ablage (par2-par1) in 16 bit
/ #3(R) Ablage par3 in 32 Bit relativ
/ e oder E, Ende Formatdefinition

Der Wert des in Klammern stehenden Defaultparameters kann natürlich statt
als Konstante auch durch einen zur Assemblierzeit berechenbaren Ausdruck
dargestellt werden. Eine normale Benutzung dieses Formates wäre etwa:

LABL1 TABLX 25,30,Label5 Defaultparameter wird nicht angegeben!

434 7.3 Besonderheiten des T-Code

Dieses Beispiel benutzt den bereits erwähnten 32-Bit Akku. Mit ihm wird die
Differenz (Parameter2-Parameter1) berechnet, um anschließend die Bits No.
16 bis 31 abzulegen. Mit der Definitionszeile wird das Format geöffnet. An-
schließend wird mit den Folgezeilen, die mit ”/“ beginnen, der Formatkörper
beschrieben. Kommentarzeilen sind erlaubt, andere Assembleranweisungen soll-
ten nicht benutzt werden.

Im einzelnen sind zur Zeit folgende Operationen implementiert:

01001100 ... Eine beliebige Ziffernfolge bestehend aus 0-en und 1-en
wird als Binärstring abgelegt: 10101111 legt das Byte AF
ab.

#7(14:22) Ein Teilstring (hier Bits No. 14 bis 22) des Parameters
(hier 7) wird abgelegt. Statt der 7 kann jeder der Pa-
rameter 1 ... 9 benutzt werden. Das Bit mit der No. 0
ist das höchswertige, das Bit mit der No. 31 das nie-
derwertigste.Sollen alle 32 Bit abgelegt werden, so ist
#7(0:31) zu verwenden.

#3(R) Der Parameter (hier No. 3, muß ”r“ spezifiziert sein) wird
als 32 bit langer relativer Wert abgelegt. Ein Zerschnip-
peln von relativen Parametern ist nicht zugelassen.

#A=#4 Wertzuweisung: Dem Akku wird der Wert des Parame-
ters (hier No. 4) zugewiesen.

#A+#5 Der Parameter (hier No. 5) wird auf den Akku addiert.
#A-#1 Der Parameter (hier No. 1) wird vom Akku subtrahiert.
#A=12 Lade Konstante (hier 12) in den Akku. Es sind nur Werte

von 0 ... 31 zugelassen!.
#A+4 Addiere Konstante (hier 4) zum Akku. Es sind nur Zah-

len von 0 ... 31 zugelassen.
#A-6 Subtrahiere Konstante (hier 6) vom Akku. Es sind nur

Zahlen von 0 ... 31 zugelassen.
#A(12:29) Ein Teilstring (hier Bits No. 12 bis 29) des aktuellen

Akkuinhaltes wird abgelegt. Sollen alle 32 Bit abgelegt
werden, so ist #A(0:31) zu verwenden.

#A>6 Es wird sichergestellt, daß der Akku eine Zahl enthält,
die größer ist als (hier) 6. Statt der 6 sind Zahlen von 0
... 31 zugelassen. Ist die Bedingung nicht erfüllt, so wird
bei der Übersetzung eine Fehlermeldung (Limit-Error)
generiert.

#A-#$ Der aktuelle Wert des Ablage-PC wird vom Akku sub-
trahiert.

7.4 PowerPC-Assembler 435

#A%3 Das Bitmuster $80000000 wird um 3 Plätze nach rechts
geschoben auf den Akku aufaddiert. Als Argument sind
Zahlen von Null bis 31 – letzteres entspricht der Addition
einer 1 – zugelassen. Hinweis: Man kann mit mehreren
solcher Befehle ein beliebiges bis zu 32 Bit langes Bitmu-
ster addieren.

#A?16 Der Inhalt des Akkus wird daraufhin geprüft, ob er in
ein Vorzeichenbehaftetes 16 Bit-Wort passt. Statt der
16 können Zahlen von 1 ... 31 benutzt werden. Ach-
tung, Zweierkomplement: das vorderste Bit des gewähl-
ten rechten Endes des Akkus muss identisch zu allen links
daneben stehenden Bits sein. Ist die Bedingung nicht
erfüllt, so wird bei der Übersetzung eine Fehlermeldung
(Limit-Error) generiert.

Die Befehle können unmittelbar hintereinandergeschrieben oder auf mehrere
Zeilen verteilt werden. Ein Leerzeichen unterbricht den Befehlskode und schal-
tet auf das Kommentarfeld der Zeile um.

Man kann relative Ausdrücke ebenfalls in den Akku laden, das Relativ-Attribut
geht dabei zunächst verloren. Allerdings kann nach einer Rechnung der Akku
mit #A(R) als relativierter Zeiger (32 bit) abgelegt werden. Das Ablegen von
Schnipseln eines solchen lageabhängigen Akkuinhaltes macht jedoch im Nor-
malfall keinen Sinn, da später beim Laden keine Korrektur durch den Lader
erfolgen kann. Dagegen kann es sehr wohl sinnvoll sein, mit Hilfe des Akkus
die Differenz zweier relativer Parameter oder die Distanz einer relativen Adres-
se zum Ablage-PC (#$) zu berechnen und als Kurzbitzahl abzulegen, weil das
Ergebnis tatsächlich lageunabhängig ist.

Die Formatmaschine kodiert assemblerintern extrem kompakt. Selbst längere
Formatdefinitionen belasten den Assembler kaum. Leider ist diese Kompaktheit
auch der Grund für die Beschränkungen bei den Konstanten etc. Der Befehls-
satz wird in zukünftigen Versionen sicher noch erweitert.

7.4 PowerPC-Assembler

Der PowerPC-Assembler ist im Transferassembler TAPP enthalten und wird
durch die Anweisung

.IF_PROCTYPE MPC601 oder

.IF_PROCTYPE MPC604

aktiviert. Seine Syntax richtet sich nach dem PowerPC User’s Manual von
IBM und Motorola. Man beachte die dort definierte gegenüber der 68k-Welt
andersartige Reihenfolge von Quellen- und Senkenangaben.

436 7.6 FPU–Befehle und Maxi–Version

Soweit sinnvoll, werden auch die vom 68k-Assembler bekannten Direktiven un-
terstützt, z.B. EQU,FORMAT und DC. Fast alle Kurzmnemos aus dem User’s Ma-
nual (z.B. für bedingte Sprünge) wurden ebenfalls implementiert. Zusätzlich
akzeptiert der Assembler – wo sinnvoll – auch eine 2-Register Notation:

add r5,r30 ist gleichwertig zu
add r5,r5,r30

* ebenso ist
addi r6,=12 gleichwertig zu
addi r6,r6,=12 etc.

Nicht implementiert wurden die Befehle der POWER-Architektur aus dem
MPC601-User’s Manual.

7.5 Tabellenkapazität

Unsere Assembler bzw. Transferassembler benötigen für jedes Symbol mit einer
Länge von bis zu 6 Zeichen 14 Bytes Listenplatz. Längere Symbole verbrau-
chen entsprechend mehr. Von dem angebotenen Workspace (z. B. SZ=xx unter
RTOS–UH) gehen zusätzlich noch einmal ca. 600 Bytes für Pufferung etc.
verloren. So kann z. B. mit SZ=6000 auf der 68k-Variante ein Programm mit
bis zu 1700 Symbolen übersetzt werden.

Der Transferassembler für den PowerPC verbraucht deutlich mehr Listenplatz
als die 68k-Version. Defaultmäßig fordert er darum stets volle 64 kByte an. Bis
heute reichte dieser Speicher noch bequem selbst für unsere größten maschi-
nenkodierten Module, wie z.B. Window-Manager und Multiwindow-Editor.

7.6 FPU–Befehle und Maxi–Version

Die ”MAXI“–Version des 68k-Assemblers kann zusätzlich zur kleinen Version
und im Gegensatz zu den Transferassemblern den vollständigen Befehlsum-
fang inklusive der FPU-Befehle der MC680xx-Familie verarbeiten. Auch dabei
wurde die Befehls–Syntax der Motorola Handbücher (mit den bekannten Ab-
weichungen) zu den einzelnen Prozessoren zu Grunde gelegt.

Will man die FPU-Befehle des PowerPC benutzen, so muß der Transferassem-
bler TAPP in den native PowerPC-Mode geschaltet werden.

Achtung

Bei Benutzung der FPU–Befehle in Assemblercodierten Tasks
muß in jedem Fall eine Hilfszelle im Taskkopf gesetzt werden,
damit der Prozeßumschalter des Betriebssystemes die benutzten
FPU–Register bei einem Taskwechsel rettet!

7.6 FPU–Befehle und Maxi–Version 437

Diese Hilfszelle ”FPUSFL“ enthält in besonderer Codierung die Anzahl (Po-
werPC) oder Selektion (68k) der benutzten FPU–Register. FPUSFL befindet
sich im Taskkopf und ist ein Byte lang. Den Offsetwert von FPUSFL wird
durch Inkluden der Datei COMEQU automatisch richtig gesetzt. (Nur falls man
die Datei nicht zur Hand hat: zur Zeit der Drucklegung hatte sie für beide
Prozessorfamilien den Wert $45).

FPUSFL-Belegung in der 68k-Familie.

Für jedes zu rettende FPU–Register muß ein Bit in dieser Hilfszelle gesetzt
werden. Zuordnung der einzelnen Bits zu den FPU–Registern:

Bit7 = FP0, Bit6 = FP1 . . . Bit0 = FP7

FPUSFL-Belegung in der PowerPC-Familie.

Die Rechenformel lautet 8 + 4 ∗Anzahl

FPUSFL=$00 FPU wird nicht benutzt.
FPUSFL=$0C FR0 wird benutzt.
FPUSFL=$10 FR0 und FR1 werden benutzt.

...
FPUSFL=$88 FR0 . . . FR31 werden benutzt.

Werte außerhalb des obigen Bereiches sind unbedingt zu vermeiden,
da sie zu Prozeßumschalterfehlern führen können!

Die Hilfszelle darf in einer assemblercodierten Task dynamisch verändert wer-
den, es muß nur darauf geachtet werden, daß die Besetzung immer der aktuell
benutzten Anzahl FPU–Register entspricht.

Werden in assemblercodierten PEARL–Unterprogrammen FPU-Befehle ver-
wendet, so muß in dem PEARL–Modul, in dem die aufrufende Task definiert
ist, der Übersetzungsmode des Compilers so eingestellt sein, daß die FPU einge-
schaltet ist. Dabei müssen alle irgendwie benutzten FPU-Register freigegeben
wurden. Sonst können sporadische und damit sehr schwer auffindbare nume-
rische Fehler wegen der Nichtwiederkehr von Registerinhalten nach Kontexts-
witchen auftreten!

Benutzen Sie die FPU–Befehle nur bei Vorhandensein einer FPU in ihrem Sys-
tem, sonst wird die Task an der entsprechenden Stelle mit einem Fehler ange-
halten.

438 7.6 FPU–Befehle und Maxi–Version

Beispiel: assemblercodierte Task
.....

.INCLUDE COMEQU Symbolische offsets laden

.if_proctype MPC604 ggf. in PowerPC mode
FPMSK EQU $10 fr0 .. fr1

.else ende PowerPC Zweig
FPMSK EQU $C0 FP0 und FP1

.fin
.....

*... Transferassemblierbare Anweisungen
MOVEA.L TID,A1 Hole Task-pointer

_MOVE.B =FPMSK,FPUSFL(A1) Setze FPU-Zelle
*... Die ersten 2 FPU-Register sind nun benutzbar
*

.if_proctype MPC604 ggf. in PowerPC mode
fadd fr0,fr1 2 register freigegeben

.else ende PowerPC Zweig
FADD FP0,FP1 2 register 68k

.fin

7.6 FPU–Befehle und Maxi–Version 439

Feststellen der Systemkonfiguration (nur 68k):
Name Adresse Wert Bedeutung
FPUFLG $8CE.B 0 68881/2 nicht vorhanden

$FF 68881/2 im System vorhanden
F68020 $8CF.B 0 68000, 68010, 68008 Prozessor

$FF 68020/30/40/60

Wichtiger Hinweis

Bitte benutzen Sie möglichst die aus dem file COMEQU stammenden
Symbole statt der Konstanten! Auch wenn wir eine Lageverände-
rung zentraler Objekte wenn irgend möglich vermeiden, ist diese
Vorgehensweise erheblich sicherer und vereinfacht die Verwendung
Ihrer Software auf den verschiedenen Hardwareplattformen.

440 7.7 S–Records

7.7 S–Records

Die vom Assembler erzeugten S–Records bestehen aus einer Folge von ASCII–
Zeichen, beginnend mit einem ”S“, und haben prinzipiell folgenden Aufbau:

Sxyyaaaaaadddddddd...ddddcs

Hierbei bedeuten

x: Typkennung. Verwendet werden

0: Startrecord

1: Datenrecord

2: Datenrecord

3: Datenrecord

9: Endrecord

yy: Byteangabe. Angegeben wird die Anzahl der im Record noch fol-
genden Byte (nach ASCII–Hex –> binär Wandlung) einschließlich der
Checksumme.

aaaaaa: Adreßangabe. RTOS–UH verwendet nur relativierte Adressen,
d. h. aaaaaa ist relativ zur Ladeadresse des S–Record–Files gerechnet.
aaaaaa umfaßt 2*(x+1) Zeichen, d. h. S1–Records können 2 Byte Offset,
S2–Records 3 Byte Offset und S3–Records 4 Byte Offset ausdrücken.

dddd. . . : Datenbereich. Die Daten werden in hexadezimaler Form als
ASCII–Text angegeben. Bei RTOS–UH können hier auch Zeichen auf-
treten, die der hexadezimale Darstellung nicht entsprechen. Es handelt
sich dann um Laderdirektiven o. ä.

cs: Checksumme. Die Checksumme wird durch ein Byte derart gegeben,
das die Addition aller Bytes des S–Records, beginnend bei der Längen-
angabe und die Checksumme einschliessend, ohne Berücksichtigung der
Überläufe $FF ergibt.

Es enthalten unter RTOS–UH

S0–Records: im Adreßfeld die Länge des Datenbereiches, der zwischen S0–
und S9–Record von Daten–Records beschrieben wird. Der Datenbereich kann
interne, zusätzliche Informationen enthalten.

Daten–Records: im Adreßfeld die relative Startadresse des von diesem Record
beschriebenen Datenbereiches; im Datenbereich die dazugehörigen Daten sowie
ggf. Lader–Direktiven.

7.7 S–Records 441

S9–Record: enthält nur interne Informationen.

442 7.8 Assembler–Fehlermeldungen

7.8 Assembler–Fehlermeldungen

Fehlermeldungen werden zeilenweise eingebettet und durch einen Stern un-
ter dem inkriminierten Zeichen markiert, an der Stelle, an der der Assembler
die Abweichung erkennen konnte. Zusätzlich wird am linken Rand dieser Zeile
<ERROR> eingefügt, um die fehlerhaften Zeilen in einem Listing schneller auf-
finden zu können.

Im Fehlerfalle wird – wann immer möglich – ein NOP–Code eingesetzt um
ggf. nach dem Laden korrigieren zu können. Dies ist allerdings bei bestimmten
Fehlern, die erst im Pass 2 erkannt werden können, nicht möglich.

BYTE–FRACTION. Ein FORMAT wurde so definiert, daß die Ge-
samtzahl generierter Bits nicht durch 8 teilbar
ist.

DEF–ERROR. Falsch definiert. Z. B. Vorwärtsbezug bei EQU
oder zu spät als Register, d. h. nachdem das
Symbol bereits benutzt wurde.

DC–OVFL. Es sind zu viele Ausdruecke innerhalb einer
DC-Direktive. Auf mehrere DCs aufteilen.

DOUBLE–DEF. Das Symbol wurde mehrmals definiert.

FORW.REF. Vorwärtsbezug hier nicht erlaubt.

FP–FORM–ERROR. In einem 68k-FPU-Befehl wurde ein unzuläs-
siges (Daten-)Format angegeben.

ID TOO LONG. Der Bezeichner ist länger als erlaubt.

IF/FIN. Strukturfehler bei Benutzung von .IF oder
.ELSE bzw. .FIN.

LENGTH. Operation und Länge harmonieren nicht.

7.8 Assembler–Fehlermeldungen 443

LIMIT. Grenzwert des Ausdrucks überschritten, oder
z. B. durch Null dividiert.

LR LOCKED Der Transferassembler konnte diese Anwei-
sung nicht übersetzen, weil das Linkregister
benötigt wird, aber durch ein LOCK vorher
blockiert wurde.

MODE. Adressierungsart ist hier nicht erlaubt.

NO FORMAT OPEN. In Spalte 1 steht das Zeichen ”/“, aber es ist
kein FORMAT mehr geöffnet.

NOT–IMPL. Nicht implementierter Befehl oder Konstrukt.

P1/2–MATCH. Label im Pass 2 entdeckt, das im Pass 1 noch
nicht vorkam. Übersetzung wird abgebrochen.

OPD/FORMAT–DOUBLE. Bei ”OPD“ oder ”FORMAT“ wird ein bereits ver-
gebener Mnemo verwendet.

R/A–ERROR. Ausdruck RE statt AE oder umgekehrt. Der
falsche Typ wird jedoch eingesetzt, Programm
i. a. unbrauchbar.

rxy LOCKED Der Transferassembler konnte diese Anwei-
sung nicht übersetzen, weil das Register rxy
(möglich: r25 ... r31) benötigt wird, aber durch
ein LOCK vorher blockiert wurde.

SYNTAX. Keine Produktionsregel gefunden (3*NOP).

UNDEFINED. Das Symbol wurde nicht definiert.

Daneben gibt es noch einige nicht an die aktuelle Zeile gebundene Fehlermel-
dungen, die zu einem Abbruch des Übersetzungslaufes führen:

444 7.8 Assembler–Fehlermeldungen

Can’t open include file. Der zu inkludende File konnte nicht gefunden
oder nicht geöffnet werden (z.B. wegen exklu-
siver Benutzung durch anderen Prozeß).

End of input file. Bevor das reguläre Ende (END) des Quellfiles
erreicht wurde, endete dieser. Kann durch be-
dingte Assemblierung entstanden sein, wenn
das END im inaktiven Teil des Textes steht.

Illegal Branch Address. Beim Transferassemblieren wurde eine Abhän-
gigkeit der Zieladresse von Befehlslängen er-
kannt, die zu einem höchstwahrscheinlich feh-
lerhaften Ergebnis führen würde.

Incl.fileend inside field. Ein File, der mit .INCLUDE eingebunden wur-
de, endet innerhalb eines aktiven Feldes der
übersetzten Zeile. Es können nur komplette
Zeilen inkluded werden.

Input–fail. Abbruch des Laufes, weil Input–File nicht les-
bar/vorhanden ist, oder die End–Of–File Be-
dingung vor dem END eingetreten ist.

Internal Error. Eine fehlerhafte Datensituation innerhalb des
Übersetzers wurde durch die internen Selbst-
prüfungen im Assembler erkannt. Falls der
Fehler beständig ist: bitte Beispielprogramm
aufheben und Fehler anzeigen!

Not PowerPC translated. Anweisung konnte nicht transferassembliert
werden, z.B. Befehl des Supervisorprogram-
miermodelles.

Peculiar coding! Es wurde ein merkwürdiger Programmierstil
erkannt, der vom Transferassembler zurückge-
wiesen wird. (Auch im native PowerPC-mode
möglich)

7.8 Assembler–Fehlermeldungen 445

Table–overflow. Der Speicherplatz innerhalb des Assemblers
reicht nicht aus. Mit SZ beim Aufruf des As-
semblers Listenplatz vergrössern (bis SZ =
10000 möglich!).

446 7.9 Einbettung von Assemblerprogrammen

7.9 Einbettung von Assemblerprogrammen

RTOS–UH eignet sich zusammen mit der Vielzahl von Systemtraps auch sehr
gut für die maschinennahe Codierung. Dabei sind allerdings einige Konventio-
nen zu beachten, da mit fehlerhaften Programmen in Maschinensprache durch-
aus ein ”Absturz“ des gesamten Systemes verursacht werden kann. Dies kann
sogar schon beim Laden eines falsch kodierten Modules erfolgen. Der Lader
benötigt nämlich für Module einen sogenannten Modulkopf und für Tasks einen
sog. Taskkopf im Vorspann des eigentlichen Programmes. Dem Taskkopf muß
dabei ein Deklarationsblock folgen, den man unbedingt mit Hilfe des Forma-
tes TSKDCB generieren sollte, weil er sich zwischen 68k und PowerPC unter-
scheidet! Besteht ein Programmblock aus mehreren Modulen/Tasks, so müssen
diese vom Programmierer miteinander verzeigert werden. Der Nullzeiger zeigt
an, daß es keinen Vordermann oder Hintermann zu diesem Modul/Task–Kopf
gibt.

Modulkopf: DC.L 0 oder Addresse nächster M/T–Kopfs
DC.L 0 oder Addresse vorheriger M/T–Kopfs
DC modtype Typeindicator: siehe unten
DC.B ’......’ namelink , 6 bytes (s.u.)
... Von hier ab freie Kodierung des Modules.

Taskkopf: DC.L 0 oder Addresse nächster M/T–Kopf
DC.L 0 oder Addresse voriger M/T–Kopf
DC tasktype (ist unten erläutert)
DC.B ’......’ namelink , 6 bytes (s.u.)

Task-DCB: TSKDCB prio,wsplen,start Datei ”GENERAL.FOR“ included
... Von hier ab freie Kodierung der Task.

Es sind 3 Typen von Modulen im System definiert, jedoch ist fürmodtype:
normale Anwendungen nur das Standardmodul sinnvoll:

$0010 = Normales Modul.
$0050 = PEARL-Shell (”SMDL“), nur für Compiler sinnvoll.
$0090 = Für PROM-Befehl (”PMDL“)

Entweder unmittelbar der Task– bzw. Modulname mit endigennamelink:
Blanks zusammen genau 6 Buchstaben Länge, oder in den ersten
4 Byte die relativierte (siehe Beispile) Adresse auf einen beliebig
langen Namen, der mit $FF enden muß. Im 2. Fall müssen die
Bytes 5 und 6 auf Null gesetzt sein. Bei Systemausgaben (z. B. S–
Kommando) werden Namen nur bis zum 24. Zeichen ausgegeben.

7.9 Einbettung von Assemblerprogrammen 447

Es sind 4 Kombinationen sinnvoll:tasktype:

$0001 = Normale Task, ohne ”RESIDENT“-Attribut.
$0081 = ”Residente“ Task, die ihren ”TWSP“ behält.
$0041 = Autostarttask, läuft nach Abort sofort.
$00C1 = Kombination: ”Residente“ Autostarttask.

Für Anwendertask sind nur 16 bit-Werte größer als Null zugelas-prio:
sen. Bei I/O–Dämonen kann der Wert Null zur Definition einer
variablen Priorität verwendet werden.

Jedes System benötigt hiervon eine große Anzahl Bytes für eige-wsplen:
ne Zwecke, hauptsächlich zur Ablage des Kontextes. Diese Min-
destzahl darf auf gar keinen Fall unterschritten werden. Die ab-
solute Mindestzahl kann man aus der Datei ”COMEQU“ mit dem
Symbol ”PMBUF“ erhalten. Wird der Hyperprozessor benutzt,
– z.B. weil eine PEARL-E/A oder der Aufruf eines PEARL-
Unterprogrammes gebraucht wird – so muß zusätzlich der Platz

”PMBSZ“ addiert werden. Auch die FPU verlangt weiteren Platz
(der Hyperprozessor ist dann in jedem Fall mit dabei). Folgen-
de Richtzahlen enthalten jeweils eine kleine Reserve, die für die
nächste Zeit reichen sollte:

$00000100 = PowerPC ohne FPU.
$00000140 = PowerPC ohne FPU mit Hyperproc.
$00000290 = PowerPC mit FPU +++.
$00000080 = 68xxx, ohne FPU.
$000000C0 = 68xxx, ohne FPU mit Hyperproc.
$00000230 = 68020 ... 68060, mit FPU +++.

Beim Start einer Task setzt der Prozeßumschalter ”PU“ das Re-! →
gister A4 (r12) auf den Anfang des Taskworkspace. Das Register
A5 (r13) sollte man um den obigen gültigen Mindestwert höher
als A4 (r12) einstellen, wenn man es wie in der PEARL-Welt
als Anfangszeiger auf den lokalen workspace verwenden will. Das
Register A7 wird nicht gesetzt! Dies muß der Assemblerpro-
grammierer selbst erledigen, zum Beispiel wie folgt:

WSPLEN EQU $400
...
LEA WSPLEN.T,A7

In sehr alten Systemen vor ca. 1986 wurde ein kürzerer Taskkopf! →
als heute benutzt – uralte Quellfiles unbedingt prüfen!

448 7.9 Einbettung von Assemblerprogrammen

7.9.1 Beispiele für Modul–/Taskköpfe

7.9.1.1 Einzelner Taskkopf

.INCLUDE .../GENERAL.FOR *

* *
DC.L 0,0 keine weiteren Koepfe *
DC $0001 normale Task *
DC.L name-$ Zeiger auf den Namen *
DC 0 Nullwort *
TSKDCB 100,120,start Prio=100, Worksp=120*

start MOVE D0,D1 erste Anweisung der Task *

... weitere Aktionen *
*
name DC.B ’Testtask’,$FF *

END

7.9 Einbettung von Assemblerprogrammen 449

7.9.1.2 Verzeigerung mehrerer Köpfe

In diesem Beispiel ist zu sehen, wie Task– oder Modulköpfe untereinander zu
verzeigern sind. Ohne die Verzeigerung ist nach dem Laden nur der erste Kopf
im System vorhanden.

* Erstes Modul: *
* *
MOD1 DC.L MOD2 Vorwaertszeiger *

DC.L 0 kein Vorgaenger *
DC $0010 Typ : Modul *
DC.B ’Modul1’ Name des Moduls *

* ... *
... freie Kodierung *

* zweites Modul: *
* *
MOD2 DC.L 0 kein weiteres Modul *

DC.L MOD1 vorheriges Modul *
DC $0010 Typ : Modul *
DC.L mod2na-$ Zeiger auf Modulnamen *
DC 0 Langnamen-Indikator *

* ... *
... freie Kodierung *

* ... *
* Relativ adressierter Langname: *
mod2na DC.B ’Mod2_long_name’,$FF *
* ... *

... freie Kodierung *
* ... *

* Herstellen des Bezuges auf das letzte *
* Modul: *
* *

END MOD2 in diesem Fall MOD2 *

Analog wird mit mehr als 2 Modulen oder Tasks verfahren.

450 7.9 Einbettung von Assemblerprogrammen

7.9.2 Task-Deklarationsblock

Für die Erzeugung des Taskdeklarationsblockes sollte man unbedingt – wie
oben beschrieben – das Format TSKDCB verwenden. Damit ist sichergestellt,
daß die Software sowohl vom Assembler als auch vom Transferassembler richtig
an das jeweilige Zielsystem angepasst wird. Die folgenden Beschreibungen sind
daher nur für den Notfall – etwa weil die Datei GENERAL.FOR nicht verfügbar
ist – hier angegeben. Die Werte geben den Aufbau Stand Februar 1997 wieder.

TASK-DCB für 68xxx:

DC priority Taskpriorität 1. . . 255
DC.L wsplen Mindestwert beachten !!
DC.L 0,0 Zeiger für systemeigene Zwecke
DC priority wie oben, später variable Laufprio
DC.L Startadresse Adresse der 1. Anweisung der Task
DC.L 0,0,0,0,0,0,0,0
DC.L 0,0,0,0,0,0,0,0 insgesamt 64 Bytes Null
... ... Von hier an freie Kodierung.

Task-DCB für PowerPC:

DC priority Taskpriorität 1. . . 255
DC 0 Systemintern
DC.L wsplen Mindestwert beachten !!
DC.L 0,0 Zeiger für systemeigene Zwecke
DC priority wie oben, später variable Laufprio
DC 0 Systemintern
DC.L Startadresse Adresse der 1. Anweisung der Task
DC.L 0,0,0,0,0,0,0,0
DC.L 0,0,0,0,0,0,0 insgesamt 60 Bytes Null
... ... Von hier an freie Kodierung.

Kapitel 8: Innenstrukturen des Systemes

8.1 Die Systemtraps

8.1.1 Hinweise zur Benutzung der Traps

Die Systemtraps sind die eigentlichen Funktionsträger innerhalb des RTOS–
UH-Systemes. Sie sind seit mehr als einem Jahrzehnt weitgehend unverändert
geblieben und haben dabei mehrere tausend Jahre makellose Betriebserfahrung
vorzuweisen. Normalerweise werden Traps nur innerhalb von compilergenerier-
ten Konstrukten – und damit in gesicherter Umgebung – aufgerufen. Dennoch
stehen sie auch dem Assemblerprogrammierer zur Verfügung. Hier allerdings
muß mit großer Sorgfalt gearbeitet werden: Aus Effizienzgründen prüfen Traps
nicht erneut, ob sie von ihrem Aufrufer korrekt parametriert wurden. Neben
dem Zerschellen der Aufrufertask sind bei Fehlparametrierungen durchaus auch
andere unbeteiligte Tasks gefährdet. Im Extremfall ist auch ein Totalabsturz
des Systemes nicht auszuschließen.

Änderungen an Traps werden zur Unterstützung von Robustheitsnachweisen
unserer Anwender sehr sorgfältig dokumentiert. Dabei ist Abwärtskompatibi-
lität oberstes Gebot.

Die Beschreibung der Traps gilt in gleicher Weise für die bisherigen 68k-
Assemblerprogramme und für den T–Code. Der Transferassembler für den
PowerPC erzeugt den jeweils passend parametrierten Supervisor-Call automa-
tisch. Nur bei Traps mit eingebautem Skip – so zum Beispiel beim TOQ – sind
Besonderheiten des T–Codes zu beachten. Bedenken Sie bitte bei der Kodierung
für den PowerPC, daß alle Traps neben den jeweils angegebenen 68k-Registern
auch die Register r25 ... r31 sowie das Linkregister verändern können.

Verwenden Sie unbedingt die Datei COMEQU um symbolische Adressen oder Off-
sets einzubinden. Damit werden Unterschiede bei den verschiedenen Prozessor-
familien automatisch ausgeglichen.

Das Inkluden der Datei COMTRAP erspart Ihnen die manuelle Definition der
Trap- Opcodes.

451

452 8.1 Die Systemtraps

Vorsicht:

Traps dürfen nicht von der Supervisorebene aus – etwa in Inter-
ruptroutinen – aufgerufen werden! Einzige Ausnahme ist der DPC–
Trap, der hier eine Sonderstellung hat. Im Gegensatz dazu darf
das PIRTRI–Link nur auf Supervisorebene aufgerufen werden.

Auch wenn viele Traps anscheinend auch auf Supervisorebene funktionieren,
so ist dies in jedem Fall eine Fehlprogrammierung, weil damit das Konzept
von RTOS–UH unterlaufen wird und die Echtzeitqualitäten massiv gefährdet
werden.

8.1 Die Systemtraps 453

8.1.2 Tabelle der Traps

Umklammerte Traps sind nicht im Nukleus, sondern in irgendeiner anderen
Scheibe angesiedelt, sofern vorhanden.

$4E40 ACTQ Activate quick. Task–ID–pointer is in A1
$4E41 TERMI Exit = Terminate internal = self–termination
$4E42 CON Continue task given by name in $66(A4)
$4E43 DPC Start a dispatching cycle
$4E44 -- -- Ehemals PREVQ, $A054 benutzen!
$4E45 SCAN System-scanner (for mounting of RTOS–UH+loader)
$4E46 REQU Request semaphore. Adr. of sema is in A1
$4E47 RELEA Release semaphore. Adr. of sema is in A1
$4E48 FETCE Fetch a communication–element, D1.L=size, A1=ptr
$4E49 RELCE Release a communication–element. Pointer is in A1
$4E4A XIO Xfer a communication–element to in/output–handler
$4E4B PENTR Procedure entering (Workspace alloc. etc.)
$4E4C RETN Return from procedure (complement to PENTR)
$4E4D TOQ Take of queue (Inside i/o–handler–tasks)
$4E4E (TOV) Hyperprocessor ”on“ = to virtual code switching
$4E4F OFF Dispatching and interrupts ”off“ + supervisormode
$A000 TERME Terminate (external) task by name in $66(A4)
$A002 ERROR Send error–message to corresponding userterminal
$A004 WSFS Workspace forward search (A1 is loaded)
$A006 ITBO Identify task by name in $66(A4), (A1 is loaded)
$A008 WSFA Workspace fixed address request.
$A00A IOWA I/O–wait by communication–element in A1
$A00C WSBS Workspace backward search (A1 is loaded)
$A00E GAPST Generate and prepare a subtask (son–process)
$A010 TERV Terminate (self) and vanish (son–process exit)
$A012 DVDSC Device–(facility)–tester (LDN expected in D1)
$A014 ACT Activate task by name in $66(A4)
$A016 TIAC Time–scheduled activation of task by name $66(A4)
$A018 TICON Time–scheduled continuation — “ —
$A01A ACTEV Interrupt–scheduled activ. of task by name – “ –
$A01C CONEV Interrupt–scheduled cont. of task by name – “ –
$A01E QSA Quote–scanner with answer (Lex.text by adr. A2)
$A020 RUBBL Rubber for blanks (Text–pointer is in A2)
$A022 PREV Prevent task by name in $66(A4)
$A024 TIACQ Time–scheduled activ. of task (quick) by TID=A1
$A026 TRIGEV Trigger = simulation of an interrupt
$A028 SUSP Self suspending of executing task

454 8.1 Die Systemtraps

$A02A RWSP Release workspace by pointer in A1
$A02C TIRE Time–scheduled RESUME of a task
$A02E (PIT) Process–data input (implement. dependent)
$A030 (POT) Process–data output — “ —
$A032 ENAB Enable selected process–interrupts
$A034 DISAB Disable selected process–interrupts
$A036 LITRA Line–tracer in real environment
$A038 LITRAV Line–tracer virtual (inside hyperproc)
$A03A CSA Character scan alternatively (text ptr in A2)
$A03C IMBS Identify module by string (String ptr in A2)
$A03E RCLK Read system–clock. Result is in D1.L
$A040 ITS1T Index–tester for 1–dim arrays
$A042 ITS2T Index–tester for 2–dim arrays
$A044 ITS3T Index–tester for 3–dim arrays
$A046 MD2B60 Multiply D2.L by 60 (long + fast!)
$A048 ITBS Identify task by string (string–ptr in A2)
$A04A RSTT Reset T-Link and new TWS
$A04C INTD1 Integer (long) into D1 by text–pointer in A2
$A04E TICONQ Time–scheduled cont. of task (quick) by TID=A1
$A050 CONQ Continue task quick by TID=A1
$A052 DELTST (Right) Delimiter–test of text (ptr is A2)
$A054 PREVQ Prevent task quick by TID=A1
$A056 EVACTQ Interrupt–scheduled task–activ. quick by TID=A1
$A058 TERMEQ Terminate task quick by TID=A1
$A05A EVCONQ Interrupt–scheduled task–cont. quick by TID=A1
$A05C CACHCL Cache clear or NOP if no cache
$A05E STBCLK Set Battery Hardware-Clock
$A060 ITS1TL Index–tester for 1–dim arrays with long index
$A062 ITS2TL Index–tester for 2–dim arrays with long index
$A064 ITS3TL Index–tester for 3–dim arrays with long index
$A066 (DATASC) Date to ASCII conversion
$A068 (CLKASC) Clock to ASCII conversion
$A06A --- Implementation dependent
$A06C DCDERR Decode error–message
$A06E WFEX Wait for exit
$A070 MSGSND Message send
$A072 RESRB Reserve Bolt
$A074 FREEB Free Bolt
$A076 ENTRB Enter Bolt
$A078 LEAVB Leave Bolt
$A07A TRY Try to request semaphore
$A07C --- Reserviert für Erweiterungen

8.1 Die Systemtraps 455

$A07E --- Reserviert für Erweiterungen
..... --- Reserviert für Erweiterungen
$A0A0 --- Reserviert für Erweiterungen

Line–A–Traps oberhalb von $A090 können in besonderen OEM-Implementie-
rungen in begrenzter Zahl ebenfalls belegt werden. Die Transferadressen al-
ler Line–A–Traps beginnen auf EXCORG+$400 (für $A000), EXCORG+$404 (für
$A002) . . . usw. in 4–Byte–Schritten. EXCORG erhält man aus der Datei COMEQU
(Aktuell 0 beim 68k und $4000 beim PowerPC). Also: Rechtes Trap–Byte mal 2
plus EXCORG (aus COMEQU) plus $400. Der Anschluß kann dann etwa über Schei-
be 14 hergestellt werden. Dabei ist zu beachten, daß beim 68k-System von $800
abwärts bis $600 der System–Stack den Links entgegenwächst und Traplinks
oberhalb des Trapcodes $A0FE bei hochaufgeladenen Systemen zerstört werden
könnten.

$A0A2 ??? Für OEM-Sonderanwendungen
... ... —- “ —-
$A0FE ??? Letzter erlaubter Trap

Desweiteren stehen noch zwei Einsprungadressen im Nukleus zur Verfügung:
CD7TAS und PIRTRI. Sie werden hier wie Traps beschrieben, obwohl sie anders
angeschlossen werden.

CD7TAS Convert D7 to ASCII–String
PIRTRI Process-Interrupt trigger

456 8.1 Die Systemtraps

ACT = $A014 Activate Task by name

Eingaberegister: D1.W Priorität der Aktivierung.
OPNAME.T 6 ASCII–Bytes des Tasknamens oder 4 Byte

Adresse des Namensstring, der mit $FF en-
det.

Veränderte Register: D7,D1,A2

Die angegebene Task wird in der Speicherverwaltung gesucht. Während der
Suche bleibt der Trap preemptionfähig. Die Usernummer der Tasks wird nicht
berücksichtigt. Falls eine so bezeichnete Task nicht gefunden wird, so erfolgt
Fehlermeldung, und eine Operation unterbleibt.

Falls D1.W EQ 0 ist, wird D1 aus der Taskdefaultprio geladen. Ist D1 negativ,
so erfolgt eine Fehlermeldung und die Aktivierung unterbleibt. Danach wird
geprüft, ob die Task bereits im Dispatcherring steht. Ist dies nicht der Fall,
so wird sie gemäß der Priorität aus D1 eingelinkt, und der Trap endet mit
Dispatcherstart.

War die Task dagegen bereits im Dispatcherring, so wird die Blockierbedingung

”waiting for activation“ untersucht und gelöscht.
1. Blockierbedingung war gesetzt.

Es wird geprüft, ob die Task prioritätsgerecht eingelinkt ist; falls nicht,
so wird sie entsprechend ”umgelinkt“. Der Trap endet mit einem Dispat-
cherstart.

2. Blockierbedingung war nicht gesetzt.
Die Aktivierung wird mit ihrer Priorität in den Puffer der Task geschrie-
ben, falls dort noch Platz ist (max. 3). Wenn kein Platz im Puffer ist,
so erfolgt Fehlermeldung, und die Operation unterbleibt. Der Trap endet
ohne Dispatcherstart.

Fehlermeldungen: ... wrong prio (D1.W negativ)
... overflow (activate) (Aktiv.Puffer Überlauf)
... not loaded (activate) (Task wurde nicht gef.)

Falls die Datei COMEQU nicht zur Hand ist, hier die wahrscheinlichen Werte für
OPNAME:

OPNAME EQU $66 beim 68K
OPNAME EQU $B4 beim PowerPC

8.1 Die Systemtraps 457

Activate Task by interrupt–schedule ACTEV = $A01A

Eingaberegister: D1.W Priorität
OPNAME.T Textadresse oder Text
OPFATI.T Prozeß–Interrupt–Ereignis
A4 muß auf Taskworkspace zeigen

Ausgaberegister: -

Veränderte Register: D1,D7,A1,A2

Eine Task, deren Name oder deren Adresse des Namens in OPNAME.T =
OPNAME(A4) steht, wird zur Aktivierung eingeplant. In D1 wird die Priorität der
Aktivierung übergeben. Ist D1 gelöscht, wird die Default–Priorität eingetragen.
Die aktuelle Priorität der laufenden Task bleibt unbeeinflußt. In OPFATI.T =
OPFATI(A4)
wird die Prozeß–Interrupt–Maske eingetragen, auf die die Task eingeplant wer-
den soll. Bestehende Aktivierungs-Einplanungen werden gelöscht. Die Fehler-
meldungen entsprechen denen beim Trap ACT beschriebenen.

Beispiel:

ACTEV OPD $A01A Trap-Definition
...
LEA TSKNAM,A0 Adresse des Tasknamens
MOVE.L A0,OPNAME.T Eintrag der Adresse
CLR OPNAME+4.T kein Text

_MOVE.L =$80000000,OPFATI.T Interrupt-Maske
ACTEV auf Prozessir. einplanen
...

TSKNAM DC.B ’Alarm’

Falls die Datei COMEQU nicht zur Hand ist, hier die wahrscheinlichen Werte für
OPNAME und OPFATI:

OPNAME EQU $66 und OPFATI EQU $6C beim 68K
OPNAME EQU $B4 und OPFATI EQU $BC beim PowerPC

458 8.1 Die Systemtraps

ACTQ = $4E40 Activate quick

Eingabe: D1.W Priorität
A1.L Adresse der Task (TID)

Ausgaberegister: -

Veränderte Register: D1,D7,A1

Eine Task, deren Adresse in A1 steht, wird aktiviert. In D1 wird die Priorität der
Aktivierung übergeben. Ist D1 gleich Null, wird die Task mit ihrer Standard-
priorität gestartet. Negative Prioritäten sind den Systemtasks vorbehalten und
damit nicht erlaubt, sie führen zu einer Fehlermeldung. Läuft die Task schon,
wird die Aktivierung gepuffert. Beim Überlaufen des Aktivierungspuffers erhält
man ebenfalls eine Fehlermeldung.

Beispiel:

ACTQ OPD $4E40 Trap-Definition
... TID in A1

_MOVE =$20,D1 Prio=$20
ACTQ Activate Task
...

8.1 Die Systemtraps 459

Cache clear CACHCL = $A05C

Eingaberegister: --

Ausgaberegister: --

Veränderte Register: D7

Im Nukleus wird hier zunächst nur eine Leeroperation angeschlossen. Der
Trap muß darum in den Implementierungsscheiben bei allen Prozessoren, die
einen Cache besitzen, neu definiert werden. Seine Aufgabe besteht darin, alle
Prozessor-Caches ungültig zu machen. Beim 68040 z. B. bedeutet dies, daß alle
dirty-lines (Copyback mode) des Datencaches in den Speicher gebracht werden
müssen.

Der Trap wird an vielen Stellen der Systemsoftware benutzt, zum Beispiel in
der Shell beim ”SM“- und “SD“-Befehl. Auch der Lader und manche I/O-Treiber
setzen ihn ein. Der Systemprogrammierer kann nur mit ihm sicherstellen, daß
etwa ein mit MOVE in den Datenspeicher geschriebener Maschinenbefehl vom
Prozessor dort als Instruktion gefunden wird oder daß beim memory-mapped
I/O die Daten nicht nur im internen Cache, sondern auch in der Außenwelt
ankommen.

460 8.1 Die Systemtraps

CD7TAS = JSR xxxx Convert D7 to ASCII–String

Eingaberegister: D7.W Hex.–Zahl
Ausgaberegister: D6.L ASCII–Text der Hex.–Zahl
Veränderte Register: D7

Hierbei handelt es sich nicht um einen Trap! Vielmehr kann diese Routine über
eine feste Adresse, deren Wert man mit der Datei COMEQU erhält, angesprungen
werden:

JSR CD7TAS

angesprungen werden. Die Hex.–Zahl in D7.W wird Zeichen um Zeichen in einen
ASCII–String verwandelt, der in D6.L steht. Diese Routine kann genutzt wer-
den, um sich die Umwandlung in ASCII–Strings z. B. bei der Ausgabe einer
Adresse zu sparen. Die niederwertige Hälfte von D7, also D7.W ist nach der
Routine unverändert.
Beispiel:

.INCLUDE .../COMEQU.NOL (ohne Liste)
...
_MOVE =$12A4,D7 Hex.-Zahl
JSR CD7TAS konvertieren
... D6=$31324134

Für den Notfall (COMEQU nicht zur Hand) hier die wahrscheinlichen Adressen
für CD7TAS:

CD7TAS EQU $8A4 68k-Familie
CD7TAS EQU $5210 PowerPC-Familie

8.1 Die Systemtraps 461

Clock to ASCII Conversion CLKASC = $A068

Eingaberegister: D1.L Zeit in msec
A2.L Zieladresse des Ausgabestrings

Veränderte Register: D1.L,D5,D6,D7,SR

A2.L zeigt auf erste freie Byte nach Ausgabestring

Die in D1.L übergebene Zeitangabe in msec wird in einen Ausgabestring (8
Zeichen, Aufbau: hh:mm:ss) verwandelt und auf die in A2 übergebene Adresse
geschrieben. A2 wird um die Anzahl der Zeichen erhöht.

Beispiel: (nicht T–Code kompatibel!)

CLKASC OPD $A068 Trapdefinition
time EQU $88A time (Systemzelle 68k)
timeb EQU $88E timeb (Systemzelle 68k)

...
MOVEM.L time,D1/D2 time+timeb lesen
ADD.L D2,D1 Systemzeit errechnen
LEA BUFFER,A2 Zieladresse laden
CLKASC Zeit auf (A2)+
...

Man beachte bitte den MOVEM–Befehl im Beispiel! Würde man nämlich die Zellen
time und timeb durch 2 ”Moves“ lesen, so sind unsinnige Ergebnisse möglich,
falls der Clockinterrupt die beiden Leseoperationen trennt. In Multiprozessor-
systemen und bei den meisten RISC-Prozessoren funktioniert das jedoch nicht
korrekt und so müssen derartige Sequenzen bei der Umstellung auf legalen
T–Code verändert werden:
Beispiel: (legaler T–Code)

CLKASC OPD $A068 Trapdefinition
RCLK OPD $A03E Trapdefinition

...
RCLK Uhrzeit nach D1
LEA BUFFER,A2 Zieladresse laden
CLKASC Zeit auf (A2)+
...

462 8.1 Die Systemtraps

CON = $4E42 Continue Task by name

Eingaberegister: OPNAME.T Textadresse oder Text
A4.L muß auf Taskworkspace zeigen

Ausgaberegister: -

Veränderte Register: D7,A1,A2

Eine Task, deren Name oder deren Adresse des Namens in OPNAME.T =
OPNAME(A4) steht, wird fortgesetzt. Ist die Task nicht geladen oder nicht sus-
pendiert, wird eine entsprechende Fehlermeldung ausgegeben und der Aufrufer
suspendiert. Während der Suche im Speicher bleibt der Trap preemptionfähig.

Beispiel:

CON OPD $4E42 Trap-Definition
...
LEA TSKNAM,A0 Adresse des Tasknamens
MOVE.L A0,OPNAME.T Eintrag der Adresse

_CLR OPNAME+4.T kein Text
CON fortsetzen
...

Die Distanzwerte von OPNAME für den Notfall:

OPNAME EQU $66 68k-Familie
OPNAME EQU $B4 PowerPC-Familie

8.1 Die Systemtraps 463

Continue Task by interrupt–schedule CONEV = $A01C

Eingaberegister: OPNAME.T Textadresse oder Text
OPFATI.T Prozeß–Interrupt–Maske
A4.L muß auf Taskworkspace zeigen

Ausgaberegister: -

Veränderte Register: D7,A1,A2

Eine Task, deren Name oder deren Adresse des Namens in OPNAME.T =
$66(A4) steht, wird zur Fortsetzung eingeplant. Bestehende Fortsetzungs-
Einplanungen werden gelöscht. In OPFATI.T = $6C(A4) muß die Prozeß–
Interrupt–Maske eingetragen sein. Während der Suche ist der Trap preemp-
tionfähig.

Beispiel:

CONEV OPD $A01C Trap-Definition
...
LEA TSKNAM,A0 Adresse des Tasknamens
MOVE.L A0,OPNAME.T Eintrag der Adresse
CLR OPNAME+4.T kein Text
MOVE.L =$00040000,OPFATI.T Interrupt-Maske
CONEV bei Interrupt fortsetzen
...

Falls die Datei COMEQU nicht zur Hand ist, hier die wahrscheinlichen Werte für
OPNAME und OPFATI:

OPNAME EQU $66 und OPFATI EQU $6C beim 68K
OPNAME EQU $B4 und OPFATI EQU $BC beim PowerPC

464 8.1 Die Systemtraps

CONQ = $A050 Continue quick

Eingaberegister: A1.L Adresse der Task (TID)
Ausgaberegister: -

Veränderte Register: D7

Eine Task, deren Adresse in A1 steht, wird fortgesetzt. Ist die Task nicht sus-
pendiert, wird eine entsprechende Fehlermeldung ausgegeben und der Aufrufer
suspendiert.

Beispiel:

CONQ OPD $A050 Trap-Definition
... TID in A1
CONQ fortsetzen
...

Der Trap prüft nicht, ob über A1 überhaupt ein sinnvoller Task-! →
ID übergeben wurde. Dies muß der Aufrufer unbedingt sicher-
stellen!

8.1 Die Systemtraps 465

Character–Scan alternate CSA = $A03A

Eingabe-Register: A2.L Adresse des zu unters. Textes
Ausgabe-Register: A2.L Inkrementiert um 1 falls gefunden

SR Status der Funktion
Veränderte Register: D7,SR

PC überspringt das Wort nach dem Trap

Die beiden hinter dem Trap im Speicher folgenden Bytes werden nacheinan-
der mit dem Zeichen auf (A2) verglichen. Stimmt eines der beiden mit dem
Eingabetext überein, so wird A2 um eins erhöht und das Statusregister auf

”EQ“ gesetzt. Stimmt keines der beiden Bytes mit (A2) überein, so bleibt A2
unverändert, und im Statusregister wird die Kondition ”NE“ gesetzt.

In jedem Fall wird das auf den Trap folgende Rechnerwort (2 Bytes beim 68k,
4 Bytes beim PowerPC) bei der Rückkehr übersprungen.

Der Trap eignet sich für eine einfache Textanalyse und wird innerhalb des
Bedieninterpreters eingesetzt. Er ist darum auch zur Realisierung neuer Be-
dienbefehle optimal geeignet.

Beispiel:

CSA OPD $A03A Trap-Definition
... A2 zeigt auf Eingabetext
CSA Aufruf
DC.B ’Aa’ Pruefe, ob kleines/grosses A folgt.
BEQ Weg Wenn ja, springe mit erhoehtem A2

466 8.1 Die Systemtraps

DATASC = $A066 Date to ASCII Conversion

Eingaberegister: D0.W Datum
A2.L Zieladresse des Ausgabestrings

Veränderte Register: D0,D7 zerstört
A2.L zeigt auf nächstes Byte nach Ausgabestring

Die in D0 übergebene Datumsangabe (Anzahl der Tage seit 31.12.1983) wird
in einen Ausgabestring (10 Zeichen, Aufbau: tt-mm-jjjj) verwandelt und auf
die in A2 übergebene Adresse geschrieben. A2 wird um die Anzahl der Zeichen
erhöht. Ist D0.W = $0000 (nicht gesetztes Datum), so wird die Zeichenfolge

”----------“ ausgegeben.

Beispiel:

DATASC OPD $A066 Trapdefinition
.INCLUDE .../COMEQU.NOL (ohne Liste)
...
_MOVE DATE,D0 Datum aus Systemzelle laden
LEA BUFFER,A2 Zieladresse laden
DATASC Datum auf (A2)+
...

Falls die Datei COMEQU nicht zur Hand ist, hier die wahrscheinlichen Adressen
von DATE:

DATE EQU $80A bei 68k-Familie
DATE EQU $5058 bei PowerPC-Familie

8.1 Die Systemtraps 467

Decode Error–Text DCDERR = $A06C

Eingaberegister: A2.L Zieladresse für Ausgabetext
D1.W Error-code-Wort
D5.W Verfügbarer Platz auf Zieladresse

Ausgaberegister: A2.L Inkrementierte Zieladresse
D5.W noch verfügbarer Platz auf Zieladresse

Veränderte Register: A2,D1,D5,D6,D7

Das 16-bit Wort in D1 wird in wortweise zusammengesetzten Text umgewandelt
und nach (A2)+ geschrieben. Dabei wird mit Hilfe von D5 eine Überwachung
vorgenommen, die ein Überschreiben des Zielpuffers verhindern kann: Die Text-
generierung endet sofort, wenn der Zählerstand in D5 erschöpft ist. Sowohl A2
als auch D5 werden vom Trap sinnentsprechend verändert zurückgegeben.

Das Wort in D1 bestehe aus den vier Nibbles (Hexzahlen) abcd. Das höchst-
wertige Nibble, hier a, ist für den Dekodiervorgang ohne Bedeutung, da es nur
Informationen für den Error-Dämon bzw. den Exceptionhandler enthält.

Beispiel:

DCDERR OPD $A06C
LEA output,A2 Zieladresse des Textes
MOVEQ =25,D5 Max. Platz im Puffer

_MOVE =$0285,D1 Kuenstl. Error-code
DCDERR
.....

* Auf der Zieladresse Text ’wrong address (trap)’
* ablegen. A2 und D5 sind passend veraendert.

468 8.1 Die Systemtraps

a: Für diesen Trap ohne Bedeutung

b: Auswahl aus folgendem Vorrat:

0 Blank 1 not 2 wrong
3 zero–division 4 CHK 5 blocks
6 breakpoint 7 directory 8 disc
9 memory A module B missing
C underflow D alignment1 E – –
F – –

c: Auswahl aus folgendem Vorrat:

0 Blank 1 bus–error 2 device–ldn
3 prio 4 loaded 5 suspended
6 active 7 command 8 address
9 op–code A priviledged B overflow
C in system D I/O E operand
F – –

d: Auswahl aus folgendem Vorrat:

0 Blank 1 (activate) 2 (terminate)
3 (continue) 4 (xio–call) 5 (trap)
6 (floppy/harddisc) 7 loader–input 8 rec–checksum
9 label A (mode) B timing
C (array)index D FPU–688812 E parameterlist
F – –

1 Nur beim PowerPC
2 Nur beim 68k

8.1 Die Systemtraps 469

Delimiter–Test DELTST = $A052

Eingaberegister: A2.L Adresse des zu unters. Textes
Ausgaberegister: A2.L Inkrementiert bis Delimiter

SR Bei Delimiter auf ”EQ“
Veränderte Register: D7,SR

Es wird geprüft, ob der zu untersuchende Text als nächstes Zeichen einen Deli-
miter enthält. Als Delimiter gelten Semikolon($3B), Bindestrich($2D) und <Re-
turn>($0D). Blanks($20) und Kommata($2C) werden überlesen. A2 wird solan-
ge erhöht, bis ein Zeichen gefunden wird, das kein Blank oder Komma ist.
Ist dieses Zeichen ein Delimiter, so wird das Statusregister auf ”EQ“ gesetzt,
andernfalls auf ”NE“. A2 zeigt auf dieses Zeichen.

Dieser Trap eignet sich zur Analyse eines Textes, z. B. bei der Realisierung
neuer Bedienbefehle.

Beispiel:

DELTST OPD $A052
... A2 zeigt auf den Eingabetext
DELTST Aufruf
BNE NOLIM Springt, wenn kein Delimiter
...

470 8.1 Die Systemtraps

DISAB = $A034 Disable Prozeßinterrupt

Eingaberegister: D0.L Interruptmaske
Ausgaberegister: -

Veränderte Register: D0,D7

Das Bitmuster in D0 wird so mit der Enable–Maske verknüpft, so daß alle
Prozeßinterrupts, deren Bits in D0 auf ’1’ gesetzt sind, gesperrt werden.

Beispiel:

DISAB OPD $A034 Trap-Definition
...

_MOVE.L =$40000000,D0 Interruptmaske
DISAB Sperrung des Interrupts
...

8.1 Die Systemtraps 471

Dispatcher Call DPC = $4E43

Eingaberegister: -

Ausgaberegister: -

Veränderte Register: -

Wenn der Trap im Supervisormode des Prozessors aufgerufen wird, so wird
dieser beendet. Der Prozessor wird in den User-mode gebracht, und es wird ein
Dispatcherstart forciert. Damit ist dieser Trap das Gegenstück zum OFF-Trap,
siehe Seite 499).

Der Trap kann allerdings auch jederzeit aus dem Usermode heraus aufgerufen
werden, auch dann erfolgt ein Dispatchersuchlauf. So läßt sich ggf. erzwingen,
daß auf irgendwelche Manipulationen an Taskzuständen sofort reagiert wird.

Wichtig: Interruptprozesse starten einen Dispatcherlauf nicht mit diesem Trap,
sondern durch Setzen der Dispatcher-Call-Flag — das ist entweder eine Spei-
cherzelle (68k) oder ein Bit im Prozessorzustandsregister (PowerPC)! Das Set-
zen erfolgt im T–Code mit dem Format DPCALL (aus der Datei SUPERVIS.FOR).
Diese Flag wird grundsätzlich bei jedem Übergang vom Supervisor– in den
Usermode beachtet. (Eine direkte Rückkehr vom Supervisor- in den Usermode,
etwa mit RTE, ohne weitere Maßnahmen ist verboten!)

Beispiel (T–Code):

DPC OPD $4E43 Trap-Definition
OFF OPD $4E4F --- " ---

...
OFF To supervisor
... ... superv. code ...
DPC Start Dispatcher
...

In Interruptroutinen aber:

.INCLUDE .../SUPERVIS.FOR

.INCLUDE .../COMEQU
...
DPCALL alert dispatcher (if task-state changed)
...
JMP DISEX always: IR-Exit by dispatcher!

472 8.1 Die Systemtraps

DVDSC = $A012 Device–Description–Link

Eingaberegister: D1.B LDN
Ausgaberegister: D1.L Diff. Adr. der Device–Parameter
Veränderte Register: D7

Der Trap liefert die Differenz der Adresse der Device–Parameter zu A1, wie sie
beim DD– und SD–Kommando beschrieben werden. In D1.B muß die LDN der Da-
tenstation übergeben werden. Es wird nicht geprüft, ob die entsprechende LDN
überhaupt im System vorhanden ist. Bei Veränderungen der Device–Parameter
muß also sichergestellt sein, daß die Adresse einer gültigen LDN verwendet wird,
sonst kann es zu Systemabstürzen kommen, die sich u. U. erst später zeigen.

Beispiel:

DVDSC OPD $A012 Trap-Definition
...

_MOVE.B =2,D1 LDN = 2 (Port 2)
DVDSC Adresse von Device-Para
MOVE.B =1,1(A1,D1.L) Zweites Byte von
... A2: auf ESC-Sequenzen setzen
...

8.1 Die Systemtraps 473

Enable Prozeßinterrupt ENAB = $A032

Eingaberegister: D0.L Interruptmaske
Ausgaberegister: -

Veränderte Register: D7

Das Bitmuster in D0 wird mit der Enable–Maske ”geodert“. Damit werden alle
Prozeßinterrupts, deren Bits in D0 auf ’1’ gesetzt sind, freigegeben.

Beispiel:

ENAB OPD $A032 Trap-Definition
...

_MOVE.L =$80000000,D0 Interruptmaske
ENAB Freigabe des Intrrupts
...

474 8.1 Die Systemtraps

ENTRB = $A076 Enter Boltvariable

Eingaberegister: A1 Adresse der Bolt-Variablen
Ausgaberegister: -

Veränderte Register: D7

Die mit A1 angegebene Boltvariable wird daraufhin untersucht, ob ein weiterer

”Enter“ möglich ist.

Ist dies der Fall, so wird der Entercount um eins erhöht und der Trap ohne
weitere Aktion verlassen.

Die aufrufende Task wird in folgenden Fällen blockiert:
• Wenn die Boltvariable ”reserved“ ist.
• Wenn der Entercount erschöpft ist.
• Wenn ein oder mehrere ”Reserver“ bereits ihr Interesse angemeldet haben

und warten.
Wenn die aufrufende Task blockiert wird, so wird der Boltvariablen der Zu-
stand ”mindestens ein Enterer wartet“ aufgeodert. Neuer Taskzustand ist dann

”SEMA“.

Maximal kann eine Boltvariable in RTOS–UH 8191 mal ”entered“ sein.

Beispiel:

ENTRB OPD $A076
...
LEA Boltx,A1 Adresse der Boltvariablen
ENTRB Task wird je nach
... Vorzustand evtl. blockiert

Boltx DC 0 Bolts sind 16-bit Obj.

8.1 Die Systemtraps 475

Write Error–Message ERROR = $A002

Eingaberegister: Parameter über PC, ggf. A1 sowie $66(A4)

Ausgaberegister: -

Veränderte Register: D7,PC überspringt Wort nach dem Trap

Es wird eine wortweise zusammengesetzte Meldung erzeugt und im Normal-
fall über den Error–Dämon (Task #ERRDM) zum Standard–Error-device/file
des Nutzers geleitet. Der Text wird durch den Inhalt der Zelle OPNAME.T =
OPNAME(A4) sowie durch das Wort hinter dem Trap bestimmt. Wenn dieses aus
den Hexziffern ”abcd“ besteht, so bestimmen b, c und d den eigentlichen Text,
während a eine Zusatzinformation festlegt. In OPNAME.T steht entweder ein 6
Byte langer Text oder eine 4 Byte Adresse gefolgt von einem Nullwort (Adre-
ßindikator). Textende durch $FF. Die Textausgabe wird bei einem Leerzeichen
abgebrochen. Der Text muß konstant sein, da er nicht gepuffert wird!

Wenn für den aufrufenden Prozeß ein eigener Exception-Handler angeschlossen
ist, so wird dieser aktiviert. Je nach im Exception-Frame vereinbartem Mode
unterbleibt ggf. die Ausgabe des Textes durch den Error-Dämon. Die Dekodie-
rung des Textes ist mit Hilfe des DCDERR-Traps auf Seite 467 möglich. Auch der
Error-Dämon benutzt intern den DCDERR-Trap.

Beispiel:

ERROR OPD $A002
ERROR Trap-Aufruf
DC $1234 a=1,b=2,c=3,d=4

* Meldung waere >>task:filename wrong prio (xio-call)

Falls die Datei COMEQU nicht zur Hand ist, hier die wahrscheinlichen Werte für
OPNAME:

OPNAME EQU $66 beim 68K
OPNAME EQU $B4 beim PowerPC

476 8.1 Die Systemtraps

a: enthält folgende funktionelle Bits:

2 unterdrücke den Text in OPNAME
8 suspendiere die aufrufende Task

b: Auswahl aus folgendem Vorrat:

0 Blank 1 not 2 wrong
3 zero–division 4 CHK 5 blocks
6 breakpoint 7 directory 8 disc
9 memory A module B missing
C underflow D alignment1 E – –
F – –

c: Auswahl aus folgendem Vorrat:

0 Blank 1 bus–error 2 device–ldn
3 prio 4 loaded 5 suspended
6 active 7 command 8 address
9 op–code A priviledged B overflow
C in system D I/O E operand
F – –

d: Auswahl aus folgendem Vorrat:

0 Blank 1 (activate) 2 (terminate)
3 (continue) 4 (xio–call) 5 (trap)
6 (floppy/harddisc) 7 loader–input 8 rec–checksum
9 label A (mode) B timing
C (array)index D FPU–688812 E parameterlist
F – –

1 Nur beim PowerPC
2 Nur beim 68k

8.1 Die Systemtraps 477

Interrupt–schedule activation quick EVACTQ = $A056

Eingaberegister: D1.W Priorität
A1.L Adresse der Task (TID)
OPFATI.T Prozeß–Interrupt–Maske
A4 muß auf Taskworkspace zeigen

Ausgaberegister: -

Veränderte Register: D1,D6,D7,A1

Eine Task, deren Adresse in A1 steht, wird zur Aktivierung eingeplant. Beste-
hende Aktivierungs-Einplanungen werden gelöscht. In D1 wird die Priorität der
Aktivierung übergeben. Ist D1 gelöscht, wird die Default–Priorität eingesetzt.
Die Priorität der aktuell laufenden Task wird nicht geändert. In OPFATI.T =
OPFATI(A4) muß die Prozeß–Interrupt–Maske eingetragen sein.

Beispiel:

EVACTQ OPD $A056 Trap-Definition
... TID in A1

_MOVE.L =$80004000,OPFATI.T Interrupt-Maske
EVACTQ auf Interrupt einplanen
...

Für den Notfall (Datei COMEQU nicht zur Hand) hier die wahrscheinlichen Werte
von OPFATI:

OPFATI EQU $6C in der 68k-Familie
OPFATI EQU $BC in der PowerPC-Familie

478 8.1 Die Systemtraps

EVCONQ = $A05A Event continue quick

Eingaberegister: A1.L Adresse der Task (TID)
OPFATI.T Prozeß–Interrupt–Maske
A4 muß auf Taskworkspace zeigen

Ausgaberegister: -

Veränderte Register: D6,D7,A1

Eine Task, deren Adresse in A1 steht, wird zur Fortsetzung eingeplant. Be-
stehende Fortsetzungs-Einplanungen werden gelöscht. In OPFATI.T = $6C(A4)
muß die Prozeß–Interrupt–Maske eingetragen sein.

Beispiel:

EVCONQ OPD $A05A Trap-Definition
... TID in A1

_MOVE.L =$80001000,OPFATI.T Interrupt-Maske
EVCONQ auf Interrupt einplanen
...

Für den Notfall (Datei COMEQU nicht zur Hand) hier die wahrscheinlichen Werte
von OPFATI:

OPFATI EQU $6C in der 68k-Familie
OPFATI EQU $BC in der PowerPC-Familie

8.1 Die Systemtraps 479

Fetch Communication–Element FETCE = $4E48

Eingaberegister: D1.L Größe des I/O–Buffers
Ausgaberegister: A1.L Adresse des CE’s
Veränderte Register: D1,D6,D7

Der Inhalt von D1.L wird als Größe des effektiv nutzbaren zu schaffenden Puf-
fers im CE angesehen. Will man den Puffer (IOBUF, siehe Beschreibung CE in
8.3.1 auf Seite 559) nicht benutzen, so ist durchaus ein Aufruf mit D1.L=0 sinn-
voll. Im Register A1 wird die Adresse des CEs zurückgegeben. Die Ausführung
dieser Instruktion kann die exekutierende Task blockieren:

1. Die Task hat bereits ihr Kontingent an CE–Speicherraum verbraucht. Sie
wird mit ”CWS?“ blockiert und erst wieder lauffähig, wenn andere in ihrem
Besitz befindliche CEs zu freiem Speicher rückverwandelt sind.

2. RTOS–UH hat nicht mehr genügend Speicher zur Verfügung. Die Task
wird in der Kondition ”PWS?“ blockiert und erst wieder lauffähig, wenn
irgendwo genügend Speicher freigeworden ist.

Die Blockierung im ersten Fall läßt sich vermeiden, wenn das Least–significant
Bit (ungerade Zahl) im Eingaberegister D1.L gesetzt ist. Dieses Bit wird nicht
bei der Größenberechnung berücksichtigt, sondern dient als Indikator für die
Zulassung einer ”kontingentüberschreitenden“ Anforderung.

Das CE wird vom FETCE mit folgenden Einträgen vorparametriert:

PRIO Eigenpriorität der Task

BUADR Adresse von IOBUF(A1)

STATIO $00

FNAME} 1 Blank+$FF

Die restlichen Parameter (LDNIO, RECLEN, MODE ...) müssen von der Task
besetzt werden, bevor das CE über ”XIO“ benutzt werden kann. Natürlich
dürfen dabei auch die obigen vorbesetzten Parameter verändert werden.

480 8.1 Die Systemtraps

FREEB = $A074 Free Boltvariable

Eingabe-Register: A1.L Addresse der Boltvariablen
Veränderte Register: D5,D6,D7

Dieser Trap ist Teil des ”FREE“-Konstruktes aus PEARL. Er kann allerdings
auch ohne den entsprechenden Umgebungscode direkt benutzt werden. Die
mit A1 adressierte Boltvariable wird bedingungslos auf den Zustand ”FREE“ ge-
bracht. Evtl. vorhandene auf diese Variable wartende ”Enterer“ oder ”Reserver“
werden entblockiert, was ggf. wie jede Entblockierung einen Dispatcherstart be-
wirkt.

Wenn man als Assemblerprogrammierer das extrem schnelle Konstrukt des
PEARL-Compilers beim ”FREE“-Statement nachbilden will, so kann wie folgt
verfahren werden:

FREEB OPD $A074
...
LEA Boltx,A1 Adresse der 16-bit Bolt
LSL (A1) Test and clear sign-bit
BEQ.B Weiter Branch if no waiting Task
FREEB Total clear etc.

Weiter ...
Boltx DC 0 Bolts sind 16 Bit, init 0

Bitte verwenden Sie nur entweder den Trap pur oder exakt obiges schnelleres
Konstrukt. Der Transferassembler für den PowerPC kann nämlich nur genau
diesen LSL-Befehl in eine gegen Taskwechsel gesicherte Ersatzkonstruktion mit
Hilfe des lwarx-Befehles übersetzen.

Der Trap, bzw. das komplette PEARL-Konstrukt kann auch benutzt werden,
um eine Boltvariable unbedingt freizugeben. Eine Boltvariable im ”entered-
state“ dürfte eigentlich nie dem FREE-Trap angeboten werden – wenn man sich
über die Folgen im Klaren ist, kann das dennoch eine wichtige Programmierhilfe
zur Re-Initialisierung sein: Die Boltvariable steht hinterher auf Null, natürlich
darf sich dabei keine lebendige Task mehr im kritischen Pfad befinden.

8.1 Die Systemtraps 481

Generate and prepare SubTask GAPST = $A00E

Eingabe-Register: D1.L Total size of required task–header
D6.W Priority of son–process
OPNAME.T 6 Bytes of son’s name (kann später noch

geändert werden)
A4.L muß auf Taskworkspace zeigen

Ausgabe-Register: A1.L Pointer to generated task–header
CCR ”EQ“ if possible, ”NE“ if no space av.

Veränderte Register: D1,D7

Es wird ein Taskkopf der in D1 angegebenen Größe (muß mindestens der Größe
des Task-DCB entsprechen, die aus der Zelle PTHLEN gelesen werden kann,
wahrscheinlicher Inhalt: $62) nach Suche von oben nach unten erzeugt. Konnte
der benötigte Platz nicht gefunden werden, so retourniert der Trap mit ”NE“
und es wird keine Aktion ausgeführt. Anderenfalls antwortet er mit ”EQ“ und
läd A1 (Zeiger auf den Taskkopf). Der Task–Declaration Block ”Task-DCB“
wird wie folgt vorbesetzt:

TYPE : User–no. des Aufrufers + TYPE Task
PRIO : Eingangswert D6, nicht mehr änderbar!
NAME : 6 Bytes aus OPNAME.T des Aufrufers,

änderbar
WSPLEN : Defaultiert zu $78 (minimaler Platz),

änderbar
... : No schedule, No buff. activation, no TWS
BLOCK : Waiting for activation (blocked, but lin-

ked)

Der Anwender muß jetzt unbedingt den Start–PC, SPC(A1), auf die zu exe-
kutierende Code–Sequenz bringen! Er kann WSPLEN(A1) und NAME(A1) noch
verändern (etwa bei Langnamen den langrelativen Zeiger einsetzen). Irgend-
welche Parameter kann man dem Sohn nur über die Zellen hinter dessen Task-
DCB – also nicht vor $64(A1) – einschreiben, wenn D1.L groß genug war. Der
Sohn kann die Parameter dort später mit Hilfe seiner eigenen TID abholen und
auswerten.

482 8.1 Die Systemtraps

Nachdem alle Parameter versorgt worden sind, kann man das Blockbyte löschen
und einen Dispatcherstart mit dem Trap DPC ($4E43) wagen. Der Sohn setzt
sich nun in Gang und raubt — je nach PRIO — eventuell dem erzeugenden
Prozeß den Prozessor. Irgenwann wird aber auch der erzeugende Prozeß hinter
dem CLR BLOCK(A1) oder dem DPC–Trap fortgesetzt, er muß also entsprechend
weitergeführt werden.

Der Trap wird im Bedieninterpreter benutzt, z. B. COPY, LOAD, P, AS um diesen
zeitlich sowie speicherplatzmäßig zu entlasten.

Er ist hervorragend für kompliziertere Shell–Extensions geeignet, erfordert al-
lerdings auch Sorgfalt bei der Anwendung. Wenn der Sohnprozeß nach getaner
Arbeit verschwinden soll, so muß man ihn nur auf den Trap TERV ($A010) statt
TERMI ($4E41) laufen lassen. Wenn man auf das Ende des Sohnprozesses warten
will, so empfiehlt sich dafür der Trap WFEX, beschrieben auf Seite 539.
Verwenden Sie unbedingt die Datei COMEQU oder COMEQU.NOL (ohne Liste) um
die richtigen Displacements zu erhalten. Zwischen dem 68k und dem PowerPC
gibt es einige Unterschiede

8.1 Die Systemtraps 483

Identify Module by String IMBS = $A03C

Eingaberegister: A2.L Adresse des Modulnamens
Ausgaberegister: A1.L Adresse des Moduls

SR ”EQ“ wenn gefunden, sonst ”NE“
Veränderte Register: D7,A2

Der RAM–Bereich des Rechners wird nach einem Modul durchsucht, dessen
Name mit dem von A2 adressierten übereinstimmt. Wird das Modul gefunden,
antwortet der Trap mit ”EQ“, und in A1 steht die Adresse des Moduls. Wird
das Modul nicht gefunden, lautet die Antwort ”NE“. Der Name muß mit einem
ASCII–Zeichen kleiner $2F oder Semikolon ($3B) enden. Während der Suche
ist der Trap preemptionfähig.

Beispiel:

IMBS OPD $A03C Trap-Definition
...
LEA TEXT,A2 Adr. von Modulnamen-> A2
IMBS Suchen
BEQ FOUND Springe, wenn gefunden
...

TEXT DC.B ’Mist’ Modulname
DC.B $20 Ende des Namens

484 8.1 Die Systemtraps

INTD1 = $A04C Integer to D1

Eingaberegister: A2.L Adresse des Textes
Ausgaberegister: D1.L 32 Bit Integer

SR ”NE“ wenn keine Ziffer, sonst ”EQ“
A2 um Anzahl Ziffern inkrementiert

Veränderte Register: D7

Eine Zahl in ASCII–Darstellung wird in eine 32 Bit Integer–Zahl gewandelt. In
A2 muß die Anfangsadresse der ASCII–Zahl stehen. Das Ergebnis wird in D1
zurückgegeben. Die Umwandlung wird abgebrochen, wenn A2 auf ein ASCII–
Zeichen zeigt, welches nicht zwischen 0 ($30) und 9 ($39) zeigt. Liegt gleich das
erste Zeichen außerhalb, so antwortet der Trap mit ”NE“. Ist das erste Zeichen
eine Ziffer, ist die Antwort ”EQ“. Es wird nicht geprüft, ob ein Overflow auftritt!

Beispiel:

INTD1 OPD $A04C Trap-Definition
... A2 zeigt auf ASCII-String
INTD1 Wandeln
BNE MUELL springe, wenn keine Zahl
...

8.1 Die Systemtraps 485

I/O–Wait–Function IOWA = $A00A

Eingaberegister: A1.L muß auf ein CE zeigen
Ausgaberegister: -

Veränderte Register: D7

Es wird geprüft, ob das mit A1 bezeichnete Element noch in einer Warteschlange
steht oder noch in laufender Bearbeitung der Betreuungstask ist. In diesem
Fall wird die den ”IOWA“ exekutierende Task blockiert im Status ”I/O?“. Ist
das Element bereits vollständig bearbeitet, so wirkt der Befehl wie ein ”No
Operation“.

Mit der Blockierung der Task wird im CE–Modewort nachträglich das ”War-
tebit“ gesetzt, so daß die aufrufende Task sofort mit der Beendigung des I/O–
Vorganges wieder lauffähig wird.

Die Verwendung dieses Traps empfiehlt sich insbesondere, wenn Inputopera-
tionen früh vor der Benutzung der Daten in Auftrag gegeben wurden und die
Daten nun gebraucht werden. Auch nach einem Output ohne Wartebit muß
diese Funktion aufgerufen werden, wenn das CE neu parametriert werden soll.

Warnung:

Der Trap kann in der jetzigen Form nicht benutzt werden, wenn
das CE mit gesetztem Return-Bit zum I/O-Dämonen geschickt
wurde. Die Blockierung durch diesen Trap wird nämlich nicht auf-
gehoben, wenn das CE in die eigene Warteschlange zurückkehrt,
und die Task bleibt ewig blockiert.

486 8.1 Die Systemtraps

ITBO = $A006 Identify Task by Opname

Eingaberegister: OPNAME.T Textadresse oder Text
A4 muß auf Taskworkspace zeigen

Ausgaberegister: A1.L Adresse der Task
SR ”EQ“ wenn gefunden, sonst ”NE“

Veränderte Register: D7,A2

Der RAM–Bereich des Rechners wird nach einer Task durchsucht. Die Task
wird durch den Inhalt von OPNAME.T = OPNAME(A4) beschrieben. In OPNAME.T
steht entweder ein 6 Byte langer Text oder eine 4 Byte Adresse eines Textes,
der mit einem ASCII–Zeichen kleiner $2F oder Semikolon ($3B) enden muß,
und ein Wort $0000. Wird die Task gefunden, antwortet der Trap mit ”EQ“,
und in A1 steht die Adresse der Task. Wird die Task nicht gefunden, lautet die
Antwort ”NE“.

Beispiel:

ITBO OPD $A006 Trap-Definition
...
MOVE.L =$41464645,OPNAME.T ’AFFE’ nach OPNAME
MOVE =$2020,OPNAME+4.T Mit Blanks auf 6 Byte
ITBO Suchen
BEQ FOUND Springe, wenn gefunden
...

Falls die Datei COMEQU nicht zur Hand ist, hier die wahrscheinlichen Werte für
OPNAME:

OPNAME EQU $66 beim 68K
OPNAME EQU $B4 beim PowerPC

8.1 Die Systemtraps 487

Identify Task by String ITBS = $A048

Eingaberegister: A2.L Adresse des Tasknamens
Ausgaberegister: A1.L Adresse der Task

SR ”EQ“ wenn gefunden, sonst ”NE“
Veränderte Register: D7,A2

Der RAM–Bereich des Rechners wird nach einer Task durchsucht, deren Namen
mit dem von A2 adressierten übereinstimmt. Wird die Task gefunden, antwortet
der Trap mit ”EQ“ und in A1 steht die Adresse der Task (TID). Wird die Task
nicht gefunden, lautet die Antwort ”NE“. Der Name muß mit einem ASCII–
Zeichen kleiner $2F oder Semikolon ($3B) enden.

Während der Suche ist der Trap preemptionfähig.

Beispiel:

ITBS OPD $A048 Trap-Definition
...
LEA TEXT,A2 Adr. des Tasknamen-> A2
ITBS Suchen
BEQ FOUND Springe, wenn gefunden
...

TEXT DC.B ’Mist’ Taskname
DC.B $20 Ende des Namens

488 8.1 Die Systemtraps

ITS1T = $A040 Index–test one–dimension

Eingaberegister: A1.L Adresse Feldbeschreibungsblock
D0.W linearer Index

Ausgaberegister: -

Veränderte Register: A1,D5,D6,D7

Es wird geprüft, ob der lineare Index eines eindimensionalen Feldes inner-
halb der Feldgrenzen liegt. A1 muß auf den Feldbeschreibungsblock (siehe auch
PEARL-Assembler-UP, 8.4.1) zeigen, hier also auf die Feldgrenze der ersten
Dimension. Wenn der Index außerhalb der Feldgrenzen liegt, wird die Fehler-
meldung ”wrong index“ ausgegeben. War die Zeilenüberwachung eingeschal-
tet, wird auch die Zeilennummer mit ausgegeben. Der Pearl–Compiler gene-
riert diesen Trap bei der +T–Option. Er ist nicht für selbstgeschriebene As-
semblerprogramme gedacht, da man dort meist bessere Prüfmöglichkeiten zur
Verfügung hat.

Beispiel:

ITS1T OPD $A040 Trap-Definition
... Index in D0.W
... A1.L zeigt auf 1st Dimension
ITS1T teste Index
...

Hinweis:

Dieser Trap wird vom PEARL90-System nicht mehr benutzt. Er
ist nur noch zur Abwärtskompatibilität im Systemkern enthalten!

8.1 Die Systemtraps 489

Long Index–test one–dimension ITS1TL = $A060

Eingaberegister: A1.L Adresse Feldbeschreibungsblock
D0.L linearer Index

Ausgaberegister: -

Veränderte Register: A1,D5,D6,D7

Es wird geprüft, ob der lineare Index eines eindimensionalen Feldes inner-
halb der Feldgrenzen liegt. A1 muß auf den Feldbeschreibungsblock (siehe auch
PEARL-Assembler-UP, 8.4.1) zeigen, hier also auf die Feldgrenze der ersten
Dimension. Wenn der Index außerhalb der Feldgrenzen liegt, wird die Fehler-
meldung ”wrong index“ ausgegeben. War die Zeilenüberwachung eingeschal-
tet, wird auch die Zeilennummer mit ausgegeben. Der Pearl–Compiler generiert
diesen Trap bei der +T–Option. Er ist eigentlich nicht zur Anwendung in As-
semblerprogrammen gedacht.

Beispiel:

ITS1TL OPD $A060 Trap-Definition
... Index in D0.L
... A1.L zeigt auf 1st Dimension
ITS1TL teste Index
...

Hinweis:

Dieser Trap wird vom PEARL90-System nicht mehr benutzt. Er
ist nur noch zur Abwärtskompatibilität im Systemkern enthalten!

490 8.1 Die Systemtraps

ITS2T = $A042 Index–test two–dimension

Eingaberegister: A1.L Adresse Feldbeschreibungsblock
D0.W linearer Index

Ausgaberegister: -

Veränderte Register: A1,D5,D6,D7

Es wird geprüft, ob der lineare Index eines zweidimensionalen Feldes inner-
halb der Feldgrenzen liegt. A1 muß auf den Feldbeschreibungsblock (siehe auch
PEARL-Assembler-UP, 8.4.1) zeigen, in dem die Feldgrenzen in umgekehrter
Reihenfolge liegen. Wenn der Index außerhalb der Feldgrenzen liegt, wird die
Fehlermeldung ”wrong index“ ausgegeben. War die Zeilenüberwachung ein-
geschaltet, wird auch die Zeilennummer mit ausgegeben. Der Pearl–Compiler
generiert diesen Trap bei der +T–Option. Er ist eigentlich nicht zur Anwendung
in Assemblerprogrammen gedacht.

Beispiel:
ITS2T OPD $A042 Trap-Definition

... Index in D0.W

... A1.L zeigt auf Feldbeschreibungsb.
ITS2T teste Index
...

Hinweis:

Dieser Trap wird vom PEARL90-System nicht mehr benutzt. Er
ist nur noch zur Abwärtskompatibilität im Systemkern enthalten!

8.1 Die Systemtraps 491

Long Index–test two–dimension ITS2TL = $A062

Eingaberegister: A1.L Adresse Feldbeschreibungsblock
D0.L linearer Index

Ausgaberegister: -

Veränderte Register: A1,D5,D6,D7

Es wird geprüft, ob der lineare Index eines zweidimensionalen Feldes inner-
halb der Feldgrenzen liegt. A1 muß auf den Feldbeschreibungsblock (siehe auch
PEARL-Assembler-UP, 8.4.1) zeigen, in dem die Feldgrenzen in umgekehrter
Reihenfolge liegen. Wenn der Index außerhalb der Feldgrenzen liegt, wird die
Fehlermeldung ”wrong index“ ausgegeben. War die Zeilenüberwachung ein-
geschaltet, wird auch die Zeilennummer mit ausgegeben. Der Pearl–Compiler
generiert diesen Trap bei der +T–Option. Der Trap ist eigentlich nicht zur An-
wendung durch den Assemblerprogrammierer gedacht.

Beispiel:

ITS2TL OPD $A062 Trap-Definition
... Index in D0.L
... A1.L zeigt auf Feldbeschreibungsb.
ITS2TL teste Index
...

Hinweis:

Dieser Trap wird vom PEARL90-System nicht mehr benutzt. Er
ist nur noch zur Abwärtskompatibilität im Systemkern enthalten!

492 8.1 Die Systemtraps

ITS3T = $A044 Index–test three–dimension

Eingaberegister: A1.L Adresse Feldbeschreibungsblock
D0.W linearer Index

Ausgaberegister: -

Veränderte Register: A1,D5,D6,D7

Es wird geprüft, ob der lineare Index eines dreidimensionalen Feldes inner-
halb der Feldgrenzen liegt. A1 muß auf den Feldbeschreibungsblock (siehe auch
PEARL-Assembler-UP, 8.4.1) zeigen, in dem die Feldgrenzen in umgekehrter
Reihenfolge liegen. Wenn der Index außerhalb der Feldgrenzen liegt, wird die
Fehlermeldung ”wrong index“ ausgegeben. War die Zeilenüberwachung ein-
geschaltet, wird auch die Zeilennummer mit ausgegeben. Der Pearl–Compiler
generiert diesen Trap bei der +T–Option. Er ist eigentlich nicht zur Anwendung
durch den Assemblerprogrammierer gedacht.

Beispiel:

ITS3T OPD $A044 Trap-Definition
... Index in D0.W
... A1.L zeigt auf Feldbeschreibungsb.
ITS3T teste Index
...

Hinweis:

Dieser Trap wird vom PEARL90-System nicht mehr benutzt. Er
ist nur noch zur Abwärtskompatibilität im Systemkern enthalten!

8.1 Die Systemtraps 493

Long Index–test three–dimension ITS3TL = $A064

Eingaberegister: A1.L Adresse Feldbeschreibungsblock
D0.L linearer Index

Ausgaberegister: -

Veränderte Register: A1,D5,D6,D7

Es wird geprüft, ob der lineare Index eines dreidimensionalen Feldes inner-
halb der Feldgrenzen liegt. A1 muß auf den Feldbeschreibungsblock (siehe auch
PEARL-Assembler-UP, 8.4.1) zeigen, in dem die Feldgrenzen in umgekehrter
Reihenfolge liegen. Wenn der Index außerhalb der Feldgrenzen liegt, wird die
Fehlermeldung ”wrong index“ ausgegeben. War die Zeilenüberwachung ein-
geschaltet, wird auch die Zeilennummer mit ausgegeben. Der Pearl–Compiler
generiert diesen Trap bei der +T–Option. Er ist wie alle Indextest-Traps eigent-
lich nicht zur Anwendung durch den Assemblerprogrammierer gedacht.

Beispiel:

ITS3TL OPD $A064 Trap-Definition
... Index in D0.L
... A1.L zeigt auf Feldbeschreibungsb.
ITS3TL teste Index
...

Hinweis:

Dieser Trap wird vom PEARL90-System nicht mehr benutzt. Er
ist nur noch zur Abwärtskompatibilität im Systemkern enthalten!

494 8.1 Die Systemtraps

LEAVB = $A078 Leave Boltvariable

Eingaberegister: A1.L Adresse der Boltvariablen
Ausgaberegister: -

Veränderte Register: D5,D6,D7

Der Trap ist das Gegenstück zum ENTRB-Trap, der auf Seite 474 beschrieben
ist. Es sind vier Fälle denkbar:

• Der Entercount ist im normalen Bereich, und es wartet kein ”Reserver“:
Einzige Aktion ist die Dekrementierung der Boltvariablen.

• Der Entercount beim Aufruf ist 1, und es warten 1 oder mehrere ”Reser-
ver“: Die Boltvariable geht in den Zustand ”reserved“, und der höchst-
priore auf sie wartende Prozeß wird lauffähig gemacht. Ein Dispatcherlauf
folgt.

• Der Entercount beim Aufruf steht auf dem Maximum ($3FFF), und ein
oder mehrere ”Enterer“ warten: Alle wartenden Tasks werden freigegeben
(Dispatcherlauf) und können ihre Anforderung wiederholen.

• Der Entercount beim Aufruf war fälschlicherweise Null: Eine Reduktion
unterbleibt, aber evtl. auf die Boltvariable wartende Tasks werden frei-
gegeben.

Beispiel:

LEAVB OPD $A078
...
LEA Boltx,A1
LEAVB
...

8.1 Die Systemtraps 495

Line Tracer LITRA = $A036

Eingaberegister: PC Zeilennummer steht nach PC

BRKADR Break–Adresse
Ausgaberegister: -

Veränderte Register: A1,D1,D6,D7

Wenn eine Task diesen Trap exekutiert und die Zeilennummer in BRKADR =
$3E(TID) mit der Zeilennummer nach diesem Trap übereinstimmt, wird sie
suspendiert, und es erfolgt die Meldung ”breakpoint suspended“ unter An-
gabe der Zeilennummer. Die Zeilennummer nach dem Trap wird in jedem Fall
übersprungen. Desweiteren wird die hinter dem Trap stehende Zeilennummer
in LINENO.T = $A2(A4) eingetragen und ersetzt die bisher evtl. dort stehende.
Der PEARL–Compiler generiert diesen Trap, wenn die +M–Option eingeschal-
tet ist und er realen Code erzeugt. Der Eintrag der Zeilennummer nach BRKADR
kann mit Hilfe des TRACE–Kommandos erfolgen.

Beispiel:

LITRA OPD $A036 Trap-Definition
...
LITRA Line Trace
DC $0001 Zeile Nummer 1
...

496 8.1 Die Systemtraps

LITRAV = $A038 Line Tracer virtuell

Eingaberegister: D1.W Zeilennummer
Ausgaberegister: -

Veränderte Register: A1,D1,D6,D7

Wenn eine Task diesen Trap exekutiert und die Zeilennummer in BRKADR =
$3E(TID) mit der Zeilennummer in D1 übereinstimmt, wird sie suspendiert,
und es erfolgt die Meldung ”breakpoint suspended“ unter Angabe der Zei-
lennummer. Die Zeilennummer in D1 wird in LINENO.T = $A2(A4) eingetragen.
Der Hyperprozessor (Laufzeitsystem von PEARL) benutzt diesen Trap als Teil
eines virtuellen Befehls, den der Pearl–Compiler bei eingeschalteter +M–Option
erzeugt. Der Eintrag der Zeilennummer nach BRKADR kann mit Hilfe des TRACE–
Kommandos erfolgen.

Beispiel:

LITRAV OPD $A038 Trap-Definition
...

_MOVEQ =1,D1 Zeilennummer nach D1
LITRAV Line Trace virtuell
...

8.1 Die Systemtraps 497

Multiply D2 by 60 MD2B60 = $A046

Eingaberegister: D2.L wird mit 60 multipliziert
Ausgaberegister: D2.L

Veränderte Register: D2,D7

Der Inhalt von D2 wird mit 60 multipliziert. Das Ergebnis steht ebenfalls in
D2. Dieser Trap kann bei der Berechnung der Uhrzeit in Stunden, Minuten,
Sekunden verwendet werden.

Beispiel:

MD2B60 OPD $A046 Trap-Definition
... D2 Stunden
MD2B60 aus Stunden->Minuten
MOVE.L D2,MIN Speichern
MD2B60 aus Min.->Sekunden
MOVE.L D2,SEC Speichern
...

498 8.1 Die Systemtraps

MSGSND = $A070 Message send

Eingaberegister: A1.L Pointer Communication–Element
D1.L Task-Identifier der Zieltask

Ausgaberegister: -

Veränderte Register: D1,D5,D6,D7

Mit diesem Trap kann einer in D1.L über ihren Task-Identifier bezeichne-
ten Task das in A1.L bezeichnete Communication–Element geschickt werden.
Ist die Zieltask inaktiv oder blockiert (”waiting for activation“), so wird
sie aktiviert bzw. diese eine Blockierbedingung wird aufgehoben. Ist deren
Defaultpriorität Null, so erfolgt eine dynamische Priorisierung (siehe XIO, Seite
550). Ist im Mode-Byte des CE das Wartebit gesetzt, so wird die aufrufende
Task durch den Trap blockiert im Zustand I/O?. Diese Blockierung hebt der
Empfänger der Nachricht nach deren Auswertung mit Hilfe des RELCE-Traps
erst später wieder auf.

Der Trap funktioniert völlig analog zum XIO-Trap, kann allerdings das CE an
beliebige Tasks verschicken. Genau wie beim XIO wird auch hier eine prioritäts-
gerechte (an Hand der Zelle PRIO im CE) Einkettung vorgenommen: Dringende
Nachrichten kommen ganz nach vorne in die Schlange.

Das weitere Schicksal des CE nach dessen Abarbeitung durch den Message-
Empfänger wird durch das Byte STATIO im CE bestimmt. Wenn das Bit STABRE
(Bitno. 1) gesetzt ist, wird das CE mit dem RELCE des Empfängers in freien
Speicher verwandelt. Ist dagegen das Bit STABRT(Bitno. 2) gesetzt, so kehrt
das CE nach Abarbeitung in die eigene CE-Schlange des Aufrufers zurück und
kann von dort bei Bedarf mit dem TOQ-Trap geholt werden.

Beispiel:
MSGSND OPD $A070

... CE nach A1

... Target TID nach D1.L
MSGSND

8.1 Die Systemtraps 499

Switch Dispatcher off OFF = $4E4F

Eingaberegister: -

Ausgaberegister: -

Veränderte Register: SR

Der Prozessor wird in den privilegierten Mode mit gesperrtem Interruptsystem
(beim 68k: Interruptebene 7) gebracht. Damit kommen keine Interrupts und
Dispatchereingriffe mehr zum Zuge.

Achtung!

Dieser Befehl ist mit größter Sorgfalt anzuwenden
und darf nur für sehr kurze Zeit (max. ca. 20 . . .
50 Maschinenbefehle) zur Inhibierung der Interrupts
führen. Sinn dieser Anweisung ist, bei bestimmten
Problemen in E/A–Treibern Sequenzen von wenigen
Befehlen unteilbar zu machen.

Der privilegierte Zustand wird in legalem T–Code durch Aufruf des DPC-Traps
beendet.

In reinen 68k-Programmen kann auch der Befehl ANDI =$D8FF,SR verwendet
werden, wenn ohnehin sofort irgendein anderer Trap von RTOS–UH folgt.
Zwischenzeitliche Veränderungen von Taskzuständen können sich dadurch al-
lerdings verzögert auswirken.

500 8.1 Die Systemtraps

PENTR = $4E4B Procedure entry

Eingaberegister: D1.L Nutzbare Workspace–Größe
A5.L Wird im alten Workspace gerettet

Ausgaberegister: A1.L Adresse des Workspaces
A5.L Zeiger auf erstes Nutzbyte
SR ”NE“ kein Erfolg, ”EQ“ A1 geladen

Veränderte Register: D1,D7,A1,A5

Der von RTOS–UH verwaltete Speicherbereich wird von oben nach unten
auf die erste freie Sektion durchsucht, in die eine Sektion der in D1 angegebe-
nen Größe samt ihrem Verwaltungskopf hineinpaßt. D1 enthält also die effektiv
nutzbare WSP–Größe. Die Suche beginnt dabei versuchsweise zunächst an der
Stelle, an der beim letzten Mal erfolgreich Speicher zugeteilt werden konnte.
Wenn das nicht gelingt, wird nach unten weitergesucht, und erst danach wer-
den die oberhalb liegenden Freisektionen inspiziert. Während der Suche ist der
Trap preemptionfähig.

Wird keine passende freie Sektion gefunden, so antwortet der Trap mit ”NE“
anderenfalls mit ”EQ“. Das Register A5 wird in den Verwaltungskopf gerettet
und anschließend ebenso wie A1 neu geladen. Register A1 zeigt auf die erzeugte
Sektion, A5 auf die Stelle in der Sektion, ab der der Anwender D1 Datenbytes
ablegen darf.

Die Umkehroperation hierzu ist der Trap ”RETN“ ($4E4C). Man beachte, daß die
so erzeugte Speichersektion als ”PWS“, d. h. ”Procedure–Work–Space“ verbucht
wird und mit der Terminierung der einstmals erzeugenden Task automatisch
wieder zu freiem Speicher wird. Dafür sorgt das sog. ”T–link“, eine Kette, die
ihren Ursprung im ”Task–WorkSpace“ hat und alle von der Task angeforderten
CEs (Communication–Elements) und ”PWS“ miteinander zu einem Ring verbin-
det. Will man die Sektion von der Task ablösen, wie es zum Beispiel der Editor
mit neuen Blöcken macht, so muß die Sektion mit einer besonderen Prozedur
aus dem ”T–link“ herausgenommen werden. In solchen Fällen empfiehlt sich
allerdings nicht dieser Trap, sondern der Trap WSBS ($A00C).

8.1 Die Systemtraps 501

Beispiel:

PENTR OPD $4E4B
RETN OPD $4E4C

.INCLUDE .../COMEQU.NOL wegen PRTNAD *
...
BSR SUBR Unterprogramm
...

--
SUBR MOVE.L =500,D1 500 Bytes Daten

PENTR
BNE MIST B: Kein Platz mehr
MOVE.L (A7)+,PRTNAD(A1) Return-adr ableg.
...
... Nun koennen die Bytes 0(A5) bis
... incl 499(A5) benutzt werden
...
RETN Wsp zurueck+Jump

Hier die wahrscheinlichen EQUs für den Fall, daß die Datei COMEQU nicht zur
Hand ist:

PRTNAD EQU $1A Für die 68k-Familie
PRTNAD EQU $1C Für die PowerPC-Familie

502 8.1 Die Systemtraps

PIRTRI = kein TRAP Prozeßinterrupt Triggern

Eingaberegister: D1.L Bit(s) des Prozeßinterrupts
Ausgaberegister: -

Veränderte Register: D1

Hierbei handelt es sich nicht um einen Trap, sondern um eine Linkzelle für
einen Transfer in den Nukleus! Der Anschluß ist das hintere Ende einer Super-
visorfunktion und darum nicht für den normalen Nutzer, sondern ausschließlich
zur Systemerweiterung durch den Implementierer vorgesehen.

Über PIRTRI kann eine interrupterzeugende Hardware einen Prozeßinterrupt
auslösen. Im D1 wird die 32-bit Eventmaske übergeben, die festlegt, welche(r)
der 32 Prozeßinterrupt ”gefeuert“ werden soll(en). Diese Eventmaske entspricht
genau derjenigen aus dem Systemteil von PEARL-Programmen in der Klammer
des Schlüsselwortes ”EV(...)“. Nur wenn der entsprechende Interrupt enabled
ist, erfolgt eine Aktion.

Aus Gründen der Effizienz und wegen unterschiedlicher Kodierung der Rück-
fallmechanismen kommt eine Formulierung der Aufrufkonvention im T–Code
nicht in Frage.
Prozessorspezifisch müssen genau die unten angegebenen Register gerettet wer-
den!!

Beispiel 68k-Familie: Der Interrupt wurde auf $100 ”eingeklinkt“.

PIRTRI EQU $80E Adresse des Soft-IR (besser: COMEQU)
IID EQU $7FE Interrupt Identifier (besser: COMEQU)

DC irmal-irpt mal-funktion
irpt MOVE IID,-(A7) save IID

MOVE =$100,IID new IID
MOVEM.L D1/D6/D7/A1,-(A7) reg. -> Systemstack
... Interrupt zuruecknehmen
MOVE.L =$80000000,D1 event code setzen
MOVEA.L PIRTRI,A1 Sprungadresse laden
JMP (A1) Prozess-IR feuern

8.1 Die Systemtraps 503

Prozeßinterrupt Triggern PIRTRI (Forts.)

Mit dem JMP (A1) wird in den Systemkern gesprungen, der überprüft, ob der
entsprechende Prozeßinterrupt ”enabled“ ist. Wenn dies der Fall ist und eine
oder mehrere Tasks auf den oder die IR’s eingeplant sind, werden sie aktiviert
oder fortgesetzt. Die Interruptroutine wird vom Systemkern beendet, und es
wird ein Dispatcherlauf forciert, um die Änderungen der Taskzustände wirksam
werden zu lassen.

Bei der PowerPC-Hardware liegen die Verhältnisse sehr viel komplizierter. Der
Prozessor selbst verfügt nur über einen sehr rudimentären Unterbrechnungs-
mechanismus, der durch äußere Spezialhardware unterstützt werden muß.

Wir studieren hier exemplarisch die Hardware der Motorola VME-Karte MV-
ME1600, die weitgehend der ursprünglichen PowerPC Reference-Plattform ent-
spricht: Alle Interruptsignale werden über den sog. PIC-Baustein (PC-Baustein
von Intel!) im ISA-Bridge Controller (IBC) geleitet. Passend zu diesem Bau-
stein enthält die Implementierungsscheibe eine Art ”Interruptgateway“, das die
Überleitung vom Hardware-IR-Slot des PowerPC zu 16 PIC-Jumpslots managt.
(Wahrscheinliche Jumpslotadressen: $4100+4*Irno) Alle Interruptantwortrou-
tinen müssen in dieses ”Interruptgateway“ zurückkehren, da am Baustein noch
komplizierte Endeoperationen ausgeführt werden müssen. Im Beispiel soll ein
Hardwareinterrupt den Event mit der Kodierung $02000000 auslösen. Die An-
sprungadresse von GENEV muß dazu vorher auf den zum Interrupt gehörenden
PIC-Jumpslot gebracht worden sein.

.INCLUDE .../FORM1600 Spezialformate MVME1600
...

GENEV PIRIBC $02000000 erledigt alles

Für andere Prozessorhardware sollten Sie bei uns nachfragen.

504 8.1 Die Systemtraps

PIT = $A02E Peripherie–Input

Eingaberegister: D6.L

Ausgaberegister: D1.L

Veränderte Register: alle außer D6.L, A4.L bis A7.L

(impl. abhängig)

Es wird eine binäre, ungepufferte Eingabe in implementierungsspezifischer
Form durchgeführt. Die Adresse des peripheren Gerätes sowie evtl. eine Be-
schreibung der Zugriffsart sind in D6.L enthalten, D1.L enthält das eingelesene
Datum. D1.L wird implementationsabhängig nicht in voller Länge eingelesen.

Der Trap ist nicht Bestandteil des Nukleus von RTOS–UH. Genauere In-
formationen entnehme man daher bitte dem Implementierungshandbuch des
jeweiligen Systemes.

8.1 Die Systemtraps 505

Peripherie–Output POT = $A030

Eingaberegister: D6.L, D1.L

Ausgaberegister: -

Veränderte Register: alle außer D6.L, D1.L, A4.L bis A7.L

(implementationsabhängig)
Es wird eine binäre, ungepufferte Ausgabe in implementierungsspezifischer
Form durchgeführt. Die Adresse des peripheren Gerätes sowie evtl. eine Be-
schreibung der Zugriffsart sind in D6.L enthalten, D1.L enthält das auszuge-
bende Datum. D1.L wird implementationsabhängig nicht in voller Länge aus-
gegeben.

Der Trap ist nicht Bestandteil des Nukleus. Eine genauere Beschreibung ist
darum dem jeweiligen Implementierungshandbuch zu entnehmen.

506 8.1 Die Systemtraps

PREV = $A022 Prevent Task by name

Eingaberegister: OPNAME.T Textadresse oder Text
A4.L muß auf Taskworkspace zeigen

Ausgaberegister: -

Veränderte Register: D7,A1,A2

Eine Task, deren Name oder deren Adresse des Namens in OPNAME.T =
OPNAME(A4) steht, wird ausgeplant. Auch im Aktivierungspuffer aufgelaufene
Aktivierungen werden gelöscht. Ist die Task nicht im System vorhanden, wird
mit einer entsprechenden Fehlermeldung reagiert und der Aufrufer suspendiert.

Während der Suche nach der Task ist der Trap preemptionfähig.

Beispiel:

PREV OPD $A022 Trap-Definition
...
MOVE.L =’HALL’,OPNAME.T ’HALL’ nach OPNAME

_MOVE =’O ’,OPNAME+4.T ’O ’ nach OPNAME
PREV Task ’HALLO’ ausplanen
...

Falls die Datei COMEQU nicht zur Hand ist, hier die wahrscheinlichen Werte für
OPNAME:

OPNAME EQU $66 beim 68K
OPNAME EQU $B4 beim PowerPC

8.1 Die Systemtraps 507

Prevent quick PREVQ = $A054

Eingaberegister: A1.L Adresse der Task (TID)
Ausgaberegister: -

Veränderte Register: D7,A1

Eine Task, deren Adresse in A1.L steht, wird ausgeplant. Auch im Aktivie-
rungspuffer aufgelaufene Aktivierungen werden gelöscht.

Der Trap prüft nicht, ob ihm in A1 eine legale Task-ID übergeben wird.

Beispiel:

PREVQ OPD $A054 Trap-Definition
... TID in A1
PREVQ Task ausplanen
...

508 8.1 Die Systemtraps

QSA = $A01E Quote–scan with answer

Eingaberegister: A2.L Adresse des zu untersuchenden Textes
Ausgaberegister: A2.L Bei ”EQ“ um Stringlänge inkrementiert

SR ”EQ“ falls gleich
Veränderte Register: D7

PC Überspringt folgendes Wort

Durch das PC–relative Wort hinter dem Trap wird die Adresse eines Strings
übergeben. Der ASCII–String muß mit dem Zeichen $FE beendet sein. QSA
prüft nun, ob der String mit der über (A2) erreichbaren Sequenz überein-
stimmt. Kleinbuchstaben des (A2)–String werden versuchsweise in Großbuch-
staben verwandelt, falls der Vergleich eines Zeichens nicht gelingt. Wenn bis
zum $FE alle Zeichen des String mit der (A2)–Sequenz übereinstimmen, wird
A2 auf das nächste Zeichen der Sequenz vorgerückt und CCR auf ”EQ“ gesetzt.
Stimmt auch nur ein Zeichen (trotz Kleingroßkonvertierung) nicht überein, so
bleibt A2 unverändert, und CCR wird auf ”NE“ gesetzt.

In jedem Fall werden die beiden auf den Trap folgenden Bytes bei der Rückkehr
übersprungen, beim PowerPC zwei weitere Füllbytes.

Der Trap eignet sich für eine einfache Textanalyse und wird innerhalb der Shell
eingesetzt. Er ist darum zur Realisierung neuer Bedienbefehle optimal geeignet.

Beispiel (T–Code):

QSA OPD $A01E Trap-Definition
... A2 zeigt auf Eingabetext
QSA Aufruf
DC TEXT-$ Stringadresse relativiert.
BEQ Irgendwo Springt bei erhoehtem A2 nach Irgendwo.
...

TEXT DC.B ’STIMMTS’,$FE

Der BEQ wird ausgeführt, wenn A2 vor dem Trap z. B. auf einen Text der Form
Stimmtsblabla oder sTIMMtSxx etc. zeigt. Nach dem QSA zeigt A2 dann z. B.
auf blabla bzw. xx.

8.1 Die Systemtraps 509

Read–Clock RCLK = $A03E

Eingaberegister: -

Ausgaberegister: D1.L Uhrzeit in Millisekunden
Veränderte Register: D7

Die aktuelle Uhrzeit wird gelesen und in D1 zurückgegeben. D1 enthält die
Uhrzeit in Millisekunden. Prinzipiell kann man bei 68k-Systemen die Uhrzeit
auch durch einen MOVEM-Befehl zum gleichzeitigen Lesen der Zellen TIME und
TIMEB mit anschließender Addition der beiden Register ermitteln (siehe Seite
461 CLKASC-Trap). Der Trap sieht hier eine zum T–Code kompatible, sichere
und multiprozessorkompatible Alternative vor.

Beispiel:

RCLK OPD $A03E Trap-Definition
...
RCLK Uhrzeit lesen
MOVE.L D1, ... Uhrzeit speichern
...

510 8.1 Die Systemtraps

RELCE = $4E49 Release CE

Eingaberegister: A1.L Zeiger auf CE
Ausgaberegister: -

Veränderte Register: D5,D6,D7,A1

Das mit A1 angegebene Communication–Element wird vom Besitzer freigegeben
oder vom I/O-Dämonen zurückgegeben. Zum Verständnis dieses Traps ist es
erforderlich, daß man sich mit dem besonderen I/O-Konzept von RTOS–UH
und der CE–Philosophie vertraut macht. Dazu wird auf die Beschreibung des
CEs auf Seite 559 hingewiesen.

Warnung!

Es ist unbedingt sicherzustellen, daß A1 auf ein exi-
stierendes CE (Communication–Element) zeigt, da
sonst u. U. das ganze System zum Absturz gebracht
werden kann.

An Hand des Verwaltungszeigers FORS des in A1.L bezeichneten CEs wird
zunächst geprüft, ob das CE zur Zeit in einen E/A–Vorgang verwickelt ist.
Ist das nicht der Fall, d. h. ist FORS=0, so wird es sofort in freien Speicher
umgewandelt, und der Trap kehrt zurück.

Wenn dagegen das CE in einer Warteschlange steht und noch nicht in Bearbei-
tung einer Betreuungstask (I/O–Dämon) ist, so wird lediglich das Release–Bit
(STABRE = Bitno.1 in STATIO) gesetzt und der Trap verlassen.

8.1 Die Systemtraps 511

Release CE RELCE (Forts.)

Im besonderen Fall (FORS=$00000001, (siehe auch Seite 534 TOQ)), bei dem das
CE bereits in Bearbeitung durch eine Betreuungstask (I/O–Dämon) ist, wird
nach folgender Testreihenfolge verfahren:

1. Ist die exekutierende Task Besitzer des CEs?
In diesem Fall wird nur das Release–Bit in STATIO gesetzt, und der Trap
kehrt zurück.

2. Ist im CE die Zelle TIDO gelöscht, d. h. gibt es keinen Besitzer mehr?
Falls das so ist, wird das CE zu freiem Speicher, und der Trap kehrt
zurück.

3. Ist dieser Testpunkt erreicht, wird fest davon ausgegangen, daß der RELCE
von einem I/O–Dämon exekutiert wurde. Vor weiterer Untersuchung des
CEs wird ggf. der auf die Fertigstellung der I/O–Operation wartende
Besitzer des CEs lauffähig gemacht.

4. Ist das ”Release–Bit“ (STABRE = Bitno.1) in STATIO gesetzt?
Jetzt wird davon ausgegangen, daß der aufrufende I/O–Dämon alle Ope-
rationen mit dem CE abgeschlossen hat und dieses nunmehr zu vernichten
ist. Das CE wird zu freiem Speicher, und der Trap kehrt zurück.

5. Ist das ”Return–Bit“ (STABRT = Bitno.2) in STATIO gesetzt?
In diesem Fall wird davon ausgegangen, daß der aufrufende I/O–Dämon
(I/O–Task) das CE nach Abarbeitung in die CE–Schlange des Besitzers
zurückgeben will. Das CE wird in die CE–Schlange des Besitzers einge-
kettet. Damit trotz der Verkettung erkennbar bleibt, daß dieses CE nicht
mehr in eine I/O–Operation verwickelt ist, wird das ”OwnQueue–Bit“
(STABOQ = Bitno.3) in STATIO gesetzt und der Trap verlassen.

512 8.1 Die Systemtraps

RELEA = $4E47 Release semaphore

Eingabe-Register: A1.L Adresse der Semavariable (2 Byte)
Ausgabe-Register: -

Veränderte Register: D5,D6,D7

Die angegebene Semaphorvariable (per Adresse in A1) wird um 1 erhöht. Je
nach neuem Wert sind drei Fälle zu unterscheiden:

1. Der neue Wert ist größer als Null. Es erfolgt unmittelbar ohne weitere
Aktion die Rückkehr aus dem Trap.

2. Der neue Wert ist Null, und bei einer mit der höchsten Priorität be-
ginnenden Suche wird unter allen Tasks im Blockierzustand ”SEMA“ eine
gefunden, die genau auf diese Semavariable wartet. Diese Task wird ent-
blockiert. Die Suche wird nicht fortgesetzt, die Semavariable erhält den
Wert -1, damit mögliche weitere wartende Tasks später nicht ”vergessen“
werden.

3. Der neue Wert ist Null, und es wurde keine Task entdeckt, die auf ge-
nau diese Semavariable wartet. Der Wert der Semavariablen wird auf +1
gesetzt, und der Trap wird ohne weitere Aktion verlassen.

Man beachte, daß der ”Außenwelt“ gegenüber der zeitweilig angenommene
Wert -1 gleichwertig zur Null (”Requested“) ist und nur interne Bedeutung
hat (”Requested and task may be waiting“).

Beispiel:

RELEA OPD $4E47
...
LEA >SEMA4,A1 z.B. globale externe Semavariable
RELEA
...

8.1 Die Systemtraps 513

Request Semaphore REQU = $4E46

Eingabe-Register: A1.L Adresse der Semavariablen (2 Byte)
Ausgabe-Register: -

Veränderte Register: D7

im Task–WSP: OPFATI.T im TWS

Die angegebene Semavariable (per Adresse in A1) wird um 1 erniedrigt.

Ist der neue Wert größer oder gleich Null, so erfolgt die Rückkehr ohne weitere
Aktion.

Ist der neue Wert jedoch negativ, so wird er auf -1 korrigiert, und die anfordern-
de Task wird blockiert. Im Taskworkspace der anfordernden Task (OPFATI(A4))
wird eine Notiz hinterlassen, die später ggf. vom Trap RELEA aufgefunden wer-
den kann. Innerhalb des Traps ist kein Dispatchereingriff möglich, so daß die
notwendige Unteilbarkeit des Request gesichert ist. Obwohl in diesem Fall der
Taskworkspace benutzt wird, braucht A4 nicht besetzt zu sein. Der Trap holt
sich die entsprechende Adresse des TWS auf andere Weise.

Man beachte, daß der ”Außenwelt“ gegenüber der zeitweilig angenommene
Wert -1 gleichwertig zur Null (”Requested“) ist und nur interne Bedeutung
hat (”Requested and task waiting“).

Beispiel:

REQU OPD $4E46
...
LEA >SEMA4,A1 Globale Semavariable
REQU Je nach vorherigem

Zustand wird die
Task evtl. blockiert

...

514 8.1 Die Systemtraps

RESRB = $A072 Reserve Boltvariable

Eingaberegister: A1.L Adresse der Boltvariablen
Ausgaberegister: --

Veränderte Register: D7

Der Trap ist Teil des Reserve-Konstruktes, das der PEARL-Compiler generiert.
Er sollte nur mit dem entsprechenden Vorspann benutzt werden, da sonst trotz
korrekter Funktion der Geschwindigkeitsvorteil der Boltvariablen verloren geht.

Die Anwendung muß im T–Code wie folgt aussehen:

RESRB OPD $A072 Trap-definition
...
LEA Boltx,A1 Adr of Bolt
TAS (A1) Test and set
BEQ.B weiter branch if it was free
RESRB

weiter

Der Trap wird also nicht ausgeführt, wenn der Vorzustand der Boltvariablen

”Free“ (=$0000) war. Durch den TAS wird dann als neuer Zustand ”Reserved,
nobody waiting“ (=$8000) in der Boltvariablen abgelegt. Der Transferassem-
bler übersetzt genau diesen TAS in eine längere geschützte Sequenz auf Basis
der Befehle lwarx und stwarx.

Wenn der Trap zur Ausführung kommt, so wiederholt er zunächst testweise den
TAS (es könnte ja sein, daß die Boltvariable inzwischen freigeworden ist). Falls
der TAS diesmal ”EQ“ abliefert, wird der Trap ohne weitere Aktion verlassen.
Ansonsten wird die Task blockiert und der Boltvariablen der Zustand ”Reserver
waiting“ aufgeordert, so daß als neue mögliche Zustände ”x-times entered +
reserver waiting“ oder ”Reserved + reserver waiting“ entstehen können.

Man beachte, daß auch nach vergeblicher RESRB-Operation keine Enter-
Operationen mehr möglich sind, bis die Boltvariable wieder frei ist.

8.1 Die Systemtraps 515

Return from procedure RETN = $4E4C

Eingaberegister: A5.L Zeiger auf zuletzt eingerichteten Workspace
Ausgaberegister: A5.L Wird aus dem freigebenen WSP geladen

PC Wird aus dem freigegebenen WSP geladen
Veränderte Register: A1,D7

Der vorher mit PENTR eingerichtete PWSP (Procedure–WorkSPace) wird mit
diesem Trap wieder freigegeben. Vorher wird allerdings das vom PENTR gerette
Register A5 zurückgeladen.

Wichtig!

Der Trap kehrt nicht zum Aufrufer zurück,
sondern holt sich die Rückkehradresse eben-
falls aus dem Verwaltungskopf der mit dem
Eingaberegister A5 bezeichneten Speichersek-
tion. Auf PRTNAD, erreichbar über -8(A5),
muß also unbedingt eine verwertbare Fortset-
zungsadresse stehen. Der Trap PENTR schreibt
dort nichts hin (s. Beispiel nächste Seite)!.

Der Trap wird in den Formaten PROCEX, X8090 und QX8090 benutzt. Der alte
PEARL80-Compiler generiert bei jedem RETURN- Statement einen RETN.

516 8.1 Die Systemtraps

RETN (Forts.) Return from procedure

Beispiel:

PENTR OPD $4E48
RETN OPD $4E4C

...
BSR SUBR Unterprogramm
...

--
SUBR _MOVE.L =500,D1 500 Bytes Daten

PENTR
BNE MIST B: Kein Platz mehr
MOVE.L (A7)+,-8(A5) Return-adr ableg.
....
.... Nun koennen die Bytes 0(A5) bis
.... incl 499(A5) benutzt werden
....
RETN Wsp zurueck+Jump
...

MIST ... Fehlermeldung ..

Vorsicht:

Die früher empfohlene Konstruktion mit PRTNAD(A1) statt -8(A5)
erfordert das Inkluden der COMEQU-Datei, weil das Displacement
PRTNAD in der PowerPC-Familie einen anderen Wert als in der
68k-Familie hat!

8.1 Die Systemtraps 517

Restart Task, TWS new RSTT = $A04A

Eingaberegister: D1.L New Size of Task-Workspace
Ausgaberegister: A4.L Zeiger auf neuen Task-Workspace
Veränderte Register: A1,D5,D6,D7

Der Trap löscht zunächst einen evtl. Anschluß eines Exception-Handlers, d. h.
SIGLNK(TID) wird auf Null gesetzt. Danach arbeitet er die komplette T-Link-
Kette des Aufrufers ab und löscht jedes Element genauso, wie es der TERMI-Trap
tut, d. h. Communication–Elemente werden wie beim RELCE–Trap abgelöst etc.
Während der Abarbeitung der Kette ist der Trap preemptionfähig.

Nach dem Abräumen des T-Links wird schließlich der bisherige Task-Workspa-
ce zurückgegeben und durch einen neuen mit der in D1.L angegebenen Länge
ersetzt. Ist dafür allerdings nicht genügend Platz verfügbar, so wird die aufru-
fende Task blockiert im Zustand ”PWS?“, und der Versuch wird zu gegebener
Zeit wiederholt. Vorläufig behält die Task dabei noch den bisherigen Task-
Workspace.

Nach der Rückkehr aus dem Trap ist A4 neu geladen. Alle im alten Task-
Workspace bisher gespeicherten Daten sind verloren! Der Trap ermöglicht
der aufrufenden Task, ihre gesamte Speichersituation neu zu organisieren. Se-
kundäre Shellprozesse benutzen ihn, z. B. wenn sich ein Compiler nach Ab-
schluß seiner eigentlichen Arbeit um die kaum Workspace benötigenden Shell-
folgeanweisungen kümmern muß.

518 8.1 Die Systemtraps

RSTT (Forts.) Reset T-link and new TWS

Man kann nur eine beschränkte Anzahl von Daten aus dem bisherigen ”Leben“
der Task in das neue hinüberretten: Es sind die Register, die der Trap nicht
verändert sowie notfalls einige Daten aus dem permanten Task-Header.

Wichtiger Hinweis!

Die in D1.L übergebene Länge muß den Ver-
waltungskopf des Task-WSP mit enthalten,
außerdem muß ggf. der Platz zum Retten der
FPU-Register vorgesehen werden. Der Trap
setzt A5 nicht neu auf und korrigiert auch
die Zelle WSPLEN im permanenten Task–Head
nicht.

Beispiel:

RSTT OPD $A04A Trap-definition
...

_MOVE.L =....,D1 new TWSP-size
RSTT Ein neues Leben ...

8.1 Die Systemtraps 519

Rubber Blanks RUBBL = $A020

Eingaberegister: A2.L Adresse des zu untersuchenden Textes
Ausgaberegister: A2.L Um Anzahl Blanks inkrementiert
Veränderte Register: D7

In einem Text können Leerzeichen überlesen werden. A2 zeigt auf den Text und
wird solange inkrementiert, wie Leerzeichen hintereinander im Text stehen.
Dieser Trap kann bei der Realisierung von neuen Bedienbefehlen sehr nützlich
sein. Er wird an vielen Stellen in der Shell eingesetzt.

Beispiel:

RUBBL OPD $A020 Trap-Definition
... A2 zeigt auf Text
RUBBL Ueberliest Blanks
... Weitere Textanalyse

520 8.1 Die Systemtraps

RWSP = $A02A Release Workspace

Eingaberegister: A1.L Adresse der zu löschenden Sektion
Ausgaberegister: -

Veränderte Register: D7

Die angegebene Speichersektion wird in freien Speicherraum zurückverwandelt.
Anschließend darf A1 nicht mehr als Zeiger verwendet werden. Falls irgendwo
Tasks auf die Zuteilung von ”TWS“ (Task–WorkSpace) oder ”PWS“ (Prozedur–
WorkSpace) gewartet haben, erfolgt nunmehr möglicherweise ihre Freigabe —
falls der Platzbedarf nun befriedigt werden kann.

Warnung!

Mit diesem Trap dürfen nur solche Sektionen gelöscht werden, die weder
im ”S“– (Dispatcher, I/O–Queue) noch im ”T“–link (Task–link) eingeket-
tet sind, schwere später auftretende Abstürze können sonst resultieren.
So müssen z. B. mit WSFA, WSBS und WSFS eingerichtete ”PWS“–Sektionen
ausgelinkt werden, bevor dieser Trap eingesetzt werden darf. Das Aus-
linken ist z. B. beim WSBS auf Seite 543 beschrieben. Mit PENTR einge-
richtete Sektionen werden dagegen nicht mit RWSP rückgegeben, sondern
durch RETN (ohne vorheriges Auslinken!) gelöscht. Ebenso werden mit
FETCE erzeugte CEs (Communication–Elemente) mit RELCE (ebenfalls
ohne vorheriges Auslinken) getilgt.

Der Trap RWSP wird intern in den Traps RELCE und RETN benutzt, nachdem diese
das Auslinken, sowie ihre Nebenoperationen erledigt haben. Auch innerhalb des
UNLOAD–Befehles sowie im Trap TERV wird er benutzt. Der Editor verwendet
RWSP beim ”ERASE“.

Beispiel:

RWSP OPD $A02A
WSBS OPD $A00C

...
_MOVE.L ...,D1 Wsp-Size
WSBS Wsp anfordern
Auslinken! siehe WSBS-Beschr.
... Nun als ’Dauerblock’ benutzbar

evtl auch von anderen Tasks
RWSP Sektion zurueckgeben.

8.1 Die Systemtraps 521

Scanner Trap SCAN = $4E45

Eingaberegister: D7.L Nummer der Scheibe
A1,A6 Nur bei Fortsetzungssuche

Ausgaberegister: A1.L ggf. Scheibenadresse
A6.L Intern für nächste Suche
D7.L Intern für nächste Suche
SR ”EQ“ wenn gefunden, sonst ”NE“

Veränderte Register: D5,D6,D7,A6

Es wird der Scan–Bereich, der beim Nukleus eingetragen ist oder der mit Hilfe
einer 0-er Scheibe angeschlossen wurde (siehe Seite 637), nach der Scheibe,
deren Nummer in D7 übergeben wird, durchsucht.

Wenn die Scheibe gefunden wird, antwortet der Trap mit ”EQ“, und man erhält
in A1 die Adresse nach der Signalmarke. Nun kann man A1 auswerten –sollte
aber die Registerinhalte D7.L, A1.L und A6.L dabei nicht verändern. Nachdem
man A1 ausgewertet hat, kann man den Trap erneut aufrufen, dank der in D7,
A1 und A6 geretteten Daten setzt er nun die Suche fort und antwortet ggf.
wieder mit ”EQ“ etc.

Wird die Scheibe nicht, bzw. wird keine weitere derartige mehr gefunden, so
antwortet der Trap mit ”NE“.

Beispiel:

SCAN OPD $4E45 Trap-Definition
...

_MOVEQ =1,D7 Scheibe 1
LABEL SCAN suchen

BNE.S READY B: nichts zu finden
... Action, aber A1, A6, D7
... bleiben unveraendert
BRA.S LABEL Fortsetzung der Suche

READY ... hier geht’s weiter...

522 8.1 Die Systemtraps

STBCLK = $A05E Set Battery Clock

Eingaberegister: D1 Date oder Marker für Zeit
D2.L wenn D1 = 0, Zeit in msec

Ausgaberegister: -

Veränderte Register: D7

Dieser Trap wird beim CLOCKSET– und DATESET–Kommando der Shell exeku-
tiert. Im Nukleus des Systemes liegt auf dem Trap zunächst nur eine Leer-
operation. Vom Implementierer oder vom Nutzer kann allerdings ein passender
eigener Trap angeschlossen werden, um eine eventuell vorhandene Hardware–
Uhr zu stellen.

Beim CLOCKSET ist das Register D1 mit Null und D2.L mit der Uhrzeit in
Millisekunden gesetzt.

Beim DATESET enthält D1 das Datum ”BCD-kodiert“:

30.8.1994 -> D1 = $30081994

8.1 Die Systemtraps 523

Suspend actual running Task SUSP = $A028

Eingaberegister: -

Ausgaberegister: -

Veränderte Register: D7,A1

Die gerade laufende Task wird suspendiert. Bis auf D7 und A1 bleiben alle
Register und Speichersektionen der Task erhalten, so daß die Task zu einem
späteren Zeitpunkt fortgesetzt werden kann. Sie kehrt also erst nach fremder
Hilfe wieder aus dem Trap zurück.

Die Traps CON und CONQ sind geeignet, um mit Hilfe anderer Tasks diese Sus-
pendierung wieder aufzuheben.

Beispiel:

SUSP OPD $A028 Trap-Definition
... Task laeuft
SUSP Task suspendiert sich
...

524 8.1 Die Systemtraps

TERME = $A000 Terminate external

Eingaberegister: OPNAME.T Textadresse oder Text
A4.L muß auf Taskworkspace zeigen

Ausgaberegister: -

Veränderte Register: D1,D5,D6,D7,A1,A2

Die Task, deren Name oder deren Zeiger auf dem Namen in OPNAME.T =
OPNAME(A4) steht, wird in der Speicherverwaltung gesucht. Wird die Task
nicht gefunden, so wird die Meldung ”... not loaded (terminate)“ abge-
setzt, und es erfolgt keine Operation.

Ist die Task inaktiv (nicht im Dispatcherring), so kehrt der Trap ohne weitere
Aktion zurück.

Ist die zu terminierende Task identisch mit der den Trap ausführenden Task,
so verwandelt der Trap sich in den TERMI–Trap.

In allen anderen Fällen wird die adressierte Task lauffähig gemacht, nachdem
vorher der Fortsetzungs-PC und die Laufpriorität wie folgt manipuliert wurden:

• Der neue PC zeigt auf einen TERMI–Trap innerhalb des Nukleus, wobei
vorher noch der Code $00000001 nach MSGLNK (Zieltask-TID) gebracht
wird. Damit wird evtl. wartenden Tasks (siehe WFEX auf Seite 539) das
irreguläre Ende mitgeteilt.

• Die adressierte Task erhält eine neue Laufpriorität, die identisch ist zur
Priorität der diesen Trap ausführenden Task. Allerdings wird die Task im
Dispatcherring vor die den Trap ausführende eingekettet.

Beispiel:

TERME OPD $A000 Trap-Definition
...
MOVE.L =’REGL’,OPNAME.T ’REGL’
MOVE =’ER’,OPNAME+4.T ’ER’ (6 Bytes)
TERME ’REGLER’ terminieren
...

8.1 Die Systemtraps 525

Terminate quick TERMEQ = $A058

Eingaberegister: A1.L Adresse der Task (TID)
Ausgaberegister: -

Veränderte Register: D1,D5,D6,D7,A1

Dieser Trap ist der hintere Teil von TERME, wobei jedoch die angesprochene zu
beendende Task nicht gesucht wird, sondern schon in A1 übergeben wird.

Wie beim TERME so wird auch hier der PC und die Priorität der angesprochenen
Task so manipuliert, daß sie auf einen TERMI läuft.

Warnung!

Es ist unbedingt sicherzustellen, daß A1 im Moment
des Aufrufes wirklich der Task–ID einer existieren-
den Task ist. Der Trap selbst prüft dies aus Zeit-
gründen nicht.

Auf evtl. bestehende Einplanungen der adressierten Task nimmt der Trap kei-
nen Einfluß. Falls bei der noch gepufferte Aktivierungen vorliegen, so werden
diese wie beim TERMI üblich nachgeholt.

Beispiel:

TERMEQ EQU $A058 Trap-Definition
... TID nach A1.L
TERMEQ Terminate Task
...

526 8.1 Die Systemtraps

TERMI = $4E41 Terminate internal

Eingaberegister: -

Ausgaberegister: -

Veränderte Register: alle

Eine Task, die diesen Befehl exekutiert, wird sofort beendet. Die Registerin-
halte werden nicht gerettet und gehen somit in jedem Fall verloren. Bei einer
nichtresidenten Task werden alle Speichersektionen (PWS, TWS, CE) an das Be-
triebssystem zurückgegeben. Residente Tasks behalten ihren Taskworkspace.
Die Ausgabe–CE’s verbleiben in der Schlange, während Eingabe–CE’s, die nicht
schon von der E/A–Betreuungstask bearbeitet werden, aus der Schlange ent-
fernt werden.

Eingeplante Tasks verbleiben auch nach dieser Anweisung im Ring des Prozeß-
umschalters (Dispatcher). War bereits eine neue Aktivierung gepuffert, so wird
die Task der gepufferten Aktivierung entsprechend mit ggf. anderer Priorität
erneut lauffähig gemacht.

Wenn es andere Tasks gibt, die mit WFEX (siehe Seite 539) auf das Ende dieser
Task warten, so werden diese entblockiert. Dabei wird ihnen der Inhalt von
MSGLNK auf deren eigene MSGLNK–Zelle kopiert.

Während des sukzessiven Abbaues der (evtl. sehr zahlreichen) Speichersektio-
nen ist eine Prozeßumschaltung möglich (Preemption).

8.1 Die Systemtraps 527

Terminate and vanish $TERV = $A010

Eingaberegister: -

Ausgaberegister: -

Veränderte Register: alle

Es werden die gleichen Aktionen ausgeführt wie beim TERMI ($4E41). Zusätzlich
verschwindet die Task aus dem System, falls sie nicht eingeplant ist oder noch
Aktivierungen gepuffert sind. Eine verschwundene Task kann natürlich nicht
mehr aktiviert werden.

Dieser Trap kann dazu genutzt werden, um einen Sohnprozeß, der mit GAPST
erzeugt wurde, nach Erledigung seiner Aufgabe aus dem System zu entfernen.

Beispiel:

TERV OPD $A010 Trap-Definition
... Code des Sohnprozesses
...
TERV Ende des Sohnprozesses

Hinweis:

Der Trap sollte bei Sohnprozessen der Shell nicht benutzt werden. Es würden
dann nämlich keine Nachfolgekommandos mehr ausgeführt, und es würde
an den übergeordneten Prozeß keine Antwort (”gelungen“ oder ”mißlungen“)
zurückgegeben. (Zur Codierung shellkonformer Sohnprozesse in Assemblerspra-
che benötigen Sie entsprechende Extrainformationen.)

528 8.1 Die Systemtraps

TIAC = $A016 Time–schedule activation

Eingaberegister: D1.W Priorität
OPNAME.T Textadresse oder Text
OPFATI.T Startzeit
OPINTV.T Intervall
OPLTI.T Endzeit
A4 muß auf Taskworkspace zeigen

Ausgaberegister: -

Veränderte Register: D1,D6,D7,A1,A2

Eine Task, deren Name oder deren Namensadresse in OPNAME.T = OPNAME(A4)
steht, wird zur Aktivierung eingeplant. In D1 wird die Priorität der Aktivierung
übergeben. Ist D1 gelöscht, wird die Default–Priorität eingetragen. Läuft die
Task bereits, so bleibt die aktuelle Priorität unbeeinflußt.

In OPFATI(A4) (First Activation Time) wird entweder (gesetztes Vorzeichen-
bit) eine relative Verzögerungszeit in Millisekunden oder (ohne gesetztes Vor-
zeichenbit) der absolute Zeitpunkt für die erste Aktivierung vorgegeben. Liegt
ein absolut angegebener erster Aktivierungszeitpunkt vor der aktuellen System-
uhrzeit, so wird die Task zur vorgegebenen Uhrzeit, jedoch erst am folgenden
Tag, zur Ausführung eingeplant.

Mit OPINTV(A4) (Intervall) wird der Abstand zyklischer Aktivierungen vorge-
geben. Ist der Wert negativ oder Null, findet keine zyklische Einplanung statt.

Mit OPLTI(A4) (last time) wird der letzte Aktivierungszeitpunkt zyklischer
Einplanungen vorgegeben. Bei gesetztem Vorzeichenbit ist er relativ zum Ist-
zeitpunkt, sonst absolut. Als Endlosindikator dient der größtmögliche positive
Wert im obersten Byte.

Bestehende andere Einplanungen zur Aktivierung – auch solche auf externe
Interrupts – werden gelöscht. Die Fehlermeldungen entsprechen den beim Trap
ACT beschriebenen.

8.1 Die Systemtraps 529

Time–schedule activation TIAC (Forts.)

Der Trap überträgt die aus den übergebenen Parametern errechneten Ergebnis-
se in den Taskdescriptionblock (Zellen TIA, TINV und TIL). Ein Überschreiben
der Eingabeparameter von TIAC nach dessen Aufruf beeinflußt folglich beste-
hende Einplanungen in keiner Weise.

Beispiel:

TIAC OPD $A016 Trap-Definition
... TID in A1
MOVE.L =’Test’,OPNAME(A4) Name
MOVE.L =’xy’,OPNAME+4(A4) ’’
MOVE.L =$80002710,OPFATI(A4) after 10 sec
MOVE.L =1000,OPINTV(A4) all 1 sec

_MOVE.B =$7F,OPLTI(A4) Endlos-Indikator
TIAC nach 10 Sek alle 1 Sek
...

Falls die Datei COMEQU nicht zur Hand ist, hier die wahrscheinlichen Werte für
obige Displacements:

OPNAME EQU $66 und OPFATI EQU $6C beim 68K
OPINTV EQU $70 und OPLTI EQU $74 beim 68K

OPNAME EQU $B4 und OPFATI EQU $BC beim PowerPC
OPINTV EQU $C0 und OPLTI EQU $C4 beim PowerPC

530 8.1 Die Systemtraps

TIACQ = $A024 Time–schedule activation quick

Eingaberegister: D1.W Priorität
A1.L Adresse der Task (TID)
OPFATI.T Startzeit
OPINTV.T Intervall
OPLTI.T Endzeit
A4 muß auf Taskworkspace zeigen

Ausgaberegister: -

Veränderte Register: D1,D6,D7,A1,A2

Eine Task, deren Task-ID (Adresse des Task-DCB) in A1 steht, wird zur Akti-
vierung eingeplant. Alle anderen Parameter entsprechen vollständig denen des
Traps TIAC. TIAC läuft nämlich nach der Task-Suche als TIACQ weiter.

Bitte lesen Sie auf Seite 528 bei TIAC nach.

Beispiel:

TIACQ OPD $A024 Trap-Definition

LEA TDCBXY,A1 TID -> A1
MOVE.L =$80002710,OPFATI(A4) after 10 sec
MOVE.L =1000,OPINTV(A4) all 1 sec

_MOVE.B =$7F,OPLTI(A4) ohne Ende
TIACQ nach 10 Sec aktivieren
...

Wie bei allen Quick-versionen eines Trap, so muß auch hier sichergestellt wer-
den, daß im Register A1 wirklich ein gültiger Task-ID (TID) steht!

8.1 Die Systemtraps 531

Continue by time–schedule TICON = $A018

Eingaberegister: OPNAME.T Textadresse oder Text
OPFATI.T Zeitdauer oder Zeitpunkt
A4.L muß auf Taskworkspace zeigen

Ausgaberegister: -

Veränderte Register: D6,D7,A1,A2

Eine Task, deren Name oder deren Adresse des Namens in OPNAME.T =
OPNAME(A4) steht, wird zur Fortsetzung eingeplant. Bestehende Fortsetzungs-
einplanungen werden gelöscht. Einplanungen zur Aktivierung bleiben aber un-
beeinflußt.

Wenn die Task nach einer bestimmten Zeitdauer fortgesetzt werden soll, muß in
OPFATI.T = OPFATI(A4) die Zeitdauer in Millisekunden mit gesetztem ober-
sten Bit eingetragen sein.

Soll die Fortsetzung zu einem bestimmten Zeitpunkt erfolgen, darf das ober-
ste Bit nicht gesetzt sein. Liegt unter Berücksichtigung der Systemuhrzeit ein
vergangener Aktivierungszeitpunkt vor, erfolgt die Taskeinplanung zur angege-
benen Uhrzeit am folgenden Tag.

Beispiel:

TICON OPD $A018 Trap-Definition
...
LEA TSKNAM,A0 Adresse des Tasknamens
MOVE.L A0,OPNAME.T Eintrag der Adresse
CLR OPNAME+4.T kein Text

_MOVE.L =$800003E8,OPFATI.T 1 sec Zeitdauer
TICON nach 1 Sec fortsetzen
...

Falls die Datei COMEQU nicht zur Hand ist, hier die wahrscheinlichen Werte für
obige Displacements:

OPNAME EQU $66 und OPFATI EQU $6C beim 68K
OPNAME EQU $B4 und OPFATI EQU $BC beim PowerPC

532 8.1 Die Systemtraps

TICONQ = A04E Time continue quick

Eingaberegister: A1.L Adresse der Task (TID)
OPFATI.T Zeitdauer oder Zeitpunkt
A4.L muß auf Taskworkspace zeigen

Ausgaberegister: -

Veränderte Register: D6,D7,A1,A2

Eine Task, deren Adresse in A1 steht, wird zur zeitgesteuerten Fortsetzung
eingeplant. Bisher bestehende Einplanungen zur Fortsetzung werden gelöscht.
Das gilt auch für ereignisgesteuerte Fortsetzungseinplanungen, jedoch bleiben
evtl. Einplanungen zur Aktivierung unangetastet.

Wenn die Task nach einer bestimmten Zeitdauer fortgesetzt werden soll, muß in
OPFATI.T = OPFATI(A4) die Zeitdauer in Millisekunden mit gesetztem ober-
sten Bit eingetragen sein. Soll die Fortsetzung zu einem bestimmten Zeitpunkt
erfolgen, darf das oberste Bit nicht gesetzt sein, und Taskeinplanungen, die un-
ter Berücksichtigung der aktuellen Systemuhrzeit in der Vergengenheit liegen,
werden zur entsprechenden Uhrzeit des nächsten Tages vorgenommen.

Beispiel:

TICONQ OPD $A04E Trap-Definition
... ...
LEA TSDCBXY,A1 TID -> A1

_MOVE.L =$800003E8,OPFATI.T 1 sec Zeitdauer
TICONQ nach 1 Sec fortsetzen
...

Der Trap ist ein Zwischeneinstieg in das hintere Ende des Traps TICON.

8.1 Die Systemtraps 533

Time resume TIRE = $A02C

Eingaberegister: OPFATI.T Zeitdauer oder Zeitpunkt
A4 muß auf Taskworkspace zeigen

Ausgaberegister: -

Veränderte Register: D6,D7,A1

Die Task, die diesen Trap absetzt, wird suspendiert und nach der angegebenen
Zeit oder zu einem bestimmten Zeitpunkt fortgesetzt. Der Trap besteht quasi
aus einer untrennbaren Einheit von Suspendierung und Selbsteinplanung.

Irgendwelche bestehenden Einplanungen zur Fortsetzung werden gelöscht. Je-
doch bleiben Einplanungen zur Aktivierung unangetastet.

Wenn die Task nach einer bestimmten Zeitdauer fortgesetzt werden soll, muß in
OPFATI.T = OPNAME(A4) die Zeitdauer in Millisekunden mit gesetztem ober-
sten Bit stehen. Andernfalls wird die eingetragene Zeit als Zeitpunkt interpre-
tiert, und die Task zur Fortsetzung eingeplant. Liegt der angegebene Fortset-
zungszeitpunkt vor der aktuellen Systemuhrzeit, erfolgt eine Einplanung zum
angegebenen Zeitpunkt des folgenden Tages.

Beispiel:

TIRE OPD $A02C Trap Definition
...

_MOVE.L =$80000008,OPFATI.T 8 msec Zeitdauer
TIRE nach 8 msec fortsetzen
...

_MOVE.L =1000*60*60*23,OPFATI.T 23 Uhr in msec
TIRE Fortsetzung um 23:00:00.000 Uhr

Falls die Datei COMEQU nicht zur Hand ist, hier die wahrscheinlichen Werte für
OPFATI:

OPFATI EQU $6C beim 68K
OPFATI EQU $BC beim PowerPC

534 8.1 Die Systemtraps

TOQ = $4E4D Take of queue

Eingaberegister: --

Ausgaberegister: A1.L,PC

Veränderte Register: A1,D7

Mit diesem Trap wird versuchsweise ein Communication–Element aus der CE–
Schlange der aufrufenden Task geholt. Ist die Warteschlange leer, so wird die
Exekution mit dem nächsten folgenden Befehl fortgesetzt. Ist die Warteschlange
nicht leer, so wird A1 mit dem Zeiger auf das vorne — am Kopf der Schlange
— stehende Communication–Element geladen. Vor der Rückkehr wird jetzt
der PC um 2 (68k) bzw. um 4 (PowerPC) erhöht, so daß der nächstfolgende
Einwortbefehl übersprungen wird. Das Element ist danach ausgekettet, und
sein Vorwärtszeiger FORS steht auf $00000001, um die in ”RELCE“ und ”IOWA“
enthaltenen Abfragen korrekt vorzubereiten. Außerdem wird das ”OwnQueue-
Bit“ (STABOQ = Bitno.3) in STATIO zurückgesetzt, falls es gesetzt war.

In älteren Systemversionen mußte noch das Register D1 als Eingangsparame-
ter versorgt werden. Dies ist nun nicht mehr erforderlich. Auf den alten Trap
fußende Programme brauchen aber nicht geändert zu werden.

Der Trap ist das Gegenstück zum XIO und MSGSND (siehe dazu XIO auf Seite 549
und MSGSND auf Seite 498). XIO bringt ein Communication–Element in die CE–
Warteschlange einer I/O–Task (I/O–Dämon). MSGSND funktioniert gleichartig,
jedoch mit jeder beliebigen Task als Ziel. Die typische Anwendung von TOQ
ist innerhalb der I/O–Dämonen. Aber auch jede andere Task, die Botschaften
oder rückkehrende eigene CEs erwartet, kann diesen Trap sinnvoll nutzen.

8.1 Die Systemtraps 535

Take of queue TOQ = (Forts.)

Vorsicht!

Die frühere typische Benutzung mit einem weiteren Trap unmit-
telbar hinter TOQ ist kein legaler T–Code, weil damit implizit die
Codelänge des Folgetraps eingearbeitet war. Wenn alte Assemb-
lerprogramme mit solchen Konstrukten auf den PowerPC übert-
ragen werden sollen, so müssen sie unbedingt auf die im Beispiel
angegebene Form umgestellt werden. Der Folgetrap wird dabei
durch einen BRA.B ersetzt.

Beispiel (T–Code):

TOQ EQU $4E40
TERMI EQU $4E41

...
TAKE TOQ CE aus Schlange holen

BRA.B TERMEX 2/4 byte langer Sprung wenn Schlange leer
... Verarbeitung des CE
BRA TAKE Hole naechstes
...

TERMEX TERMI Terminate

Hinweis: Sollte nach dem vergeblichen TOQ während des Sprunges nach TERMEX
doch noch ein CE auflaufen, so wird eine Taskaktivierung in den Puffer ge-
schrieben und der TERMI bewirkt sofort einen Neustart der Task.

536 8.1 Die Systemtraps

TOV = $4E4E To virtual

Eingaberegister: -

Ausgaberegister: -

Veränderte Register: D2--D7,A0--A3,A6

Im Nukleus ist hier zunächst ein ”wrong opcode“ angeschlossen. Erst durch die
Hyperprozessor-Scheibe wird der Trap benutzbar. Er dient zum Umschalten des
Prozessors in den virtuellen Hyperprozessor-Mode.

Bitte beachten!

Ein bedeutend schnelleres Einschalten des Hyperpro-
zessors ist durch die folgende T–Code Befehlsfolge
möglich.

HYPLNK EQU $8CA
...
MOVEA.L HYPLNK,A6
XJSR (A6)

Man beachte, daß in der PEARL-Laufzeitwelt A6 so-
wieso schon mit dem Inhalt der Zelle HYPLNK perma-
nent geladen ist.

Der Trap wird nur noch aus Gründen der Kompatibiltät zu alten S-Records
angeboten.

Die wahrscheinlichen Adressen von HYPLNK:
HYPLNK EQU $8CA in der 68k-Familie
HYPLNK EQU $51A4 in der PowerPC-Familie

8.1 Die Systemtraps 537

Trigger Event TRIGEV = $A026

Eingaberegister: D1.L Interrupt–Maske
Ausgaberegister: -

Veränderte Register: D7

Alle Interrupts, die durch ein gesetztes Bit in D1.L beschrieben werden und die

”enabled“ sind, werden gefeuert. Damit werden alle Tasks, die auf die entspre-
chenden Interrupts zur Aktivierung oder Fortsetzung eingeplant sind, freigege-
ben. Im System wird nicht unterschieden, ob ein Interrupt von der Hardware
oder dem TRIGEV–Trap ausgelöst wurde. Der Trap benutzt innerhalb des Nu-
kleus exakt den gleichen Mechanismus, wie er bei PIRTRI (siehe Seite 502) zum
Einsatz kommt. Somit ist es also möglich, Hardware–Interrupts zu simulieren
und ihre Wirkung zu testen.

Beispiel (T–Code):

TRIGEV OPD $A026 Trap-Definition
...

_MOVEQ =1,D1 EV 1
TRIGEV trigger EV 1
...

538 8.1 Die Systemtraps

TRY = $A07A Try Semaphore

Eingaberegister: A1 Adresse der Semaphore
Ausgaberegister: D0.L logisches Resultat

SR ”EQ“ oder ”MI“
Veränderte Register: D0, D7

Der Trap arbeitet ähnlich wie REQU. Er führt jedoch in keinem Fall zu einer
Blockierung des Aufrufers.

Wenn die Semaphore ”frei“ ist (”requestable“), dann wird sie um 1 erniedrigt
und der Trap anwortet mit ”MI“. In D0.L steht das Datum $FFFF8000. Dies
entspricht der Registerwertigkeit eines PEARL-Bit(1) Objektes ’1’B1.

War die Semaphore dagegen ”belegt“ (”rot“), so bleibt sie unverändert und der
Trap antwortet mit ”EQ“. In D0.L steht das Datum $00000000. Dies entspricht
der Registerwertigkeit eines PEARL-Bit(1) Objektes ’0’B1.

TRY wird vom PEARL-Compiler beim gleichnamigen PEARL90-Konstrukt ge-
neriert.

Beispiel (T–Code):

TRY OPD $A07A Trap-Definition
...
LEA Sema1,A1 Adresse der Sema
TRY Versuche request
BEQ Nein Bei branch: Sema unver"andert
... Nun im kritischen Pfad

8.1 Die Systemtraps 539

Wait for exit WFEX = $A06E

Eingaberegister: A1.L Task–ID to wait for
Ausgaberegister: SR Performance indication

...(TID) MSGLNK wird verändert
Veränderte Register: D6,D7

Zunächst wird untersucht, ob in A1 die TID einer Task aus dem Dispatcherring
steht. Während dieser Suche ist der Trap preemptionfähig.

Ist A1 kein gültiger Task–ID aus dem Dispatcherring, so wird der Trap mit
dem Status ”NE“ verlassen. Vorher wird als Report-code das Datum $FFFFFFFF
auf MSGLNK(TID) im Taskdescriptionblock (Task-DCB im permanenten Task–
Head) des Aufrufers abgelegt. Weitere Aktionen unterbleiben.

Wenn (was der Normalfall sein sollte) A1 im Dispatcherring gefunden wurde,
so wird die Blockierbedingung ”waiting for activation“ bei der durch A1
adressierten Task aufgehoben, falls sie gesetzt war. Die den Trap aufrufende
Task wird blockiert im Zustand ”SEMA“. Der mit A1 adressierten Task wird
das mitgeteilt, damit bei deren Ende (exit) der TERMI– bzw. TERME–Trap die
Entblockierung ausführt.

Mit der freiwilligen oder gewaltsamen Beendigung der durch A1 beschriebenen
Task wird der Aufrufer dieses Traps wieder lauffähig und erhält sowohl über
SR als auch über seine eigene Zelle MSGLNK(TID) einen Report. Das Statusregi-
ster SR ist im Zustand ”EQ“ um anzuzeigen, daß tatsächlich ein Wartezustand
eingenommen wurde – im Gegensatz zum Fall bei dem A1 auf eine inaktive
Task zeigt oder gar ungültig ist. Bezüglich MSGLNK(TID) sind zwei Fälle zu
unterscheiden:

540 8.1 Die Systemtraps

WFEX (Forts.) Wait for exit

• Die mit A1 bezeichnete Task beendet sich selbst. In diesem Fall überträgt
sie den Inhalt ihrer eigenen Zelle MSGLNK(A1) in MSGLNK(TID) des Aufru-
fers. Wenn nichts besonderes passiert ist, wird das der Code $00000000
sein. Es ist aber möglich daß der mit A1 adressierte Prozeß hier vorher ei-
ne Botschaft für denjenigen, der auf ihn wartet, deponiert hat. Dabei sind
die Muster $FFFFFFFF, $00000000 ... $00000010 bereits mit fester oder
reservierter Bedeutung belegt. Ein irreguläres Ende kann durch Ablage
des Codes $00000001 dem Wartenden mitgeteilt werden.

• Die mit A1 bezeichnete Task wird von jemandem mit TERME beendet,
z. B. durch das ”UNLOAD“-Kommando der Shell. In diesem Fall wird das
vorzeitige irreguläre Ende automatisch durch den Eintrag des Datums
$00000001 in MSGLNK(TID) angezeigt, eine evtl. vorher dort deponierte
Botschaft wird überschrieben.

8.1 Die Systemtraps 541

Der Trap eignet sich besonders, um logische Warteketten im Zusammenhang
mit Sohnprozessen aufzubauen. Siehe dazu auch die Beschreibung des GAPST–
Traps auf Seite 481. Scheitert ein Sohnprozeß bzw. wird er abgebrochen, so
wird bei richtiger Benutzung die ganze Wartekette rückwärts abgebaut. Die
Shell benutzt intern diesen Trap im Zusammenhang mit dem WAIT–Befehl.

Beispiel:

TID EQU $802
GAPST OPD $A00E
WFEX OPD $A06E

... Set up parameters for GAPST
GAPST Create son process -> A1
... Final alignment of son process
WFEX Wait for process in A1
BNE ... branch if no waiting
MOVEA.L TID,A1 own Task-ID
TST.L MSGLNK(A1) inspect report
BEQ allfine
...

Falls die Datei COMEQU nicht zur Hand ist, hier die wahrscheinlichen Displace-
mentwerte für MSGLNK:

MSGLNK EQU $48 68k-Familie
MSGLNK EQU $48 PowerPC-Familie

542 8.1 Die Systemtraps

WSBS = $A00C Workspace backward search

Eingaberegister: D1.L Größe des angeforderten Workspace
Ausgaberegister: A1.L Adresse der Speichersektion

CCR ”NE“ kein Erfolg, ”EQ“ A1 geladen
Veränderte Register: D1,D7

Der von RTOS–UH verwaltete Speicherbereich wird von oben nach unten
nach dem ersten freien Stück abgesucht, in welches die Anforderung hineinpaßt.
Zunächst wird an der Stelle begonnen, an der beim letzten Mal erfolgreich Spei-
cher zugewiesen wurde. Erst wenn es darunter keinen freien Platz gibt, werden
auch die oberen freien Sektionen inspiziert. Der untere nicht benötigte Rest
der gefundenen Freisektion wird in eine neue kleinere Freisektion verwandelt.
A1 wird so geladen, daß es auf den (nach oben bündig liegenden) zugeteilten
Bereich zeigt. Das Statusregister CCR wird zur Rückantwort benutzt. Wenn
nämlich kein Platz gefunden wurde, so antwortet der Trap mit ”NE“, anderen-
falls (wenn A1 geladen werden konnte) mit ”EQ“.

Man beachte, daß die so erzeugte Speichersektion als ”PWS“, d. h. ”Procedure–
WorkSpace“ verbucht wird und mit der Terminierung der einstmals erzeugen-
den Task automatisch wieder zu freiem Speicher wird. Dafür sorgt das sog.

”T–link“, eine Kette, die ihren Ursprung im ”Task–WorkSpace“ hat und alle
von der Task angeforderten CEs (Communication–Element) und ”PWS“ mitein-
ander zu einem Ring verbindet. Will man die Sektion von der Task ablösen,
wie es zum Beispiel der Editor mit neuen Blöcken macht, so muß die Sektion
mit einer besonderen Prozedur aus dem ”T–link“ herausgenommen werden, die
unten erläutert ist.

Der mit D1.L angeforderte Speicher kann wegen des T–links erst ab dem Dis-
placement WLOLD benutzt werden!

8.1 Die Systemtraps 543

Workspace backward search WSBS (Forts.)

Beispiel (T–Code):

WSBS OPD $A00C
_MOVE.L =$1000,D1 Sektion 4 kB brutto
WSBS
BNE MIST B: kein Platz mehr

*---- Nur wenn ’Dauerblock’ gewuenscht wird: auslinken!
OFF unteilbare Sequenz
MOVEA.L BACKT(A1),A2 A2 nur als Beisp.
MOVE.L FORT(A1),FORT(A2) linker Nachb.
MOVEA.L FORT(A1),A2
MOVE.L BACKT(A1),BACKT(A2) rechter Nachb.
MOVE =$0010,TYPE(A1) als ’MODULE’ ausg.
MOVE.L =’Mod1’,NAME(A1) Modulname

_MOVE =’23’,NAME+4(A1) Modulname 6 Bytes
DPC back to user-mode

544 8.1 Die Systemtraps

WSBS (Forts.) Workspace backward search

Die symbolischen Displacements müssen im T–Code aus der Datei COMEQU in-
kluded werden. Sie unterscheiden sich zwischen der 68k- und der PowerPC-
Familie. Gleich sind jedoch NAME=$0A und TYPE=8. Eine so erzeugte Speicher-
dauersektion kann nur mit RWSP oder den Bedienbefehl UNLOAD name wieder
eliminiert werden. Bei ausgelinkten Sektionen können ab Displacement $10
eigene Daten abgelegt werden.

Der Trap WSBS ist ein Bruder der Traps WSFA, WSFS und PENTR, die ähnliche
Grundeigenschaften aufweisen. Wie diese, so ermöglicht auch WSBS jederzeit
während der Suche eine Taskumschaltung (Preemption).

Eine verantwortungsvolle und sorgfältige Anwendung versteht sich von selbst!

Hier für den Notfall (COMEQU nicht zur Hand) die wahrscheinlichen Displace-
ments:

FORT EQU $0A 68k-Familie
BACKT EQU $0E 68k-Familie
WLOLD EQU $16 68k-Familie

FORT EQU $0C PowerPC-Familie
BACKT EQU $10 PowerPC-Familie
WLOLD EQU $18 PowerPC-Familie

8.1 Die Systemtraps 545

Workspace fixed address request WSFA = $A008

Eingaberegister: D1.L Gewünschte Adresse, teilbar durch 4!
A1.L Endadresse+4, teilbar durch 4!

Ausgabe-Register: A1.L Bei Erfolg A1 = D1

CCR ”NE“ kein Erfolg, ”EQ“ A1 geladen
Veränderte Register: D1,D5,D6,D7

Der Trap prüft, ob zwischen der Untergrenze in D1.L und der Obergrenze+4 in
A1.L freier Bereich liegt. Ist dies nicht der Fall, so antwortet der Trap mit ”NE“,
anderenfalls mit ”EQ“. Eventuelle Reste oberhalb und unterhalb werden — falls
groß genug — zu freien Sektionen. Der Ausgangswert von A1 ist identisch mit
dem Eingangswert von D1, falls CCR = ”EQ“.

Man beachte, daß die so erzeugte Speichersektion als ”PWS“, d. h. ”Procedure–
WorkSpace“ verbucht wird und mit der Terminierung der einstmals erzeugen-
den Task automatisch wieder zu freiem Speicher wird. Dafür sorgt das sog.

”T–link“, eine Kette, die ihren Ursprung im ”Task–WorkSpace“ hat und alle
von der Task angeforderten CEs (Communication–Element) und ”PWS“ mitein-
ander zu einem Ring verbindet. Will man die Sektion von der Task ablösen,
wie es zum Beispiel der Editor mit neuen Blöcken macht, so muß die Sektion
mit einer besonderen Prozedur aus dem ”T–link“ herausgenommen werden, die
schon auf Seite 543 erläutert wurde.

Beispiel:
WSFA OPD $A008

_MOVE.L =$8000,D1 Sektionadr=$8000
LEA $9000.L,A1 Bereich:$8000-$8FFF
WSFA
BNE MIST B:Bereich nicht frei

*---- Nur wenn ’Dauerblock’ gewuenscht wird: auslinken!
OFF unteilbare Sequenz
MOVEA.L BACKT(A1),A2 A2 zuf. Beisp.
MOVE.L FORT(A1),FORT(A2) linker Nachb.
MOVEA.L FORT(A1),A2
MOVE.L BACKT(A1),BACKT(A2) rechter Nachb.
MOVE =$0010,TYPE(A1) als ’MODULE’ ausg.

_MOVE ... Modulname 6 Bytes
DPC wieder user-mode

546 8.1 Die Systemtraps

WSFA (Forts.) Workspace fixed address request

Die symbolischen Displacements wurden bereits auf Seite 543 beschrieben. Im
Übrigen gelten alle anderen Anmerkungen zum Trap WSBS entsprechend. Auch
die mit WSFA erzeugte und danach ausgelinkte Speichersektion kann nur mit
RWSP oder dem Bedienbefehl ”UNLOAD name“ wieder eliminiert werden.

Der Trap WSFA ist ein Bruder der Traps WSBS, WSFS und PENTR, die ähnliche
Grundeigenschaften aufweisen.

Natürlich stört dieser Trap die automatische Speicherverwaltung und ist darum
nur für Spezial- und Testzwecke sinnvoll.

8.1 Die Systemtraps 547

Workspace forward search WSFS = $A004

Eingaberegister: D1.L Größe des angeforderten Workspace
Ausgaberegister: A1.L Adresse der Speichersektion

CCR ”NE“ kein Erfolg, ”EQ“ A1 geladen
Veränderte Register: D1,D7

Der von RTOS–UH verwaltete Speicherbereich wird von unten nach oben
nach dem ersten freien Stück abgesucht, in welches die Anforderung hineinpaßt.
Dann wird A1 als Zeiger auf diesen Abschnitt geladen. Der ggf. vorhandene
(obere) Rest wird zur freien Sektion verwandelt. Das Statusregister wird zur
Rückantwort benutzt. Wenn nämlich kein Platz gefunden wurde, so antwortet
der Trap mit ”NE“, anderenfalls (wenn A1 geladen werden konnte) mit ”EQ“.

Man beachte, daß die so erzeugte Speichersektion als ”PWS“, d. h. ”Procedure–
WorkSpace“ verbucht wird und mit der Terminierung der einstmals erzeugen-
den Task automatisch wieder zu freiem Speicher wird. Dafür sorgt das sog.

”T–link“, eine Kette, die ihren Ursprung im ”Task–WorkSpace“ hat und alle
von der Task angeforderten CEs (Communication–Element) und ”PWS“ mitein-
ander zu einem Ring verbindet. Will man die Sektion von der Task ablösen,
wie es zum Beispiel der Editor mit neuen Blöcken macht, so muß die Sektion
mit einer besonderen Prozedur aus dem ”T–link“ herausgenommen werden, die
schon auf Seite 543 beschrieben wurde.

Beispiel:

WSFS OPD $A004
_MOVE.L =$1000,D1 Sektion 4 kB brutto
WSFS
BNE MIST B: kein Platz mehr

*--- Nur wenn ’Dauerblock’ gew"unscht wird: auslinken!
OFF unteilbare Sequenz
MOVEA.L BACKT(A1),A2 A2 zuf. Beisp.
MOVE.L FORT(A1),FORT(A2) linker Nachb.
MOVEA.L FORT(A1),A2
MOVE.L BACKT(A1),BACKT(A2) rechter Nachb.
MOVE =$0010,TYPE(A1) als ’MODULE’ ausg.

_MOVE.... Modulname 6 Bytes
DPC wieder user-mode

548 8.1 Die Systemtraps

WSFS (Forts.) Workspace forward search

Die symbolischen Displacements wurden bereits auf Seite 543 beschrieben. Im
Übrigen gelten alle anderen Anmerkungen zum Trap WSBS entsprechend. Auch
die mit WSFS erzeugte und danach ausgelinkte Speichersektion kann nur mit
RWSP oder dem Bedienbefehl ”UNLOAD name“ wieder eliminiert werden.

Der Trap WSFS ist ein Bruder der Traps WSFA, WSBS und PENTR, die ähnliche
Grundeigenschaften aufweisen. Genau wie jene erlaubt er während der Suche
jederzeit eine Taskumschaltung (Preemption).

Eine verantwortungsvolle, sorgfältige Anwendung versteht sich von selbst!

8.1 Die Systemtraps 549

Transfer CE for Input/Output XIO = $4E4A

Eingaberegister: A1.L muß auf ein CE zeigen
Ausgaberegister: -

Veränderte Register: D1,D5,D6,D7

Das durch A1 festgelegte Communication–Element wird mit Hilfe der dort ein-
getragenen Priorität an den ihm zustehenden Platz in die Warteschlange eines
I/O–Dämons (I/O–Task) eingekettet. Welcher I/O–Dämon zuständig ist, er-
mittelt der Trap an Hand des Parameters LDNIO im Communication–Element.

Wenn eine ungültige ”LDN“ (logical dation number) das Auffinden eines I/O–
Dämonen unmöglich macht, so löst der Trap ein Fehlersignal (Exception) mit
der Kennung ”... wrong device-ldn (xio-call)“ aus, setzt den Parame-
ter RECLEN auf Null und führt die Operation ”RELCE“ so aus wie es ein I/O–
Dämon normalerweise tun würde. Das Fehlersignal kann mit Hilfe der CE–
Parametrierung nur dann unterdrückt werden, wenn das Bit STABRE (im Byte
STATIO des CE) nicht gesetzt ist.

Ist die über die LDN adressierte Zieltask inaktiv oder blockiert (”waiting for
activation“), so wird sie aktiviert bzw. diese eine Blockierbedingung wird
aufgehoben. Wenn im Mode–Byte des CEs das Wartebit gesetzt ist, wird die
aufrufende Task durch den Trap im Zustand I/O? blockiert. Diese Blockierung
hebt der Empfänger der Nachricht nach deren Auswertung mit Hilfe des RELCE–
Traps erst später wieder auf.

Der Trap funktioniert völlig analog zum MSGSND–Trap, kann allerdings das CE
nur an I/O–Dämonen verschicken. Genau wie beim MSGSND wird auch hier eine
prioritätsgerechte (an Hand der Zelle PRIO im CE) Einkettung vorgenommen:
Dringende Nachrichten kommen ganz nach vorne in die Schlange. Die Warte-
schlange kann natürlich niemals überlaufen.

Das weitere Schicksal des CE nach dessen Abarbeitung durch den I/O–Dämon
wird durch das Byte STATIO im CE bestimmt. Wenn das Bit STABRE(Bitno.
1) gesetzt ist, wird das CE mit dem RELCE des Empfängers in freien Speicher
verwandelt. Ist dagegen das Bit STABRT(Bitno. 2) gesetzt, so kehrt das CE
nach Abarbeitung in die eigene CE–Schlange des Aufrufers zurück und kann
von dort bei Bedarf mit dem TOQ–Trap geholt werden.

550 8.1 Die Systemtraps

XIO (Forts.) Transfer CE for Input/Output

Hinweis!

Im Normalfall haben die I/O–Dämonen eine Defaultprio-
rität von Null. Der XIO–Trap (wie übrigens auch der
MSGSND–Trap) interpretiert eine Null dort nämlich als ”dy-
namische Priorität“: Die Priorität des I/O–Dämonen wird
optimal an die Gegebenheiten angepaßt, so daß durch den
E/A–Vorgang möglichst keine Tasks behindert werden, de-
ren Priorität oberhalb der im CE eingetragenen liegt!

8.2 Das Filesystem 551

8.2 Das Filesystem

8.2.1 Der Verwaltungskopf

Es wird mit logischen Blöcken gearbeitet, deren jeweilige physikalische Position
auf dem Speichermedium durch die ”Untergliederungsdaten“ errechenbar ist.
Alle Blöcke sind von gleicher Größe. So werden etwa beim ”B“-Format für DD-
Disketten 5 Sektoren zu einer Blockgröße von 5 kB zusammengefaßt. Der erste
Block trägt die Nummer 0. Die Blöcke werden je nach Inhalt in zwei Typen
unterschieden: den Verwaltungsblock und den Datenblock. Mit dem Block 0
beginnt der Hauptverwaltungsteil des Mediums. Ab einer bestimmten Block-
nummer (bei Disketten ist das in der Regel Block 1) beginnt der Bereich der
Datenblöcke, in die für Unterdirectories wieder einzelne kürzere Verwaltungs-
blöcke eingestreut sein können.

Block 0 beginnt bei Disketten auf Track 00, Sektor 1 und Seite 0. Platten
können mehrere, auch systemfremde, Partitionen haben. Dort liegt der Beginn
des Blockes 0 jeweils genau an der physikalischen Stelle der Platte, an der die
entsprechende Partition beginnt.

Der Hauptverwaltungsblock beginnt stets im Block 0. Seine Struktur ist in
der Tabelle 8.1 genau wiedergegeben. Bei Platten ist der Inhalt über mehrere
fortlaufende Blöcke verteilt.

552 8.2 Das Filesystem

$00 HDDRV 11 00 4 Bytes Kennungskopf des UH-Fman zur I-
dentifikation.

$02 00 00 Gehört noch zum Kopf
$04 SODSID 00 0x Single Or Double-SIDed x=0 single x=1 dou-

ble etc.
$06 FBLEN xx xx Anzahl phys. Bytes pro Block, immer n·256
$08 NOBLPT xx xx 2-er Logarithmus aus Blockzahl/Track/Seite.

Beispiel: 0 -> 1 Bl/Track, 1 -> 2 Bl/Track etc.
$0A NOSEPB xx xx Anzahl Sektoren pro Block, Sektorinkrement.
$0C HDBLNO xx xx HeaDer BLock Nummer −1
$0E ABMLEN xx xx Anzahl der insgesamt vorhandenen Blöcke.
$10 ABMIDX aa aa ”ABM“-Start-Index.
$12 DIRSTR dd dd Directory-Start-Index zum Auffinden des Dir.
$14 DIRLEN xx xx Directory-Länge = max. mögl. Anzahl Files
$16 DIRLEE xx xx Länge des Einzeleintrages/File im Directory.

Mindestens Namenslänge+8 (normal: 16)
$18 NAMLEN xx xx Namenslänge in Bytes im Directory, typ. 8
$1A DIRNUM nn nn Number of this directory
$1C RES1 00 00 Reserviert
$1E RES2 00 00 Reserviert
$20 RES3 00 00 Reserviert
$22 LABEL ”Label“-Text der Diskette (16 Bytes)
$32 EXTMRK 4 bytes Extension-valid mark
$36 EXTTB Table for 15 Extensions
...
$aaaa Assigned-block-map ”ABM“. Zu jedem Block gehören 4 Bytes.

Die ersten beiden bezeichnen den Besitzer-File, die letzten bei-
den erzeugen eine Kette. Ein unbenutzter (freier Block) ist durch
4 Nullbytes zu erkennen. Die ”ABM“ wird so initialisiert, daß
die Blöcke, die dieser Verwaltungsteil belegt, automatisch zu
Anfang für immer belegt sind. Gleiches gilt für Blöcke, die beim
Formatieren als fehlerhaft erkannt wurden. Insgesamt enthält
die ”ABM“ (4·Anzahl Blöcke) Bytes.

$dddd Directory. Wird wie folgt initialisiert: Erster Eintrag Name
FREE (mit Blanks auf Namenslänge gefüllt) und alle weite-
ren (total: DIRLEN·DIRLEE) Bytes jeweils Null. Das Directory
kann auch vor der ”ABM“ liegen.

Tabelle 8.1: Filesystem, Verwaltungskopf

8.2 Das Filesystem 553

8.2.2 Die Datenblöcke

Die Datenblöcke benötigen zu Anfang nur die Hardware-Initialisierung. Die in-
nere Struktur ermöglicht ein Lesen der Information auch bei Verlust des Verwal-
tungskopfes – sofern die Zuordnung der Blocknummern zu den physikalischen
Sektoren noch bekannt ist. Jeder Datenblock sieht wie folgt aus:

$00 FORBLK xx xx Folgeblock (0 falls letzter Block des Files)
$02 BACBLK xx xx Vorgängerblock (0 falls erster Block)
$04 MINIDX aa aa Index des ersten Nutzdatenbytes.
$06 ACTIDX bb bb Aktueller Lese-/Schreibindex
$08 WRTIDX cc cc Writer-Index. Schleppzeiger von ACTIDX.
$0A WMXIDX dd dd Indexgrenze, letztmögl. Byte des Blocks+1
$aaaa Erstes Nutzdatum
$bbbb (Zufälliger) aktueller Zeiger.
$cccc (Zufällige) Schreiber-Schlepposition.
$dddd-1 Letztes mögliches Nutzdatum

Tabelle 8.2: Filesystem, Datenblock

8.2.3 Eigene Driver für das RTOS–UH-Filesystem

Um eigene Driver schreiben zu können, die weitgehend unabhängig von den
internen Revisionen der Filehandler sind, ist es unbedingt notwendig, den Dri-
ver mit dem gemeinsamen Head der entsprechenden Version des Filehandlers
zu assemblieren, der in Ihrem System verwendet wird. Dazu muß die Versions-
nummer des Heads mit der der Filemanger übereinstimmen. Im Augenblick ist
die Version 3 Revision 8 der Filehandler gültig, es ist also ein Head der Version
3.x zu verwenden.

Ein Filehandler Driver ist eine Task, die in ihrem Taskworkspace eine Rei-
he von Parametern aufsetzt, die Controller Hardware initialisiert und dann in
den eigentlichen Filehandler springt. Dieser ruft dann eine Reihe von Unter-
programmen auf, mit denen z. B. ein Block von der Diskette/Platte gelesen
wird, ein Block geschrieben wird oder auch das Medium formatiert wird. Alle
diese Unterprogramme kehren immer wieder über einen RTS zum Filehandler
zurück. Fehler werden immer dem Filehandler gemeldet, ein Driver sollte nie
eine eigene Ausgabe von Fehlermeldungen veranlassen.

554 8.2 Das Filesystem

Die Unterprogramme, die der Driver dem Filehandler zur Verfügung stellen
muß, sind:

-RDISC um einen Block vom Medium zu lesen. Die Para-
meter dazu werden in zwei Datenblöcken über-
geben, auf die A0 und A6 zeigen.

-WDISC um einen Block auf das Medium zu schrei-
ben. Die Parameter werden wie bein ”RDISC“-
Unterprogramm übergeben.

Eine Anzahl von weiteren Unterprogrammen sind nicht unbedingt notwendig.
Wenn sie nicht implementiert werden, können sie durch ein einfaches RTS ersetzt
werden.

–FORM um eine Anzahl von Tracks auf einem Medium physikalisch
zu formatieren. Die Parameter dazu werden in festen Zel-
len im Taskworkspace übergeben. Wenn dieses Unterpro-
gramm nicht vorhanden ist, wird bei einem FORM Befehl
an den Filehandler nur das Medium auf defekte Blöcke un-
tersucht und das Root Directory neu eingerichtet. Die phy-
sikalische Formatierung kann dann z. B. mit einem ande-
ren Programm erfolgen. Dies ist z. B. bei Platten an SCSI-
Controllern notwendig, da der Filehandler nicht genügend
Informationen zum Einrichten der Description Pages im
Controller übergeben kann.

–DESEL Der Filehandler ruft dieses Unterprogramm auf, wenn auf
keinem der von dieser I/O-Task betreuten Laufwerken noch
ein File offen ist. Typischerweise kann man damit die Select
Lampen aller Laufwerke ausschalten.

–DISPOP wird während des Formatierens automatisch für jeden
Block aufgerufen, nachdem zuvor ”RDISC“ aufgerufen wur-
de. Die Parameter sind die Blöcke, auf die A0 und A6 zeigen.

8.2 Das Filesystem 555

Die Adressen dieser Routinen hat die Driver Task in feste Addressen in ihrem
Taskworkspace einzutragen, bevor die Kontrolle an den Filehandler weiterge-
geben wird. Unter dem Label RDISCA hat die Addresse der Routine RDISC,
unter WDISCA die Addresse von WDISC, unter FORMA die Adresse von
FORM, unter DISPOA die Adresse von DISPOP und unter DESELA die Ad-
dresse von DSEL zu stehen. Neben den Adressen dieser Unterprogramme sind
aber noch Zeiger auf einige Tabellen zu übergeben:

FOCTS ist die Tabelle der Beschreibung der einzelnen Formate für
Single Density. Für jeden Formattyp ist ein Eintrag not-
wendig, der mindestens aus folgenden vier Worten bestehen
muß:

1. Anzahl der Sektoren pro Block
2. Bytes je Sektor
3. Einem Infowort
4. Der Anzahl Blöcke pro Track −1

Der Filehandler überträgt diese vier Worte vor dem Aufruf des Formatters
(FORM) in die Zellen NSEPT, SEL, FSELB und NBLPT im Taskworkspace.
Das erste Byte von FSELB wird zusätzlich mit dem zur Laufwerknummer
gehöhrenden Eintrag aus der FOCTU Tabelle verknüpft. Ein Zeiger auf diese
Tabelle ist in FOCTSA im Taskworkspace einzutragen.

FOCTD ist die Beschreibungstabelle für der einzelnen Formate in
Double Density. Sie is wie FOCTS aufgebaut. Der Zeiger
auf diese Tabelle hat in FOCTDA im Taskworkspace zu
stehen.

Weiter ist die Länge (Anzahl Bytes) eines Eintrages in den Tabellen FOCTS
und FOCTD im Taskworkspace als Langwort bei FOCTEL einzutragen.

556 8.2 Das Filesystem

FOCXX ist die Tabelle der im FORMAT Befehl angebbaren For-
mattypen. Jeder Eintrag ist genau zwei Byte lang. Das En-
de dieser Tabelle wird mit zwei Bytes Null gekennzeich-
net. Die Formattypen sind in der Reihenfolge anzugeben,
in der sie auch in den FOCTS und FOCTD Tabellen ste-
hen, und für jeden Eintrag in der FOCXX Tabelle hat in
den FOCTS und FOCTD Tabellen jeweils ein Eintrag vor-
handen zu sein.

FOCTU enhält für jedes mögliche Laufwerk einen ein Byte langen
Eintrag. Vor dem Aufruf des Formatters für das Laufwerk
n wird das n-te Byte dieser Tabelle mit dem ersten Byte
in FSELB oder Verknüpft. Auf die Tabelle FOCTU hat
FOCTUA im Taskworkspace zu zeigen.

DRVMSA Maske im Taskworkspace des Drivers. Hier ist eine Maske
einzutragen, die zur Ermittlung der gültigen Laufwerknum-
mer dient. Die im Filehandler verwendete Laufwerksnum-
mer entsteht durch eine ”UND“-Verknüpfung dieser Maske
mit der aus dem CE stammenden Drive Nummer.

DRVNAM ist die Tabelle der Laufwerknamen. In ihr ist für jedes nach
der Ausblendung über DRVMSA mögliche Laufwerk ein
Eintrag vorzusehen. Jeder Eintrag in diese Tabelle ist genau
4 Bytes lang. In den ersten beiden Bytes steht die Laufwer-
knummer ASCII codiert. Das dritte Byte enthält die LDN,
für die dieser Driver arbeiten soll, plus $80, und im vierten
Byte steht die Laufwerknummer. Die Tabelle ist mit einem
Wort $0000 abzuschließen. Wenn das System aus dieser Ta-
belle auch die Memo’s für die Laufwerkbezeichnungen er-
mitteln soll, so muß vor der DRVNAM Tabelle die Scan-
Marke (Scheibe 9) $AEB1, $BF95, $02BF stehen. Denken Sie
auch daran, in dem Driver die Device Facilities der ver-
wendeten ”LDN“ auf $C7F8 zu setzen. Ein Zeiger auf die
DRVNAM Tabelle ist unter DRVNNA im Taskworkspace
abzulegen.

8.2 Das Filesystem 557

Das Langwort INITYA und das Wort FTYMSA im Taskworkspace werden nur
für alte Driver benötigt. Sie müssen aber mit $00000004 bzw. $0004 vorbesetzt
werden.

In das Wort FLDN im Taskworkspace ist die LDN, unter der dieser Driver
arbeitet, einzutragen.

Das Langwort FATTSA im Taskworkspace des Drivers ist nur für dem MSFM
von Bedeutung. Ein gesetztes Bit bedeutet, daß der MSFM für das dem Bit
entsprechende Laufwerk eine FAT mit 16 Bit langen Einträgen annehmen wird.

Die Routinen RDISC und WDISC erhalten ihre Parameter aus Datenblöcken,
auf die die Register A0 und A6 zeigen. Die mehr allgemeinen Parameter für ein
Laufwerk sind in dem über A0 zu erreichenden Driveblock abgelegt. Dies sind:

BLKLEN (Wort) Länge der zu lesenden oder schreibenden Daten.
NOSEPB (Wort) Anzahl der Sektorn pro Block.
SODSID (Wort) Anzahl der Oberflächen −1
NOBLPT (Wort) Anzahl der Blöcke pro Track −1
ERRPTC (Wort) Anzahl der Versuche

Das Byte FPTFL(A0) muß auf jeden Fall gelöscht werden. Wenn möglich, sollte
hier auch bei jedem Leseauftrag eingetragen werden, ob der Schreibschutz für
das Medium aktiviert ist: es ist dann auf $FF zu setzen.

Die über A6 zu erreichenden Parameter betreffen den einzelnen Lese- oder
Schreibauftrag:

BLKNO (Wort) Der zu bearbeitende Block.
DADR (Langwort) Adresse der Daten.
ERRNO (Wort) Fehlernummer.

Die Routinen RDISC und WDISC melden mit dem Zero Bit (”EQ“) im Status-
register des Prozessors, ob der Auftrag erfolgreich ausgeführt werden konnte.

”NE“ bedeutet, daß in ERRNO eine Fehlermeldung abgelegt worden ist. Es sind
folgende Fehlernummern zugelassen:

558 8.2 Das Filesystem

4: Data Address Mark Error
8: Track 000 not found (Position Error)

12: Aborted Command Error
16: Controller fault
20: ID-Field not found
24: CRC-Error in ID or Data
28: Uncorrectable Data
32: Bad Block found
36: Drive not ready
40: Device Write protected
44: Disk Changed
48: Drive not present

Die Anzahl der Versuche in ERRPTC ist normalerweise auf 12 vorbesetzt. Nur
beim Lesen, das zum Auffinden von defekten Blöcken dienen soll, wird hier 2
eingesetzt. Die Speicherzelle darf aber nicht verändert werden.

Driver, die Disks mit unterschiedlichen Formaten handhaben, müssen in der
Lage sein, beim Parametersatz ”Block 0, Blocklänge 1024 Bytes, 4 Sekto-
ren/Block, 1 Block pro Track und 1 Oberfläche“ (BLKNO=0, BLKLEN=1024,
NOSEPB=0, NOBLPT=0, SODSID=0) die ersten 1024 Byte vom Medium ein-
zulesen. Nur bei dieser Kondition braucht damit gerechnet zu werden, daß eine
Diskette mit einem anderen Format zu bearbeiten ist. Nach einem Format Be-
fehl hat aber das Lesen mit der Sektorlänge, die beim Formatieren verwendet
wurde, sofort möglich zu sein. Der Driver muß also, wenn es die Hardware er-
fordert, eine Information in eigenen Zellen speichern, an der er erkennt, welches
Format zuletzt auf welchem Laufwerk verwendet wurde.

Das FORM Kommando erhält seine Daten über Speicherplätze im
Taskworkspace. Diese sind:

FSELB (Wort) Siehe FOCTS
SEL (Wort) Sektor Länge in Bytes
MAXTRK (Wort) Anzahl der Tracks
SINGFL (Wort) 0: Single Density
NSEPT (Wort) Sektoren pro Track
FERRC (Wort) Fehlercode beim formatieren
FORMT (Wort) Position des Formats in FOCXX

Im Fehlerfall wird die Fehlernummer bei FERRC eintragen. Die Nummern sind
wie beim Schreiben/Lesen vergeben.

8.3 Das Communication Element 559

8.3 Das Communication Element

8.3.1 Benutzung und Aufbau des CE

Das Betriebssystem übernimmt die Betreuung von Warteschlangen an E/A-
Bausteinen mit begrenzter Übertragungsgeschwindigkeit, wie z. B. UART
(ACIA) oder solchen digitalen Ein-/Ausgaben, bei denen zwischen den Trans-
fers aus anderen Gründen Wartephasen anfallen (z. B. Floppy-Koppler o. ä.).
Für rein elektronische und damit aus der Sicht des digitalen Prozesses beliebig
schnell mögliche E/A ist das Betriebssystem nicht zuständig, da keine Warte-
phasen anfallen, die einen Taskwechsel sinnvoll werden lassen.

Eine Task, die eine Ein-/Ausgabe beginnt, muß sich zuvor in den Besitz eines

”Communication-Elements“ (CE) bringen - wenn sie nicht noch ein ”leeres“
von einer vorhergehenden E/A besitzt. Dafür ist die Operation mit dem Trap

”FETCE“ vorgesehen.

Das CE wird von der Task parametriert, z. B. durch Einsetzen der Warte-
schlangen-Nummer (”LDN“), des Übertragungsmodes, der Satzlänge, des File-
Namens usw.

Das gefüllte CE wird von der Task mit Hilfe der Trap-Operation ”XIO“ oder

”MSGSND“ dem Betriebssystem angeboten. Diese Traps bringen die Task in den
Wartezustand ”I/O?“, sofern bei der Parametrierung des CE das Wartebit
im Übertragungsmode gesetzt wurde. Wenn das Freigabebit (”Release“-Bit)
von der Task gesetzt wurde, ist der Aufruf von XIO (bzw. MSGSND) die letzte
zulässige Operation der Task mit diesem CE, da es nach Abarbeitung in der
Warteschlange automatisch als freier Speicher in die Verwaltung von RTOS–
UH zurückkehrt.

Wenn das Freigabebit nicht gesetzt wurde, muß die Task in geeigneter Weise mit
dem CE weiter verfahren. Eine Neuparametrierung ist erst erlaubt, nachdem
das CE abgearbeitet wurde. War beim Aufruf von XIO das Wartebit gesetzt,
so kann die Task nach dem XIO/MSGSND sofort neu über das CE verfügen.
Andernfalls ist mit der Systemfunktion ”IOWA“ (I/O-Wait) das Ende der I/O-
Operation abzuwarten. Ggf. kann noch vor einer Neuparametrierung nach dem
IOWA der Rückmeldecode im CE analysiert werden.

560 8.3 Das Communication Element

Ein CE wird auf drei mögliche Arten wieder zu freiem Speicherraum:

1. Aufruf von ”XIO“ mit gesetztem Freigabebit.

2. Die besitzende Task wird terminiert oder beendet sich selbst.

3. Die Task ruft die Operation ”RELCE“ für dieses CE auf.

Der Aufruf von ”RELCE“ (Release CE) ist immer möglich, solange die Task
Besitzer des CE ist, also auch während eines noch laufende E/A-Vorganges
über dieses CE. RELCE beeinflußt nicht die laufende oder durch XIO gerade
veranlaßte E/A-Operation.

Bei der Terminierung einer Task ist zwischen Ein- und Ausgabe zu unterschei-
den:

• Bei der Ausgabe verbleiben mit XIO bereits in die Ausgabewarteschlange
gebrachte CEs dort, es wird nur das Freigabebit gesetzt und die Task-ID
im CE gelöscht.

• Bei der Eingabe werden die CEs, die noch nicht in Bearbeitung durch
die Betreuungstask der Warteschlange sind, aus der Schlange genommen
und zu freiem Speicher umgewandelt. In Bearbeitung befindliche CEs
verbleiben bei der Betreuungstask (die angefangene Eingabe muß also
regulär zu Ende geführt werden) bis sie abgearbeitet sind und werden
dann zu freiem Speicher umgewandelt.

Das CE ist ein wichtiger Bestandteil der Ein-/Ausgabe im Betriebssystem
RTOS–UH. Dabei ist der genaue Aufbau nur für den Assemblerprogram-
mierer interessant. Für den Hochsprachanwender übernehmen Compiler und
Laufzeitsystem die Parametrierung der CE’s. In der folgenden Tabelle sind in
der linken Spalte die Displacements der einzelnen Parameter relativ zu A1, dem
Zeiger auf das CE nach ”FETCE“, und daneben kurz ihre Bedeutung angegeben.

8.3 Das Communication Element 561

Name 68xxx PowPC len Funktion
– – $00 $00 – Verwaltungszeiger, nicht verändern!
TIDO $12 $14 4 Task-ID of owner, nicht verändern!
FORS $16 $18 4 Verwaltungszeiger, nicht verändern!
BACKS $1A $1C 4 Verwaltungszeiger, nicht verändern!
PRIO $1E $20 2 Plazierungspriorität in der Queue, darf

verändert werden. Defaultwert ist die
aktuelle Laufprio. der Task.

BUADR $20 $24 4 Buffer-Adresse. Darf verändert werden.
Defaultbesetzung: zeigt auf den Platz
FNAME + max. erlaubte Pfadlänge.

RECLEN $24 $28 2 Blocklänge (Anzahl Bytes), I/O-Task
gibt eine Null oder negative Zahl zu-
rück, falls I/O nicht ausführbar.

STATIO $26 $2A 1 Statusbyte
LDNIO $27 $2B 1 LDN der Warteschlange, für die das CE

bestimmt ist oder in der es steht.
MODE $28 $2C 2 Betriebsart, Endebedingung etc.
DRIVE $2A $2E 2 Drive-Nr. linkes Byte: Time-Out

wenn $80 addiert.
FNAME $2C $30 ? File-Name oder ”Pathlist“, Autostop

durch $FF, es sei denn, die maximale
Länge ist bereits erreicht. Beachten Sie
bitte die maximale Länge (implem. ab-
hängig)

Tabelle 8.3: Aufbau des Communication Elementes

562 8.3 Das Communication Element

8.3.2 Die Modebytes

Die beiden Bytes des Mode-Wortes haben sehr unterschiedliche Bedeutung.

• Das linke Byte (Adresse+0) ist bitweise mit überlagerbaren Funktionen
belegt. Das Setzen des entsprechenden Bits aktiviert die beschriebene
Funktion. Die niederwertigen 3 Bit haben bei den seriellen Schnittstellen
eine feste, beim Filesystem dagegen eine vom Betriebsbefehl abhängige
(sehr oft auch keine) Bedeutung. Genauere Informationen dazu in der
Tabelle 8.5.

• Das rechte Byte (Adresse+1) benutzt für die höchstwertigen 3 Bit eben-
falls eine bitweise Kodierung. Die verbleibenden rechten 5 Bit kodie-
ren einen von 32 möglichen Betriebsbefehlen für den ausführenden I/O-
Dämonen. Die Dämonen werten nur die für sie interessante Teilmenge der
Betriebsbefehle aus.

Am besten versteht man die Funktion des gesamten I/O-Systemes, wenn man
sich neben diesem Abschnitt die Beschreibung der Traps FETCE, IOWA, MSGSND,
RELCE und XIO durchliest. Das CE ist ein Baustein eines leistungsfähigen und
komplexen Kommunikationssystemes. Es ist keinesfalls nur für die echte ”Ein“-
oder ”Ausgabe“ gedacht. Auch zum Rangieren von Botschaften und Befehlen
zwischen verschiedenen Prozessen (Tasks) – auch über eine Vernetzung – be-
dient RTOS–UH sich dieses Werkzeuges.

8.3 Das Communication Element 563

Byte Mnemo Bedeutung
$80 MODMWA Suspend (Wait) until ready
$40 MODMOU Directionbit, set if Output-direction
$20 MODMCR Auto-stop after transmission of a Carriage-return
$10 MODMLF Auto-stop after transmission of a Line-feed
$08 MODMEO Auto-stop after transmission of an EOT
$04 MODMSC Beim Filesystem: Siehe Tabelle 8.5

Bei serieller Schnittstelle: Suppress Command,
Cotr. A, B, C ohne Wirkung.

$02 MODMNE Beim Filesystem: Siehe Tabelle 8.5
Bei serieller Schnittstelle: No echo on input

$01 MODMBI Beim Filesystem: Siehe Tabelle 8.5
Bei serieller Schnittstelle: Binärer Transfer

Tabelle 8.4: Die Bits im linken Modebyte

Byte Mnemo Bedeutung
$07 FINDA Bei DIR ($0E): FIND -A
$06 FIND Bei DIR ($0E): FIND-Befehl
$04 NOCLO Bei READ: kein automatisches Close am Ende

des Files.
$03 DIREA Bei DIR ($0E): DIR -EA
$02 BADBL Bei READ raw: Badblock setting
-“- DIRE Bei DIR ($0E): DIR -E
$01 DIRA Bei DIR ($0E): DIR -A

Bei SAVE ($14): Rückgabe Filesize
-“- RETA Bei RETURN ($04): -A Parameter

Tabelle 8.5: Die unteren 3 Bits im linken Modebyte

Byte Mnemo Bedeutung
$80 IOCMEF Rückmeldebit bei Eingabe: End-of-file
$40 IOCMNE No Error messages by damon
$20 IOCMEX Exclusiv access this task.
$1x ... Betriebsbefehlkodierung
... ... in diesen Bits gemäß

$0x ... Tabelle 8.7 unten.

Tabelle 8.6: Die funktionellen Bits im rechten Modebyte

564 8.3 Das Communication Element

Byte Bedeutung
$00 READ/WRITE ”old“ File
$01 ERASE the File
$02 REPORT Error
$03 -
$04 RETURN the File (-a -> Modebyte)
$05 -
$06 CLOSE the File
$07 READ/WRITE ”ANY“ File
$08 REWIND existing (OLD) File
$09 APPEND the File
$0A -
$0B -
$0C (list) FILES (CE in the CE)
$0D (list) FREE (CE in the CE)
$0E (list) DIRectory (CE in CE) (-e -a -> Modebyte)
$0F -
$10 SYNC (i.e. save on medium)
$11 TOUCH the File, (read or write by directionbit in Modebyte)
$12 LINK (additional name) to File
$13 SEEK (change position in file)
$14 SAVE next pos. to write to a file (SEEK’s counterpart)
$15 REWIND any (install if necessary) File
$16 REWIND new (error if exists) File
$17 FORMAT single density, parameters by FNAME*

$18 FORMAT double density, parameters by FNAME*

$19 CF, change filesystemstate, parameters by FNAME*

$1A MaKe DIRectory
$1B ReMove DIRectory
$1C RENAME (change name)
$1D -
$1E -
$1F READ/WRITE rawblock, BADBLOCK by Modebyte

Tabelle 8.7: Die Betriebsbefehle im rechten Modebyte

* Zur Kodierung von FNAME siehe gleichnamigen Shellbefehl.

8.3 Das Communication Element 565

Byte Mnemo Bedeutung
$80 STABFL ”FLag“ zur freien Verwendung des Nutzers, wird vom

System nicht verändert oder beachtet.
$40 ... Reserviert.
$20 ... Reserviert.
$10 ... Reserviert.
$08 STABOQ ”in Own Queue“. Der Trap RELCE setzt dieses Bit im

Moment der Rückgabe (STABRT war gesetzt) des CE
in die eigene Queue des Besitzers. Obwohl eingekettet,
ist es in Wirklichkeit ungebunden.

$04 STABRT ”ReTurn“. Der Trap RELCE soll, wenn er vom I/O-
Dämonen exekutiert wird, das CE in die eigene Queue
des Besitzers zurückgeben.

$02 STABRE ”RElease“. Der Trap RELCE soll, wenn er vom I/O-
Dämonen exekutiert wird, das CE in freien Speicher ver-
wandeln (”Verschrottungsbit“). Kann vom Nutzer vor
dem XIO oder MSGSND gesetzt werden (dann ist das CE
mit dem XIO/MSGSND für ihn gestorben). Ein von der
Besitzertask auf das CE ausgeführter RELCE oder ein
TERMI bzw. TERME, der auf die Besitzertask wirkt, setzt
dieses Bit ebenfalls (für die interne Aufräumarbeit).

$01 ... Reserviert

Tabelle 8.8: Die Bits im Statusbyte des CEs

Man sollte die zur Zeit vom System nicht benutzten Bits in STATIO gemäß
Tabelle 8.8 wirklich frei lassen. Bei zukünftigen Erweiterungen des Systemes
könnte es sonst zu großen Komplikationen kommen.

566 8.4 Assemblerkodierte PEARL-Unterprogramme

8.4 Assemblerkodierte PEARL-Unterprogramme

8.4.1 Parameterübergabe bei PEARL90

Die Assembler und Transferassembler des RTOS–UH-Systemes sind sehr gut
geeignet, um in Maschinensprache für Sonderzwecke Unterprogramme zu ko-
dieren, die von PEARL-Programmen aufgerufen werden können. Mit dem
Übergang auf PEARL90 und der Einführung der Formate wurde diese Auf-
gabe einerseits für den Programmierer erheblich erleichtert, andererseits aber
auch die Effizienz dieses Anschlusses deutlich verbessert. An dieser Stelle wird
zunächst nur noch der neue T–Code kompatible Anschluß beschrieben. Die alte
PEARL80-Notation sowie Umstellhinweise von PEARL80 auf PEARL90 folgen
in den nächsten Abschnitten.

Wir betrachten hier exemplarisch den Fall

ABCD(p1, ... , pn); gleichbedeutend zu CALL ABCD(p1, ... , pn);

wobei ABCD ein Assemblerunterprogramm mit n Parametern sein soll; das Sym-
bol ABCD muß im aufrufenden PEARL-Programm als ... ENTRY GLOBAL spe-
zifiziert sein. Auf der Assemblerseite wird der Einstiegpunkt von ABCD durch
Voranstellung des Zeichens ”∼“ (Tilde) global deklariert. Dies ist ein wich-
tiger Unterschied zum alten PEARL80. Durch nunmehr zwei Sorten globa-
ler PEARL-Symbole werden gefährliche Irrtümer mit Mixturen aus ”alt“ und

”neu“ ausgeschlossen.

Der PEARL90-Compiler erzeugt zu obiger Aufrufanweisung folgende 4 Ko-
deabschnitte:

1. Berechnung etwaiger Parameter oder Feldelementadressen
2. Bereitstellung und Vorbereitung von Prozedurarbeitsspeicher
3. Ablage der Parameterverweise im Prozedurarbeitsspeicher
4. Nur im Testmode: Signaturgenerierung
5. Native Sprung an die Stelle ∼ABCD oder ∼ABCD-12.

Im Testmode wird die um 12 reduzierte Einstiegsadresse als Sprungziel ver-
wendet. Der Sprung erfolgt mit einem Befehl, der im T–Code als XJRS kodiert
würde.

Im Gegensatz zum alten PEARL80 beginnen alle Unterprogramme heute im
native mode des jeweiligen Prozessors. Virtuelle Befehle sind bei Prozeduraufruf
und –Rückehr nicht mehr beteiligt.

8.4 Assemblerkodierte PEARL-Unterprogramme 567

Die Schnittstellenbedingungen unmittelbar an der Einsprungstelle – bzw. am
Signaturprüfungseinstieg – können wie folgt beschrieben werden:

D0 Signatur, wird nur im Testmode versorgt, bei dem die
Routine 12 Bytes vor dem eigentlichen Einstieg ange-
sprungen wird.

A2 enthält den potientellen neuen A5-Wert. Die Prozedur muß
an Hand der Größe (mit Hilfe von A3) entscheiden, ob er
verwendbar ist.

A3 zeigt auf das erste Byte hinter dem letzten nutzbaren Byte
im per A2 angebotenen Workspace

A5 zeigt noch auf den lokalen Workspace des Aufrufers.
-4(A2) enthält die 4 byte lange Adresse für die Wertrückgabe.

Diese Zelle ist auch vorhanden, aber undefiniert besetzt,
wenn es sich nicht um eine Funktionsprozedur handelt.

-4-x1(A2) Wert oder Adresse (IDENT) des Parameters p1. Im Mo-
de ”per IDENT“ ist x1 bei skalaren Objekten genau 4,
bei Feldern dagegen so lang wie der zugehörige Feldbe-
schreibungsblock. Im Mode ”by value“ ist x1 die nach be-
stimmten Regeln aufgerundete Länge des Parameters p1.
Besteht der Wert eines Parameters aus mehr als 256 By-
tes, so wird vom Compiler statt des Parameterwertes die
4-Byte lange Adresse einer zuvor vom Compiler angefer-
tigten Kopie übergeben.

-4-x1-x2(A2) Wert oder Adresse (IDENT) des Parameters p2. Weiteres
analog zum Parameter p1.

Tabelle 8.9: Parameterschnittstelle bei PEARL90

568 8.4 Assemblerkodierte PEARL-Unterprogramme

Man sieht, daß Parameterwerte oder Objektadressen in gegenüber der Pro-
zedurdefinition umgekehrter Reihenfolge im A2-Space stehen. Dieser Bereich
mit negativen Offsets ist auf 16 kB begrenzt. Bei einer extrem großen Para-
meteranzahl und/oder vielen großen Objekten knapp unterhalb der 256-Byte
Grenze im ”per value“-Mode kann es passieren, daß der Compiler einen Ka-
pazitätsüberlauf beim Prozeduraufruf anzeigt. Bei ernsthaften Programmen
wurde das allerdings noch nie gesehen.

Weil der Compiler so ausgelegt ist, daß stets mindestens 32 Bytes zwischen die
in A2 und A3 angegebenen Adressen passen, läßt sich bei vielen Bibliotheks-
routinen ein schneller Sonderfall konstruieren. Wenn dieser 32 Byte große
Platz für interne Variablen reicht und keine anderen unterlagerten Unterpro-
gramme aufgerufen werden, so kann ein Unterprogramm ohne weitere Prüfung
sofort mit der Aktion innerhalb des A2-Space beginnen und direkt mit dem
T–Code–Befehl XRTS beendet werden.

Im Regelfall muß jedoch zunächst sichergestellt werden, ob der Platz reicht.
Außerdem müssen Vorbereitungen für unterlagerte Prozeduren getroffen wer-
den. Auch das Verlassen der Routine ist nun mit einigen Maschinenbefehlen
verbunden, weil A5 verändert wurde und wieder auf den Aufruferwert zurück-
gestellt werden muß.

Beide Fälle werden wir im folgenden betrachten.

8.4 Assemblerkodierte PEARL-Unterprogramme 569

Schneller Sonderfall

Wir kodieren eine beispielhafte simple Funktion, die weniger als 32 Bytes pri-
vaten Speicher benötigt und keine weiteren Unterprogramme aufruft. Es sei

XYZ: PROC((I1,I2) FIXED(15) RETURNS(FIXED(15));
RETURN(I1+I2); END;

als Assemblerversion zu kodieren.

.INCLUDE .../PROCS.FOR wegen SIGCHK

.INCLUDE .../COMEQU.NOL wegen RGLR
retva EQU -4 Offset returnvalue adr.
I1 EQU -6 Offset I1
I2 EQU -8 Offset I2

...
LOCK RGLR =$0100 Linkregister-lock
SIGCHK $F175106F wird später beschrieben

∼XYZ MOVE I1(A2),D1 Wert von I1 nehmen
ADD I2(A2),D1 Wert von I2 addieren
MOVEA.L retva(A2),A1 Adr Rückgabewert

_MOVE D1,(A1) Ergebnis ablegen
XRTS schnelle Rückkehr

Das Beispiel enthält bereits den Signaturcheck, der später beschrieben wird.
Würde man im obigen Beispiel noch ein paar private Speicherzellen benötigen,
so könnte man diese Bytes im Bereich

0(A2) ... $1F(A2) ablegen.

Bitte beachten:

Mit Ausnahme der Register A4, A5, A6 und A7 dürfen alle Register inner-
halb des Unterprogrammes frei verwendet werden. Beim PowerPC steht
die Rückkehradresse zunächst nur im Linkregister. Der Transferassemb-
ler beklagt sich bei PC-relativen Adressierungen möglicherweise über das
Linkregister-LOCK. Es kann entfernt werden, wenn am Prozedureingang
ein XSL eingefügt und gleichzeitig der XRTS durch den gewöhnlichen RTS
ersetzt wird. A7 ist beim schnellen Sonderfall nur mit 1 weiteren BSR-
Level (4 Bytes) belastbar!

Möglichst jedes PEARL-Unterprogramm sollte ”REENTRANT“ sein! Es
dürfen folglich keine statisch (auf festen Speicherzellen) angelegten Ob-
jekte im UP verändert werden.

570 8.4 Assemblerkodierte PEARL-Unterprogramme

Der Regelfall

Das obige Beispiel ist nicht typisch, denn es enthält beinahe gar keine Akti-
on innerhalb der Prozedur. Nur aus diesem Grund läuft das assemblerkodier-
te Unterprogramm tatsächlich deutlich (etwa um den Faktor 2) schneller als
eine gleichwertige, vollständig in PEARL90 kodierte Variante. Der PEARL-
Compiler zieht nämlich keinen Nutzen aus dem Spezialfall sondern kodiert
stets den ”Regelfall“ einer Prozedur, bei dem vorab nicht gesichert ist, daß
der benötigte Platz für die internen Variablen tatsächlich in den vom Aufrufer
angebotenen Raum paßt.

Den Regelfall können wir auch in Assemblersprache mit Hilfe des PRODEC-
Formates kodieren. Dieses Format läd in jedem Fall A5 neu. Dabei ist der neue
A5-Wert nicht identisch mit dem Eingangswert von A2 sondern um den Versatz
FLVA größer. Die Parameter wurden also scheinbar etwas weiter in den negati-
ven Bereich geschoben. Dies ist erforderlich, weil zum Beispiel auf -4(A5) in der
PEARL-Welt mit der Zelle BWIO eine wichtige Pufferzelle für die formatierte
Ein-Ausgabe steht. Der Versatz FLVA ist zwischen 68k und PowerPC unter-
schiedlich und muß im T–Code darum aus der Datei COMEQU geholt werden.
Die wahrscheinlichen Werte sind

FLVA EQU $22 bei der 68k-Familie
FLVA EQU $24 bei der PowerPC-Familie

Reicht der mit A2/A3 angebotene Platz für die internen Prozedurobjekte
nicht aus, so wird mit dem Maschinenkode des PRODEC-Formates automa-
tisch eine neue RTOS–UH-Sektion mit Hilfe des PENTR-Traps angefordert.
Durch die Compileroption ”/*+R=...*/“ kann man aber einen genügend großen
Taskworkspace vorhalten und damit diesen zeitlich sehr teuren Exkurs in die
Speicherverwaltung vermeiden. (Im Beispiel kann durchaus ein Verlust um den
Faktor 10 auftreten.)

Das PRODEC-Format hat zwei Parameter, nämlich die Gesamtgröße des in der
Prozedur benötigten Workspace (im Bereich positiver A5-Displacements) und
das Gesamtparametervolumen in Bytes. Bei letzterem darf man nur dann 0 ein-
setzen, wenn die Prozedur weder Parameter erhält noch ein Ergebnis zurück-
liefert.

Die Rückkehr aus dem Unterprogramm darf nun nicht mehr mit einfachem
XRTS erfolgen sondern es muß das PROCEX–Format verwendet werden. In
diesem Format wird sichergestellt, daß ein eventuell aus der RTOS–UH-
Speicherverwaltung angeforderter Workspace an das System zurückgegeben
wird.

8.4 Assemblerkodierte PEARL-Unterprogramme 571

Wir nehmen das gleiche Beispiel wie oben an, nun jedoch mit Extra-Workspace
von 1kB. Im Bereich der positiven Displacements von A5 sind damit 1024 Bytes
frei verfügbar (die im Beispiel allerdings nicht benutzt werden).

.INCLUDE .../PROCS.FOR wegen SIGCHK

.INCLUDE .../COMEQU.NOL wegen RGLR, FLVA
retva EQU -4-FLVA Offset returnvalue adr.
I1 EQU -6-FLVA Offset I1
I2 EQU -8-FLVA Offset I2
WSPSZ EQU $400 angenommener WSP

...
SIGCHK $F175106F wird später beschrieben

∼XYZ PRODEC WSPSZ,-I2-FLVA Workspace anlegen
MOVE I1(A5),D1 Wert von I1 nehmen
ADD I2(A5),D1 Wert von I2 addieren
MOVEA.L retva(A5),A1 Adr Rückgabewert

_MOVE D1,(A1) Ergebnis ablegen
PROCEX Verlassen des UP

Dieses Beispiel läuft nun sehr genau mit der gleichen Geschwindigkeit wie die
PEARL-kodierte Version. Die Assemblerkodierung lohnt sich also nur bei Sy-
stemroutinen, die mit dem Miniworkspace auskommen oder sehr spezielle Hard-
wareoperationen nutzen, die sich in PEARL nicht gut formulieren lassen.

8.4.2 Der Signaturcheck in PEARL90

Der PEARL90-Compiler prüft bekanntlich schon zur Compilezeit die Korrekt-
heit der Aktualparameter eines Prozedur- oder Funktionsaufrufes. Bei im selben
Modul deklarierten Prozeduren ist diese Prüfung immer aktiv und lückenlos.
Werden jedoch globale Prozeduren aus externen Modulen aufgerufen, so kann
der Compiler die Aktualparameter nur mit der vom Programmierer nieder-
geschriebenen Spezifikation vergleichen, welche natürlich fehlerhaft sein kann.
Dieses Problem war in früheren Jahren bei der Umstellung von PEARL80 hin-
reichend bekannt. Das RTOS–UH-PEARL90 sieht einen mit dem Testmode

”/*+T */“ zuschaltbaren besonderen Mechanismus vor, der auch derartige Feh-
ler mit großer Wahrscheinlichkeit erkennen und gefährliche Nebenwirkungen
verhindern kann, den Signaturcheck.

572 8.4 Assemblerkodierte PEARL-Unterprogramme

Wie bei den Beispielen für assemblerkodierte Unterprogramme deutlich zu se-
hen war, werden übergebene Parameter direkt und ohne Prüfung von ihren
mutmaßlichen Ablageplätzen geholt. Eine individuelle Prüfung wie im alten
PEARL80 wäre zeitlich viel zu teuer. Der Compiler berechnet darum zu jeder
Prozedurdefinition eine 32-Bit lange Zahl, die mit sehr hoher Wahrscheinlich-
keit (aber nicht sicher!) bei relevant anders definierten Prozeduren einen ande-
ren Wert annimmt. Benutzt wird dabei eine Polynomformel für einen sog. 31
Bit Galoiskörper. In diese Formel gehen Art, Stellung und Zahl der Parame-
ter auf recht komplizierte Weise ein. Sogar der innere Aufbau geschachtelter
Strukturen und der Gleitkommatypus eines FLOAT-Objektes (IEEE long, IEEE
short, RTOS) geht dabei mit ein. Man kann die Signatur leider nicht durch
eigene Rechnung bestimmen, sondern muß den PEARL90- Compiler für die-
se Aufgabe einsetzen. Man kodiert dazu die Prozedurdeklaration in PEARL90
und übersetzt sie im ”/*+P */-Mode. Man erhält dann beim 68k-Compiler
etwa folgendes Protokoll:

= 1 MODULE TEST;/*+P */
= 2 PROBLEM;
001C: >>Check signature:F175106F
0028: PHDR N/2,
004A: PNTR FFF4 ,
= 3 XYZ: PROC((I1,I2) FIXED) RETURNS(FIXED);
004C: MOVW D0 ,I2 X16 LOC FFD6(WL) ,
0050: ADDW D0 ,I1 X16 LOC FFD8(WL) ,
0054: MOVX A0 ,#fretv X16 LOC FFDA(WL) ,
0058: MOVW (A0) ,D0 ,
005A: RETN
006C: RETN
007E: >>VALUE 0000=>N/
007E: >>VALUE 0022=>N/2
007E: >>ESL
= 4 RETURN(I1+I2); END;
007E: >>CON-BLK
007E: >>MODEND
= 5 MODEND;

8.4 Assemblerkodierte PEARL-Unterprogramme 573

Beim PowerPC-Compiler – der ja nur einen anderen Codegenerator verwendet
– sieht die entsprechende Sequenz wie folgt aus:

= 1 MODULE TEST;/*+P */
= 2 PROBLEM;
001C: >>Check signature:F175106F
0028: phdr N/2,
0076: pntr FFF4 ,
= 3 XYZ: PROC((I1,I2) FIXED) RETURNS(FIXED);
0078: movw r0 ,I2 X16 LOC FFD4(r13) ,
007C: addw r0 ,I1 X16 LOC FFD6(r13) ,
0084: movx r8 ,#fretv X16 LOC FFD8(r13) ,
0088: movw (r8) ,r0 ,
008C: retn
00B0: retn
00D4: >>VALUE 0000=>N/
00D4: >>VALUE 0024=>N/2
00D4: >>ESL
= 4 RETURN(I1+I2); END;
00D4: >>CON-BLK
00D4: >>MODEND
= 5 MODEND;

In beiden Fällen finden wir die gleiche hier interessierende Zeile

>>Check signature:F175106F

aus der wir den Parameter für das SIGCHK-Format ablesen können.
Der Signaturcheck verbraucht relativ wenig Zeit, weil es nur ein einfacher 32-Bit
Compare mit konditioniertem Trapaufruf ist. Da auch der Feldindextester sehr
viel schneller als in der PEARL80-Welt geworden ist, kann in vielen Fällen der
Testmode des Compilers sogar in der endgültigen Version eines Programmes
belassen werden.

Natürlich kann man auch signaturlose Unterprogramme schreiben, zum Teil
wird das von anderen Übersetzern (etwa IEP–C) offenbar auch ausgenutzt.
In diesem Fall wird das SIGCHK-Format einfach durch eine 12 Byte lange Se-
quenz von NOP-Befehlen ersetzt. Jetzt muß freilich sehr viel mehr Aufwand in
die Programmentwicklungssystematik gesteckt werden, denn falsch spezifizier-
te signaturlose Unterprogramme können neben Fehlfunktionen sehr gefährliche
Seitenwirkungen verursachen.

574 8.4 Assemblerkodierte PEARL-Unterprogramme

Einige Systemprogramme akzeptieren auch Signaturen aus einem Tabellenvor-
rat – etwa weil es ihnen egal ist, ob eine Datenstation nur für Ausgabe, nur für
Eingabe oder für beide Richtungen spezifiziert wurde. Dies wird dann durch
einen entsprechenden Wegsprung von der um 12 reduzierten Einstiegadresse
kodiert. Dabei wird ausgenutzt, daß der Compiler im Testmode eine Versor-
gung des Registers D0 (bzw. r0) mit der Signatur unmittelbar vor dem Sprung
auf den Signatur–Entry generiert.

Vorsicht!

Man kann die Signatur nicht verwenden, um den aktuellen Pa-
rametertyp festzustellen! Wenn der Testmode nicht eingeschaltet
ist, wird die Signatur nämlich auf der Aufruferseite gar nicht be-
rechnet und das Register D0 (bzw. r0) ist undefiniert.

8.4.3 Der Feldbeschreibungsblock

PEARL90 verwendet einen gegenüber PEARL80 erheblich erweiterten Feldbe-
schreibungsblock. Er ermöglicht eine praktisch kaum begrenzte Zahl von Di-
mensionen, nicht bei 1 beginnende Indizes sowie eine volle 32-bit Feldadressie-
rung.

Jede Zeigervariable vom Typ ”array“ ist identisch zum hier beschriebenen Feld-
beschreibungsblock. Auch Felder als Prozedurparameter und statisch (evtl. glo-
bal) definierte Felder werden durch einen solchen Feldbeschreibungsblock re-
präsentiert. Bei lokalen Feldern innerhalb von Tasks oder Prozeduren sowie
bei Feldern innerhalb von Strukturen sind dem Compiler sämtliche Daten be-
kannt und es gibt zunächst nur compilerintern einen Feldbeschreibungsblock.
Der Compiler generiert aber bei der Übergabe solcher Felder an Prozeduren
oder Zuweisungen an eine Zeigervariable automatisch ebenfalls ein solches zur
Laufzeit existentes Datenobjekt.

PEARL verwendet bekanntlich das Prinzip der ”mitreisenden Felddeskripto-
ren“, welches viele Probleme und Fehlerquellen anderer Sprachen – besonders
bei C und auch C++ – vermeidet. Leider stellt man bei Umsteigern von die-
sen Sprachen immer wieder fest, daß sie diese Art der Objektorientierung gar
nicht oder erst sehr spät schätzen lernen. Dabei ist der Zeitverlust der Methode
durchaus vernachlässigbar.

8.4 Assemblerkodierte PEARL-Unterprogramme 575

Offset Bedeutung des 32-Bit Objektes
0 Physikalische Speicheradresse des ersten Elementes
4 Anzahl der Dimensionen des Feldes
8 Gesamtzahl der Feldelemente – 1. Diese Information verwertet

der Indextester.
12 Minimal zulässiger linearer Index. Bezeichnet den Versatz

(in Feldelementen, nicht in Bytes!), den das Feldelement
(0,0,0,...,0) gegenüber der Feldanfangsadresse besitzt. Hier
steht bei Feldern, die sämtliche Startindizes 0 haben (wie bei
C), logischerweise eine exakte 32-bit 0. Diese Information wird
bei der Feldformel und vom Indextester benutzt.

16 Untergrenze des ersten Index
20 Obergrenze erster Index – Untergrenze erster Index +1
24 Untergrenze des zweiten Index (falls vorhanden)
28 Obergrenze zweiter Index – Untergrenze zweiter Index +1
... usw. für alle folgenden Indizes jeweils ein Pärchen

Tabelle 8.10: Der Feldbeschreibungsblock in PEARL90

Am sinnvollsten ist es, wenn man sich an Hand obiger Angaben mit Hilfe der
/*+P .. */-Option des Compilers die Feldbeschreibungsblöcke statisch (auf
Modulebene) deklarierter Felder in der Praxis ansieht. Auch ein Studium der
Feldzugriffsformel ist damit möglich. Dabei sollte man keine konstanten Indizes
verwenden, weil sonst Rechnungen vom Compiler wegoptimiert werden können!

Wenn eine Prozedur als Aktualparameter ein komplettes Feld übergeben be-
kommt, so steht der Feldbeschreibungsblock direkt im A2-Space. Seine An-
fangsadresse relativ zu A2 erhält man wie üblich nur durch Kenntnis der Ob-
jektlänge Len, die sich nach folgender Formel berechnet:

Len = 16 + Ndim ∗ 8

Dabei ist Ndim die Anzahl der Dimensionen des Feldes. Da beim Prozedurauf-
ruf der Raum im A2-Space auf 16 kB beschränkt ist, kann es bei Mutwilligkeit
passieren, daß bei zu vielen Parametern und/oder zu vielen Feldern mit zu vie-
len Dimensionen (mehr als 4 machen normalerweise in der Wissenschaft kaum
Sinn!) der Compiler beim Prozeduraufruf einen Kapazitätsüberlauf anzeigt,
weil die 16 kB-Grenze überschritten wird.

Wenn Sie selbst Zugriffsformeln in Assembler kodieren, denken Sie bitte daran,
daß der zunächst berechnete lineare Index noch mit der Anzahl Bytes, die ein
einzelnes Feldelement belegt, multipliziert werden muß.

576 8.5 Parameterübergabe im alten PEARL80

8.5 Parameterübergabe im alten PEARL80

Von einer Neukodierung von Assemblerroutinen für das PEARL80-System wird
dringend abgeraten. Die folgenden Angaben aus einer alten Handbuchversion
werden nur noch zur Information wiedergegeben und können als Hilfestellung
dienen, wenn alte assemblerkodierte PEARL80-Routinen vorhanden sind, die
auf den T–Code der PEARL90–Welt umgestellt werden müssen.

Die Übergabe der Programmkontrolle an das Unterprogramm (UP) erfolgte im
PEARL80-System mit Hilfe virtueller Befehle, die vom PEARL-Laufzeitsystem
(Hyperprozessor) exekutiert werden. Wir betrachten hierzu den Fall

CALL ABCD(para-list);

wobei ”ABCD“ ein Assemblerunterprogramm sein soll; das Symbol ABCD muß
im aufrufenden PEARL-Programm als ”ENTRY GLOBAL“ spezifiziert sein. Auf
der Assemblerseite wird ABCD durch Voranstellung des Zeichens ’>’ global
deklariert. Das PEARL-Run-time betritt das UP im virtuellen Mode an der
Stelle ”>ABCD“, unser UP muß also in jedem Fall mit einem virtuellen Befehl
beginnen, wobei dies ggf. der Befehl ”V0“ zum Abschalten des Hyperprozessors
sein kann. Die weiteren Randbedingungen beim Eintritt sehen wie folgt aus:

A0 zeigt auf die Stelle, an der das Parameterlink beginnt.
D2 enthält das Register A5 (=”WL“) des Aufrufers.
A5 ist noch identisch mit D2.

Wichtige Hinweise

Die Register A4, A5, A6, A7 dürfen im Laufe des UP nicht vom
Programmierer verändert werden. Kurzzeitige Veränderung ist
zwar in gewissen Fällen möglich, wird aber nicht empfohlen.
A7 ist mit max. 2 BSR-Level (8 Bytes) belastbar, es muß beim
UP-Austritt oder vor der Benutzung irgendwelcher virtuellen
Befehle unbedingt wieder auf dem Eingangswert stehen.

Bitte denken Sie auch daran, daß es Ihre eigene Aufgabe ist,
dafür zu sorgen, daß das UP ”REENTRANT“ ist. Es dürfen also
keine statisch allokierten Objekte im UP verändert werden,
wenn Sie diese Bedingung einhalten wollen.

Im folgenden sollen 2 Fälle unterschiedlicher Schwierigkeit betrachtet werden:

8.5 Parameterübergabe im alten PEARL80 577

Fall A (nicht für Neuentwicklung!)

Es sollen weder Parameter noch Funktionswerte übergeben werden. Die Proze-
dur benötigt außer einigen wenigen Registern keinen eigenen Arbeitsspeicher.
Ein Transfer von Werten ist über globale PEARL-Objekte dennoch möglich.

Auf der PEARL-Seite generiert der Compiler aus CALL ABCD; die (vir-
tuelle) Sequenz (Liste aller virtuellen Befehle siehe Abschnitt 8.7):

PROC >ABCD (PROC=V18)
EPAR (EPAR=V19)

Auf der Assembler-UP-Seite programmieren wir (ein Module-Head gem.
Seite 446 ist nicht dargestellt):

>ABCD V0 Hyperproc. off
CMPI.B =19,(A0) Vergl.auf EPAR
BNE ... Error - Zweig
.... 68000-Usr-code
.... PEARL-Assembler-UP
....

* D0 ... D7 zur freien Verfuegung
* A1 ... A3 ----- " -----

....
JMP 2(A0) Ruecksprung HP
....

Der Fall A ist die schnellste Form des Anschlusses überhaupt. Notfalls kann auf
das Überprüfen der leeren Parameterliste (CMPI.B ...) auch noch verzichtet
werden. Wenn Sie z. B. in dem UP Floatingbefehle benötigen, so muß zuvor
der Hyperprozessor wieder angeworfen werden. Dies gelingt mit Hilfe des dem
UH-Assembler bekannten Befehles TV, der nur ein bequemer Mnemo für den
Trap 14 ist.

578 8.5 Parameterübergabe im alten PEARL80

Fall B (nicht für Neuentwicklung!)

Es sollen Parameter und Funktionswerte übergeben werden. Außerdem nehmen
wir an, daß unser UP zusätzlichen internen Arbeitsspeicher benötigt, dabei aber

”reentrant“ sein soll. Wir betrachten wiederum zunächst die PEARL-Seite:

SPC ABCD ENTRY(FIXED,FLOAT IDENT) RETURNS(FLOAT(55)) GLOBAL;

......

Z=ABCD(3,Y); /* Der P80-Compiler generiert hieraus: */

PROC >ABCD (V18=PROC)
INVW Xcon=3 (V14=INVW)
VARF Y (V12=VARF)
VARD resultcell (V13=VARD)
EPAR (V19=EPAR)
...
MOVD resultcell,Z (MOVD ist ein Macro, 2x MOVE.L)

Beim Studium des Codes wird erkennbar, daß Funktions-UPs sich nur durch
einen zusätzlich angehängten Übergabeparameter von den durch ”CALL“ auf-
rufbaren UPs unterscheiden. Der Rückgabewert muß in eine vom Compiler
beschaffte Zelle geschrieben werden.

Vor der Codierung unseres Assembler-UP muß zunächst bestimmt werden, wie-
viel Prozedurworkspace ”PWSP“ gebraucht wird. In diesem PWSP müssen
auch die Parameterwerte oder - bei ”IDENT“ - die vier Byte langen Adressen
der Objekte untergebracht werden. Sollen Felder übergeben werden, so müssen
auch Kopien der Feldbeschreibungsblöcke (s. unten) darin Platz finden.

In unserem Beispiel sei angenommen, daß das UP intern das 4 Byte lange
Objekt ”HILF1” und das 8 Byte lange Objekt ”HILF2“ benötigt. Wir codieren:

8.5 Parameterübergabe im alten PEARL80 579

RETN OPD $4E4C Opcode definition = TRAP 12
ENTR OPD.V 29 Opcode proc-entry (Hyperproc.)
INVW OPD.V 14 Invariant 16 bit fixed = V14
VARF OPD.V 12 Variable Float 32 bit = V12
VARD OPD.V 13 Variable Float 64 bit = V13
EPAR OPD.V 19 End of parameter Xfer = V19
* PWSP-Allocation
PAR1 EQU 0 2 bytes positioned to 0(A5)
PAR2 EQU PAR1+2 4 bytes (adr) pos. to 2(A5)
WERT EQU PAR2+4 4 bytes (adr) pos. to 6(A5)
HILF1 EQU WERT+4 4 bytes (internal) to 10(A5)
HILF2 EQU HILF1+4 8 bytes (internal) to 14(A5)
WSPSZ EQU HILF2+8 Total Size of Procedure-WSP
*
>ABCD ENTR WSPSZ.L Fetch storage from ’RTOS-UH’

INVW PAR1.X xfer 16-bit FIXED by ’value’
VARF PAR2.Z xfer 32-bit FLOAT by ’Ident’
VARD WERT.Z xfer 64-bit FLOAT by ’Ident’
EPAR End of param., + hyperproc off
....

* reeller 68000-code. D0...A3 sind frei verfuegbar.
* A5 zeigt auf Ablageplatz des Wertes von PAR1.
* Beispielhafter Zugriff auf die Objekte:

MOVE.L =$01400000,HILF1(A5) oder (gleichwertig):
MOVE.L =$01400000,HILF1.X
MOVE PAR1.X,D4 Die Zahl 3 des obigen Bsp.->D4
....
MOVEA.L PAR2.X,A0 Zeiger laden, da IDENT xfer!
MOVE.L =$01400000,(A0) Wert-> ’Y’ des Beispieles
....
MOVEA.L WERT.X,A0 Zeiger auf Ergebniszelle laden
MOVE.L HILF2.X,(A0)+ xfer Bytes 1..4 Ergebnis
MOVE.L HILF2+4.X,(A0) ’’ 5..8 ’’
....

* Bsp. letzte Sequenz unter Verwendung des Hyperproc
TV Hyperproc hier ’anwerfen’
V1 WERT.Z,HILF2.X (Reihenfolge: dest,source)
.... evtl. andere virt. Befehle
V0 Hyperproc hier abschalten
.... evtl. weiterer Realcode
RETN Realer Befehl, exit des UP
END

580 8.5 Parameterübergabe im alten PEARL80

Man beachte dabei, daß das Verlassen des UP nur mit dem ”RETN-Trap“ möglich
ist. Dieser muß naturgemäß im Bereich realen Maschinencodes stehen.

Die Verwendung des V1-Befehles, der auch als MOVU OPD.V 1 hätte deklariert
werden können, dient nur der Demonstration, da der Befehl inzwischen von den
Compilern nicht mehr benutzt wird. (s. Liste in Abschnitt 8.7). MERKE: Hilfs-
zellen und per ”value“ übergebene Objekte werden mit ”.X oder (nur bei realen
Befehlen möglich) ”...(A5)“ adressiert. Durch Zeiger vertretene Objekte wer-
den bei realen Befehlen durch Laden eines Adreßregisters und bei virtuellen
Befehlen durch die ”.Z-Adressierung“ erreicht. Bei den Parameterübergabebe-
fehlen im Kopf des UP wird durch .Z der Ident- und durch .X der Valuemode
der Übergabe festgelegt. Bei Identmode darf das Objekt der Aufrufseite nicht
invariant sein, sonst wird wie bei falschem Parameterdatentyp ein Laufzeitfehler
angezeigt. Grundsätzlich kann man die Übergabe auch ohne den Hyperprozes-
sor schaffen, wenn der Aufbau der Aufrufseite durch das UP selbst interpretiert
wird.

Feldbeschreibungsblock (alt, PEARL80)

Beim Zugriff auf in der PEARL80-Welt global deklarierte Felder sind einige
Besonderheiten zu beachten, da dem eigentlichen Variablenfeld im Speicher ein
Vorspann (Feldbeschreibungsblock) vorangestellt ist. Aus

DCL A(bound1,bound2,bound3) ... GLOBAL wird im Speicher

>A DC.W bound3 2 Bytes
DC.W bound2 2 Bytes
DC.W bound1 2 Bytes
DC.L offset+adr 4 Bytes
DS (Speicherbereich des Feldes) size Bytes

Bei weniger als 3 Dimensionen entfällt die Ablage der nicht angegebenen Feld-
grenzen. Die Werte von bound1 etc. sind mit der ”Global+offset“-Option des
UH-Assemblers ohne Probleme adressierbar. Die 32-bit-zahl ”offset+adr“ gibt
die physikalische Adresse an, auf der das Feldobjekt A(0,0,0) (welches nicht
existiert) stehen würde. Damit wird die Indexformel beim Feldzugriff durch den
Compiler (und den Assemblerprogrammierer) schneller und kürzer. Bei Unklar-
heiten ist ein Studium des vom Compiler generierten Codes (/*+P*/-Option)
sehr zu empfehlen.

8.5 Parameterübergabe im alten PEARL80 581

FIXED und FLOAT Parameterbefehle (nicht für Neuentwicklung!)

Diese Befehle haben jeweils nur einen Operanden, der mit .X oder .Z Adres-
sierung (s. o.) angesprochen wird.

INVD V17 Invariant Float (55) = 8 Byte Float
INVF V16 Invariant Float (23) = 4 Byte Float
INVW V14 Invariant Fixed (15) = 2 Byte Fixed
INVX V15 Invariant Fixed (31) = 4 Byte Fixed
VARD V13 Variable Float (55) = 8 Byte Float
VARF V12 Variable Float (23) = 4 Byte Float
VARW V10 Variable Fixed (15) = 2 Byte Fixed
VARX V11 Variable Fixed (31) = 4 Byte Fixed

Skalare Parameter außer FIXED, FLOAT (nicht für Neuentwicklung!)

Die seltener auftretenden Parametertypen werden durch etwas längeren Code
übergeben. Für alle restlichen Datentypen außer FIXED und FLOAT steht dafür
nur ein gemeinsamer virtueller Befehl zur Verfügung:

MPXF OPD.V 139 ”Miscellaneous parameter xfer“

Der MPXF-Befehl hat 2 Operanden, von denen einer für den Objekttransfer und
der zweite für die Typprüfung nötig ist.

Anwendung: MPXF dtyp,object.X oder ...object.Z

582 8.5 Parameterübergabe im alten PEARL80

Die Information auf der Adresse dtyp besteht aus 2 oder 4 aufeinanderfolgenden
Bytes. Sie haben folgende Bedeutung:

Byte Code Bedeutung
1 $xx Länge (1...255) bei CHAR und (1...32) bei BIT

$00 Bei den andern Datentypen, DUR etc.
2 $08 CHAR variable

$09 INV CHAR
$0A BIT(1...16) variable
$0B INV BIT(1...16)
$0C BIT(17...32) variable
$0D INV BIT(17...32)
$0E DURATION variable
$0F INV DURATION
$10 CLOCK variable
$11 INV CLOCK
$12 STRUCT variable
$13 INV STRUCT

3 $xx Nur bei STRUCT: High byte of obj.length
4 $yy Nur bei STRUCT: Low byte of obj. length

Wie man richtig vermutet, wird beim Transfer von Strukturen nicht die innere
Typuntergliederung geprüft, sondern lediglich eine Prüfung der Länge in Bytes
ausgeführt.

Beispiel:

MPXF OPD.V 139
....
MPXF C7,TEXT.X ’Value’-Uebergabe String.
MPXF B16,MASK.Z ’Ident’-Uebergabe Bitmask
....

C7 DC.B 7,$09 CHAR(7) invariant object.
B16 DC.B 16,$0A BIT(16) variable object.

....
* Fuer MASK muessen 4 Byte (Adresse!) und fuer
* TEXT 7 Bytes im PWSP vorgesehen sein.
* Bei ’value’-Uebergabe findet ggf. eine Anpas-
* sung der CHAR-Laengen statt.

8.5 Parameterübergabe im alten PEARL80 583

Felder vom Typ ”no string“ als Parameter (nicht für Neuentwicklung!)

Mit dem Befehl ARNS (Array no string) werden Felder der Datentypen FIXED,
FLOAT, DURATION, CLOCK und STRUCT transferiert. Beispielprogramm:

ARNS OPD.V 122 ’Array no string’ 3 Operanden.
....
ARNS offs+adr-cell,boundlistcells,descr.mask
....
ARNS OFFS.X,BOUNDS.X,$0812.X (2dim DUR-Feld)

Für OFFS sind 4 Bytes bereitzustellen, für die Liste der ”bounds“ (2·Anz.
Dimensionen) Bytes. Die Feldgrenzen werden in der Reihenfolge des Feldbe-
schreibungsblockes abgelegt. Auf OFFS steht die (fiktive) Speicheradresse des
Feldelementes (0) bzw. (0,0) oder (0,0,0). Wenn OFFS unmittelbar hinter BOUNDS
liegt, entsteht somit ein kompletter neuer Feldbeschreibungsblock.

Die ”descriptionmask“ enthält Informationen über die Anzahl der Dimensionen
und den Datentyp wie folgt:

Typ 1 dim var,inv 2 dim var,inv 3 dim var,inv
FIXED(15) $0401,$0541 $0801,$0941 $0C01,$0D41
FIXED(31) $0402,$0542 $0802,$0942 $0C02,$0D42
FLOAT(23) $0404,$0544 $0804,$0944 $0C04,$0D44
FLOAT(55) $0408,$0548 $0808,$0948 $0C08,$0D48
DURATION $0412,$0552 $0812,$0952 $0C12,$0D52
CLOCK $0416,$0556 $0816,$0956 $0C16,$0D56
STRUCT $0415,$0555 $0815,$0955 $0C15,$0D55

Bekanntlich ist der Feldtransfer nur im ”IDENT“-Mode möglich, so daß es keine
weitere Fallunterscheidung wie bei den Skalaren gibt.

Bei den Verbundobjekten (STRUCT) folgt dem ARNS noch eine Längenüberprü-
fung LTST als weiterer Parameterübergabebefehl. Er hat einen Operanden, der
unmittelbar die Anzahl Bytes, aus der die Struktur besteht, angibt.

LTST OPD.V 72 Definition LTST
ARNS ...,...,$0415.X Uebergabe Verbundfeld.
LTST 25.X Verbundtyp besteht aus 25 Bytes.

584 8.5 Parameterübergabe im alten PEARL80

Felder der Typen BIT und CHAR als Parameter (nicht für Neuentwicklung!)

Hierfür sind die Befehle ARBS (Bitstring) und ARCS (Charstring) vorgesehen.
Wir studieren eine beispielhafte Anwendung:

ARBS OPD.V 123 ’array bitstring’, 3 Operanden
ARCS OPD.V 124 ’array char.string’,3 Operanden

ARCS offs+adr-cell,boundlist-cells,descr.mask
ARBS ’’

ARCS OFFS.X,BOUNDS.X,$0812.X = ..(,) CHAR(18)
ARBS OFF2.X,BOU2.X,$0C09.X = ..(,,) BIT(9)

Es gelten sinngemäß die gleichen Bedingungen wie bei der Instruktion ARNS;
im Gegensatz zum ARNS enthält die ”description-mask“ nun im rechten Byte
die Länge in Bytes (CHAR) oder in Bits (BIT) des Feldelementes. Im Einzelfall
ist wie folgt zu kodieren:

Typ Befehl 1 dim var,inv 2 dim var,inv 3 dim var,inv
BIT(xx) ARBS $04xx,$05xx $08xx,$09xx $0Cxx,$0Dxx
CHAR(yy) ARCS $04yy,$05yy $08yy,$09yy $0Cyy,$0Dyy

8.5 Parameterübergabe im alten PEARL80 585

Datenstationen als Parameter (nicht für Neuentwicklung!)

Die Übergabe von Stationen ist nur im Ident-Mode möglich. Dafür ist der
Befehl ”DMYD“ (Dummy Dation) vorhanden:

DMYD OPD.V 137 Dationuebergabe, 1 Operand
....
DMYD adrptr.X Uebergabeparameter ist die

Adresse des Dation-Blockes
... Aufbau s.u.
MOVEA.L adrptr.Z,A1 Dation-Blockadresse holen

* ...
* Es gab einen fehlerhaften Transfer, was nun ?

MOVE TFU(A1),D7 Hole erstes Wort fuer test
BMI.S neset B: NE-option ist gesetzt
...

* NE-option war nicht gesetzt, gebe Meldung aus
ERROR setze Trap ab
DC $1234 irgend einen Code
...

neset ... Weiter mit irgendwas
RTS

Aufbau des PEARL-Dation Blockes

Mnemo offs len Bedeutung
DIOFAC 0 2 I/O Facility für das Laufzeitsystem. Bit 2: End-of-

File Bit
DLDN 2 1 aktuelle LDN der Dation
DDRIVE 3 1 aktuelle Drive-Nummer der Dation
DSTAT 4 2 Status des I/O-Transfers (hier greift ST() zu)
DTFU 6 2 Transferlänge der Dation (max. 32 Kbyte, oberstes

Bit ist NE-Flag)
DINFO 8 2 Zelle für die aktuellen AI- bzw. MB-Parameter
DPATH 10 ?? Pathlist ohne den Hardwarenamen der Dation, wird

durch $FF beendet. Am Ende folgt noch ein $FE,
welches niemals überschriebn werden darf, denn es
markiert das Ende des vom Compiler vorgesehen
PLatzes für die pathlist.

586 8.6 Umstellung von alten Assemblerunterprogrammen auf PEARL90

8.6 Umstellung von alten Assemblerunterprogrammen
auf PEARL90

Diese Anleitung soll dazu dienen, vorhandene P80-Assemblerprozeduren so zu
verändern, daß sie sowohl in der alten P80- als auch in der neuen PEARL90-
Welt benutzt werden können. Für die Kodierung neuer, nur für PEARL90
ausgelegter Routinen ist sie nicht gut geeignet. Dazu wurde ja bereits eine
vollständige Erläuterung ab Seite 566 gegeben. Die folgenden Seiten enthal-
ten zum Teil bereits Bekanntes, denn sie sollen auch ”stand alone“ aus dem
Handbuch herauskopiert verstanden werden können.

Wenn Sie die empfohlenen Formate und INCLUDE-Files benutzen, werden Ihre
Routinen mit hoher Wahrscheinlichkeit problemlos transferassemblier sein und
sind damit auch auf anderen RTOS-Hardwareplattformen, z.B. dem PowerPC,
direkt einsetzbar.

Bei kleinen Prozeduren mit nur ca. einer Seite Assemblertext ist es fast im-
mer günstiger, den eigentlichen Kode der Originalroutine zu duplizieren und
mit eigenem Vor- und Nachspann in eine reinrassige PEARL90-Version umzu-
wandeln. Diese kann dann einfach neben die unveränderte alte Routine gestellt
werden.

Größere Anpassungsarbeiten gibt es allenfalls bei der Benutzung von Feldern als
Parameter, da man hier den wesentlich üppigeren P90-Feldbeschreibungsblock
erst auf den alten P80-Block umfingern muß. Dabei gehen natürlich alle in P80
nicht möglichen Optionen (etwa nicht bei 1 beginnende Untergrenzen) verlo-
ren. Probleme bereiten auch die sehr seltenen Fälle, bei denen eine formatierte
Ein-/Ausgabe (d.h. PUT, GET oder CONVERT) mit den Hyperprozessorbefehlen
innerhalb der Routine nachgebildet wird, da die dafür nötige Zelle BWIO auf
-4(A5) bei dieser rigiden Lösung nicht angelegt wird.

8.6 Umstellung von alten Assemblerunterprogrammen auf PEARL90 587

Prinzip der Parameterübergabe im PEARL90-System.

Der P90-Compiler benutzt ausschließlich reellen Code, eine Übergabe im früher-
en Sinne gibt es nicht mehr. Die meiste Arbeit wird auf der Aufruferseite erle-
digt. Dies vereinfacht das Kodieren von Assemblerroutinen erheblich und führt
zu einem sehr deutlich schnelleren Laufzeitverhalten. Der Compiler arbeitet
auf der Aufruferseite mit dem sogenannten A2-Space, in dem er Objekte oder
deren Adressen bereitstellt.

Wenn die aufzurufende Routine nur einen minimalen privaten Workspace von
24 oder weniger Bytes benötigt, so kann sie auch direkt diesen A2-Space in
einen A5-Space umarbeiten. Dieser Sonderfall verursacht noch einmal erheblich
kleinere Ein- und Ausstiegszeiten. Er wird später behandelt.

Man beachte folgende Regeln:

• Jede Prozedur besitzt eine sogenannte Signatur. Das ist ein 32 Bit langes
Muster, welches mit hoher Wahrscheinlichkeit (aber nicht sicher) nur die-
ser einen Prozedurspezifikation zugeordnet ist. (Für Insider: Berechnung
nach der Polynomformel für einen 31 Bit Galoiskörper). Diese Signatur
wird nur beim Testmode benötigt, um eventuell falsche Spezifikationen
der externen Prozedur entdecken zu können. Die Signatur Ihrer Routine
erhalten Sie mit Hilfe des Compilers (s.u.).

• Die Parameter werden in umgekehrter Reihenfolge im A2-Space (und
auch im späteren normalen A5-Space) abgelegt. Am oberen Ende auf -
4(A2) steht die Adresse, auf der der Rückgabewert abzulegen ist. Diese
Zelle ist auch vorhanden, aber undefiniert, wenn die Prozedur keine Werte
(oder Pointer) zurückgibt. Zur Prozedur

X:PROC(A FIXED,B FLOAT,C CHAR(1) IDENT) RETURNS(FIXED);

ergibt sich dann z.B. folgendes A2-Space-Layout:

-4(A2) Adr. Rückgabewert (immer 4 Bytes)
-6(A2) Wert des FIXED(15)-objektes A

-10(A2) Wert des FLOAT(23)-objektes B
-14(A2) Adresse der Variablen C, CHAR(1)

Objekte, deren Länge in Bytes nicht durch 2 teilbar ist, werden durch
Auffüllen so plaziert, daß folgende Objekte wieder auf geraden Adressen
stehen.

• Adreßzeiger und Array-pointer werden mit ihrer jeweils benötigten Länge
direkt im A2-Space abgelegt. Gleiches gilt für alle per value transferierten
Objekte, solange sie nicht mehr als 256 Bytes benötigen. Objekte mit
mehr als 256 Bytes werden auch im per value -Mode durch einen Pointer

588 8.6 Umstellung von alten Assemblerunterprogrammen auf PEARL90

(4 byte) repräsentiert; dieser Zeiger zeigt auf eine temporäre Kopie, die
der Compilercode auf der Aufruferseite angefertigt hat und nun von der
Routine ohne Auswirkungen auf das Original verändert werden darf.

• Der P90-Compiler generiert am Prozeduranfang hinter dem Signatur-
check das sogennante PRODEC-Format. Es hinterläßt die Parameter in
gleicher Reihenfolge im A5-Space, allerdings noch weiter im negativen
Bereich als im A2-Space. Dieser zusätzliche Versatz ist zwischen der 68K-
und den RISC-Implementierungen unterschiedlich und wird bei reinrassi-
gen P90-Prozeduren durch die Verwendung der Assembliervariablen FLVA
(first local variable address) aus dem File COMEQU ausgeglichen (zur Zeit
der Drucklegung $22=34 beim 68K und $24=36 beim PowerPC).

Das hier vorgeschlagene spezielle P8090-Format schiebt im Gegen-
satz zum PRODEC-Format die Parameter scheinbar (also nicht durch
Move-Befehle zur Laufzeit) in einen bei 0(A5) beginnenden Prozedur-
Workspace. Dies bedingt, daß die Zelle BWIO (Bufferpointer Workspace
IO) auf -4(A5) nicht angelegt ist und formatierte PEARL-Ein-/Ausgabe
mit nachgebildeten PUT-, GET- oder CONVERT-Anweisungen innerhalb der
Routine nicht zugelassen ist. Zum Verlassen der Routine ist das reinrassi-
ge P90-Format PROCEX ebenfalls nicht geeignet, dafür ist in der Mischwelt
das Format X8090 zuständig.

• Die hier vorgeschlagenen Formate aus der Datei PROCS.FOR passen
sich automatisch der Zielhardware an. Assembler und Transferassembler
picken sich automatisch die richtigen Befehlssequenzen heraus. Verändern
Sie bitte daher auf keinen Fall diese Datei!

Wir betrachten exemplarisch die Umstellung der Prozedur

X:PROC(A FIXED,B FLOAT,C CHAR(1) IDENT) RETURNS(FIXED);

Dazu hatten wir in der P80-Welt evtl. wie folgt kodiert:

AIN EQU 0 Input para A
BIN EQU 2 Input para B
CIN EQU 6 Adr. von para C
RESLT EQU 10 Result pointer
LORG EQU 14 origin local wsp
MY_X EQU LORG My own cell
.... Andere lokale Objekte
WSPSZ EQU LORG+100 Angenommene 100 locals
*
>X ENTR WSPSZ.L Auftakt para xfer

VARW AIN.X Value 16 bit fixed
VARF BIN.X Value 32 bit float

8.6 Umstellung von alten Assemblerunterprogrammen auf PEARL90 589

MPXF C1,CIN.Z Ident char(1)
VARW RESLT.Z Result pointer
EPAR End para-list

XCDE MOVE Code von X
.... ”

EXIT RETN Exit von X

Wir wollen den Code zwischen den Marken XCDE und EXIT unverändert lassen,
aber der Routine einen zweiten PEARL90-Einstieg hinzufügen. Dazu verfahren
wir in folgenden Schritten:

1. Bestimmung der Signatur.

Wir kodieren das folgende PEARL-Programm:

MODULE;PROBLEM;/*+P*/
X:PROC(A FIXED,B FLOAT,C CHAR(1) IDENT) RETURNS(FIXED);

RETURN(5);/*-P*/
END;
MODEND;

Bei der Übersetzung im IEEE-Float-Modus (bitte beachten!) steht in der
Zeile mit dem Signatur-check $C5D74285, bei Softfloat $C5D54285.

2. Umordnen der Parameter-EQUs.

Die Parameter werden in neuer P90-Reihenfolge abgelegt. Diese Ände-
rung sollte bei normaler Kodierung des Innenlebens von X keine Auswir-
kung haben. Außerdem müssen wir eine Flag einführen und den lokalen
eigenen Workspace um FLVA hochschieben:

CIN EQU 0 Adr. von para C
BIN EQU 4 Input para B
AIN EQU 8 Input para A
RESLT EQU 10 Result pointer
FLAG9 EQU RESLT+4 Flag für P90
LORG EQU FLAG9+FLVA Hochschieben
MY_X EQU LORG My own cell
.... Andere lokale Objekte
WSPSZ EQU LORG+100 Liegt jetzt höher

Bitte beachten: Das hier beispielhaft FLAG9 genannte Objekt muß exakt
4 Bytes hinter dem Ergebniszeiger stehen! Die Zellen zwischen FLAG9 und
LORG dürfen nicht benutzt werden! Dort liegen interne Daten.

Prozeduren ohne Parameterliste, die auch kein Ergebnis abliefern, setzen
FLAG9 wie folgt:

590 8.6 Umstellung von alten Assemblerunterprogrammen auf PEARL90

FLAG9 EQU 0 Flag für P90

3. P90-Entry anlegen.

Wir kodieren einen zusätzlichen P90-Einstieg wie folgt:

SIGCHK $C5D74285 Signature check
~X P8090 WSPSZ,FLAG9 Aus PROCS.FOR

BRA XCDE To common code
4. Veränderung hinter dem EPAR.

Vor der Stelle XCDE muß die Flag gesetzt werden, an der das X8090-For-
mat erkennt, daß die Routine im alten P80 Modus zu beenden ist:

>X ENTR WSPSZ.L Auftakt para xfer
VARW AIN.X Value 16 bit fixed
VARF BIN.X Value 32 bit float
MPXF C1,CIN.Z Ident char(1)
VARW RESLT.Z Result pointer
EPAR End para-list

_CLR.L FLAG9(A5) *** Neu ***
XCDE MOVE Code von X

Das Zeichen ’_’ vor dem CLR.L ist ein Hinweis für den Transferassem-
bler, daß der Statusregister-Update entfallen kann. Es wird vom 68K-
Assembler ignoriert.

5. Ersetzung aller RETN-Traps.

Alle RETN-Traps werden durch das Format X8090 ersetzt:

EXIT X8090 FLAG9 Exit, A5-Bezug implizit.

8.6 Umstellung von alten Assemblerunterprogrammen auf PEARL90 591

Umstellung bei sehr kleinem Workspace.

Wie oben erwähnt, kann eventuell mit dem vom Compiler bereitgestellten A2-
Space auch direkt gearbeitet werden, so daß ein A5-Space weder im vom Compi-
ler angebotenen Raum noch als RTOS-Sektion angelegt werden muß. In diesem
Fall müssen die privaten lokalen Objekte in den kleinen Raum hinter FLAG9+8
passen, der bei allen RTOS-Varianten mindestens 24 Byte groß ist. Bei dieser
Lösung wird also kein Workspace neu angelegt, so daß lediglich das Retten von
A5 und das Neuladen wegen der P80-Kompatibilität erforderlich ist. Die Durch-
laufzeit der Routine kann dadurch merkbar verkürzt werden: es wird nahezu
die Geschwindigkeit des auf Seite 569 beschriebenen Sonderfalles errreicht.

Bedingung für diese Lösung ist allerdings, daß kein weiteres Unterprogramm
von der Routine aufgerufen wird, ausgenommen interne Routinen, die mit BSR
aufgerufen werden (Stackplatz reicht nur für einen weiteren Level!).

Die EQUs werden nun erneut geringfügig geändert und die Formate P8090
sowie X8090 werden durch ihre schnelleren und einfacheren Brüder QP8090
sowie QX8090 ersetzt. Das komplette Ergebnis sieht dann wie folgt aus:

592 8.6 Umstellung von alten Assemblerunterprogrammen auf PEARL90

CIN EQU 0 Adr. von para C
BIN EQU 4 Input para B
AIN EQU 8 Input para A
RESLT EQU 10 Result pointer
FLAG9 EQU RESLT+4 Flag für P90

.... 4 Bytes intern
LORG EQU FLAG9+8 *** Neu ***
MY_X EQU LORG My own cell
.... Andere lokale Objekte
WSPSZ EQU LORG+24 *** Maximum! ***
*

SIGCHK $C5D74285 Signature check
~X QP8090 WSPSZ,FLAG9 *** Neu ***

BRA XCDE To common code
*
>X ENTR WSPSZ.L Auftakt para xfer

VARW AIN.X Value 16 bit fixed
VARF BIN.X Value 32 bit float
MPXF C1,CIN.Z Ident char(1)
EPAR End para-list

_CLR.L FLAG9(A5) *** bleibt ***
XCDE MOVE Code von X

.... ”
EXIT QX8090 FLAG9 *** Neu ***

Bitte keinesfalls die Quick-Versionen mit den normalen Versionen kombinieren!

Wenn WSPSZ den zugelassenen Wert überschreitet, erzeugt der FORMAT-Prozes-
sor des Assemblers bzw. Transferassemblers bei der Generierung des QP8090
eine Fehlermeldung /LIMIT/.

8.6 Umstellung von alten Assemblerunterprogrammen auf PEARL90 593

--
* D E M O : M I X E D P 8 0 / P 9 0 *
--
* Using the quick model with few locals *
* T-Code used *
* *

.INCLUDE PROCS.FOR load Formats *
* *
CIN EQU 0 ** adapted ** *
BIN EQU 4 ** adapted ** *
AIN EQU 8 ** adapted ** *
RESLT EQU 10 ** adapted ** *
FLAG9 EQU RESLT+4 ** new! ** *
LORG EQU FLAG9+8 FLVA ** adapted ** *
*... *
WSPSZ EQU LORG+24 not changed *
* *

DC 0,0,0,0,$0010 not changed *
DC.B ’AAABBB’ not changed *

*
.IF_PROCTYPE M68K -> No P80 on PowerPC!! *

* *
ENTR OPD.V 29 not changed *
VARW OPD.V 10 not changed *
VARF OPD.V 12 not changed *
MPXF OPD.V 139 not changed *
EPAR OPD.V 19 not changed *
* *
>X ENTR WSPSZ.L not changed *

VARW AIN.X not changed *
VARF BIN.X not changed *
MPXF C1,CIN.Z not changed *
VARW RESLT.Z not changed *
EPAR not changed *
CLR.L FLAG9(A5) *** P90FLAG,new!! **** *

.FIN *** End 68K,new!! **** *
..... Result=TOFIXED(CIN)+AIN
XCDE movea.l CIN(A5),A0 not changed *

clr.l d0 not changed *
move.b (A0),d0 not changed *

_add AIN(A5),d0 not changed *
movea.l RESLT(A5),A0 not changed *

594 8.6 Umstellung von alten Assemblerunterprogrammen auf PEARL90

_move d0,(A0) not changed *
EXIT QX8090 FLAG9 *** was a RETN before! *
* *
C1 DC $0108 not changed *
..
*..... Additional P90-Entry with IEEE-Float obj: *
* ---------- *

SIGCHK $C5D74285 *** new! *** (IEEE) *
~X QP8090 WSPSZ,FLAG9 *** new! *** *

BRA XCDE *** new! *** *
* *

END That’s all *

8.7 Hyperprozessorbefehle 595

8.7 Hyperprozessorbefehle

Die virtuellen Maschinenbefehle des Laufzeitsystemes bilden den sogenannten

”Hyperprozessor“. Die Benutzung der Befehle ist zwar auch dem Assembler-
programmierer möglich, doch wird keine Gewähr für langfristige Unveränder-
lichkeit des Hyperprozessors gegeben. Im Zuge von Compilerverbesserungen
können immer auch Veränderungen des Befehlssatzes auftreten. Man überzeuge
sich daher genau, ob die aktuelle Variante noch alle benutzten Befehle enthält.
Die Hyperprozessorbefehle können die Register D0-A3 zerstören.

No. X Mnemo Bemerkungen *
V0 - TOREAL Abschalten des Hyperprozessors *
V1 2 MOVU Nicht für Neuentwicklung (Move 8 bytes) *
V2 1 (ADDF) Nicht für Neuentwicklung (Add Float 23) *
V3 1 (ADDD) Nicht für Neuentwicklung (Add Float 55) *
V4 1 (SUBF) Nicht für Neuentwicklung (Sub Float 23) *
V5 1 (SUBD) Nicht für Neuentwicklung (Sub Float 55) *
V6 1 (MULX) Nicht für Neuentwicklung (Mul Fixed 31) *
V7 1 (MULD) Nicht für Neuentwicklung (Mul Float 55) *
V8 1 (DIVX) Nicht für Neuentwicklung (Div Fixed 31) *
V9 1 (DIVD) Nicht für Neuentwicklung (Div Float 55) *
V10 1 VARW Param. XFER P80: Variable Fixed 15 *
V11 1 VARX Param. XFER P80: Variable Fixed 31 *
V12 1 VARF Param. XFER P80: Variable Float 23 *
V13 1 VARD Param. XFER P80: Variable Float 55 *
V14 1 INVW Param. XFER P80: Konstante Fixed 15 *
V15 1 INVX Param. XFER P80: Konstante Fixed 31 *
V16 1 INVF Param. XFER P80: Konstante Float 23 *
V17 1 INVD Param. XFER P80: Konstante Float 55 *
V18 1 CALL Call P80-procedure. (Im Comp. als PROC) *
V19 - EPAR P80: End of Parameterlist + Hyperproc. off *
V20 2 SHFS Shift 1 TO 16 BIT Object *
V21 2 SHFL Shift 17 to 32 BIT Object *
V22 - CVXF Nicht für Neuentwicklung, Fix31 to Flo23 *
V23 - CVWD Nicht für Neuentwicklung, Fix15 to Flo55 *
V24 - CVXD Nicht für Neuentwicklung, Fix31 to Flo55 *
V25 - CVFD Nicht für Neuentwicklung, Flo23 to Flo55 *
V26 4 CATC Concatenation von 2 CHAR-strings *
V27 3 PUT Eröffnung einer Liste für PUT *
V28 3 GET Eröffnung einer Liste für GET *
V29 1 ENTR P80: Prozedureintritt mit PWSP-Erzeugung *

596 8.7 Hyperprozessorbefehle

V30 2 EFR2 E-(E/A)Format mit 2 Parametern *
V31 3 EFR3 E-(E/A)Format mit 3 Parametern *
V32 1 PAGE PAGE-(E/A)Format *
V33 1 XFOR X-(E/A)Format *
V34 1 RLFO Remote-Left-Bracket in (E/A)Format *
V35 1 EALW E/A of Fixed15 *
V36 1 EALX E/A of Fixed31 *
V37 1 EALF E/A of Float23 *
V38 1 EALD E/A of Float55 *
V39 1 EADU E/A of Duration *
V40 1 EACL E/A of Clock *
V41 - LBRK Left Bracket in (E/A)Format *
V42 - RBRK Right Bracket in (E/A)Format *
V43 - FESP (E/A)Format-End-specification *
V44 1 FACT (E/A)Format Wiederholfaktor *
V45 1 AFOL A-(E/A)Format *
V46 - LIFO List-(E/A)Format *
V47 1 SKFO SKIP-(E/A)Format *
V48 3 OPN3 ** OPEN 3 Param. (BY IDF(...)) *
V49 1 RWND ** REWIND Dation and open *
V50 1 SYNC ** Synchronize Dation *
V51 1 APND ** Append to a File *
V52 1 EORL EOR with 32 Bit Obj. *
V53 2 CSHL Cyclic Shift 17 to 32 Bit *
V54 2 IOBS I/O Bit-string *
V55 2 CSHS Cyclic Shift 1 to 16 Bit *
V56 2 SEEK ** Seek a position in a file *
V57 2 SAVP ** Save a position in a file *
V58 - ---- Nicht mehr besetzt *
V59 3 NEBS Not equal for Bit-strings *
V60 4 NECS Not equal Character-string *
V61 - ---- Nicht mehr besetzt *
V62 - ---- Nicht mehr besetzt *
V63 1 EQUD Equal long Float *
V64 1 SUSE Suspend external (given Task) *
V65 - ---- Nicht mehr besetzt *
V66 1 NEQD Not equal long Float *
V67 - ---- Nicht besetzt *
V68 - ---- Nicht besetzt *
V69 - ---- Nicht besetzt *
V70 - ---- Nicht besetzt *

8.7 Hyperprozessorbefehle 597

V71 - ---- Nicht besetzt *
V72 1 LTST P80: Length-test (Struct-param xfer) *
V73 1 (LTHF) Nicht für Neuentwicklung (LT Float(23)) *
V74 1 (LTHD) Nicht für Neuentwicklung (LT Float(55)) *
V75 - - - - - Nicht mehr besetzt *
V76 - - - - - Nicht mehr besetzt *
V77 - - - - - Nicht mehr besetzt *
V78 - - - - - Nicht mehr besetzt *
V79 - - - - - Nicht mehr besetzt *
V80 - - - - - Nicht mehr besetzt *
V81 - - - - - Nicht mehr besetzt *
V82 - - - - - Nicht mehr besetzt *
V83 1 POWW Power Fixed(15) *
V84 1 POWX Power Fixed(31) *
V85 1 POWF Power Float(23) *
V86 1 POWD Power Float(55) *
V87 1 TERM Terminate (given Task) *
V88 1 PREV Prevent (given Task) *
V89 1 CONT Continue (given Task) *
V90 1 LIMV Line-marker in virtual environment *
V91 1 ODAT Open Dation (no operation) *
V92 1 CDAT Close Dation (if closable) *
V93 1 WCON (When) ... Continue *
V94 1 TCON (Timed) ... Continue *
V95 2 ACTI Activate with priority *
V96 2 WACT (When) ... activate with priority *
V97 2 TACT (Timed) ... activate with priority *
V98 - WRES (When) ... Resume (own Task) *
V99 - TRES (Timed) ... Resume (own Task) *
V100 - STSC Start schedule-definition *
V101 1 ATCL AT (clock) schedule param. set *
V102 1 AFTR AFTER (duration) schedule param. set *
V103 1 ALLD ALL (duration) schedule param. set *
V104 1 UNIL UNTIL (clock) schedule param. set *
V105 1 DUDU DURING (duration) schedule param. set *
V106 1 WHEV WHEN (event) schedule param. set *
V107 3 WRIT WRITE-Instruction *
V108 3 READ READ-Instruction *
V109 - ---- Nicht mehr besetzt *
V110 - ---- Nicht mehr besetzt *

598 8.7 Hyperprozessorbefehle

V111 1 EOLI End I/O-List (escape-label) *
V112 - RFEN Remote-(E/A)Format end *
V113 2 EACS E/A Character-string *
V114 3 FFOR F-(E/A)Format *
V115 - ---- Nicht besetzt *
V116 - ---- Nicht besetzt *
V116 - ---- Nicht besetzt *
V118 4 EQBS Equal Bit-strings *
V119 4 EQCS Equal char. strings *
V120 3 MVBS Move Bit-string *
V121 3 MVCS Move character-string *
V122 3 ARNS P80: Array-param.xfer ’no string’ *
V123 3 ARBS P80: Array-param.xfer ’bitstring’ *
V124 3 ARCS P80: Array-param.xfer ’char.string’ *
V125 2 BFOR B-(E/A)Format *
V126 2 DFOR D-(E/A)Format *
V127 2 TFOR T-(E/A)Format *
V128 - ---- Nicht mehr besetzt *
V129 - ---- Nicht mehr besetzt *
V130 - ---- Nicht mehr besetzt *
V131 1 (MULF) Nicht für Neuentwicklung (MUL Float(23)) *
V132 1 (DIVF) Nicht für Neuentwicklung (DIV Float(23)) *
V133 1 EORW Excl.Or 32 Bit (Fehlt in 68000 Hardw.) *
V134 - (CVWF) Nicht für Neuentwicklung (Fix15 to Fl23) *
V135 1 (LDAD) Nicht für Neuentwicklung (Load acc.8 by) *
V136 1 (STAD) Nicht für Neuentwicklung (St. accu 8 by) *
V137 1 DMYD P80: (Dummy)-Dation parameter xfer *
V138 1 DMYI P80: (Dummy)-Interrupt parameter xfer *
V139 2 MPXF P80: Miscellaneous Parameter X-fer *
V140 - (ABSF) Nicht für Neuentwicklung (ABS accu Fl23) *
V141 - (ABSD) Nicht für Neuentwicklung (ABS accu Fl55) *
V142 - (ENTI) Nicht für Neuentwicklung (ENTIER) *
V143 - (ROUN) Nicht für Neuentwicklung (ROUND) *
V144 - (SIGN) Nicht für Neuentwicklung (SIGN) *

8.7 Hyperprozessorbefehle 599

Im Folgenden sind alle Befehle, die unsere Compiler erzeugen, in alphabetischer
Reihenfolge aufgelistet.

Mnemo X Operation Bemerkung *

ABAL - ADD.L A5,D0 Add base adr long *
ABSD - JSR -72(A6) Abs Wert double float *
(ABSD) - V141 Nicht für Neuentwicklung (ABS accu Fl55) *
ABSF - JSR -68(A6) Abs Float23 *
(ABSF) - V140 Nicht für Neuentwicklung (ABS accu Fl23) *
AC-1 - SUBQ =1,D0 Dekrement D0 *
ACTI 2 V95 Activate with priority *
ADDA - ADD.L A1,D0 add address *
(ADDD) 1 V3 Nicht für Neuentwicklung (Add Float 55) *
ADDD 1 Macro LEA obj,A1 + JSR -20(A6) *
(ADDF) 1 V2 Nicht für Neuentwicklung (Add Float 23) *
ADDF 1 Macro LEA obj,A1 + JSR -4(A6) *
ADDI 2 ADDI.W =con,xxx *
ADDM 1 ADD.W D0,xxx *
ADDW 1 ADD.W Native Add *
ADDX 1 ADD.L Native Add long *
ADIL 1 ADD.L =xx,D0 Add immediate long *
AD+2 - ADDQ.L =2,A1 Quick adr. shifter *
AFOL 1 V45 A-(E/A)Format *
AFTR 1 V102 AFTER (duration) schedule param. set *
ALLD 1 V103 ALL (duration) schedule param. set *
ANDW 1 AND.W Native AND Word *
ANDL 1 AND.L Native AND Long *
ANIW 1 ANDI.W =xx,D0 *
ANIL 1 ANDI.L =xx,D0 *
APND 1 V51 ** Append to a File *
ARBS 3 V123 Array-param.xfer ’bitstring *
ARCS 3 V124 Array-param.xfer ’char.string’ *
ARNS 3 V122 Array-param.xfer ’no string’ *
ATCL 1 V101 AT (clock) schedule param. set *
BFOR 2 V125 B-(E/A)format *
BGE4 - BGE.S $+4 *
BGEL 1 BGE.L xxx Conditioned branch ge *
BGTL 1 BGT.L xxx Conditioned branch gt *
BLTL 1 BLT.L xxx Conditioned branch lt *

600 8.7 Hyperprozessorbefehle

CALL 1 V18 Call procedure. (Im Comp. als PROC) *
CASE - JMP -96(A6) For CASE-construct *
CATC 4 V26 Concatenation von 2 CHAR-strings *
CDAT 1 V92 Close Dation (if closable) *
CLRL 1 CLR.L xx *
CMPW 1 CMP.W Native Compare to D0 *
CMPL 1 CMP.L Native Compare long to D0 *
CONT 1 V89 Continue (given Task) *
CSHL 2 V53 Cyclic Shift 17 to 32 Bit *
CSHS 2 V55 Cyclic Shift 1 to 16 Bit *
CVBL - Macro Convert Bitstring to long SWAP D0 + CLR *
CVFD - CLR.L D1 Convert Flo23 to Flo55 *
(CVFD) - V25 Nicht für Neuentwicklung, Flo23 to Flo55 *
CVWD - JSR -56(A6) Convert Fix15 to Flo55 *
(CVWD) - V23 Nicht für Neuentwicklung, Fix15 to Flo55 *
CVWF - JSR -64(A6) Convert Fix15 to Flo23 *
(CVWF) - V134 Nicht für Neuentwicklung (Fix15 to Fl23) *
CVWX - EXT.L D0 Convert Fix15 to Fix31 *
CVXD - JSR -60(A6) Convert Fix31 to Flo55 *
(CVXD) - V24 Nicht für Neuentwicklung, Fix31 to Flo55 *
CVXF - JSR -52(A6) Convert Fix31 to Flo23 *
(CVXF) - V22 Nicht für Neuentwicklung, Fix31 to Flo23 *
D0A0 - MOVEA.L D0,A0 Quickload of adr-reg (optim.) *
D0A1 - MOVEA.L D0,A1 *
D0*2 - ADD D0,D0 Verdoppele D0 *
D0*4 - LSL =2,D0 Vervierfache D0 *
D0*8 - LSL =3,D0 Verachtfache D0 *
DFOR 2 V126 D-(E/A)Format *
DISA - TRAP $A034 Disable Interrupt *
DIVD 1 Macro LEA obj,A1 + JSR -32(A6) *
(DIVD) 1 V9 Nicht für Neuentwicklung (Div Float 55) *
DIVF 1 Macro LEA obj,A1 + JSR -16(A6) *
(DIVF) 1 V132 Nicht für Neuentwicklung (DIV Float(23)) *
DIVW 1 DIVS Native divide *
DIVX 1 Macro LEA obj,A1 + JSR -48(A6) *
(DIVX) 1 V8 Nicht für Neuentwicklung (Div Fixed 31) *
DMYD 1 V137 (Dummy)-Dation parameter xfer *
DMYI 1 V138 (Dummy)-Interrupt parameter xfer *
DSCO - SUBQ =1,D2 Decrement Shift count one *
DUDU 1 V105 DURING (duration) schedule param. set *

8.7 Hyperprozessorbefehle 601

EACL 1 V40 E/A of Clock *
EACS 2 V113 E/A Character-string *
EADU 1 V39 E/A of Duration *
EALD 1 V38 E/A of Float55 *
EALF 1 V37 E/A of Float23 *
EALW 1 V35 E/A of Fixed15 *
EALX 1 V36 E/A of Fixed31 *
EFR2 2 V30 E-(E/A)Format mit 2 Parametern *
EFR3 3 V31 E-(E/A)Format mit 3 Parametern *
ENAB - TRAP $A032 Enable Interrupt *
ENTI - JSR -76(A6) ENTIER-Funktion *
ENTI) - V142 Nicht für Neuentwicklung (ENTIER) *
ENTR 1 V29 Prozedureintritt mit PWSP-Erzeugung *
EOLI 1 V111 End I/O-List (escape-label) *
EORL 1 V52 EOR with 32 Bit Obj. *
EORW 1 V133 Excl.Or 16 Bit (Fehlt in 68000 Hardw.) *
EPAR - V19 End of Parameterlist *
EQBS 4 V118 Equal Bit-strings *
EQCS 4 V119 Equal char. strings *
EQUD 1 V63 Equal long Float *
EQUF 1 Macro Konstruktion mit CMP.L + versch. ff *
EQUW 1 Macro Konstruktion mit CMP.W + versch. ff *
EQUX 1 Macro Konstruktion mit CMP.L + versch. ff *
EXIT - TRAP =1 Terminate own Task *
EX20 - EXG D2,D0 (in FOR ... BY variable ... REPEAT) *
FACT 1 V44 (E/A)Format Wiederholfaktor *
FESP - V43 (E/A)Format-End-specification *
FFOR 3 V114 F-(E/A)Format *
FLFR - JSR -88(A6) Float to fraction conv. (’SEND’) *
FRFL - JSR -92(A6) Fraction to Floating conv. (’TAKE’) *
GET 3 V28 Eröffnung einer Liste für GET *
INVD 1 V17 Param. XFER: Konstante Float 55 *
INVF 1 V16 Param. XFER: Konstante Float 23 *
INVW 1 V14 Param. Xfer: Konstante Fixed 15 *
INVX 1 V15 Param. XFER: Konstante Fixed 31 *
IOBS 2 V54 I/O Bit-string *
ITS1 - TRAP $A040 Index-test 1-dim. *
ITS2 - TRAP $A042 Index-test 2-dim. *
ITS3 - TRAP $A044 Index-test 3-dim. *

602 8.7 Hyperprozessorbefehle

JRSI - JSR (A1) Native pointered jump subroutine *
JSR 1 JSR xxx Native jump subroutine *
LBRK - V41 Left Bracket in (E/A)Format *
LDAD 1 V135 Nicht für Neuentwicklung (Load acc.8 by) *
LDIL 1 MOVE.L =xx,D0 (Load immediate long) *
LEFA 1 LEA xx,A1 *
LIFO - V46 List-(E/A)Format *
LIMR - TRAP $A036 Line-marker in real environment *
LIMV 1 V90 Line-marker in virtual environment *
LTHD 1 Macro LEA obj,A1 + JSR -40(A6) *
(LTHD) 1 V74 Nicht für Neuentwicklung (LT Float(55)) *
LTHF 1 Macro LEA obj,A1 + JSR -36(A6) *
(LTHF) 1 V73 Nicht für Neuentwicklung (LT Float(23)) *
LTST 1 V72 Length-test (Struct-param xfer) *
MMBY 2 Macro Move multibyte, schnelle DBF-Konstrukt. *
MOVB ? MOVE.B Native Move byte *
MOVF ? MOVE.L Native Move long *
MOVD ? Macro Verschiedene Sequenzen native Code *
MOVU 2 V1 Nicht für Neuentwicklung (Move 8 bytes) *
MOVW ? MOVE.W Native Move *
MOVX ? MOVE.L Native Move long *
MPXF 2 V139 Miscellaneous Parameter X-fer *
MULD 1 Macro LEA obj,A1 + JSR -28(A6) *
(MULD) 1 V7 Nicht für Neuentwicklung (Mul Float 55) *
MULF 1 Macro LEA obj,A1 + JSR -12(A6) *
(MULF) 1 V131 Nicht für Neuentwicklung (MUL Float(23)) *
MULU 1 MULU Native Multiply 16 bit unsigned *
MULW 1 MULS Native Multiply 16 bit *
MULX 1 Macro LEA obj,A1 + JSR -44(A6) *
(MULX) 1 V6 Nicht für Neuentwicklung (Mul Fixed 31) *
MVBS 3 V120 Move Bit-string *
MVCS 3 V121 Move character-string *
NEBS 3 V59 Not equal for Bit-strings *
NECS 4 V60 Not equal Character-string *
NEGW 1 NEG.W xx *
NEGL 1 NEG.L xx *
NEQF 1 Macro Konstruktion mit CMP.L + versch. ff *
NEQW 1 Macro Konstruktion mit CMP.W + versch. ff *
NEQX 1 Macro Konstruktion mit CMP.W + versch. ff *

8.7 Hyperprozessorbefehle 603

NOT 1 NOT.W Native NOT Word *
NOTW 1 NOT.W Native NOT Word *
NOTL 1 NOT.L Native NOT Long *
ODAT 1 V91 Open Dation (no operation) *
OPN3 3 V48 ** OPEN 3 Param. (BY IDF(...)) *
ORW 1 OR.W Native OR *
ORL 1 OR.L Native OR long *
PAGE 1 V32 PAGE-(E/A)Format *
PHDR 1 Macro Vorderer Teil des PRODEC-Formates *
PNTR 1 DC.W ... Only Extension Word *
POWD 1 V86 Power Float(55) *
POWF 1 V85 Power Float(23) *
POWW 1 V83 Power Fixed(15) *
POWX 1 V84 Power Fixed(31) *
PREV 1 V88 Prevent (given Task) *
PROC 1 V18 Call procedure *
PUT 3 V27 Eröffnung einer Liste für PUT *
QSHC 1 MOVEQ ...,D2 Quick shiftcount *
RBRK - V42 Right Bracket in (E/A)Format *
READ 3 V108 READ-Instruction *
REQU - TRAP =6 Request SEMA (adr. by A1) *
RELA - TRAP =7 Release SEMA (adr. by A1) *
RETN - Macro In PEARL80: Trap =12 *
RETN - Macro In PEARL90: PROCEX-Format *
RFEN - V112 Remote-(E/A)Format end *
RLFO 1 V34 Remote-Left-Bracket in (E/A)Format *
ROLL - ROL.L D2,D0 *
ROUN - JSR -80(A6) ROUND-function *
(ROUN) - V143 Nicht für Neuentwicklung (ROUND) *
RWND 1 V49 ** REWIND Dation and open *
SAVP 2 V57 ** Save a position in a file *
SEEK 2 V56 ** Seek a position in a file *
SHFL 2 V21 Shift 17 to 32 BIT Object *
SHFS 2 V20 Shift 1 TO 16 BIT Object *
SIGN 1 Macro LEA obj,A1 + JSR -84(A6) SIGN-function *
(SIGN) 1 V144 Nicht für Neuentwicklung (SIGN) *
SKFO 1 V47 SKIP-(E/A)Format *
SSHC - MOVE D0,D2 Store Shiftcount in D2 *
STAD 1 V136 Nicht für Neuentwicklung (St. accu 8 by) *
STAL 1 MOVE.L D0,xx(A5) *
STSC - V100 Start schedule-definition *
SUBD 1 Macro LEA obj,A1 + JSR -24(A6) *

604 8.7 Hyperprozessorbefehle

(SUBD) 1 V5 Nicht für Neuentwicklung (Sub Float 55) *
SUBF 1 Macro LEA obj,A1 + JSR -8(A6) *
(SUBF) 1 V4 Nicht für Neuentwicklung (Sub Float 23) *
SUBW 1 SUB.W Native Subtract Word *
SUBX 1 SUB.L Native Subtract Long *
SUSE 1 V64 Suspend external (given Task) *
SUSP - TRAP $A028 Suspend self *
SU20 - SUB D2,D0 (In FOR ... REPEAT) *
SWAP - SWAP D0 *
SWLT - Macro SLT D0 + EXT D0 *
SYNC 1 V50 ** Synchronize Dation *
TACT 2 V97 (Timed) ... activate with priority *
TCON 1 V94 (Timed) ... Continue *
TERM 1 V87 Terminate (given Task) *
TFOR 2 V127 T-(E/A)Format *
TRES - V99 (Timed) ... Resume (own Task) *
TSTW - TST.W D0 *
TSTL - TST.L D0 *
UNIL 1 V104 UNTIL (clock) schedule param. set *
VARD 1 V13 Param. XFER: Variable Float 55 *
VARF 1 V12 Param. XFER: Variable Float 23 *
VARW 1 V10 Param. XFER: Variable Fixed 15 *
VARX 1 V11 Param. XFER: Variable Fixed 31 *
WACT 2 V96 (When) ... activate with priority *
WCON 1 V93 (When) ... Continue *
WHEV 1 V106 WHEN (event) schedule param. set *
WRES - V98 (When) ... Resume (own Task) *
WRIT 3 V107 WRITE-Instruction *
XFOR 1 V33 X-(E/A)Format *

8.8 E/A in Assemblersprache 605

8.8 E/A in Assemblersprache

Vor dem Studium der Codierung eigener E/A-Treiber sollte man sich mit der
typischen Maschinencode-Sequenz einer Ein- oder Ausgabe vertraut machen.
Dazu betrachten wir den Fall einer E/A über den ACIA/SCC mit der War-
teschlangennummer 2. Weil sich die Displacements zwischen der 68k- und der
PowerPC-Familie unterscheiden, wird dringend empfohlen, die Datei ”COMEQU“
per .INCLUDE einzubinden. Die nachfolgend angegebenen EQUs sind nur zur In-
formation angegeben. Bitte lesen Sie dazu auch auf Seite 559 die Beschreibung
des Communication Elements (CE) nach.

* Define Systemtraps:
FETCE OPD $4E48 Fetch communication-element (CE) Systrap
IOWA OPD $A00A I/O wait function
RELCE OPD $4E49 Release the CE
XIO OPD $4E4A Xfer communication-element for I/O
* Displacements (PowerPC rechts, sofern abweichend):
BUADR EQU $20 $24 4 byte long buffer-address (from FETCE)
FNAME EQU $2C $30 File-name
LDNIO EQU $27 $2B Logical dation number (=Queue-number)
MODE EQU $28 $2C Mode-Byte of Communication-Element
DRIVE EQU $2A $2E Driver-Number or ACIA-Mode
RECLEN EQU $24 $28 Record length (16 bit)
STATIO EQU $26 $2A Statusbyte of communication-element
* Symbolic masks and bit-positions:
MODMOU EQU $40 Mode-mask for Output
MODMCR EQU $20 Mode-mask ’carriagereturn ends record’
MODMWA EQU $80 Mode-mask ’wait for completion’
MODM.. Other masks when used
STABRE EQU 1 ’Verschrottungsbit’

Fall A

Es soll eine Ausgabe gestartet werden und während des Transfers noch etwas
anderes gemacht werden. Das CE soll anschließend für einen weiteren E/A-
Vorgang erneut benutzt werden. Textlänge sei 50 Characters. Wir codieren:

... ... Arbitrary code before write sequence
_MOVEQ =50,D1 Communication-elem. with 50 char. info-len.
FETCE Get space from RTOS-UH, A1 is loaded
MOVE.W =MODMOU*$100,MODE(A1) Xfer-mode: out,no wait,by cnt.
MOVE.B =2,LDNIO(A1) Queuenumber = 2 (Dation=ACIA2)

_MOVE =0,DRIVE(A1) Ax (not Bx or Cx)

606 8.8 E/A in Assemblersprache

MOVEA.L BUADR(A1),A2 pointer 1st character in buffer
...
MOVE.B ...,(A2)+ put info into communication elem.
...

_MOVE =50,RECLEN(A1) all 50 characters to write
XIO Make the output
... other activities while output is running
... A1 must be saved and reloaded !!
IOWA Wait for completion of I/O with A1-com.el
... from here on: A1-CE may be used again
RELCE Release the CE in A1. A1 is invalid now

Fall B

Über B2 soll ein Stück Text gelesen werden und dabei noch Programmaktivität
während des Lesens stattfinden. Außerdem soll kein Echo erzeugt werden, der
Zugang zum Bedieninterface ist zu verriegeln, damit die Zeichen $01 etc. gele-
sen werden können. Maximale Textlänge sei 40 und beim ersten auftretenden
Carriagereturn soll der Transfer beendet werden (Das Zeichen CR steht dann
als letztes im Puffer). Wir codieren zusätzlich zum Universalvorspann:

MODMCR EQU $20 End Transfer with 1st carriagereturn.
MODMNE EQU $02 ’No echo’ (Only ACIA/SCC)
MODMSC EQU $04 Suppress Command (only ACIA/SCC)

...
_MOVEQ =40,D1 D1.L = length of info in CE
FETCE load A1 by RTOS-UH
MOVE.B =2,LDNIO(A1) Queue-Number is 2
MOVE.W =(MODMCR+MODMSC+MODMNE)*$100,MODE(A1) Xfer mode setup
MOVE =40,RECLEN(A1) max. number of char’s

_MOVE =2,DRIVE(A1) ’B’ (buffered) instead of ’A’
XIO Make the Xfer
... Arbitary-code, command-if remains blocked.

IOWA Wait until record ready (CR or 40 char’s).

* Die Daten liegen nun bereit. In RECLEN(A1) ist die Anzahl
* Bytes zu finden. Auf BUADR(A1) die 4 bytes lange Adresse
* des ersten Zeichens. Nach Auswertung der Daten:

RELCE Release CE. A1 invalid from now on!

8.8 E/A in Assemblersprache 607

* Anmerkungen zum hier demonstrierten Beispiel:
* Damit das Bedieninterface wieder ’befreit’ wird, muss ein
* ACIA2-XIO ohne den ’suppress command-if’- Mode folgen
* oder der Terminalbediener drueckt die ’break’-taste.

Fall C

”Ausgeben und vergessen“ eines Konstantenstring. Zusätzlich zum Universal-
vorspann codieren wir nun:

...
_CLR.L D1 Length of textbuffer = 0
FETCE Fetch a CE
LEA textadr,A0
MOVE.L A0,BUADR(A1) Start adr of text to write
MOVE.W =MODMOU+MODMCR+$0,MODE(A1) Output until CR
BSET =STABRE,STATIO(A1) ’Verschrottungsbit’
MOVE =100,RECLEN(A1) Max. number of char if no CR
MOVE.B =2,LDNIO(A1) queue-number

_CLR DRIVE(A1) Set to Ax
XIO A1 no longer valid!

* Die Ausgabe laeuft, das CE ist fuer diese Task nun nicht
* mehr erreichbar, da nicht festzustellen ist, ob es noch
* existiert.

608 8.9 Ergänzung von E/A-Treibern

8.9 Ergänzung von E/A-Treibern

In der 68k-Version des Betriebssystemes RTOS–UH sollten alle Peripherie-
geräte, bei denen Wartezeiten einmalig > 0.6 ms bzw. wiederholt > 80 µs anfal-
len, durch sog. ”I/O-Dämonen“ (Treibertasks) betreut werden. Für die schnel-
len PowerPC-Versionen sind die obigen Zeitrichtwerte erheblich zu verkleinern.
Beim E/A-Vorgang wird durch die Usertask mit dem ”XIO“-Trap ein Eintrag
in eine prioritätentengeordnete Warteschlange angelegt. War die Warteschlange
vorher leer, so aktiviert XIO über eine LDN-Tabelle den für diese Warteschlange
zuständigen I/O-Dämonen.

Für Peripherie, die dem Prozessor keine verwendbaren Zeitreste läßt, macht
diese Konstruktion keinen Sinn. So wird z. B. über den VME- oder PIA-Bus
mit SEND und TAKE direkt und ohne Taskwechsel kommuniziert.

Wenn Sie Ihr System mit weiteren Peripheriegeräten ausbauen und dafür keine
der im RTOS–UH vorhandenen Treibertasks benutzt werden kann – z. B. neu-
es V24-Port – dann ist das System in der hier angegebenen Weise zu erweitern.
Die Aufgabe, die hierbei zu erledigen ist, gliedert sich in drei Phasen:

Phase 1: Festlegung einer ”LDN“ für das neue Peripheriegerät.
Phase 2: Codierung des I/O–Dämonen.
Phase 3: Codierung des Interruptprozesses.

Phase 1: Festlegung einer LDN

a) Das System soll fortan dauerhaft die neue Station enthalten: Der Boot-
block oder das ROM muß erweitert werden. Zweckmäßigerweise wird die
nächste freie LDN belegt. Geht man nach oben darüber hinaus, so wird
vom Nukleus beim Autolinking die LDN-Lücke für nachladbare I/O-Tasks
verwaltungstechnisch aufbereitet. (Tabellenplatz) Die Station muß mit
einem üblichen alphanumerischen Namen versehen werden, der die Ver-
wendung durch das Bedieninterface ermöglicht. Dazu ergänzen wir eine

”Scheibe“ vom Typ 9. Die Stationseigenschaften werden mit einer Schei-
be des Typs 10 vorbesetzt, sie wirkt wie ein ganz zu Anfang ausgeführter

”SD“-Bedienbefehl. Die notwendigen Informationen sind ab Seite 635 bei
der ”Scheibenstruktur“ zu finden.

b) Das System soll nur vorübergehend um die neue Datenstation erweitert
werden: In diesem Falle müssen Sie eine LDN aus einer der vorhandenen
Lücken wählen. Die Station ist bei dieser Form der Erweiterung allerdings
immer nur als ”LD/x.y/“ vom Bedieninterface errreichbar. Die Stations-
eigenschaften können nur mit Hilfe des ”SD“-Bedienbefehles besetzt wer-
den.

8.9 Ergänzung von E/A-Treibern 609

Phase 2: Codierung des I/O-Dämonen

Der Taskname (Name des Dämonen) ist frei wählbar. Allerdings sollte bei ei-
ner Boot/ROM-Erweiterung dieser mit ”#“ beginnen, um den Dämonen vor
dem UNLOAD zu schützen. Beim Entladen eines I/O-Dämonen ist in jedem Fall
besondere Vorsorge zu treffen, so daß der Eintrag in der ”LDN-TID“-Tabelle
des Nukleus wieder gelöscht wird.

Damit der von irgendwo exekutierte ”XIO“-Trap sein Communication-Element
(siehe dazu Seite 559) weiterleiten kann, benötigt er eine Zuordnungstabelle,
die die LDN in den Task-Identifier (TID) umwandeln kann. Beim Autolinking
baut der Nukleus diese Tabelle auf (siehe Scheibe 1). Bei den nachmontierten
Tasks müssen Sie (oder jemand anders) diesen Eintrag selbst erledigen. Nicht
belegte Tabellenplätze sind durch den Eintrag einer (4-Byte) 0 markiert.

* Task-head mit Namen,Prioritaet etc. *
* Oder: Scheibencode der Scheibe no. 1 *
* Hohe Prioritaet wird empfohlen, z.B. -1 oder *
* dynamische Prioritaet durch Angabe von 0 *
* *
* System-traps needed here: *
DPC OPD $4E43 Dispatcher-caller *
OFF OPD $4E4F All interrupts ’off’ *
RELCE OPD $4E49 Release Comm.element *
TOQ OPD $4E4D Take of queue *
TERMI OPD $4E41 Terminate (self) *
*
* Displacements (PowerPC rechts) use COMEQU !! *
EXCORG EQU 0 $4000 Exception origin *
BLOCK EQU $24 $22 Block-byte of a Task *
BLKBSU EQU 4 4 Suspend-bit-no. in BLOCK *
TID EQU $802 $5000 Actual running Task ident.*
SIOLDT EQU $852 $50B0 Start i/o-LDN to TID table*
IDP1 EQU $832 $508C Interr. data buffer 1 *
... ...
IDP7 EQU $84A $50A4 Interr. data buffer 7 *
*
* Interrupt-buffer *
* a) Platz ueber Scheiben 2 ... 8 *
* Interrupt-Vector anschliessen ueber Scheiben-
* nummer 14 *
* b) Platz im RAM freihalten: *

610 8.9 Ergänzung von E/A-Treibern

IRLINK DC 0,0,0,0,...0 as used by ir-process *
*
START: ; *

nur b) MOVEA.L SIOLDT,A1 Tab-pointer LDN-TID *
nur b) MOVE.L TID,ldn*4(A1) Montieren der I/O-Task*

TAKE: TOQ Take of queue *
BRA.B EXIT (muss .B sein!)Wenn Schlange leer
BRA.B DOIT CE aus Schlange gefunden *

EXIT: TERMI Ende weil Schlange leer *

DOIT:
nur a) MOVEA.L IDP1...IDP7,A0 Buffer-pointer IDPx *
nur a) LEA OFFS(A0),A0 benutzten Ber. auslassen*
nur b) LEA IRLINK,A0 access to ir-link-block *

MOVE.L A1,(A0)+ Comm.element for ir *
MOVEA.L TID,A2 Link to Task-identifier *
MOVE.L A2,(A0)+ fuer ir-process *
CLR (A0)+ Character-index reset *
.... hier moeglicherweise andere*
.... Interruptunkritische Op. *

* *
* Beginn der unteilbaren Sequenz: *
*

OFF Alle Unterbrechungen sperr*
.... (coupler) Interrupt-process mit Para-
.... metern versorgen, Hardware
.... ’’ ’scharf’ machen, IR-PC *
.... versorgen etc. *

nur b) MOVE.L =IRxy,IVEC+EXCORG Vector anschl. *
.... !! privilegierter Mode ! !*
_BSET =BLKBSU,BLOCK(A2) Task suspendieren
DPC Ende Off-sequ. Disp. start*

* *
* Der Daemon schlaeft nun bis der IR-Process *
* ihn wieder freischaltet. *
* *

RELCE Freigabe des Comm.elem. *
BRA TAKE naechstes El. aus Schlange*

8.9 Ergänzung von E/A-Treibern 611

Phase 3: Codierung des Interruptprozesses

Typische Aufgabe des Interruptprozesses wird die Behandlung des Dateninter-
rupts oder die Beendigung der Blockierphase des zugehörigen Dämonen aus
irgendwelchen Gründen sein. Nach Abschluss oder Abbruch der Datenübert-
ragung muß der suspendierte Dämon wieder freigegeben werden. Damit auf
Interruptebene der Zugriff auf dessen Blockbyte möglich ist, muß bereits auf
Taskebene vor der Selbstsuspendierung der TID des Dämonen im Interruptda-
tenblock abgelegt werden.

RTOS–UH besitzt im Gegensatz zu fast allen anderen Betriebssystemen einen
speziellen Reparaturmechanismus für unerwartete Fehler innerhalb von In-
terruptantwortroutinen. Um solche Fehler wie wrong opcode, wrong address
etc. auf eine interruptspezifische Art in einen geordneten Rückfall ableiten zu
können, gibt es die Zelle ”IID“ ($7FE bei 68k, $5004 bei PowerPC) = ”In-
terruptidentifier“. Der Nukleus bestimmt im Fehlerfalle mit Hilfe von IID, die
aktuelle Ansprungadresse für den Rückfallmechanismus. Die genaue Kodierung
von IID ist zwischen der 68k- und der PowerPC-Version dabei unterschiedlich,
weil die Prozessoren sich im Supervisormode zu stark unterscheiden – so besitzt
der PowerPC keinerlei Äquivalent zum Vectorbaseregister des 68k. Aus diesem
Grund werden für die Versorgung von IID in der Datei SUPERVIS.FOR Forma-
te angeboten, die sich automatisch an die Zielhardware (68k oder PowerPC)
anpassen.

In jedem Fall muß die Zelle IID zunächst gerettet werden, denn der Inter-
ruptprozeß könnte ja einen anderen unterbrochen haben, dessen Vektorlink am
Ende wiederhergestellt werden muß. Entsprechend muß am Ausgang der In-
terruptroutine die Zelle IID wieder auf den alten Wert zurückgestellt werden.
(Wenn man mit Hilfe der Shell auf IID nachsieht, wird man dort stets und alle
Zeit den Wert 0 finden, der angibt, daß man sich nicht in einer Interruptroutine
befindet.)

Man beachte, daß beim PowerPC ein besonderer ”Interruptpreprozessor“ die
Register r31, ccr und lr zunächst automatisch freistellt. Danach wird lr aller-
dings mit der Rückehradresse in das Interruptgate neu geladen und muß notfalls
gerettet werden. Weil der Transferassembler für die Umsetzung des T–Codes
auf den PowerPC neben den freien Registern r31 und ccr im Extremfall noch 9
weitere Hilfsregister benötigt, werden diese vom Format IRENTC zu Beginn der
Interruptroutine neben IID ebenfalls gerettet. Mit dem Format IREXTC werden
sie wieder zurückgeladen. Will man ”native“ PowerPC kodieren, so sind die
Formate IRENPP und IREXPP statt dessen zu verwenden. Letztere retten die
Register r25 ... r30, ctr, xer und lr nicht, sind ansonsten aber funktionsiden-
tisch.

Die ”Malfunction“-Routine muß dafür sorgen, daß z. B. alle Register restauriert

612 8.9 Ergänzung von E/A-Treibern

werden und ggf. der Interruptverursacher (Coupler etc.) in einen normierten
Zustand versetzt wird. Als Minimum ist die Ableitung der Malfunction auf den
regulären Interruptausgang anzusehen.

Warnung 1

Die Benutzung von Traps auf Interruptebene ist generell verboten – ob-
wohl es mit einigen möglich wäre. Auch die Verwendung von ”BSR“–
Befehlen ist wegen der damit verbundenen Paralysierung des ”Rück-
fallmechanismus“ gefährlich!! BSR/RTS kann durch LEA ...,Ax und JMP
(Ax), eine obendrein schnellere Lösung, ersetzt werden, oder aber man
rettet nach dem IID- und Registersave das System-A7 in ein eigenes Re-
gister, um es bei Malfunction als erstes wieder auf den korrekten Wert zu
bringen. Jedes Verlassen der Interruptroutine darf nur unter Einschal-
tung des Prozeßumschalters erfolgen, damit während der IR-Prozedur
aufgelaufene Taskzustandsänderungen nicht ”verschlafen“ werden: Ver-
wenden Sie also in der 68k-Welt nie den RTE-Befehl direkt!

Warnung 2

Die Interruptantwortroutine liegt typischerweise im gleichen Programm-
text wie die Grundebenentask, bedenken Sie aber, daß zum Zeitpunkt
des Interrupteintrittes irgendein völlig fremder Prozeß die Prozessorregi-
ster etc. besitzt. Sie müssen größte Aufmerksamkeit darauf verwenden,
daß der unterbrochene Prozess korrekt fortgesetzt werden kann! Man
legt hier sonst eine extrem gefährliche Zeitbombe in das System!

Wir studieren nun den schematischen Aufbau einer T–kodierten Interrupt-
Antwortroutine:

.INCLUDE ../COMEQU EQUs

.INCLUDE ../SUPERVIS.FOR Supervisorformate *
IVEC EQU $200 Assumed IR-Vector adr *
*
..... Here is the Interrupt entry point
IRxy IRENTC malfxy,IVEC Malfunc Anschluss etc. *

MOVEM.L D0...,-(A7) Save Registers used *
nur b) LEA IRLINK,A0 Parameter-feld anschl. *
nur a) MOVEA.L IDP1...IDP7,A0 IDPx laden *
nur a) LEA OFFS(A0),A0 fremden Bereich skip*

....... Von der Task-Grundebene *

....... angelegte Daten, z.B. die*

....... Adresse des CE, sind ueber

8.9 Ergänzung von E/A-Treibern 613

....... xx(A0) erreichbar *
MOVEA.L (A0),A1 access to comm.elem. *
MOVE.B ...,... Daten ueber Coupler *
....... *
CMP ...,... Test ob Transfer fertig *
BNE Exitxy Sprung wenn nicht fertig *

*
*...... Transfer fertig: Daemon wieder freigeben ... *

MOVEA.L 4(A0),A0 access Task-id *
_BCLR =BLKBSU,BLOCK(A0) continue task *
DPCALL Alert dispatcher *

Exitxy MOVEM.L (A7)+,D0... Register rueckladen *
IREXTC korrekter Ausgang *

* *
malfxy IRMALF IVEC bei 68k Leeroperation *

.... Controller normieren *
BRA Exitxy Exit by Disp. test *

614 8.9 Ergänzung von E/A-Treibern

Phase 3: Andere Konstruktion ohne Interrupts

Liefert der Coupler keine Interrupts, so kann auf der Ebene der Task selbst
das Communicationelement bearbeitet werden. Um Verluste durch Abfrage-
schleifen zu vermeiden, bediene man sich einer ”durchlöcherten“ Schleife, etwa,
indem die Task alle 4 msec nachschaut und sich bei fehlender Bereitschaft des
Couplers erneut selbst suspendiert für 4 msec. Bei hohen Datenraten geht es
natürlich auch ganz ohne Suspendierung der I/O-Task.

Beispiel für einen E/A-Treiber

Es handelt sich um ein einfaches Programm, welches einen normalen CE-
Transfer zu einem ACIA-Baustein gestattet. Zur Demonstration wurde auch
die typische ausgereizte Sequenz zur Erkennung von CR, LF oder EOT angege-
ben.

Das Maschinenprogramm braucht nur noch zugeladen zu werden. Die Task ist
einmal zu aktivieren, damit der Tabelleneintrag erfolgen kann. (Wegen leerer
Schlange keine Aktion). Anschließend ist über ”SD /LD/5/ xx“ das Port zu pa-
rametrieren. Bevor die Task mit UNLOAD entfernt wird, muß entweder über eine
Hilfstask oder mit Hilfe des SM-Befehles (Vorsicht! sorgfältig rechnen) wieder
eine Null an Stelle des TID eingesetzt werden. (4 Byte Null)

8.9 Ergänzung von E/A-Treibern 615

**
* Demonstrationsprogramm ’eigene E/A’ *
* HIER: Nachmontierte Version *
* *
* Taskname: Queue5, LDN=5 *
LDN EQU 5 For assembler *
--

.INCLUDE .../COMEQU.NOL passende EQUs *

.INCLUDE .../GENERAL.FOR Task-DCB etc *

.INCLUDE .../SUPERVIS.FOR fuer IR-Prozess *
--
*..... TASK-HEAD for RTOS-UH: *

DC.B 0,0,0,0,0,0,0,0,0,1,’Queue5’ *
TSKDCB 0,WSPMIN,START prio=0=dynamic *

--
* Coupler- and interrupt- addresses: *
* *** Depending upon actual hardware *** *
* ------------------------------ *
ACST EQU $50041 Statusreg ACIA *
ACDT EQU $50043 Datareg ACIA *
IVEC EQU $210 Interrupt-link *
--
* System traps: *
DPC OPD $4E43 Dispatcher-caller *
OFF OPD $4E4F All interrupts off *
RELCE OPD $4E49 Release comm.elem. *
TOQ OPD $4E4D Take off queue *
TERMI OPD $4E41 Terminate self *
*--- *
..... Link-cells daemon<->IR-process
IRLINK DC.L 0 Actual Text-address *

DC.L 0 Task-ID of this Task*
DC 0 Length-control-word *

*--- *
* T A S K - C O D E: *
* *
TERMEX TERMI Used from below *
START MOVEA.L SIOLDT,A0 Table-address *

_MOVE.L TID,LDN*4(A0) Nachmontage LDN *
TOQ Inspect the queue *
BRA.B TERMEX B: queue empty *

..... Queue is not empty

616 8.9 Ergänzung von E/A-Treibern

LEA IRLINK,A0 For rapid access *
_MOVE.L BUADR(A1),(A0)+ Start adr of Text *
MOVEA.L TID,A2 Task Id for access *
MOVE.L A2,(A0)+ save for ir-process *

* *
*.... Determine number of chars to transmit *
* *

MOVE RECLEN(A1),D2 Assumed length *
MOVEQ =MODMCR+MODMLF+MODMEO,D6 Testmask *
AND.B MODE(A1),D6 Quick check *
BEQ.S A06 b: no mode specified*
MOVEA.L BUADR(A1),A3 Text-org *
CLR D3 Reset Record-length *

A02 CMP D2,D3 Reclength test *
BGE.S A06 b:all done *
ADDQ =1,D3 Move counter *
MOVE.B (A3)+,D0 Inspect the byte *
MOVEQ =MODMCR,D7 Test-mask *
SUB.B =$0D,D0 Test for Carr. rtn *
BGT.S A02 b: not cr,lf or eot *
BEQ.S A04 b:is cr *
MOVEQ =MODMLF,D7 Testmask *
ADDQ.B =$0D-$0A,D0 Test for LF *
BEQ.S A04 b:is LF *
ADDQ.B =$0A-$04,D0 Test for EOT *
BNE.S A02 b:not eot *
MOVEQ =MODMEO,D7 Testmask *

A04 AND.B D6,D7 Mode-match? *
BEQ.S A02 b:no match *
MOVE D3,D2 result length *

A06 MOVE D2,(A0)+ Store length *

LEA IRENT,A3 Ir-entry address *
*

OFF Disable interrupts *
MOVE.B =$35,ACST New coupler status *
MOVE.L A3,IVEC+EXCORG Ir-vector connection*

_BSET =BLKBSU,BLOCK(A2) suspend the task*
DPC Call dispatcher *

* Now the task is suspended for last interr.*
RELCE Release Caller *
BRA START Repeat queue-op. *

8.9 Ergänzung von E/A-Treibern 617

--
* *
* I N T E R R U P T - P R O C E S S *
* *
* *
IRENT IRENTC IRMAL,IVEC IR-Header *

MOVEM.L A0/A1,-(A7) Save registers *
LEA IRLINK,A0 Link to parameters *
SUBQ =1,8(A0) Counter control *
BMI.S IRCOD4 b:end of transm. *
MOVEA.L (A0),A1 Buffer-address *
MOVE.B (A1)+,ACDT Send data to periph.*

_MOVE.L A1,(A0) Restore new pointer *
IRCOD0 MOVEM.L (A7)+,A0/A1 reload reg’s *
IRCOD1 IREXTC IR-Exit *
* *
* End of transmission *
IRCOD4 MOVE.B =$15,ACST Switch coupler off *

MOVEA.L 4(A0),A0 Access task-id *
_BCLR =BLKBSU,BLOCK(A0) Continue *
DPCALL Flag dispatcher-call*
BRA IRCOD0 Exit *

* *
* Malfunction recovery-exit *
IRMAL IRMALF IVEC Whatever is necessar*

BRA.S IRCOD4 Make daemon runnable*
* *

END

618 8.10 Exception-Handler

8.10 Exception-Handler

8.10.1 Einführung

Programmierfehler können nicht gewollte asynchrone Traps auslösen, wie z.B.
den Bus-Error-Trap bei versuchtem Zugriff auf nicht vorhandene Speicheradres-
sen. RTOS–UH kann diese Fehlermeldungen über den Error-Dämon ausgeben.
Der Error-Dämon ist gewöhnlich die Task mit der höchsten Priorität im Sys-
tem. Dadurch erfolgt die Ausgabe immer mit höchster Priorität.

Anstelle des Error-Dämons als zentrale Task für die Fehlerbehandlung kann
man jeder Task taskindividuell eine Prozedur, den sogenannten ”Exception-
Handler“ zur Verfügung stellen. Dieser behandelt dann alle Ausnahmen ein-
schließlich der vom Anwender selbst programmierten Aufrufe des ”Error-Traps“
(siehe Seite 475).

Eine Restaurierung aller Register in den Zustand vor der Ausnahme ist dabei
wegen der Fehleranalyse und einer eventuellen Fortsetzung der Task wünschens-
wert. Prinzipiell kann der Anwender einen Exception-Handler selbst schreiben
und anschließen (siehe Unterabschnitt ”Interna“). Wegen der Restaurierung
der Prozessorregister sowie wegen der unterschiedlichen Behandlung von Aus-
nahmen durch die verschiedenen Prozessoren stellt RTOS–UH den sogenann-
ten ”RTOS–UH-internen Exception-Handler“ zur Verfügung. Er besitzt ge-
genüber dem Error-Dämon folgende Vorteile:

• Die Fehlermeldung besitzt die Priorität der aufrufenden Task. Dadurch
werden höherpriorisierte Tasks nicht behindert.

• Löst eine Task mehrere Ausnahmen so schnell hintereinander aus, daß die
vorherigen Fehlermeldungen vom Error-Dämon noch nicht ausgegeben
sind, erfolgt beim Exception-Handler im Gegensatz zum Error-Dämon
eine korrekte Ausgabe der Zeilennummer nicht nur bei der ersten Mel-
dung.

• Läuft nach einer Ausnahmebehandlung eine Task weiter, wie es z. B.
häufig bei Floating-Point-Exceptions der Fall ist, werden zwei Taskwech-
sel gespart.

• Der Anwendungsprogrammierer bekommt die Möglichkeit, verschiedene
Ausnahmen selbst zu bearbeiten.

Der Error-Dämon hat allerdings auch Vorteile. Zum einen ist es nicht immer
erwünscht, daß die Priorität der Fehlermeldung die der auslösenden Task ist.
Zum anderen sendet die auslösende Task bei einem Exception-Handler die Feh-
lermeldung selbst an den I/O-Dämon, was mit einem Warten auf das Ende der
Ausgabe verbunden ist.

8.10 Exception-Handler 619

8.10.2 Anschluß des Exception-Handlers

Bevor auf die innere Struktur eingegangen wird, soll zunächst der Anschluß
des RTOS–UH-internen Exception-Handlers beschrieben werden. Das Shell-
Subroutine-Package stellt dafür die Routine EXLKL bereit. Im einfachsten Fall
ist sie wie folgt zu parametrieren:

D7.W 0
A1.L Zeiger auf den Arbeitsbereich des Exception-Handlers, der

bei diesem Aufruf dem Exception-Handler fortan für seine
spätere Tätigkeit zur Verfügung gestellt wird. Bei diesem
sogenannten ”Exception-Frame“ handelt es sich typischer-
weise um einen reservierten Bereich aus Taskworkspace
oder Taskkkopf. Die minimale Größe ist durch das in
COMEQU definierte Label SGEFFS festgelegt (68xxx: 82By-
tes, PowerPC: 132 Bytes).

A2.L Zeiger auf den Error-Pfad. Ausschnitt aus einem CE von
STATIO bis zum Ende des Names.

A6.L TID der Task, die einen Exception-Handler bekommen soll.
Meistens montieren sich Tasks selber einen, aber bei De-
buggern o. ä. kann es sich auch schon eimal um eine andere
Tasks handeln.

Beispiel: Eine Task möchte sich selber einen Exception-Handler montieren und
will Fehlermeldungen immer auf den ”Permanent-Error“ Pfad von User 1 aus-
geben.

.include COMEQU.NOL *

EXLKL EQU 124 *

* Taskworkspace-Layout *
* PMBUF: erste freie Speicherstelle im Taskworkspace *
FRAME EQU PMBUF Platz fuer Exception-Frame *
FFREE EQU FRAME+SGEFFS Ab hier eigene Variablen *

.... u.a. Stack initialisieren *
* *

_MOVEQ =0,D7 einfachster Anschluss *
MOVEA.L TID,A6 Eigener Taskkopf-Zeiger *
LEA FRAME.T,A1 Zeiger auf den Exception-Frame *

* Standard-Error-Pfad holen *

620 8.10 Exception-Handler

MOVEA.L UITIDP,A2 USER TO TID-TABLE *
MOVEA.L (A2),A2 Taskkopf User 1 *
ADDA PTHLEN,A2 A2:Shell-Environment-Zeiger *
MOVEA.L STDELP(A2),A2 Fehler-Pfad *
MOVEA.L CIADR,A0 Zeiger auf SSRP-Tabelle *

* A4 muss auf eigenen Taskworkspace zeigen! *
JSR EXLKL(A0) Exeption Handler anschliessen *

*
... *

Nach Ausführung dieser Sequenz ist der Exeption-Handler montiert. Er über-
nimmt anstelle des Error-Dämons nun die Fehlerbehandlungen. Auf den ersten
Blick verhält sich RTOS–UH genauso wie vorher. Die oben angegebenen Vor-
teile sind nun jedoch vorhanden.

8.10.3 Selbstverarbeitete Ausnahmebehandlungen

Der Vorteil des im vorherigen Unterabschnitts vorgestellten Exception-Hand-
lers liegt in der Erweiterbarkeit durch ein Anwendungsprogramm. Dieses kann
wahlweise einige oder alle Ausnahmen selbst verarbeiten. Als Schlüssel für die
Zuständigkeit dient das Error-Codewort, welches der Exception-Handler an
Hand der Tabelle auf Seite 467 auswertet.

Beim Aufruf der Routine EXLKL können folgende Fälle unterschieden werden:

D7.W 0 Keine Erweiterung durch Nutzer.
D7.W 1 Eine gemeinsame Prozedur für alle selbstbehandelten Aus-

nahmen. In D6.L steht ein Zeiger auf eine Liste mit Error-
Code-Wörten, die mit 0 abgeschlossen ist. Die anzusprin-
gende Adresse, falls das Code-Wort in der Liste enthalten
ist, steht in A3.L.

D7.W 2 Eine individuelle Prozedur für jede Ausnahme. In D6.L
steht ein Zeiger auf eine Liste. Ein Listeneintrag sieht wie
folgt aus: 2 Bytes Error-Code Wort, gefolgt von einem
Langwort, das die für dieses Code-Wort zugehörige Adresse
enthält. Das Codewort $FFFF steht für ein beliebiges Code-
Wort, das Codewort $0000 schließt die Liste ab.

D7.W 3 Eine gemeinsame Prozedur für alle Ausnahmen. In A3.L
steht die anzuspringende Adresse.

Weiterhin können noch folgende funktionelle Bits in D7 gesetzt werden:
SGCBFM+8 bewirkt, daß vor Ansprung der externen Routine die Fehlermel-
dung ausgeben wird. Ist Bit SGCBBR+8 gesetzt, wird auch bei Breakpoints der
Exception-Handler aufgerufen (Sonst macht der Error-Dämon die Meldung —

8.10 Exception-Handler 621

unabhängig davon, ob ein Handler angeschlossen ist oder nicht.) Um das Trace-
Bit des Prozessors zu löschen, während der Exception-Handler selbst läuft, kann
das Bit SGCBNT+8 gesetzt werden. Beim Verlassen des Handlers mit der im fol-
genden beschriebenen Prozedur EXRTN setzt diese das Trace-Bit in den Zustand
vor dem Auslösen der Exception.

Um seine eigenen Prozeduren korrekt zu beenden, stellt das SSRP die Routi-
ne EXRTN zur Verfügung, die verschiedene Arbeitsregister in den Zustand vor
der Ausnahmebehandlung zurückversetzt (siehe Beispiel). Sie ist wie folgt zu
parametrieren:

A2.L Zeiger auf den Exception-Frame
D5.B MI: Task wird immer suspendiert.
D5.B EQ: Task wird nie suspendiert.
D5.B GT: Task wird suspendiert, falls es vom Error-Codewort

vorgesehen ist.
D5.W MI: Fehlermeldung wird nachgeholt.
D5.W PL: Normaler Ausstieg.

Beispiel: Das obige Programm ist so zu erweitern, daß bei einem Bus-Error,
falls er bei einem bestimmten PC ausgelöst wird, die auslösende Task fort-
gesetzt wird. Dadurch laßt sich überprüfen, ob ein bestimmter Baustein oder
eine bestimmte Einschubkarte vorhanden ist. Ideal wäre eine Unterdrückung
der Fehlermeldung im Falle des Fortsetzens.

.include COMEQU.NOL *

EXLKL EQU 124 *
EXRTN EQU 128 *

* Taskworkspace-Layout *
* PMBUF: erste freie Speicherstelle im Taskworkspace *
FRAME EQU PMBUF Platz fuer Exception-Frame *
CODLST EQU FRAME+SGEFFS Code-Wort-Liste *
FFREE EQU CODLST+4 Ab hier eigene Variablen *

.... u.a. Stack initialisieren *
*

MOVEQ =1,D7 Liste mit Sammel-PC *
_MOVE.L =$80150000,CODLST.T Bus-Error & Listenende *
LEA CODLST.T,A6 Zeiger auf Liste *

_MOVE.L A6,D6 Fuer SSRP-Ansprung *
LEA BUSEPC,A3 Bus-Error PC *

622 8.10 Exception-Handler

MOVEA.L TID,A6 Eigener Taskkopf-Zeiger *
LEA FRAME.T,A1 Platz fuer Arbeitsbereich *

* Standard-Error-Pfad holen *
MOVEA.L UITIDP,A2 USER TO TID-TABLE *
MOVEA.L (A2),A2 Taskkopf User 1 *
ADDA PTHLEN,A2 A2:Shell-Environment-Zeiger *
MOVEA.L STDELP(A2),A2 Fehler-Pfad *
MOVEA.L CIADR,A0 Zeiger auf SSRP-Tabelle *

* A4 muss auf eigenen Taskworkspace zeigen! *
JSR EXLKL(A0) Exeption Handler anschliessen *
... *

_MOVEQ =0,D0 Annahme: kein Bus-Error *
NOP_PC MOVEA.L (A3),A3 Falls hier Bus-Error,fortsetzen*

TST D0 Test: Bus-Error?? *
BEQ ??? B: War keiner *
... *

*Eigene Ausnahmebehandlung fuer Bus-Error *
*Folgende Register stehen zur eigenen Verfuegung: *
*68xxx: SR *
*PowerPC: r25...r31, xer,lr,cr *
*Beide: D1,D5,D6,D7,A1,A2,A3,A5,A7 *
* *
BUSEPC LEA NOP_PC,A1 PC fuer Fortsetzen holen *

MOVEA.L D7,A2 Zeiger auf Exception-Frame *
MOVE.L SGOLPC(A2),D7 Ausloesender PC *
MOVEQ =1,D5 Annahme: anderer PC *
CMP.L A1,D7 Test: Anderer PC *
BNE.S BUSEP4 B: Anderer PC=>Suspendierung *

* PC war bekannt, Task fortsetzen *
ADDQ.L =PCSKIP,SGOLPC(A2) PC-erhoehen *
MOVEQ =0,D5 Immer fortsetzen *

_MOVEQ =1,D0 Fuer Ausloesende Task:Bus-Error*
* Ausstieg *
BUSEP4 MOVEA.L CIADR,A1 SSRP-Adresse *

JMP EXRTN(A1) Ausstieg *

Da D0 nicht zu den Registern gehört, die von EXRTN restauriert werden, kann
die eigene Ausnahmebehandlungsroutine hier sogar der auslösenden Task eine
Nachricht hinterlassen.

8.10 Exception-Handler 623

Dieses Programm ist übrigens komplett transferassemblierbar, so daß innerhalb
der RTOS–UH-Welt prozessorunabhängig programmiert werden kann.

So wie das Programm dort steht, hat es noch einen entscheidenen Nachteil: Je
nachdem, ob das Bit SGCBFM in SGCNTL gesetzt ist, wird bei einem Bus-Error
immer oder nie eine Fehlermeldung abgesetzt. Es fehlt noch die Möglichkeit, im
nachhinein, also beim Ausstieg über EXRTN die Meldung nachzuholen. Anstelle
des MOVEQ =1,D5 codieren wir MOVE =$8001,D5. Damit ist auch das letzte
Manko unseres Anwendungsbeispiels behoben.

8.10.4 Interna

Im Taskkopf gibt es eine Speicherzelle für den ”Exception-Frame.“ Ist dieses
Langwort nicht gelöscht, zeigt es auf die in Tabelle 8.11 dargestellte Struktur.

SIGTOT ist der minimal benötigte Platz, der dem Betriebssystem zur Verfügung
gestellt werden muß, falls man einen eigenen Exception-Handler schreiben
möchte. Bei Ansprung des Exception-Handlers sind alle Prozessor-Register re-
stauriert. D7 steht zur Verfügung, da es über SGOLD7 jederzeit restauriert wer-
den kann.

Der RTOS–UH-interne Exception-Handler ist in der Lage, nach dem Absen-
den der Fehlermeldung alle Prozessor-Register mit den Werten zu belegen, die
zum Zeitpunkt der Prozessorausnahme in den Registern standen. Dieses ist für
eine Fehleranalyse und ein eventuelles Fortsetzen wichtig. Der Handler benötigt
daher den hinter SIGTOT liegenden Speicherbereich. Der Gesamtbedarf ist durch
das Label SGEFFS festgelegt und hat bei 68xxx-Prozessoren den Wert SGESSR,
bei PowerPC-Prozessoren den Wert SGEPFS.

Die ersten 6 Bytes der 12 Byte langen Fehlermeldung haben folgenden Auf-
bau: Zuerst kommt das 2 Byte lange Error-Codewort, gefolgt vom TID der
auslösenden Task. Steht im letzten Wort $0001, steht im Langwort hinter dem
TID eine auszugebende 32-Bit Hexadezimalzahl. Lautet das letzte Wort $0000,
folgt dem TID ein Zeiger auf ASCII-Text, der auszugeben ist. In allen anderen
Fällen werden die letzten 6 Byte als ASCII-Text interpretiert und ausgegeben.
Bei den ASCII-Texten gelten die Zeichen ”;,Ã“ und die ASCII-Werte $00 bis
$1F als Begrenzer. Der ” “ wird durch ein ”Ã“ ersetzt.

624 8.10 Exception-Handler

Label Offset Länge Bedeutung
SGAEB1 0 2 Hier steht immer ein $AEB5 zur Validierung.
SGCNTL 2 2 Kontrollwort. Im Wesentlichen das bei Aufruf

von EXLKL übergebene D7.
SGRESV 4 4 1 Langwort Reserve für Erweiterungen. Z. Z.

0
SGTGPC 8 4 Der Zeiger auf den Exception-Handler.
SGOLPC 12 4 PC, der die Ausnahme auslöste.
SGOLSR 16 2 68xxx Prozessor: Status-Register vor Ausnah-

me. PPC: Trace-Bit steht im MSB
SGOLD7 18 4 D7 vor der Ausnahmebehandlung. Dadurch

hat der Exception-Handler erst einmal ein Re-
gister zum Arbeiten.

SGEM12 22 12 12 Bytes Fehlermeldung. Erklärung weiter un-
ten.

SIGTOT 34 0 Minimaler Speicherplatz für einen Exception-
Frame.

SGERPT 34 4 Zeiger auf den Error-Pfad für die Ausgabe von
Fehlermeldungen.

SGEXPC 38 4 Zeiger auf den externen PC, falls ein Anwen-
der bestimmte Ausnahmen selbst bearbeiten
möchte.

SGEXEL 42 4 Zeiger auf Liste mit Code-Wörten, die der An-
wender selbst bearbeiten möchte.

SGSTAC 46 4 1 Langwort Stack.
SGSREG 50 32 Speicherplatz zum Retten verschiedener Regi-

ster.
SGESSR 82 0 Speicherplatzbedarf des RTOS–UH-internen

Handlers bei einem 68xxx-Prozessor.
SGRES2 82 10 PPC: Reserve für zukünftige Erweiterungen.

Z. Z. 0
SGPCR 92 4 PPC: Condition-Register vor der Ausnahme.
SGPXER 96 4 PPC: xer-Register vor der Ausnahme.
SGPLR 100 4 PPC: link-Register vor der Ausnahme.
SGPREG 104 28 PPC: Platz für r25...r31 vor der Ausnahme.
SGEPFS 132 0 Speicherplatzbedarf des RTOS–UH-internen

Handlers bei einem PowerPC-Prozessor.
Tabelle 8.11: Struktur von Exception-Frames

Kapitel 9: Das Scheibenkonzept

9.1 Die Systemkonfigurierung

Das Betriebssystem besteht aus einer Vielzahl kleiner Module, die vollkommen
lageunabhängig sind. Die gegenseitigen Verbindungen zwischen den Modulen
werden erst nach Einschalten des Systemes im Grundmodul, dem ”Nukleus“,
hergestellt. Dazu baut der Nukleus im unteren Speicherbereich ab $800 eine
Vielzahl von Tabellen auf, in denen die Querbezüge ihren Niederschlag fin-
den. Die Querbezüge werden durch Abtasten (”Scanning“) eines vereinbarten
EPROM (oder RAM–) Bereiches aufgespürt. Signalmarke ist dabei die auf ge-
rader Adresse beginnende Bytesequenz $AEB1BF95, gefolgt von einem Wort mit
einem ungeraden Vielfachen der Primzahl 37. Wir sprechen von der Scheibe x,
wenn dieses Wort genau den Wert (x*2+1)*37 besitzt.

Die Signalmarke ist so gewählt, daß sie im normalen Assemblercode sowie im
VCP–Code nicht vorkommen kann. Man hüte sich aber, ungenügend vorbe-
setzte Speicherbereiche abtasten zu lassen. Auch besteht eine gewisse Gefahr,
wenn große Datenfelder im Betriebssystembereich abgelegt werden sollen.

Das Zusammenbauen eines Betriebssystemes besteht nun einfach in einer
möglichst lückenlosen Hintereinanderreihung der einzelnen Module (’Scheiben’)
und dem Besetzen des Scanbereiches in den dafür vorgesehenen Zellen des Nu-
kleus.

Das 68k–System startet auf der Adresse Nukleus+$18 im Supervisormode.
Das PowerPC–System startet auf der Adresse Nukleus+$20 im Supervisormo-
de.

Der Scanbereich muß immer mit der Anfangsadresse des Nukleus beginnen. Er
kann absolut oder relativ zur Nukleusanfangsadresse definiert werden. Dabei
sind maximal zwei getrennte Bereiche möglich. Dies geschieht durch Eintra-
gung von 4 Byte–Adressen auf den Zellen Nukleus+$20 beim 68k und auf
Nukleus+$28 beim PowerPC.

Beispiel 68k:

Nukleus+$20 DC.L $00000001,$0000FFFF relativ
+$28 DC.L $F60000,$F7FFFE absolut

625

626 9.2 Modifikation eines Systems

Beim PowerPC sind die Ablageadressen um 8 höher. Gesetztes LS–Bit heißt

”relativ zum Nukleus“. In der ersten Sektion werden also 64 kB, in der zwei-
ten 128 kB abgetastet. Fehlt der zweite Bereich, so sind dort 4 bytes Nullen
abzulegen.

Denken Sie also bitte daran, daß bei einer Erweiterung des Systemes ggf. der
Scanbereich im Nukleus angepaßt werden muß. Dabei genügt es, wenn die letzte
Signalmarke noch innerhalb des Bereiches liegt, der Code darf also darüberhin-
ausragen.

Beim Scanning darf kein Bus–Error auftreten, sonst läuft das System nicht an.

Das kleinste denkbare System besteht nur aus dem Nukleus. Allerdings leistet
es nichts, außer daß die Task #IDLE dauernd läuft. Durch Hinzufügen einer
oder mehrer Scheiben wird daraus entweder ein kleines reines Laufsystem oder
ein komfortables Entwicklungssystem, je nach dem beabsichtigten Einsatz.

9.2 Modifikation eines Systems

Ein normal aufgebautes Entwicklungssystem startet mit einer Überschrift, an
der man in etwa erkennen kann, aus welchen ”Scheiben“ das System besteht.
Gedacht ist diese Überschrift auch zur Erkennbarmachung der jeweiligen Re-
visionsstufen, die meist durch ein ”=“ Zeichen angehängt wird. Allerdings gibt
es wesentlich mehr Scheiben, als sich in der Überschrift melden. Die folgende
Tabelle kann daher nur einen groben Überblick geben:

9.2 Modifikation eines Systems 627

Nuc Betriebssystemkern, enthält Speicherverwaltung, Taskmanage-
ment, stellt Systemtraps zur Verfügung

Daemon Systemdaemon, höchstpriore Systemtask, ist für korrekte Auswer-
tung und Ausgabe von im NUKLEUS erkannten Fehlersituationen
zuständig und startet Bedieneingriffe

EdFm ED-Filemanager, die Datenstation /ED
Vi/Vo /VI und /VO (Pipe) Datenstationen
Math Das mathem. Paket mit SIN, COS etc.
Hyp Der Hyperprozessor, PEARL-Laufzeitsystem
Editor Der kleine Standardeditor, Bedienbefehl ED
Help Kurzhilfe, der HELP-Bedienbefehl
Sh/sr Das Shell-subroutine package, SSRP
Shell Die Grundshell mit den Standardbedienbefehlen
XC Die Datenstation /XC (remote command)
Loader Der Systemlader
copy Bedienbefehl COPY
Fm Filemanagement, UHFM, evtl. auch zusätzlich MSFM
P PEARL-Compiler
Imp Die zur Hardware gehörende Implementierungsscheibe
EX Bourne-Shell Interpreter
Net Netzwerkscheibe.

Sämtliche dieser Module sind aus Scheiben gemäß der in diesem Kapitel fol-
genden Beschreibung aufgebaut. Zusätzlich zu den Modulen umfaßt eine Im-
plementation die Integration eines Schutzmechanismus, der Veränderungen des
Codes im EPROM registriert.

Die Implementierung eines neuen Systems beginnt mit der Erstellung des (rech-
nerspezifischen) Imp–Moduls. Danach folgt die Zusammenstellung der einzel-
nen Module in geeigneter Reihenfolge sowie die Festlegung des zu schützenden
Code–Bereiches. Es sind hierbei verschiedene Systemkonfigurationen mit un-
terschiedlichem Leistungsumfang denkbar:

• Minimalsystem
umfaßt nur das Modul Nuc. Das Betriebssystem läuft vollständig, alle
Traps sind angeschlossen, Schnittstellen sind nicht ansprechbar.

Ein derartiges System hat praktisch keinen sinnvollen Einsatz, da Kom-
mandointerpreter und Schnittstellentreiber fehlen. Es kann jedoch Pro-
gramme, die keine Unterstützung durch EdFm, Math und Hyp benötigen,
aus dem EPROM heraus exekutieren.

• Laufzeitsystem für Assemblerprogramme
umfaßt Nuc, Daemon, Sh/sr, Shell und Imp. Das System kann nach au-

628 9.2 Modifikation eines Systems

ßen kommunizieren, Kommandos empfangen und exekutieren. Es leistet
ähnliches wie das Minimalsystem, ist jedoch von außen steuerbar.

• komplettes Laufzeitsystem
ist erweitert um EdFm, Math und Hyp, ggf. Fm. Das System kann sämtliche
in PEARL oder Assembler erstellten Programme bearbeiten und ggf. den
Massenspeicher verwalten. Da der Lader noch nicht vorhanden ist, können
nur EPROM–residente Programme ausgeführt werden.

• potentielles Entwicklungssystem
ist erweitert um Loader, EdFm und die nicht in der Überschrift stehen-
de VCP-Scheibe. Das System kann Programme von Massenspeicher oder
Schnittstellen laden und exekutieren. Damit kann das System beliebige
Programme ausführen.

• komplettes Entwicklungssystem
enthält zusätzlich Compiler, Assembler und Windoweditor WE, entweder
EPROM–resident oder von Massenspeicher nachgeladen. Hiermit ist der
volle Leistungsumfang eines Standard–RTOS–UH/PEARL–Systems er-
reicht.

Bei einer regulären Implementierung eines Entwicklungssystems werden nur
bestimmte Module im unteren Systembereich vom Schutzmechanismus erfaßt,
d. h. es ist möglich, ein System oberhalb dieser Schutzgrenze zu modifizieren.
Je nach Hardware kann dies durch Hinzufügen oder Ersetzen von Scheiben
im EPROM oder im Bootbereich erfolgen. Die hinzugefügten Scheiben können
auch Anwenderprogramme sein.

9.2.1 Beispielhafte Systemerweiterung

Betrachten wir als Beispiel ein System mit folgender Hardware–Konfiguration:

Prozessor: 68000
EPROM–Bestückung: 4x 27512, organisiert in zwei Bänken
EPROM–Adressen: Bank1 : $F80000 – $F9FFFE

Bank2 : $FA0000 – $FBFFFE

Bei einer derartigen Konfiguration enthält im Regelfall Bank1 das potentielle
Entwicklungssystem (mit Schutzmechanismus) und Bank2 Compiler und As-
sembler (ungeschützt). Compiler und Assembler mögen die Adressen $0000–
$AECB in Bank2 (relativ zu $FA0000) belegen.

9.2 Modifikation eines Systems 629

Aufgabe 1

Als einfachen Einstieg betrachten wir die Umdefinition der Eigenschaften einer
Datenstation. Erforderlich hierzu ist die Kenntnis der LDN dieser Station (s.
Kapitel Datenstationen) sowie der Device–Parameter (s. Befehl SD, Seite 203).
Die zweite serielle Schnittstelle (/A2/), die vom System standardmäßig als Da-
tenschnittstelle mit den Device–Parametern $0B00 vorbesetzt wird, sei beim
Kaltstart des Systems als Terminal–Schnittstelle mit den Device–Parametern
$3300 zu initialisieren (Standard bei /A1/). Erforderlich hierzu ist die Erstel-
lung einer 10–er Scheibe gemäß der Beschreibung am Ende dieses Kapitels.

Wir kodieren hierzu in Assembler

RORG 0 relativierende Assemblierung
DC $AEB1 erstes Wort der Signalmarke
DC $BF95 zweites Wort der "
DC (10*2+1)*37 Kennung Scheibe 10

DC 2 LDN der A2-Schnittstelle
DC $3300 gewuenschte Device-Parameter
DC 0 Endekennung dieser Scheibe

END Ende Assemblierung

Wird dieser Text assembliert, so erhält man

1. in der Assemblerliste eine auf Adresse 0 beginnende Speicherbelegung
$AEB1, $BF95, $0309, $0002, $3300, $0000

2. die hierzu gehörenden S–Records in der CO–Datei des Assemblers.

Wird der generierte Code in der EPROM–Bank2 ab Adresse $AECC abgelegt, so
übernimmt das System die gewünschte Device–Parametrierung beim Kaltstart.

630 9.2 Modifikation eines Systems

Aufgabe 2

Als etwas aufwendigere Aufgabe betrachten wir die Einbindung eines PEARL–
Programmes in das System zur Ausführung als Auto–Start–Task nach Kalt–
und Warmstart des Systems. Gleichzeitig sollen Compiler und Assembler aus
dem System entfernt werden, um den verfügbaren EPROM–Platz zu ver-
größern. Voraussetzung hierfür ist das Vorhandensein des PROM–Befehls.

a) nicht elegant, aber einfach:
Ist das PEARL–Programm geschrieben und übersetzt, so laden wir es (mög-
lichst mit Size–Angabe gemäß Compilerbilanz) an die Speicheradresse, auf der
es im späteren Betrieb ausgeführt werden soll. Anschliessend kann mit der
Anweisung

AUTOSTART modulname,taskname

die gewünschte Task in eine Autostart–Task umgewandelt werden. (Bitte jetzt
nicht ABORT betätigen — die Task würde sonst als Autostart–Task sofort star-
ten!). Es ist allerdings sinnvoller, gleich beim Codieren in PEARL der Task das

”MAIN“-Attribut zu geben. Mit dem Befehl

PROM modulname*

können wir nun (s. Beschreibung Befehl PROM, Seite 186) S–Records erzeu-
gen. Diese S–Records sollten vom EPROMmer ab Adresse $0 der Bank2
in einen EPROM–Satz programmiert werden. Werden die so programmier-
ten EPROMs statt der Compiler/Assembler–EPROMs eingesetzt, so startet
das System sofort nach Kalt– oder Warmstart unsere Autostart–Task. Das
PEARL–Programm wird nun allerdings nicht aus dem EPROM heraus exe-
kutiert, sondern beim Kaltstart auf die Adresse kopiert, auf der wir es beim
PROMmen geladen hatten.

b) eleganterer Weg:
Nach einem ersten Compilerlauf merken wir uns die Größenangabe aus der
Compilerbilanz ($xxxx BYTES), z. B. $E78. Für einen zweiten Compilerlauf
fügen wir vor den Anfang des PEARL–Moduls die Zeile

SC=$E78,CODE=$FA0000,VAR=$3000;

in den Quelltext ein. Der Compiler generiert nun Code, der aus dem EPROM
heraus exekutiert werden kann (beginnend auf Adresse $FA0000), lediglich der
Modulvariablenbereich muß hierzu im RAM vorhanden sein. Nach dem Laden
(auf beliebige Adresse) können wir (falls wir das ”MAIN“-Attribut vergessen
hatten) mit der Anweisung

AUTOSTART modulname,taskname

die gewünschte Task in eine Autostart–Task umwandeln. Mit dem Befehl

9.2 Modifikation eines Systems 631

O /ED/SR;PROM modulname*

können wir nun (s. Beschreibung PROM-Befehl, Seite 186) S–Records erzeugen.
Im File /ED/SR erscheinen zwei S0...S2...S9 Blöcke (z. B. Zeile 1 – 27 und
Zeile 28 – 67), die wir mit der SC–Option des COPY–Befehls in getrennte Dateien
kopieren (zwei Durchgänge).

Die S–Records des zweiten Blocks müssen mit einem EPROMmer ab Adresse
$0 der Bank2 (entspricht der physikalischen Adresse $FA0000, s. CODE= Anga-
be) in einen Satz EPROMs programmiert werden. Die S–Records des ersten
Blocks können in einen beliebigen, ausreichend großen Freiraum des EPROM–
Satzes gebrannt werden. Haben wir sichergestellt, daß unsere EPROM–Daten
noch vom Scan–Bereich des Systems erfaßt werden (ggf. Nukleus+$20 aufwärts
ändern), so können wir unsere EPROMs statt Compiler und Assembler einset-
zen.

Statt der obigen Aktion mit Laden und PROM-Befehl ist normalerweise die Ver-
wendung der PROM-Option des Linkers bequemer.

Beim Kaltstart des Systems richtet der Nukleus nun im RAM folgende Ab-
schnitte ein:

1. den Modulvariablenbereich, beginnend bei Adresse $3000 gemäß der VAR=
Angabe,

2. und Taskköpfe für alle Tasks unseres Moduls ein. Unsere Autostart–Task
wird nach der Warmstartphase gestartet.

632 9.2 Modifikation eines Systems

Aufgabe 3

Als aufwendigsten Fall betrachten wir die Einbindung eines E/A–Treibers
gemäß dem Beispiel von Seite 614.

Zunächst kodieren wir einen Scheibenkopf für eine 1–er Scheibe (Systemtask–
Definition):

DC $AEB1,$BF95,(1*2+1)*37
DC.B $01,$80 Normale Task als Betreuungstask
DC.B ’MYQUE ’ Name der Task
DC -1 sehr hohe Prioritaet
DC.L $100 256 Byte Workspace noetig

(je nach Bedarf, muss aber > $66)
DC.L START-$ relativierte Startadresse
DC ldn LDN wie im Beispiel
DC 0 Endekennung fuer diese Scheibe

Da wir unsere Routine im EPROM ablegen wollen, können wir eventuellen
Speicherbedarf der Interrupt–Routine nicht über DC–Anweisungen reservieren.
Daher müssen wir beim Kaltstart einen Speicherbereich als Interrupt–Puffer
anfordern, d. h. als Speicherbereich, der nur unserer Interrupt–Routine zur
Verfügung steht. Wir entnehmen mit der auf Seite 641 beschriebenen Methode
die schon belegten Interrupt–Puffer und wählen einen der freien Interrupt–
Puffer. In diesem Beispiel verwenden wir den IDP5. Zur Anforderung kodieren
wir daher eine 6–er Scheibe:

DC $AEB1,$BF95,(6*2+1)*37 6-Scheiben-Marke
DC 100 z.B. 100 Byte Puffer

Das System reserviert hierdurch 100 Byte Speicherplatz. Die Adresse des ersten
Bytes dieses Speicherbereiches finden wir nach dem Kaltstart des System auf
der Adresse $842.

Weiterhin soll unsere selbstdefinierte Datenstation auch unter einem Namen
(Mnemo) vom Bedieninterface her erreichbar sein (von der PEARL–Ebene her
ist unsere Datenstation nur über /LD/ldn.drive/ erreichbar). Wir kodieren
daher weiterhin eine 9–er Scheibe:

DC $AEB1,$BF95,(9*2+1)*37 9-er Scheiben-Marke
DC.B ’MQ’ Mnemo

9.2 Modifikation eines Systems 633

DC.B ldn+$80 LDN und Textende-Markierung
DC.B 0 Laufwerksnummer, wir nehmen

hier Drive 0
DC.B 0 Ende der Scheibe

und haben hiermit den Mnemo–Anschluß installiert.

Wollen wir auch noch Eigenschaften der Datenstation vorbesetzen, so können
wir dies mit einer 10–er Scheibe (s. Aufgabe 1) tun.

Sollte unsere Datenstation über einen Peripheriebaustein mit der Außenwelt
kommunizieren, so muß dieser Baustein im Regelfall beim Warmstart (Abort,
oder nach der Reset–Kaltstart–Phase) initialisiert werden. Hierzu kodieren wir
eine 15–er Scheibe:

DC $AEB1,$BF95,(15*2+1)*37
... Maschinenkode zur Initialisierung
RTS Ruecksprung

Der Nukleus springt diese Code–Sequenz im Supervisor–Mode an. Bei der Er-
stellung des Maschinencodes müssen wir die bei der Beschreibung der Scheibe
gemachten Einschränkungen beachten. Nun können wir mit der Programmie-
rung der Datenstation gemäß dem Beispiel von Seite 614 beginnen:

START TOQ Maschinencode wie im
... Beispiel
...
RELCE
BRA START

Da der von unserer Datenstation angesprochene Peripheriebaustein Interrupts
auslösen kann, müssen wir noch einen Interrupt–Antwortroutine erstellen. Hier-
zu kodieren wir zunächst eine 14–er Scheibe:

DC $AEB1,$BF95,(14*2+1)*37 Kennmarke
DC $220,IRENT-$-2 setzt Interruptvektor auf

unsere Interrupt-Routine
DC 0 Endemarke

634 9.3 Beschreibung der Scheiben

wobei wir annehmen, daß unser Peripheriebaustein genau diesen Interrupt er-
zeugen kann. Selbstverständlich müssen wir hierzu die Eigenschaften der Hard-
ware kennen und wissen, welche Interruptvektoren uns zur Verfügung stehen.

Nun können wir den eigentlichen Interrupt–Prozeß wie im Beispiel gemäß Seite
614 kodieren (Formatdatei SUPERVIS.FOR included):

IRENT IRENTC IRMAL,$220 Rette alten IID, lege Zeiger auf
IRMAL davor etc.

... Maschinencode wie im Bei-
spiel, merke: Interruptpuffer
ueber IDP1 ... IDP7 erreichbar

...
IRMAL ... Malfunction, wie im Beispiel

Damit ist der gesamte Code für unsere Datenstation erstellt. Wir brauchen nur
noch zu assemblieren und können den erhaltenen Code ins EPROM program-
mieren.

Beachten wir, daß ggf. der Scan–Bereich des Nukleus angepaßt werden muß,
um alle Scheibenköpfe zu erfassen, und haben wir bei der Programmierung
darauf geachtet, daß unser Programm frei im Speicher verschieblich ist (keine
absoluten Sprünge etc.), so sollte unsere Datenstation einsetzbar sein.

9.3 Beschreibung der Scheiben

Im folgenden werden die Scheiben in numerischer Reihenfolge beschrieben. Dies
bedeutet jedoch keineswegs, daß sie in dieser Reihenfolge vom Abtaster erfaßt
werden oder in dieser Reihenfolge im abgetasteten Speicher stehen müssen.

9.3 Beschreibung der Scheiben 635

Scanbereich bedingt überspringen Scheibe: -1

Signalmarke: $AEB1, $BF95, $FFDB (−1 · 2 + 1) · 37 =$FFDB

Diese Scheibe ist nur wirksam, wenn nicht der nukleuseigene normale Scan–
Trap, sondern die Hochgeschwindigkeitsscanscheibe (Scan–accelerator) benutzt
wird. Der Scan–accelerator sammelt nämlich zunächst alle Adressen mit Signal-
marken in einer eigenen Liste und beim Sammeln dieser Adressen können mit
Hilfe dieser (–1)–Scheibe einzelne Adreßbereiche in Abhängigkeit von bestimm-
ten Systemreaktionen übersprungen werden. Dazu wird während der Kaltstart-
phase ein in der Scheibe vereinbartes Unterprogramm exekutiert, welches mit
EQ = nicht springen oder mit NE = springen antworten muß. Da der Adreß-
sammler diese Operation ausführt, können logischerweise keine 0–er Scheiben
damit übersprungen werden. Auch können nur solche Kaltstartscheiben (Nr.
18) übersprungen werden, die später als die Scanaccelerator–Scheibe vom Ab-
taster erfaßt werden.

Aufbau hinter der Signalmarke (COMEQU included):

Entry DC.L Cont-$ Langrelative Sprungweite
MOVEA.L A7,A6 Stack retten
_MOVE.L BUSELK,D7 Buserror-Link retten
LEA Exit,A0 Aussprung
MOVE.L A0,BUSELK neuer Buserror
MOVEQ =1,D0 Set to ’NE’ = Scanfortsetzung bei Cont
... Alle Register frei bis auf D7,A6,A7
..... 1. Statement der Testroutine
MOVEQ =0,D0 Set to ’EQ’ = Scanfortsetzung bei Entry

Exit _MOVE.L D7,BUSELK Buserror restaurieren
MOVEA.L A6,A7 Stack zurueckladen
TST D0 Trap-Antwort
RTS Rueckehr in den Scanaccelerator
...
... Hier liegen evtl. ueberspringbare Scheiben
...

Cont EQU $ Marke zur Scanfortsetzung
END Normalerweise Ende der Scheibe hier

636 9.3 Beschreibung der Scheiben

Scheibe: -1 Fortsetzung

---> Die Scheibe ist für den Sonderfall gedacht, wenn z. B. ein System mit
unterschiedlichen Kartenbestückungen hochgefahren werden soll und
RTOS–UH sich selbsttätig an die aktuellen Gegebenheiten anpassen
muß. Wenn etwa eine serielle Schnittstellenkarte nicht eingesteckt ist,
so kann mit Hilfe der Scanacceleratorscheibe und einer solchen (–1)–er
Scheibe verhindert werden, daß die fehlende Karte initialisiert wird.
Auch der Einbau des zugehörigen Treibers in das System läßt sich
unterdrücken.

---> Ein evtl. Buserror muß durch Retten und vorübergehende Änderung
des Links (BUSELK) unbedingt selbst abgefangen und in NE verwandelt
werden. Sonst wird beim Buserror der ganze gerade aktuelle Scanbe-
reich vorzeitig beendet. (BUSELK liegt beim 68k auf $8, beim PowerPC
auf $4008) Es muß auch der Stack geordnet verlassen werden (A7 muß
richtig stehen).

9.3 Beschreibung der Scheiben 637

Erweiterte Scan-Tabelle anschließen Scheibe: 0

Signalmarke: $AEB1, $BF95, $0025 (0 · 2 + 1) · 37 =$0025

Bevor überhaupt irgendeine Abtastung beginnt, inspiziert der Nukleus, ob in
seiner Scan–Bereichsbeschreibung auf den Zellen Nukleus+$20 (beim PowerPC
8 höher!) nicht evtl. die beiden ersten Langworte Null sind. Ist dies der Fall,
dann nimmt er die Langadresse auf Nukleus+$28 (beim PowerPC 8 höher!) als
absolute (1–er Bit ist Null) oder zum Nukleus relative (1–er Bit ist 1) Start-
adresse, um von dort aus die erste 0–er Scheibe zu suchen. Weiter dahinter
liegende 0–er Scheiben werden nicht mehr berücksichtigt. Hinter der 0–er Si-
gnalmarke folgt nun eine beliebig lange Tabelle mit absoluten (gerade) oder
relativen (ungerade) Adressen, die die einzelnen Scan–Bereiche festlegen.

Aufbau hinter der Signalmarke:

DC.L Start1,End1 Bereich 1
DC.L Start2,End2 Bereich 2
DC.L Start3,End3 Bereich 3
....
DC.L 0 Stop-marke

Die Tabelle selbst hat also genau die gleiche Struktur, wie jene, die gewöhnlich
im Nukleus steht — sie ist jetzt aber nicht mehr auf max. 2 Scanbereiche
beschränkt.

Beispiel: DC $AEB1,$BF95,$0025 Signalmarke
DC.L $1,$1FFFF Relativ zum Nukl. 128 kByte
DC.L $800000,$80FFFE absolut 64 Kbyte dort oben
DC.L $30001,$5FFFF relativ zum Nukl. 192 kByte
DC.L 0 Stop-marke

---> Nicht vergessen, auf Nukleus+X die 3 magischen Langworte einzuset-
zen (X=$20 beim 68k, $28 beim PowerPC!):
Nukleus+X $00000000 Triggert Suche der 0-er-Slice

-’’- +X+4 $00000000 ----- ’’ -----
-’’- +X+8 $0001F001 obige 0-er Scheibe wird hier

ab Nukleus+$1F000 gesucht

Falls bei dieser Besetzung der Zellen keine 0–er Scheibe gefunden wird, läuft das
System nicht an. Die Verwendung der 0–er Scheibe ist nur sinnvoll, falls mehr
als 2 Scan–Bereiche benötigt werden oder andere Gründe für eine außerhalb
des Nukleus liegende Tabelle sprechen.

638 9.3 Beschreibung der Scheiben

Scheibe: 1 Systemtask definieren

Signalmarke: $AEB1, $BF95, $006F (1 · 2 + 1) · 37 =$006F

Bytes hinter der Signalmarke:

$0 Type (s. u.)
$1 Class (s. u.)
$2 ... $7 Name-info
$8 ... $9 Priority
$A ... $D Size of required Workspace, 4 bytes.
$E ... $F Start-PC minus location of this word.
($10 ... $11) Only if class is $80 or $01: LDN.
$10 (or $12) Type (next task)
$11 (or $13) Class (next task)
...
... Start-PC relative or LDN

of last task.
DC.W 0 $0000 Stop-marker this slice.

Type Ist das spätere 2. Byte des Typwortes im RTOS–UH:

$01 Normale Task.
$81 Residente Task.
$41 Normale Task mit Autostart.
$C1 Residente Task mit Autostart.

--> andere nicht erlaubt, reserviert

Class Gibt an, welche Sonderform der Task vorliegt:

$00 Normale Usertask.
$01 Primaere Shell für LDN (s. o.)
$02 Der Systemdämon #ERRDM.
$80 Eine I/O-Queue-Betreuungstask für die

Warteschlange der LDN (s. o.)
MSB oder LDN null oder 2. LDN (z. B. VI/VO)

--> andere nicht erlaubt, reserviert

9.3 Beschreibung der Scheiben 639

Fortsetzung Scheibe: 1

--> Es darf im System nur einen Dämonen #ERRDM geben. Ein Austausch
des standardmäßig vorhandenen ist nur bei sehr kleinen reinen Lauf-
systemen sinnvoll - etwa um eine LED im Fehlerfall aufleuchten zu
lassen etc. Die Übergabedaten finden sich im ringförmigen Errorpuf-
fer des Systemes.

--> Bei den I/O-Tasks wird der entsprechende Anschluß für den Trap
XIO automatisch hergestellt. Zum Bekanntmachen des Stationsna-
mens und der Eigenschaften sind besondere Scheiben vorgesehen.

Name-info Ist auf 2 Arten wahlweise kodierbar:

1. Genau 6 ASCII-Bytes (wie im Beispiel)

2. Relativierter 4-Byte-Zeiger auf den Namensstring, der durch $FF beendet
wird. In diesem Fall haben die restlichen 2 Bytes keine Bedeutung, müssen
aber als Nullwort angelegt werden. Die Relativierung erfolgt über

...
DC.L Textad-$
DC.W 0
...

Textad DC.B ’mueller’,$FF
...

Beispielscheibe

DC $AEB1,$BF95,(1*2+1)*37 Signalmarke.
DC.B $C1,0 Resident, Autostart, normal
DC.B ’#SELFT’ 6 bytes name of task
DC $7FF0 Extremely low priority.
DC.L $66 Workspace ($66 is minimum!!)
DC START-$ Start-PC relative
DC $0 Stop-marke für diese Scheibe.
...

START MOVE ... Anfang der Systemtask.

640 9.3 Beschreibung der Scheiben

Scheibe: 1 Fortsetzung

Hinweis 1

Alle residenten Systemtasks erhalten bereits beim Kalt- oder Warmstart ihren
Taskworkspace im Bereich unterhalb des dynamisch verwalteten Speicherberei-
ches. Damit soll der Verwaltungsaufwand reduziert werden.

Hinweis 2

Tasks mit gesetztem Autostart-Bit (wie im Bsp.) laufen beim Aufsetzen des
Systemes unter Berücksichtigung der festgelegten Priorität sofort los. Auch
I/O-Betreuungstasks dürfen ggf. vom Autostart-Typ sein, obwohl eine etwaige
Peripheriebaustein-Initialisierung in einer Warminitialisierungsscheibe besser
aufgehoben ist.

9.3 Beschreibung der Scheiben 641

Interruptbuffer installation Scheiben: 2 ... 8

Signalmarken: $AEB1, $BF95, (x · 2 + 1) · 37 x = 2, 3, 4, 5, 6, 7, 8

Das System stellt einen Interruptpuffer für den Level (x−1) zur Verfügung des
Systemprogrammierers. Dabei wird während des Autolinking für jeden Level
nach der größten Anforderung gesucht. Nur dieser Maximalwert wird berück-
sichtigt. Auf den Zellen ”IDPy“ legt das System einen 4 Byte Zeiger ab, der auf
den Anfang des Puffers für den Level y zeigt.

Wort hinter der Signalmarke: 2 Byte lange Puffergröße, z. B.:

DC $AEB1,$BF95,(4*2+1)*37 Level 3
DC 100 100 Bytes

Falls nirgendwo im abgetasteten Bereich für den Level 3 eine größere Anforde-
rung gefunden wird, so werden genau 100 Byte Puffer für den Level 3 bereit-
gestellt.

Die Verwaltung der Displacements muß der Systemprogrammierer selbst über-
nehmen. Insbesondere dürfen bei Einbau dieser Scheibe schon angeforderte Zel-
len nicht benutzt werden. In Zweifelsfällen kann man aus den IDP-Differenzen
im Zielsystem ablesen, ab welchen Displacements Platz definiert werden kann.
(Im obigen Bsp: Inhalt IDP4 - Inhalt IDP3 = Puffergr. 3)

Die 7 IDP-Zeiger (4 byte) stehen im System unmittelbar hintereinander, ihre
tatsächliche Adresse wird mit der Datei COMEQU included. Dabei gilt:

IDP1=$832 beim 68k
IDP1=$508C beim PowerPC

Beispiel zur Verwendung des Interruptpuffers:

HILF1 EQU 30 Start-displacement
HILFXY EQU 34 Irgendeine Variable
SIZE EQU 38 Letztes Byte auf displacem. 37
* ...

DC $AEB1,$BF95,(6*2+1)*37 Level 5
DC SIZE

* ...
IRENTR IRENTC MALF,Vectoradr T-Code-Format IR-Entry

MOVEM.L A0-A3,-(A7) angenommenes Beispiel.
MOVEA.L IDP5,A0 Basiszeiger
.....
MOVE.L HILFXY(A0), ... typ. Zugriff.

642 9.3 Beschreibung der Scheiben

Scheiben: 2 ... 8 Fortsetzung

Hinweise

Der Zeiger IDP1 wird im System zum Löschen des gesamten Interruptpuffers
(bis zum Ende des IDP7) bei jedem Warm- oder Kaltstart benutzt, darf also
nicht vom Programmierer ”verbogen“ werden.

Theoretisch würde ein einziger IDP für alle Interrupts genügen, die Aufteilung
nach Levels ist nur zur besseren Softwarestrukturrierung gedacht.

Weil sämtliche Zellen in den Interruptbuffern bei jedem System-Neustart und
-Abort auf Null zurückgesetzt werden, eignen sie sich auch hervorragend für
systeminterne Semaphor- oder Boltvariable.

9.3 Beschreibung der Scheiben 643

Definition einer Datenstation Scheibe: 9

Signalmarke: $AEB1, $BF95, $002BF (9 · 2 + 1) · 37 =$02BF

Mit dieser Scheibe werden dem System ein oder mehrere Namen von neu de-
finierten Datenstationen hinzugefügt. Das Bedieninterface kann mit Hilfe der
Informationen dieser Scheibe aus einem Textstring dann die zugehörige Warte-
schlangennummer (LDN) und die zugehörige Untergliederungsnummer (DRIVE)
ermitteln.

Aufbau hinter der Signalmarke:

$0 ... ? Alphanumerischer Textstring beginnend mit Buchstaben.
$x ... 1 Byte LDN mit aufgeodertem Bit $80. (Dient gleich-

zeitig als Endemarke für den Textstring).
$x+1 1 Byte DRIVE, z. B. Laufwerksnummer.

$x+2 Nächster Textstring wie oben etc.
$y 1 Byte LDN plus $80
$y+1 1 Byte DRIVE.

... Letzter Block mit Textstring, ldn,drive.

$00 Stopmarke, Ende dieser Scheibe.

Beispiel: Sie wollen die Station ”PLOTTER“ für die ”LDN 5“ einrichten, Lauf-
werksnummer sei 0 bzw. don’t care.

DC $AEB1,$BF95,(9*2+1)*37 Signalmarke 9-er slice
DC.B ’PLOTTER’,$80+5,$00 Name, ldn, drive
DC.B 0 Null markiert das Ende der Scheibe.

644 9.3 Beschreibung der Scheiben

Scheibe: 9 Fortsetzung

--> Damit die Station wirklich benutzt werden kann, müssen Sie noch mit
Hilfe der Scheibe 1 einen zur gewählten LDN passenden I/O-Dämonen
bereitstellen. (s. Scheibe 1)

--> Wählen Sie die LDN dabei nicht größer als nötig. Der Nukleus sucht
im abgetasteten Speicher nämlich nach der höchsten LDN aller 1-er
Scheiben (Nicht der 9-er). Diese bestimmt den freigehaltenen Platz
in der Tabelle ”LDN to TID“ (Zeiger auf Anfang der Tabelle heißt
SIOLDT, siehe Datei COMEQU). Diese Tabelle enthält jeweils 4 Byte
(den TID) pro LDN).

--> Man kann allerdings auch gezielt Lücken bei den LDNs lassen. Diese
Tabellenlücken können durch Anschluß von nachladbaren I/O-Tasks
(im verwalteten RAM) sinnvoll genutzt werden. So wird die I/O-Task

”nachmontiert“:

LDN EQU 5 Beispiel-LDN
TID EQU $802 bzw. $5000 Actual Task-ID
SIOLDT EQU $852 bzw. $50B0 I/O LDN Table start

....
START MOVEA.L SIOLDT,A1 Tab-Zeiger

MOVE.L TID,LDN*4(A1) eigene TID
TOQ aus Schlange
BRA.B EXIT leer: Ende
... hier Aktion der I/O-Task

Task einmal von Hand starten, ist dann betriebsbereit.

9.3 Beschreibung der Scheiben 645

Datenstationseigenschaften setzen Scheibe: 10

Signalmarke: $AEB1, $BF95, $0309 (10 · 2 + 1) · 37 =$0309

Die mit den Befehlen SD und DD (”Set Device parameter“ und ”Display device
parameter“) zugänglichen Geräteeigenschaften können mit Hilfe dieser Schei-
be vorbesetzt werden. Beziehen sich mehrere solcher Scheiben auf das gleiche
Gerät, so gelten die Eigenschaften der letzten vom Abtaster (Scanner) erfaßten
Scheibe.

Aufbau hinter der Signalmarke:

2 Bytes
2 Bytes
2 Bytes
...
$00, $00

Start-LDN dieser Scheibe
aa,bb wie bei SD, für Start-LDN.
aa,bb wie bei SD, für Start-LDN+1.
...
Stop-Marke dieser Scheibe.

aa: $80 Bitfunktion Station ist rückspulbar (REWIND).
$40 Bitfunktion Station kennt OPEN/CLOSE.
$20 Bitfunktion Nach dem CR erwartet Station LF.

(CR=Carriagereturn, LF=Linefeed)
$10 Bitfunktion Station ist dialogfähiges Terminal
$08 Bitfunktion Station möchte kein Echo (RS232).
$04 Bitfunktion Station kennt RM bzw. ERASE.
$02 Bitfunktion Station ist für Ausgabe geeignet.
$01 Bitfunktion Station ist für Eingabe geeignet.

bb: $80 Bitfunktion Station reagiert auf DIR+FILES
$40 Bitfunktion Station kennt Formatierbefehl.
$20 Bitfunktion Station kennt CF (Change)-Befehl
$10 Bitfunktion Hierarchische Verwaltung, MKDIR
$08 Bitfunktion SEEK, SYNC, SAVEPOS sind erlaubt.
$04 Bitfunktion Report Error ist möglich
$02 Bitfunktion Terminal (RS232c) Editor-parameter
$01 Bitfunktion Terminal (RS232c) Editor-parameter

646 9.3 Beschreibung der Scheiben

Scheibe: 10 Fortsetzung

Beispiel: DC $AEB1,$BF95,(10*2+1)*37 Signalmarke
DC 11 Start-LDN
DC.B $2B,0 LDN 11
DC.B $33,0 LDN 12
DC.B $C7,$E0 LDN 13
DC.B 0,0 Stop-Marke

Die Station LDN=11 erwartet ein LF nach jedem CR, arbeitet in beiden Richtun-
gen und möchte kein Echo der eingegebenen Daten. Offensichtlich eine typische
Hostschnittstelle.

Die Station LDN=12 ist offenbar ein Terminal zum Editieren.

Die Station LDN=13 könnte eine Floppy oder Wechselplatte sein.

---> Die Scheibe 10 entspricht einem automatischen SD-Befehl.

9.3 Beschreibung der Scheiben 647

Neuen Bedienbefehl definieren Scheibe: 11

Signalmarke: $AEB1, $BF95, $0353 (11 · 2 + 1) · 37 =$0353

Das Bedieninterface wird für alle Nutzer um einen oder mehrere Befehle erwei-
tert. Dazu wird mit dieser Scheibe je ein ”Mnemo“ der neuen Anweisung sowie
die relativierte Sprungadresse definiert.

---> Die definierte Aktion wird auf der Ebene des Bedieninterface mit
sehr hoher Priorität ausgeführt. Es ist darum bei zeitaufwendigen
Kommandos unbedingt zu prüfen, ob nicht ein Sohnprozess generiert
werden sollte.

Aufbau hinter der Signalmarke:

DC.B ’...’ ”String des Befehles“ (ohne Blanks im String!)
(DC.B 0) Nur wenn String ungerade Anz. Bytes besitzt!
DC.L Adr-$ Lang relative Ansprungadresse.
...
DC.B ’...’ ”String nächster Befehl“

(DC.B 0) Nur um String auf gerade Bytezahl zu füllen.
DC.L Adr2-$ Lang relativierte Ansprungadresse.
...
$FFFF Stop-Marke, Ende dieser Scheibe.

Beispiel: Neues Kommando zum Inkrementieren der Zelle $FFA000.

DC $AEB1,$BF95,(11*2+1)*37 Signalmarke
DC.B ’INK’,$0 Befehlsname, mit $0 aufgefüllt.
DC.L INKSR-$ Ansprung
DC $FFFF Stop-marke
... ...

INKSR ADDQ.B =1,$FFA000 Eigentliche Operation
RTS Rücksprung Bedieninterface.

Nach Anschlag von Ctrl A oder über die XC-Station könnte man nach Einfügen
dieser Scheibe in den abgetasteten Bereich den Befehl ”INK“ oder ”ink“ einge-
ben. Die ”Shell“ von RTOS–UH wäre also entsprechend erweitert. Das System
nutzt selbst teilweise diese Erweiterungsmöglichkeit, z. B. sind die floppyspezi-
fischen Kommandos durch eine kleine 11-er Scheibe innerhalb des Filehandlers
eingebaut.

648 9.3 Beschreibung der Scheiben

Scheibe: 11 Fortsetzung

Das Bedieninterface stellt für die Shellerweiterung eine Reihe von Hilfsfunktio-
nen zur Verfügung. So gibt es die Möglichkeit, den weiteren Text hinter dem
Kommando zu analysieren, den Fehlerausgang anzuspringen oder etwa Sohn-
prozesse zu generieren und mit Parametern (SI=xx etc.) zu versorgen.

---> Die Register D0-D7, A3, A5 und A6 können frei benutzt werden. Das
Register A0 zeigt beim Einsprung auf die Unterprogrammtabelle des
Shell-subroutine-packages ”SSRP“. Man kann mit JSR 4(A0) etc. die
Dienste des SSRP anwählen. A0 kann bei Bedarf verändert werden.
Es läßt sich von der Zelle CIADR ($8B8 bei 68k, $51A8 bei PowerPC)
wieder auf die SSRP-Unterprogrammtabelle zurückladen.

---> A1 zeigt auf das Communication Element des Bedieninterfaces, kann
notfalls aus dem Task-WSP (über A4) nachgeladen werden mit
MOVEA.L $8C(A4),A1.

---> A2 zeigt auf das nächste Zeichen des Eingabepuffers. Damit sind die
Traps CSA und QSA zur Textanalyse direkt anwendbar. Muß geordnet
zurückgegeben werden!

---> A4 zeigt auf den Task-Workspace des Bedieninterfaces.

---> A5 zeigt auf den Textpuffer eines fertigen Ausgabe-CE des Bedienin-
terfaces. Mit (A5)+ kann man hier Text ablegen und mit JSR 28(A0)
ausgeben. CR und LF werden dabei automatisch angehängt. Die Ziel-
station ist durch das O-Kommando steuerbar. Nach der Ausgabe wird
A5 wieder reinitialisiert.

---> A7 zeigt auf den Stack der Bedientask. Dieser liegt innerhalb des
Task-Workspace und enthält die Rücksprungadresse in den Bedien-
interpreter. Platz für max. 5 Longwords.

---> Alle anderen Register stehen frei zur Verfügung, werden jedoch von
den u. a. Unterprogrammen teilweise zerstört.

---> Der Rücksprung in den systemseitigen Interpreter muß mit RTS er-
folgen, es sei denn, daß einer der über A0 erreichbaren mit JMP anzu-
springenden Ausgänge benutzt wird.

9.3 Beschreibung der Scheiben 649

Fortsetzung Scheibe: 11

Tabelle der über A0 erreichbaren Funktionen (JSR, JMP):

JSR 0(A0) Hier nicht sinnvoll: Aufruf des SSRP Dekoders.
JSR 4(A0) I/O-command processor (Dir,files,mkdir etc.)

Hinter dem JSR 4(A0) folgende 4 Bytes sind Parameter:
1. Wort: Die notwendigen Facilitybits (”SD“,”DD“)
2. Wort: links MODE rechts MODE+1 des Comm.El. ”CE“.

JMP 8(A0) Subtask (son process)- generation.
JSR 12(A0) Device/File decoder by (A2) to (A3)+

Ablage füllt ein CE exakt, wenn mit A3 auf STATIO(...)
zeigend begonnen wird. Work. dir. etc. wird berücks.

JMP 16(A0) Syntaxfehlerausgang (”WRONG COMMAND“).
--- ------ Nicht innerhalb der Shell-task.
--- ------ Nicht innerhalb der Shell-task
JSR 28(A0) Make output of Text stored by (A5)+

CR und LF werden automatisch angehängt.
JSR 32(A0) Scan on class of character by (A2).
JSR 36(A0) Write address in A3 as 8 hex. digits to (A5)+

650 9.3 Beschreibung der Scheiben

Scheibe: 12 RAM-Bereich definieren

Signalmarke: $AEB1, $BF95, $039D (12 · ∗2 + 1) · 37 =$039D

Start und Ende einer beliebigen Zahl von RAM-Sektionen, die unter Verwal-
tung von RTOS–UH stehen sollen, werden mit dieser Scheibe definiert. Wenn
der Abtaster mehrere Scheiben des Typs 12 erfaßt, so werden nur die Parame-
ter der letzten abgetasteten Scheibe gültig. Man muß also in jedem Fall mit
dieser Scheibe eine vollständige Definition angeben.

Aufbau hinter der Signalmarke:

DC.L RAM1begin,RAM1end Speichersektion 1
DC.L RAM2begin,RAM2end Speichersektion 2
... ...
DC.L RAMxbegin,RAMxend Speichersektion x
DC.L 0 Stopmarke dieser Scheibe

---> Die Adressen müssen gerade sein und oberhalb der 2. Adresse sollen
noch $20 Zellen RAM sein. (Ende ... E0)

---> Der Adressbereich der Sektion 2 muß überlappungsfrei höher liegen
als der von Sektion 1, der von Sektion 3 entsprechend höher sein als
der von Sektion 2 etc.

---> Die zwischenliegenden Lücken werden vom Nukleus als scheinbare
(unlöschbare) Module Namens #NORAM angelegt und erscheinen ent-
sprechend beim S-Befehl.

---> Die letzte Adresse vor der Stopmarke darf zusätzlich noch mit ge-
setztem LS-Bit versehen werden. Dann wird von der angegebenen
Adresse aus bis zum Bus-error oder bis zum ROM oder bis zum Er-
reichen des Nukleus in 1 kB großen Schritten getestet und die so
ermittelte Obergrenze eingesetzt. Achtung: Ende mit $...E1 setzen!

9.3 Beschreibung der Scheiben 651

Fortsetzung Scheibe: 12

Beispiele:

DC $AEB1,$BF95,(12*2+1)*37 12-er Signalmarke
DC.L $12000,$0001FFE1 ’open end’-spezif.
DC.L 0

Das verwaltete RAM erstreckt sich von $12000 bis zum durch Probieren (Bus-
error, unveränderlich oder Nukleus erreicht) ermittelten oberen Grenzwert.

DC $AEB1,$BF95,(12*2+1)*37 12-er Signalmarke
DC.L $800,$3FFE0 Fixierter Bereich
DC.L $00080000,$000FFFE0 z. B. VME-System.
DC.L 0

Die Grenze von $800 wird automatisch um die Anzahl Zellen, die RTOS–
UH dort unten anlegt (ohne evtl. RTOS–UH-Code!), nach oben korrigiert.
VORSICHT, wenn RTOS–UH-Code unten im RAM liegt!

652 9.3 Beschreibung der Scheiben

Scheibe: 13 Modulvariablenblock einrichten

Signalmarke: $AEB1, $BF95, $03E7 (13 · 2 + 1) · 37 =$03E7

Bei ROM-residenten miteinander kommunizierenden Tasks tritt das Problem
auf, einen gemeinsamen Variablenblock zu definieren und diesen beim System-
start zu initialisieren. Da die Tasks wegen der großen Distanz auf diese Objekte
mit absolut langer Adressierung zugreifen müssen, muß die Adresse dieser Mo-
dulvariablen fest definiert werden können.

Aufbau hinter der Signalmarke:

DC.L Adr.1 Anfangsadresse des Moduls, gerade.*
DC.L Adr.2 Adresse der (freien) Folgesektion, gerade.*
DC.B ’Name6b’ 6 Byte langer Modulname.*
DC.L Data1adresse. (Adr. erstes von Null versch. Wort).*
DC.L Blocklaenge. (Anzahl der Datenworte).*
DC.W Erstes Datenwort. *
.... ... Datenblock No. 1 *
DC.W Letztes Datenwort. *
DC.L Data2adresse. (Anfang naechster Datenblock).*
DC.L Blocklaenge. (Anzahl der Datenworte).*
DC.W Erstes Datenwort. *
.... ... Datenblock No. 2 *
DC.W Letztes Datenwort *
.... *

... Datenblock No. x *
.... *
DC.L 0 Statt Datenadresse: Stopmarke der Scheibe.*

---> Der angegebene feste Adressraum muß beim Hochlaufen wirklich im
verwalteten RAM verfügbar sein, sonst läuft das System nicht an.
Alle Worte für die keine Initialdaten angegeben sind, werden vom
Nukleus zu Null gesetzt.

9.3 Beschreibung der Scheiben 653

Fortsetzung Scheibe: 13

Beispiel:

DC $AEB1,$BF95,(13*2+1)*37 Signalmarke. *
DC.L $3000 Anfangsadresse. *
DC.L $4000 Naechste FREE- Sektion.*
DC.B ’Testmd’ Name des Modules. *
DC.L $3100 Datenblock-adr. *
DC.L 4 4 Worte zu initialis. *
DC 1 Datum *
DC 2 -’- *
DC 3 -’- *
DC 4 -’- *
DC.L 0 Stopmarke der Scheibe. *

PEARL-Module für EPROM-Programme werden erst in das Zielsystem gela-
den, dann mit dem PROM-Befehl (siehe Seite 186) in obenstehende Scheibenda-
ten verwandelt.

Bequemer ist in der Regel jedoch die Verwendung des Linkers, der ebenfalls
diesen Scheibentyp erzeugen kann.

654 9.3 Beschreibung der Scheiben

Scheibe: 14 Anschluß von Traps und IR-Vektoren

Signalmarke: $AEB1, $BF95, $0431 (14 · 2 + 1) · 37 =$0431

Für nutzerdefinierte Interruptprozesse muß das System eine Möglichkeit zum
Besetzen der entsprechenden Adressvektoren schon während der Hochlaufphase
bereitstellen.

Aufbau hinter der Signalmarke:

DC.W Adr.1 Vektor- oder Pseudovektoradresse. *
DC.W Jumpadr1-$ Zieladresse fuer Ansprung relativ.*
DC.W Adr.2 Naechste Vektoradresse o.ae. *
DC.W Jumpadr2-$ Relativierte Zieladresse. *
.... *
DC.W 0 Statt Vektoradresse: Stopmarke. *

Beispiel: Der Userinterrupt $200 soll nach dem Aufsetzen auf die Adresse

”XYZ“ zeigen.

DC $AEB1,$BF95,(14*2+1)*37 Signalmarke *
DC $200,XYZ-$-2 -2 wegen 2 Worte im DC!*
DC 0 Stopmarke *
..... *

*
XYZ IRENTC XYZMAL,$200 Save old Interrupt-Id etc. *

MOVEM.L D0-D3,-(A7) Privat benutzte Reg. retten *
..... Interrupt-code nach Anwendung*

EXIT MOVEM.L (A7)+,D0-D3 Privat benutzte Reg. rueckladen
IREXTC Exit-Format f"ur Interrupts *
..... *

* Rueckfallroutine, falls Bus-/Adr-/Opcode-exc. im Interrupt: *
XYZMAL MOVE ... z.B. Controller abstellen *

BRA EXIT *

Interruptprogramme müssen den vorgeschriebenen Ausgang benutzen, da sonst
der Taskumschalter (Dispatcher) ausfallen kann.

9.3 Beschreibung der Scheiben 655

Fortsetzung Scheibe: 14

Die angegebene Vektoradresse rechnet sich relativ zum ”Exception origin“
EXCORG, der nur beim 68k den Wert Null hat ($4000 beim PowerPC). Den
jeweils passenden Wert von EXCORG erhält man bei Bedarf (s.u.) durch Inklu-
den des Files COMEQU automatisch.

Will man den Mechanismus ”mißbrauchen“, um eine andere Speicherstelle (die
kein Exceptionlink darstellt) vorzubesetzen, so ist EXCORG bei der Angabe der
Vektornummer abzuziehen:

DC Helplk-EXCORG,HELP-$-2

Nun wird die physikalische Adresse Helpk mit der Adresse der Routine HELP
besetzt.

Damit können prinzipiell alle Speicherzellen im Bereich von EXCORG bis
EXCORG+$7FFE auf diese Weise mit Adresszeigern (4 byte Adr) automatisch
versorgt werden, leider kann man damit dann auch u. U. systemeigene An-
schlüsse zerstören. Es wird bei Scheiben mit gleichen Vektoradressen immer
die letzte vom Abtaster erfaßte Scheibe als gültig genommen.

Man beachte bei dem relativierten zweiten 16-Bit Wort, daß das $-Symbol im
Assembler immer den Anfang des DC-Blockes bezeichnet, das relativierte Wort
aber auf seine eigene Adresse bezogen wird. (Daher die Korrektur mit $-2 im
obigen Beispiel).

Warnung:

Wegen der Einführung von EXCORG ist bei der Umstellung von 68k-
Assemblertext auf T–Code besondere Vorsicht bei allen 14-er Scheiben
geboten. Es laufen nur solche Programme korrekt, bei denen tatsächlich
ein Interrupt-, Line-A- oder Traplink angeschlossen wird. In den anderen
Fällen ist die Korrektur mit EXCORG (wie oben) nötig.

656 9.3 Beschreibung der Scheiben

Scheibe: 15 Warmstart Initialisierungscode

Signalmarke: $AEB1, $BF95, $047B (15 · 2 + 1) · 37 =$047B

Bei der Verwendung von Peripherie-Kopplern kommt es oft zur Notwendigkeit,
deren Controlregistern beim Systemstart eine gewisse Anfangsinformation mit-
zugeben. Auch z. B. das Auslesen einer batteriegepufferten Uhr (um damit die
Planungsuhr des Systemes zu stellen) sollte bei jedem Warm- oder Kaltstart er-
folgen. Um dies dem Systemprogrammierer zu ermöglichen, sucht der Nukleus
nach Abschluß aller sonstigen Aufsetzoperationen mit dem Scanner (Abtaster)
nach 15-er Scheiben, um deren Code nacheinander zu exekutieren.

Aufbau hinter der Signalmarke:

Maschinencode fast beliebig, aber kein Tasking, I/O etc.
... Alle Register bis auf A7 frei verfügbar.
RTS Rückkehr in den Nukleus.

Wichtiger Hinweis!

Das System befindet sich noch in einem sogenannten ”Kernelmode“
auf der Supervisorebene und kann daher seinen Taskumschalter noch
nicht benutzen. Queued I/O etc. ist also keinesfalls möglich. Tritt
in dem Scheibencode eine exception (Buserror etc.) auf, so läuft das
System unter Umständen mit einem Notstart an. Die im Abtastbe-
reich folgenden 15-er Scheiben werden dann nicht mehr exekutiert,
ohne daß dies erkennbar sein muß.

Beispiel: Schreibe das Byte $3C in den Coupler $FF60A2 ein.

DC $AEB1,$BF95,(15*2+1)*37 Signalmarke
_MOVE.B =$3C,$FF60A2 Initialisierung
RTS Zurueck (Nukleus)

Die Bearbeitung der 15-er Scheiben erfolgt in der Reihenfolge, in der der Ab-
taster sie findet. In jedem Fall ist die Bearbeitung der letzten 15-er Scheibe
auch die letzte Aufsetzoperation des Nukleus. Danach startet unmittelbar der
Taskumschalter mit der höchstprioritierten Autostarttask. (Meistens #ERDMN)

Für Operationen, die nur beim Kaltstart ausgeführt werden sollen, ist eine
eigene Scheibe (18) vorgesehen.

9.3 Beschreibung der Scheiben 657

Header-Text Scheibe: 16

Signalmarke: $AEB1, $BF95, $04C5 (16 · 2 + 1) · 37 =$04C5

Die Scheibe gestattet die Ausgabe von ASCII-Text, der in der RTOS–UH
Kopfzeile erscheint, sofern das System den standardmäßigen ERROR-Dämonen
besitzt. Diese Scheibe wird nämlich nicht vom Nukleus bearbeitet, sondern von
#ERDMN. Die Textzeichen werden nacheinander ausgegeben, ohne daß automa-
tisch Carriage-Returns etc. eingefügt werden. Solche Control-Zeichen müssen
also im Text enthalten sein. Der Text erscheint in der Reihenfolge, in der der
Scanner die 16-er Scheiben erfaßt.

Aufbau hinter der Signalmarke:

DC.B ’ASCII-Text’,$FF $FF ist Endekennung.

Beispiel:

DC $AEB1,$BF95,(16*2+1)*37 Signalmarke
DC.B $0A,$0D,’Walter Meier’s RTOS’,$FF Text

658 9.3 Beschreibung der Scheiben

Scheibe: 17 Externsymbol definieren

Signalmarke: $AEB1, $BF95, $050F (17 · 2 + 1) · 37 =$050F

Es ist mit dieser Scheibe möglich, im EPROM oder RTOS–UH-Bootbereich
eine globale Marke zu setzen. Der Lader von RTOS–UH kann damit automa-
tisch z. B. EPROM-residente Unterprogramme an das Nutzerprogramm anbin-
den.

Wann immer der Lader eine nach dem Bearbeiten der Liste noch unbefriedigte
Referenz findet, sucht er mit Hilfe des Abtasters den RAM/Bootbereich nach
dieser Scheibe ab. Die Scheibe hat also für den Nukleus selbst keine Bedeutung,
da sie nur vom Lader bei Bedarf gesucht wird.

Aufbau hinter der Signalmarke bei kurzen Namen bis 6 Zeichen:

DC.B ’Name6b’ 6 Bytes langer globaler Name .
DC Adr-$ Relativierte Adresse des Symbols.

Aufbau hinter der Signalmarke bei Namen bis zu 24 Zeichen:

DC.L name-$ Relativer Zeiger 32 bit
DC 0 Indikator: ist Zeiger
DC Adr-$ Relativierte Adresse des Symbols.
... Anderer Text oder nichts
...

name DC.B ’Ein_langer_Name,$20,$FF

Mit dem $FF als Stop-Marke endet der auf eine gerade Anzahl Zeichen auf-
gefüllte Text. Man kann auch kurze Namen mit der zweiten Konstruktion global
definieren. Der PEARL-Compiler benutzt diesen Weg bei der /*+G*/-Option.

9.3 Beschreibung der Scheiben 659

Fortsetzung Scheibe: 17

Jede 17-er Scheibe kann nur genau ein globales Symbol definieren. Existieren
mehrere Scheiben mit dem gleichen Symbol, so verwendet der Lader die erste
vom Abtaster erfaßte Scheibe.

Beispiel:

DC $AEB1,$BF95,(17*2+1)*37 Signalmarke 17.
DC.B ’RANF ’ Globaler Name.
DC RANF-$ relative Einsprungadresse.
....... Beliebige Daten.

>RANF PRODEC ... zum Beispiel: PEARL-Unter-
VARF Programmkopf
.....

Das Label ”RANF“ ist jetzt dem Lader so verfügbar, als stünde es in einem der
Input-files des Laders. Das Zeichen ”>“ an der Einsprungstelle hat nichts mit
dieser Scheibe zu tun, sondern ermöglicht gleichzeitig auch noch das normale
Linken des resultierenden S-Recordfiles. Es ist natürlich durchaus möglich, dort
ein anderes Symbol als RANF zu benutzen, sinnvoll ist das meist nicht.

Auch die Einbaufunktionen des PEARL-Compilers werden mit Hilfe von 17-er
Scheiben angeschlossen, allerdings im Gegensatz zu den normalen Funktionen
mit gegen die offene PEARL-Welt geschützten Namen (z. B. #SSIN, #SSQRT)

660 9.3 Beschreibung der Scheiben

Scheibe: 18 Kaltstart Initialisierungscode

Signalmarke: $AEB1, $BF95, $0559 (18 · 2 + 1) · 37 =$0559

Bei der Verwendung von RAM-Modulen (etwa VME-RAM) kommt es oft zur
Notwendigkeit, deren Paritätsbits richtig vorzubesetzen, um einen Bus-error
beim späteren Schreib/Lesezugriff zu vermeiden. Auch kann eine ”private“ No-
tiz, daß es sich um einen Kaltstart handelt, nützlich sein. Seltener dagegen wird
man Peripherie-Bausteine schon an dieser Stelle initialisieren wollen. Um die-
ses dem Systemprogrammierer zu ermöglichen, sucht der Nukleus vor Beginn
aller sonstigen Aufsetzoperationen mit seinem Scanner (Abtaster) nach 18-er
Scheiben, um deren Code nacheinander zu exekutieren.

Aufbau hinter der Signalmarke:

Maschinencode fast beliebig, aber kein Tasking, I/O etc.
... Alle Register bis auf A7 frei verfügbar.
RTS Rückkehr in den Nukleus.

Wichtiger Hinweis

Das System befindet sich noch in einem sogenannten ”Kernelmode“
auf der Supervisorebene und kann daher seinen Taskumschalter noch
nicht benutzen. Queued I/O etc. ist also keinesfalls möglich. Tritt in
dem Scheibencode eine Exception (Buserror etc.) auf, so läuft das
System nicht an.

Beispiel: Lösche das RAM von $80000 bis $FFFFF.

DC $AEB1,$BF95,(18*2+1)*37 Signalmarke
LEA $80000,A1 Start-adresse
LEA $100000,A2 End-adr.+1
CLR D0 Null vorbereiten, denn CLR

* beginnt mit Read-cycle !!!!
LOOP MOVE.B D0,(A1)+ loeschen durch schreiben

CMPA.L A2,A1 Bedingung
BLT.S LOOP Schleifenruecksprung
RTS Rueckkehr in den Nukleus.

Die Bearbeitung der 18-er Scheiben erfolgt in der Reihenfolge, in der der Ab-
taster sie findet. In jedem Fall ist die Bearbeitung der 18-er Scheiben allen
anderen Operationen vorgelagert.

Für Operationen, die nur beim Warmstart ausgeführt werden sollen, ist eine
eigene Scheibe (15) vorgesehen.

9.3 Beschreibung der Scheiben 661

Filehandler Link Scheibe: 19

Signalmarke: $AEB1, $BF95, $05A3 (19 · 2 + 1) · 37 =$05A3

Bekanntlich können in RTOS–UH gleichzeitig mehrere unterschiedliche File-
systeme (RTOS, DOS, Mac–OS) benutzt werden. Wenn ein Filehandler nach
dem Öffnen des Rootblockes (die ersten 1024 Bytes der Partition) feststellt, daß
er mit diesen Daten nichts anfangen kann, so sucht er im System nach weiteren
Filehandlern, die bereit sind, diesen File zu bearbeiten. Mit Hilfe dieser 19-er
Scheibe können nun solche anderen Filehandler aufgespürt und angesprungen
werden.

Aufbau hinter der Signalmarke:

DC.L TESTXY-$ Lang relativer Verweis

Der Einstieg TESTXY hat folgende Parameterschnittstelle:

A0 In: Speicheradresse des eingelesenen Rootblockes.
D0 Out: Antwort, bei D0=0 keine Akzeptanz.

Auch im Statusregister ggf EQ oder NE
A0 Out: Bei pos. Antwort: Filemanager Entry adr.

662 9.3 Beschreibung der Scheiben

(Leere Seite vor neuem Kapitel)

Kapitel 10: Netzwerkoperationen

Wenn Ihr Rechner mit Netzwerk-Hardware ausgerüstet ist, kann auf Dateien
von ebenfalls an dieses Netzwerk angeschlossenen Rechnern mit dem Netzwerk-
Filehandler zugegriffen werden. Dazu geben Sie den Namen des Zielrechners,
gefolgt von dem Dateinamen, an. Mit dem Namen

/ST8/H0/COMMON/FILE1

kann auf die Datei ”FILE1“ im Unterverzeichnis ”COMMON“ auf der Platte ”H0“
des Rechners mit dem Namen ”ST8“ zugegriffen werden. Sie können alle Befehle
verwenden, die für das entsprechende Gerät auf dem Zielrechner erlaubt sind.
Die einzige Ausnahme bilden die Befehle zum wahlfreien Zugriff, die über das
Netzwerk (noch) nicht abgewickelt werden können. Die FORMAT-Befehle können
aus Sicherheitsgründen ebenfalls nicht über das Netzwerk abgesetzt werden.

Weiter ist es möglich, daß Tasks über das Netzwerk direkt Daten austauschen
können. Wenn eine Task, die im Rechner ST5 abgearbeitet wird, Daten an eine
Task im Rechner ST8 senden möchte, so wendet sie sich an

/ST8/CHxxxx

wobei ”CH“ anzeigt, daß ein Datenkanal und keine Datei gemeint ist, und ”xxxx“
der Name des Datenkanals ist. Die Task im Rechner ST8 muß dann von

/ST5/CHxxxx

lesen. Da die Daten zur Übertragung über das Netzwerk zu Blöcken von 254
Byte zusammengefaßt werden, ist ein Crhinter solchen Daten notwendig, die
sofort übertragen werden sollen.

Weitere besondere Befehle für das Netzwerk sind ”MES“ zur Übertragung von
Nachrichten auf ein Bedien-Terminal und ”IP“ zum Abbau einer hängengeblie-
benen Verbindung, wenn dies mit RETURN nicht mehr möglich ist.

Das RTOS–UH-Netzwerksystem kennt besondere Stationen, die etwa zum
Anschluß von Druckern, Plottern etc. dienen. Hier reicht die Angabe des Sta-
tionsnamens zum Zugriff. Diese Stationen können aber nur einen Auftrag zur
Zeit bearbeiten, ist schon ein Auftrag in Bearbeitung, so erhält man die Feh-
lermeldung ”Station zur Zeit belegt“. Eine solche Station könnte z. B. aus
einem EPAC bestehen, der nur die Aufgabe hat, den Drucker netzwerkfähig zu
machen.

663

664 10 Netzwerkoperationen

Obwohl der PEARL-Compiler die Netzwerkstationen nicht kennt, kann man
im SYSTEM-Teil eines PEARL-Programmes dennoch deren Namen verwenden.
Der Lader besorgt beim Laden des Programmes den entsprechenden Anschluß:

NETFILE:/ST8/H0/COMMON/FILE <->;

oder

NETOUT :/ST8/CHxxxx ->;

oder

NETIN :/ST5/CHxxxx <- ;

Für den Zugriff auf einen Datenkanal muß der Filenamen also mit CH, sonst
mit dem Gerätenamen anfangen.

Beispiele:

P /ST6/H0/PROG1>/ED/PROG1S LO /ST1

Übersetzt aus der Datei PROG1 auf der Platte H0 des Rechners ST6 und schickt
die Liste zur Druckerstation ST1.

DIR /ST6/H0

Gibt das Rootverzeichnis der Platte H0 des Rechners ST6 aus.

DIR /ST6 Gibt alle Gerätebezeichner aus, die auf der Seite der Gegenstation
verfügbar sind.

FILES /ST7

Gibt alle Verbindungen aus, die auf der Station noch offen sind. Wenn /ST7 die
eigene Station ist, so kann man sehen, mit welchen Geräten oder Files auf wel-
chen Rechnern noch Verbindungen aktiv sind. Natürlich sieht man mindestens
die eigene Standardout Pathlist auf der Gegenstation offen, weil der Befehl ja
gerade dorthin schreibt.

10 Netzwerkoperationen 665

Init a Connection I P

Syntax: IP /stationname/pathlist
IP -S /stationname/pathlist

Die durch stationname und pathlist angegebene Verbindung wird auf Netz-
werkebene abgebrochen. Es werden jedoch keine evtl. noch offenen Dateien
geschlossen. Der Befehl ist nur anzuwenden, wenn RETURN oder CLOSE nicht
mehr zu dem gewünschten Ergebnis führen.

Stationname muß ein im ausführenden System bekannter Name einer Netzsta-
tion sein.

Pathlist ist die exakte und im Zielsystem gültige Pathlist einer offenen Verbin-
dung.

Beispiel: IP /SN17/PN;
IP -S /ST25/H0/TEX/PROJ.TEX

Der Parameter -S (Superuser) ist erforderlich, wenn die Verbindung von einem
anderen Nutzer aufgebaut wurde.

Das System antwortet mit ”... JOB ABORTED“ oder ”... FILE NOT FOUND“–
je nach Sachlage.

666 10 Netzwerkoperationen

L O C K Lock external access

Syntax: LOCK stationname [stationname] ...

Mit diesem Befehl kann man sich gegen (unbefugten) Zugriff anderer Netz-
stationen schützen, dabei aber gleichzeitig noch einen Zugriff auf bestimmte
Geräte oder Directories zulassen. Auch eine Verriegelung gegen alle anderen
Netzstationen ist möglich.

stationname: Die Elemente der Liste müssen im System bekannte Stationen
sein. Setzt man hier den eigenen Namen ein, so werden allen anderen Stationen
die Zugriffsrechte entzogen. Den eigenen Stationsnamen kann man mit ”OWNST“
erfragen. Lesen Sie bitte dazu auf Seite 669 nach.

LOCK /SN6 /SN7

Hier schützt man sich gegen Zugriffe der Stationen /SN6 und /SN7.

Das System antwortet mit einer Meldung, die den gesamten Lock-Status für das
Netz beschreibt, in dem die jeweils adressierte Station der Liste zu finden ist.
Die ausgegebene Liste der Buchstaben ”U“ und ”L“ ist nach ”DRIVE“-Nummern
geordnet.

Der komplementäre Befehl zu LOCK ist ”UNLOCK“. Er benutzt die gleiche Syntax
und antwortet ebenfalls mit einer Statusmeldung.

Durch Laden eines Assemblermodules ”NETLOK“ oder Einbindung eines sol-
chen an geeigneter Stelle im EPROM kann man bestimmte Geräte oder Direc-
tories des eigenen Rechners trotz Sperre zugänglich halten. Wenn Sie dies nicht
wenigstens für Ihre Console tun, so können Sie von der gesperrten Station auch
keine Informationen mehr erhalten, weil diese (z. B. beim DIR) ja nicht auf Ihr
Terminal schreiben darf.

10 Netzwerkoperationen 667

Fortsetzung L O C K

Das Assemblermodul hat einen einfachen Aufbau, denn es enthält nur die text-
liche Bezeichnung der zugelassenen Zugriffspfade. Beim DIR und ähnlichen
Befehlen adressiert der ferne Rechner das eigene Terminal über eine ”/LD-
Kodierung“. Aus diesem Grund sind entsprechende Einträge vorzusehen.

DC.L 0,0 Modulkopf
DC $0010 Typ Modul
DC ’NETLOK’ Name
DC.B ’LD/00’,$FF /A1 für DIR
DC.B ’LD/02’,$FF /A2 für DIR
DC.B ’LD/04’,$FF /A3 für DIR
DC.B ’H0/PUB’,$FF /H0/PUB/...
DC.B ’ED/PUB’,$FF /ED/PUB/...
DC.B ’LD/01.00/PUB’,$FF /ED/PUB/...
DC.B $00 STOP - Marke
END

Wie man sieht, werden die Pfadlisten ohne das eröffnende Zeichen ”/“ abgelegt
und durch das Byte $FF beendet.

Ein geladenes Modul dieses Namens übersteuert ein im Boot- oder EPROM-
Bereich liegendes.

668 10 Netzwerkoperationen

M E S Message to other System

Syntax: MES /stationname [-U unumber]nachricht

Die angegebene Nachricht erscheint auf dem Terminal

des optional angegebenen Users, sonst beim User 0. Der adressierte User erhält
zusätzlich die Stationsnummer der Quelle der Nachricht mitgeteilt.

Stationsname: Er muß eine im System bekannte Zielstation beschreiben. Ver-
wendet man dabei die eigene Stationsbezeichnung, so erfolgt
eine Fehlermeldung.

unumber: Diese Ganzzahl ist die laufende Nummer eines auf dem Ziel-
system vorhandenen Nutzerarbeitsplatzes (primäre Shell). Der
Nutzerplatz muß vorhanden sein, sonst erfolgt eine Fehlermel-
dung ”... wrong command“.

Nachricht: Es ist beliebiger druckbarer Text erlaubt. Als Endekennung
wird das Semikolon, das Doppelminus (”--“) oder das Zei-
lenende benutzt. Achten Sie auf Metazeichen, wenn Sie mit
der Shellsprache arbeiten und auf Shellvariable ($-Zeichen!),
die den Text verändern können.

Wir studieren dazu ein Beispiel. Wenn auf dem Rechner ”ST06“ der Befehl

MES /ST8 Kommen Sie mit in die Kantine?

eingegeben wird, adressiert man das Terminal des Users 0 (Console) am Rech-
ner ”ST8“. Dort erscheint folgende Meldung:

>> MESSAGE FROM: /ST06.
Kommen Sie mit in die Kantine?

Der Absender auf Station 6 erhält eine Mitteilung (”... message received“)
und sieht so, ob die Nachricht angenommen wurde. Wenn auf dem Terminal
der Zielstation eine Eingabe hängt, wird die Nachricht erst nach Beendigung
der Eingabe sichtbar.

MES /SN24 -U 3 Hallo Nutzer 3

adressiert entsprechend den Nutzer mit der laufenden Nummer 3.

Ein Text, der mit ”-U“ oder ”-u“ beginnt, kann nu dann transferiert werden,
wenn vorher ein echter -u-Parameter gegeben wurde:

MES /SN24 -u1 -ungeheuer ...

10 Netzwerkoperationen 669

Eigene Stations-ID feststellen OWNST

Syntax: OWNST stationsname;

Bei stationsname muß ein im System bekannter Name einer

Netzstation des gewünschten Netzes eingegeben werden. Der Befehl antwortet
mit dem Namen der eigenen Station.

Eine Station kann gleichzeitig in verschiedene Netze eingebunden sein und dar-
um auch verschiedene Eigennamen haben. Mit diesem Befehl wird der zur Ziel-
station passende Eigenname im zuständigen Netz ermittelt.

Bei diesem Befehl stört es nicht, wenn man zufällig den Eigennamen der
ausführenden Station bei stationsname angibt.

Beispiel: OWNST /SN1

antwortet möglicherweise mit:

>> OWN DEVICE: /SN11 (NETWORK).

670 10 Netzwerkoperationen

U N L O C K Unlock für Netzstation

Syntax: UNLOCK stationname[stationname] ...

Mit diesem Befehl können einer oder mehreren Netzstationen Zugriffsrechte auf
den eigenen Rechner eingeräumt werden. Es handelt sich um den Gegenbefehl
zu LOCK, der auf Seite 666 genau beschrieben ist.

stationname: Die Elemente der Liste müssen im System bekannte Stationen
sein. Setzt man hier den eigenen Namen ein, so werden allen anderen Statio-
nen die Zugriffsrechte erteilt. Den eigenen Stationsnamen kann man mit OWNST
erfragen. Lesen Sie bitte dazu auf Seite 669 nach.

UNLOCK /SN6 /SN7

Hier erlaubt man den Stationen /SN6 und /SN7 den Zugriff.

Das System antwortet mit einer Meldung, die den gesamten Lock-Status für das
Netz beschreibt, in dem die jeweils adressierte Station der Liste zu finden ist.
Die ausgegebene Liste der Buchstaben ”U“ und ”L“ ist nach ”DRIVE“-Nummern
geordnet.

LOCK und UNLOCK benutzen die gleiche Syntax und antworten beide mit einer
Statusmeldung.

Kapitel 11: Glossar

Aktivierung Systemdienst, der eine ↑Task mit dem ↑Taskzustand schlafend
oder zur Aktivierung eingeplant in den Zustand lauffähig versetzt. Bein-
haltet eine Aufnahme der Task in den ↑Dispatcherring, falls die Task
nicht eingeplant war.

Aktivierung, gepufferte Versuchte ↑Aktivierung einer Task, die jedoch
einen der Zustände lauffähig, laufend oder blockiert (↑Taskzustand) hat.
Hinweis für das Betriebssystem, daß Task bei Beendigung erneut zu star-
ten ist. Bis zu 3 Aktivierungen kann RTOS-UH pro Task puffern.

Aliasname Zweiter Directoryeintrag für eine Datei, über den ebenfalls auf die
Datei zugegriffen werden kann. Dadurch stehen zwei ↑Lese-/Schreibzeiger
zur Verfügung. Der Bedienbefehl zum Anlegen des Aliasnamens lautet
LINK.

Alphic-Dation ↑Datenstation in PEARL, bei der die Datenübertragung über
den angesprochenen Ein-/Ausgabekanal im Verhältnis zu einem Prozes-
sorbefehl sehr lange dauert. Deshalb Betreuung des Kanales durch eine
↑Betreuungstask.

Ausgabe Schreiben von Daten aus dem Rechner heraus. Prinzipiell über
↑Traps möglich. Bei RTOS-UH über ↑Betreuungstasks gelöst, falls die
Ausgabe wesentlich länger als ein Maschinenbefehl dauert. Bei ↑Alphic-
Dations Absenden eines ↑CEs an die zugehörige Betreuungstask, verbun-
den mit dem Schreiben der Daten durch die Betreuungstask.

Ausgabe, asynchrone ↑Ausgabe von Daten, bei der die sendende ↑Task
nicht die Ausgabe des letzten zu übertragenden Zeichens abwartet,
sondern schon weiterlaufen kann, während die ↑Betreuungstask noch
schreibt.

Möglich durch die Verwendung von ↑CEs. Die asynchrone Ausgabe ist
gegenüber der synchronen Ausgabe schneller, da sich eine Betreuungs-
task selbst blockieren muß, weil das empfangende Ausgabegerät entweder
nicht schnell genug ist oder die Übertragung im ↑DMA-Modus geschieht.
Während der Blockierung kann die sendende Task schon weiterarbeiten.

Ist das CE im ↑Return-Mode abgeschickt worden, ist sogar eine asyn-
chrone Ausgabe mit (verzögerter) Quittung möglich.

671

672 11 Glossar

Ausgabe, synchrone ↑Ausgabe von Daten, bei der die sendende ↑Task so-
lange wartet, bis das letzte Zeichen übertragen ist.

Ausnahmebehandlung Betriebssystemdienst, der Prozessorausnahmen (z.
B. Zugriff auf nicht existierende Speicherstellen, ungültiger Code, un-
erlaubte Adresse) einer CPU entgegennimmt. Führt bei RTOS-UH zur
Beendigung einer ↑Interrupt-Service-Routine, falls diese die Ausnahme
ausgelöst hat. Die Fehlermeldung gibt in diesem Fall der ↑Error-Dämon
aus. Besitzt ein ↑Prozeß zweiter Art keinen ↑Exception-Handler, gene-
riert auch hier der Error-Dämon die Meldung und suspendiert die Task.
Im anderen Fall wird der Exception-Handler angesprungen. Der betriebs-
systemeigene gibt die Meldung aus und beendet den Prozeß.

Ausplanung Systemdienst, der alle ↑Einplanungen und ↑gepufferten Aktivie-
rungen einer Task löscht.

Autoclose Erreicht bei einem Leseauftrag der ↑Lese-/Schreibzeiger das Da-
teiende, wird bei eingeschaltetem Autoclose die Datei sofort geschlos-
sen. Bei der Datenstation /ED erfolgt das Schließen nach jedem Lese-
/Schreibzugriff, es sei denn, die Datei wurde exklusiv geöffnet.

Basic-Dation ↑Datenstation in PEARL, bei der die Datenübertragung über
die betreute Schnittstelle nur wenige Prozessorbefehle dauert (z.B. A/D-
und D/A-Wandler). Oft als ↑Trap oder globales Unterprogramm reali-
siert.

Bedienbefehl Ursprünglich Kommando, das ein Nutzer über eine ↑primäre
Shell oder über eine ↑sekundäre Shell Fall a) an das Betriebssystem ab-
setzen kann. Inzwischen sind auch Bedienfehle in ↑Shellskripten möglich.
PEARL-Tasks können über eine Einbaufunktion, die die Task kurzfristig
in eine Shell verwandelt, Bedienbefehle absetzen.

Bedienbefehl, nachgeladener Mit Hilfe des Befehls LOAD geladene ↑Shell-
erweiterung. Assembler- oder PEARL-codiert.

Bedienbefehl, permanenter ↑Bedienbefehl, der immer im System vorhan-
den ist und nicht entladen werden kann. Assembler- oder PEARL-codiert.

Bedienbefehl, transienter Bedienbefehl, der in einer Datei gleichen Namens
steht und der dadurch aufgerufen wird, daß der Nutzer den Datein-
amen inklusive Pfad eingibt. Handelt es sich um einen ↑relativen Pfad,
werden nacheinander alle ↑Execution-Directories durchsucht. Selbstentla-
dung nach Beendigung. S-Records mit transienten Bedienbefehlen lassen
sich auch mit dem Bedienbefehl LOAD nachladen und werden dann zu
einer ↑Shellerweiterung.

Betreuungstask ↑Task, die Ein- und Ausgaben über Ein- und Ausgabekanäle

11 Glossar 673

(z.B. serielle und parallele Schnittstelle, Festplatte, Floppy, Netzwerk) des
Rechners betreut.

Bourne-Shell An den UNIX-Bourne-Sprachstandard angelehnte ↑sekundäre
Shell, die über die Elemente der Bourne-Sprache verfügt.

Bus-Error-Handler ↑Prozeß erster Art, in den die CPU verzweigt, wenn ein
Prozeß auf eine nicht existierende Adresse zugreifen möchte (Bus-Error).
Der Bus-Error-Handler wird auch von anderen Prozessen erster Art an-
gesprungen, die ↑Ausnahmebehandlungen annehmen (z.B. bei Wrong-
Opcode-Error, Wrong-Address-Error).

CE Abkürzung für ↑Communication-Element.

Code, realer Ausführbarer Prozessor-Code.

Code, virtueller Code, der nicht auf dem Zielprozessor ablaufen kann und
daher zu emulieren ist. In RTOS-UH betrifft das vor allem die forma-
tierte ↑Ein- und ↑Ausgabe in PEARL-Programmen. Der entsprechende
↑Emulator heißt ↑Hyperprozessor.

Communication Element (CE) Primär Speicherbereich für ein Datenpa-
ket (inklusive Auftragskodierung), das eine ↑Task an eine ↑Betreuungs-
task sendet, um eine ↑Ein- oder ↑Ausgabe anzustoßen. Kann aber auch
an beliebige Tasks gesendet werden, um Daten auszutauschen. Ein CE
beinhaltet Sender, Empfänger, Daten und Kommando, was mit den Da-
ten zu geschehen hat.

Compilezeitfehler Fehler, die der Compiler bei der Übersetzung des Hoch-
sprachtextes ausgibt.

Dämon Prozeß 2. Art, der Betriebssystemdienste (im ↑User-Mode!) über-
nimmt.

Datenstation Datenstruktur in PEARL zur Ein- und Ausgabe über Ein- und
Ausgabekanäle. (↑Alphic- ↑Basic-Dation).

Dation ↑Datenstation.

Device-Mnemo Zeichenkette, mit ”/“ beginnend, über die ein ↑Bedienbefehl
oder eine ↑Alphic-Dation eine ↑Betreuungstask ansprechen kann (z.B.
/H0 zum Ansprechen der ersten Festplatte im Rechner).

Direct-Memory-Access (DMA) Fähigkeit eines Peripheriebausteins, ohne
Zuhilfenahme des Prozessors direkt in den Speicher eines Rechners zu
schreiben. Der Baustein teilt sich mit dem Prozessor den Datenbus.
Der Prozessor wird dadurch zwar etwas langsamer, insgesamt ergeben
sich jedoch viel schnellere Datenübertragungsraten. Besonders vorteilhaft

674 11 Glossar

bei ↑Betreuungstasks in einem ↑Multitaskingsystem: Sie blockiert sich
nach Initialisierung des Datentransfers und bleibt während des gesam-
ten Transfers blockiert. Der Peripheriebaustein sendet nach der Übertra-
gung einen Statusinterrupt (↑Hardware-Interrupt) und die dazugehörige
↑Interrupt-Service-Routine kann die Betreuungstask fortsetzen.

Dispatcher ↑Prozeßumschalter.

Dispatcherring Doppelt verketteter Ring, in den alle ↑Tasks, nach ihrer
↑Priorität geordnet, aufgenommen sind, die nicht den ↑Taskzustand
schlafend besitzen.

DMA Abkürzung für ↑Direct-Memory-Access.

Echtzeitbetriebssystem Betriebssystem, das auf einen ↑Hardware-Interupt
innerhalb einer garantierten Maximalzeit reagiert, egal, in welchem
Zustand es sich gerade befindet. Oft wegen der vielen Anwendun-
gen, die bei einer Regelungs- oder Steuerungsaufgabe anfallen, als
↑Multitaskingsystem ausgelegt.

Einbaufunktion ↑permanente Ladebibliothek.

Eingabe Lesen von Daten aus der Rechnerperipherie. Prinzipiell über ↑Traps
möglich. Bei RTOS-UH über ↑Betreuungstasks gelöst, falls die Einga-
be wesentlich länger als ein Machinenbefehl dauert. Bei ↑Alphic-Dations
Absenden eines ↑CEs an die zugehörige Betreuungstask, verbunden mit
dem Lesen der Daten durch die Betreuungstask.

Eingabe, asynchrone ↑Eingabe, bei der sich die ↑Task, die das Eingabe-
↑CE absendet, weiterhin den ↑Taskzustand laufend beibehält und nicht
auf das Ende der Eingabe wartet. Sinnvoll bei Betrieb im ↑Return-Mode.

Eingabe, synchrone ↑Eingabe, bei der sich die ↑Task, die das Eingabe-↑CE
absendet, blockiert. Sobald die ↑Betreuungstask das CE an den Auftrag-
geber mit Daten oder Fehlermeldung zurücksendet, versetzt RTOS-UH
die auftraggebende Task in den ↑Taskzustand lauffähig. Standardfall für
Eingaben.

Einplanung Systemdienst, der dem ↑Scheduler mitteilt, daß eine ↑Task zu
einem bestimmten Zeitpunkt bzw. bei einem bestimmten ↑Hardware-
Interrupt fortzusetzen oder zu aktivieren ist. Zeitliche Einplanungen
können auch zyklisch erfolgen. Dann sind Zykluszeit und Zyklusende
ebenfalls angebbar.

Emulator Programm, das einen Prozessor simuliert, der gar nicht im Rechner
enthalten ist. Der ↑PC zeigt während der Emulation auf den Emulator,
nicht auf den ↑virtuellen Code.

11 Glossar 675

Environment Eine Datenstruktur, die eine ↑Task benötigt, um als ↑Shell
arbeiten zu können. Dazu gehören u.a. die Shellnummer, Standardpfade
für Ein- und Ausgaben sowie Fehlermeldungen (stdin, stdout und stderr),
↑Working- und ↑Execution-Directories. ↑Primäre Shells besitzen darüber
hinaus noch Zeiger auf einen ↑Environment-Block und eine ↑variable La-
debibliothek, die jedoch von ↑sekundären Shells mit der gleichen ↑User-ID
mitgenutzt werden.

Environment-Block Speicherbereich, in dem eine ↑primäre Shell ihre ↑En-
vironment-Variablen ablegt.

Environment-Variable Variable einer ↑primären Shell, die ein Nutzer oder
ein Programm mit Hilfe von ENVSET definieren, ändern oder löschen kann.
Zugriff über ”$“: P $Quelle LO NO compiliert den Inhalt der Variablen

”Quelle“.

Error-Dämon ↑Task, die die RTOS-UH-Startmeldung sowie Fehlermeldun-
gen ausgibt, und die für die Aktivierung einer ↑primären Shell oder einer
sekundären Shell Fall a) zuständig ist.

Exception-Handler Unterprogramm, das ↑Ausnahmebehandlungen durch-
führen kann. Hat ein ↑Prozeß zweiter Art eine Ausnahmebehandlung aus-
gelöst und hat er einen Exception-Handler montiert, kann dieser an Stelle
des ↑Error-Dämons die Fehlermeldung ausgeben und den auslösenden
Prozeß ggf. suspendieren oder beenden.

Execution-Directory Ordner auf einem Massenspeicher, in dem RTOS-UH
↑transiente Bedienbefehle und ↑Shellskripte sucht, falls ein transienter
Bedienbefehl oder ein Shellskript über einen ↑relativen Pfad aufgerufen
wird.

Exklusivöffnung Bei Exklusivöffnung einer Datei kann nur die Task auf die
Datei zugreifen, die diese geöffnet hat. Damit die Datei auch geschlossen
werden kann, falls die Task nicht mehr existiert, darf die der Task zuge-
ordnete ↑primäre Shell bzw. ↑sekundäre Shell Fall a) mittels RETURN die
Datei schließen. Ein RETURN -A darf jede Shell senden.

FIFO (first-in-first-out) Datenübertragungskonzept bei Datenkanälen, bei
dem die zuerst gesendeten Daten auch zuerst den Empfänger erreichen.
Auch bei ↑named Pipes benutzt.

File-Handler ↑File-Manager.

File-Manager (FM) Programm, das alle hardwareunabhängigen Dienste zur
Ein-/Ausgabe auf/von Massenspeichern oder LANs bereitstellt. Der
hardwareabhängige Driver stellt, in Zusammenarbeit mit dem FM, die
↑Betreuungstask zur Verfügung. RTOS-UH kennt 5 Manager:

676 11 Glossar

• ED-FM als eine Art RAM-Disk.

• MS-FM zur Verwaltung von MS-DOS formatierten Massenspei-
chern.

• UH-FM zur Verwaltung von RTOS-UH formatierten Massenspei-
chern.

• MAC-FM zur Verwaltung von MAC-OS formatierten Massenspei-
chern.

• NET-FM zum Lesen und Schreiben von Ein-/Ausgabe-Kanälen an-
derer, lose gekoppelter Rechner.

Hardware-Interrupt Interrupt eines Peripheriebausteines. Man spricht von
einem Dateninterrupt, wenn der Baustein mitteilt, daß neue Daten ein-
getroffen sind oder entgegengenommen werden können, und von einem
Statusinterrupt, wenn der Baustein einen Status meldet (z.B. Kein Pa-
pier im Drucker, Schreibfehler).

Hyperprozessor Sammlung von Unterprogrammen, die eine PEARL-kodier-
te Task zwingend benötigt. Die Unterprogramme sind dem Compiler alle
bekannt, so daß Spezifikationen im Quelltext entfallen. Der Hyperpro-
zessor enthält auch einen ↑Emulator, um ↑virtuellen Code zu emulieren.
Im Emulatorbetrieb ist jedem ”virtuellem Befehl“ ein Unterprogramm
zugeordnet.

I/O-Dämon ↑Betreuungstask.

Idle ↑Task niedrigster ↑Priorität, die immer lauffähig ist und dann läuft, wenn
keine Task höherer Priorität lauffähig ist.

Interrupt-Service-Routine Prozeß erster Art, in die der Prozessor bei Auf-
treten des zugehörigen Hardware-Interrupts verzweigt.

Interrupt-Sperre Kurzzeitige Sperre aller Interrupts, um inkonsistente Da-
tenstrukturen dadurch zu verhindern, daß ein anderer Prozeß den ↑PC
erhält. In einem ↑Echtzeitbetriebssystem immer nur kurzzeitig erlaubt
(wenige Prozessorbefehle).

Kommandointerface ↑Task, die die Eingaben eines Nutzers interpretiert
und ausführt.

Ladebibliothek Bibliothek mit globalen Variablen, Prozeduren und Funktio-
nen, die sowohl RTOS-UH als auch der Nutzer zur Verfügung stellen
können.

11 Glossar 677

Ladebibliothek, permanente ↑Ladebibliothek von RTOS-UH. Diese Bi-
bliothek ist Betriebssystembestandteil, nicht entladbar, ↑wiedereintritts-
fest und gilt für alle Nutzer.

Ladebibliothek, variable Mit Hilfe des Befehls LIBSET nutzerdefinierte
↑Ladebiblitothek. Die Bibliothek gilt nur für die User-ID, deren ↑Shell
oder ↑Shellsohnprozeß den Befehl abgesetzt hat.

Lader Programm, das ↑S-Records in den Speicher lädt. Die in den S-Records
enthaltenen ↑Bedienbefehle und ↑Tasks können nach der Beendigung des
Ladens ausgeführt werden.

Lader, transienter Lader für ↑transiente Bedienbefehle. Das Anlaufen des
transienten Laders bleibt i.a. dem Nutzer verborgen.

Laufzeitbibliothek ↑Ladebibliothek.

Laufzeitfehler Fehler, die während der Laufzeit eines Prozesses auftreten.
Die dazugehörigen Fehlermeldungen senden der ↑Error-Dämon oder der
systemeigene ↑Exception-Handler an ↑stderr.

LDN ↑Logical-Dation-Number.

Lese-/Schreibzeiger Zeiger auf das nächste zu lesende / zu schreibende Zei-
chen einer Datei.

LIFO (Last-In-First-Out) a) Unterbrechungsmechanismus von Prozessen,
bei dem der letzte Unterbrechende auch derjenige ist, der sich als erstes
beendet. Bei ↑Multitaskingsystemen nur für ↑Prozesse erster Art ver-
wendbar.

b) Datenablageart in einem Speicherbereich (typischerweise einem Stack).
Die zuletzt abgelegten Daten werden als erstes wieder abgeholt.

Logical Dation Number (LDN) Betriebssysteminterne Nummer einer Be-
treuungstask.

Message-Passing Absenden eines ↑CEs an eine beliebige ↑Task. Die Task
wird direkt adressiert, ohne daß eine ↑named Pipe oder eine ↑LDN be-
nutzt wird.

Multitasking-System Betriebssystem, in dem mehrere Anwendungen gleich-
zeitig laufen können. Die einzelnen Anwendungen heißen ↑Tasks.

PC ↑Program-Counter.

Pfad, absoluter Zeichenkette zum Ansprechen einer Datei mit Angabe des
↑Device-Mnemos. Unterordner und Dateinamen können folgen.

678 11 Glossar

Pfad, relativer Zeichenkette zum Ansprechen einer Datei ohne Angabe ei-
nes ↑Device-Mnemos. RTOS-UH sucht beim Aufruf von ↑transienten Be-
dienbefehlen und ↑Shellskripten in den ↑Execution-Directories. Bei rela-
tiven Pfaden, die Bedienbefehlen übergeben werden, stellt RTOS-UH das
↑Working-Directory voran.

Pipe, named Benamter Datenkanal nach der ↑FIFO-Methode innerhalb ei-
nes Rechners, um Daten von einer ↑Task an eine andere zu senden, ohne
gemeinsame Variablen zu verwenden. Die Sendende muß nicht wissen, wer
liest, die Lesende nicht, wer schreibt, da die Anbindung über den Namen
der Pipe erfolgt. Diesen Dienst stellen in RTOS-UH die Datenstation /VI
und /VO bereit. Eine lesende Task wird solange blockiert, bis Daten
vorhanden sind. Dadurch ist eine ↑Prozeßsynchronisation gewährleistet.

Preemption Fähigkeit eines Betriebssystems (auch von RTOS-UH), die
Ausführung eines ↑Traps abzubrechen, falls ein ↑Hardware-Interrupt
einen Lauf des ↑Dispatchers anstoßen will. Der Trap wird später fort-
geführt oder neu begonnen.

Priorität Maß für die Wichtigkeit einer ↑Task. Nutzerdefinierte Tasks können
eine Priorität von 1 bis 32767 besitzen, wobei die Task mit der Priorität 1
die höchste Nutzerpriorität hat. Negative Prioritäten (mit noch höherer
Priorität) sind ↑Dämonen vorbehalten, wobei bei ↑Betreuungstasks aus
Sicht der Echtzeiteigenschaften fast immer ↑variable Prioritäten sinnvoll
sind.

Priorität, variable ↑Betreuungstasks können mit veränderlicher Priorität
ausgestattet werden, so daß auch die ↑Aus- und Eingabe von Daten
prioritätsgerecht erfolgt. Sendet eine Task mittels eines ↑CEs Daten an
die Betreuungstask, die vorher keine Aufträge mehr zu bearbeiten hatte,
gibt RTOS-UH der Betreuungstask eine gegenüber dem Absender um 1
erhöhte ↑Priorität.

Sendet während der Abarbeitung dieses CEs eine höherpriorisierte Task
ein weiteres CE an die Betreuungstask, was zu einem Einketten dieses
CEs in die ↑Warteschlange der Betreuungstask führt, hebt RTOS-UH
die Priorität der Betreuungstask auf die um eins erhöhte Priorität des
zweiten Senders an. Dadurch können zwar die neu eingetroffenen Daten
nicht sofort abgearbeitet werden, die Abarbeitung der ersten Daten er-
folgt dann jedoch mit erhöhter Priorität.

Procedure-Workspace Speicherbereich, der Variablen einer PEARL-Proze-
dur oder einer PEARL-Funktion sowie Verwaltungsdaten enthält. Im wei-
teren Sinne von ↑Tasks angeforderter Speicherbereich zur Ablage von
taskinternen Daten.

11 Glossar 679

Program-Counter Register einer CPU, das (je nach Prozessortyp) auf die
Adresse des gerade abzuarbeitenden oder des nächsten abzuarbeitenden
Prozessorbefehles zeigt.

Prozeß erster Art Systemdienste, die keine eigene Task haben. Prozesse er-
ster Art laufen immer im ↑Supervisor-Mode. Zusammenfassender Be-
griff für ↑Traps, ↑Interrupt-Service-Routinen, ↑Prozeßumschalter und
↑Scheduler.

Prozeß zweiter Art Selbständig laufendes Programm, in einem ↑Multitas-
kingsystem auch Task genannt. Laufen im Gegensatz zu ↑Prozessen
erster Art im ↑User-Mode. Alle Prozesse 2. Art laufen in einem
↑Echtzeitbetriebssystem prioritätsgerecht, d.h. von allen lauffähigen
Tasks teilt der ↑Prozeßumschalter der höchstpriorisierten den Prozessor
zu. Bei RTOS-UH in ↑Betreuungstasks, ↑Dämonen und nutzerdefinierte
Tasks aufgeteilt.

Prozeßsynchronisation Vom Programmierer durch ↑Synchronisationsmittel
erzwungenene Reihenfolge bei der Abarbeitung von ↑Prozessen 2. Art, die
nicht prioritätsgerecht ist. Bei der Nutzung von gemeinsam, veränderli-
chen Datenstrukturen zwingend erforderlich.

Prozeßumschalter (PU) ↑Prozeß erster Art, der der höchstpriorisierten
lauffähigen Task (↑Prozeß zweiter Art) den Prozessor zuteilt. Kann nur
anlaufen, wenn a) kein anderer Prozeß erster Art läuft (da der PU von
allen Prozessen erster Art die niedrigste Priorität hat) und b) sich keine
Task kurzfristig in den ↑Supervisor-Mode begeben hat.

Ausnahme von b): Hat eine Task im Supervisor-Mode eine Ausnahme-
behandlung ausgelöst (z.B. BUS-Error, Wrong-opcode-error), kann der
↑Bus-Error-Handler diese suspendieren. Anschließend gibt der Prozeß-
umschalter einer anderen Task prioritätsgerecht den Prozessor.

Random-Access-Mode In diesem Mode erfolgen Lese- und Schreibzugriffe
auf eine Datei eines Massenmediums an beliebig vorgebbarer Position. Im
Gegensatz zu normalen Zugriffen zeigt der ↑Lese-/Schreibzeiger nur dann
auf das Dateiende, wenn über die originäre Dateigröße hinaus geschrieben
wird.

Return-Mode ↑Asynchrone Aus- oder Eingabe, bei der nach erfolgter Bear-
beitung durch die ↑Betreuungstask das ↑CE in der ↑Warteschlange des
Auftraggebers eingekettet wird. Bei ↑asynchroner Ausgabe ist so ein Be-
trieb mit (verzögerter) Quittung möglich.

Bei ↑asynchroner Eingabe kann eine ↑Task Eingabe-CEs an verschiedene
Betreuungstasks senden und zurückkehrende CEs in der Reihenfolge be-

680 11 Glossar

arbeiten, in der sie zum Auftraggeber zurückkehren. Gleichzeitig lassen
sich sogar noch CEs anderer Tasks bearbeiten, die mit Hilfe des ↑Message-
Passing gesendet wurden.

Runtime-Library ↑Ladebibliothek.

S-Record Ablageform von Compiler, Assembler und Linker für übersetzte
Programme, die jedoch nur die unteren sieben Bits des ASCII-Codes ver-
wendet. Der Befehl LOAD kann S-Records verwerten und legt den Code
binär im Speicher ab.

Scheduler ↑Prozeß erster Art, der alle zeitlichen und interruptgesteuerten
Einplanungen von ↑Tasks verwaltet und diese bei Eintreffen des Ereig-
nisses je nach Auftrag fortsetzt oder aktiviert.

Scheibe Nicht ausführbarer Programmcode, der der ↑Selbstkonfiguration
beim RESET, der Definition der ↑permanenten Ladebibliothek oder eines
↑Bedienbefehles dient.

Selbstkonfiguration Fähigkeit von RTOS-UH, sich beim Hochlauf an Hand
von ↑Scheiben selbst zu konfigurieren, ohne daß das System gelinkt wer-
den muß. Ermöglicht eine einfache Erweiterung von RTOS-UH für eigene
Zwecke durch Hinzufügen neuer Scheiben.

Shell ↑Task, die Bedienbefehle abarbeiten kann. Um als Shell arbeiten zu
können, benötigt sie gegenüber einer ”gewöhnlichen“ Task ein Shellen-
vironment, auch einfach nur ↑Environment genannt.

Shell, primäre a) ↑Shell, die von RTOS-UH bereits bei der ↑Selbstkonfigu-
ration des Systems eingerichtet wird und nicht entladen werden kann. Sie
dient der Kommunikation des Nutzers mit dem Betriebssystem.

b) Shell, die RTOS-UH beim Einloggen über ein Netzwerk mittels TELNET
oder RLG generiert. Sie hat die gleiche Aufgabe wie eine primäre Shell Fall
a), terminiert und entlädt sich jedoch beim Ausloggen.

Shell, sekundäre a) ↑Shell, die vom Nutzer mit Hilfe des Bedienbefehls
SHELL aufgerufen werden kann, um an Stelle der ↑primären Shell CTRL-
A /B /C zu bearbeiten. BREAK aktiviert weiterhin die primäre Shell.

b) Folgt in der Aufruferzeile einem Bedienbefehl, für den ein ↑Shellsohn-
prozeß generiert wird, ein Kommando mittels ”--“, verwandelt sich der
Sohnprozeß nach der Abarbeitung des eigenen Bedienbefehls in eine se-
kundäre Shell, um die Folgekommandos abzuarbeiten. Nach Abarbeitung
aller Kommandos Selbstbeendigung und Selbstentladung aus dem Spei-
cher.

11 Glossar 681

c) Bei einem exekutierten ↑Shellskript handelt es sich ebenfalls um eine
sekundäre Shell. Nach Abarbeitung aller Kommandos Selbstbeendigung
und Selbstentladung des generierten ↑Shellsohnprozesses aus dem Spei-
cher.

Shell-Subroutine-Package Sammlung von ↑wiedereintrittsfesten Unterpro-
grammen, die für Shells sehr nützlich ist. Enthält auch den Code zur
Interpretation einer Eingabezeile, so daß der Code einer ↑primären Shell
sehr kurz ist.

Shellenvironment ↑Environment.

Shellerweiterung Nachladen von ↑S-Records, in dem ↑Bedienbefehle mit Hil-
fe von ↑Scheiben definiert sind. Nach fehlerfreiem Laden stehen die Be-
dienbefehle allen Shells zur Verfügung. Nutzern, die einen über eine Shel-
lerweiterung hinzugefügten Befehl aufrufen, bleibt es verborgen, ob der
Bedienbefehl permanent im System vorhanden oder nachgeladen ist.

Shellprozeß ↑Task mit allen Eigenschaften einer ↑Shell.

Shellskript Datei, die RTOS-UH-Bedienbefehle und/oder Sprachelemente
der Bourne-Sprache beinhaltet. Läßt sich mit Hilfe des Bourne-Shell-
Interpreters abarbeiten. Aufruf über Bedienbefehl EX, über Dateinamen,
falls Datei im ↑Execution-Directory liegt oder über ↑absoluten Pfad.

Shellsohnprozeß Eine ↑Shell kann Kommandos nur sequentiell abarbeiten.
Bei vielen Kommandos, die sehr lange dauern, generiert die Shell eine
eigene ↑Task, den sogenannten ”Sohnprozeß“, die den Befehl abarbeitet
(z.B. bei Compiler, Assembler, Linker, Lader, COPY). Dadurch kann die
Shell bereits nach Starten des Sohnprozesses weitere Kommandos abar-
beiten. Falls der ↑Vaterprozeß auf die Beendigung des Sohn wartet (Be-
dienbefehl WAIT), teilt der Sohn nach Beendigung seiner Aufgaben dem
Vater den Fehlerstatus mit. Auf jeden Fall entlädt er sich nach Beendi-
gung aller Aufgaben selbst.

Nur die bei der Interpretation von ↑Shellskripten generierten Sohnpro-
zesse haben von Anfang an ein eigenes ↑Environment und somit Shellei-
genschaften (↑sekundäre Shell, Fall b) und c)).

Sohnprozeß ↑Shellsohnprozeß.

stdin absoluter Standardeingabepfad (↑Environment).

stdout absoluter Standardausgabepfad (↑Environment).

stderr absoluter Standardpfad für Fehlermeldungen (↑Environment).

Supervisor-Call (SVC) ↑Trap.

682 11 Glossar

Supervisor-Mode Privilegierter Mode eines Prozessors. Eine ↑Task, die sich
im Supervisor-Mode befindet, unterdrückt einen Lauf des ↑Prozeßum-
schalters. (Ausnahme: Task, die sich selbst kurz in den Supervisor-Mode
begeben hat, ruft diesen selbst, um wieder in ↑User-Mode zu gelangen.)

Supervisor-Stack Gemeinsamer Stack aller ↑Prozesse erster Art. Der ge-
meinsame Stack ist möglich, da sich Prozesse erster Art nur nach dem
↑LIFO-Prinzip unterbrechen.

Synchronisationsmittel Konstrukte, die bei korrekter Benutzung gewährlei-
sten, daß bei veränderlichen, von mindestens zwei ↑Prozessen 2. Art ge-
meinsam genutzten Datenstrukturen keine Mischdaten entstehen können.
Bei gemeinsam genutztem Speicherbereich (shared Memory) stellt RTOS-
UH ↑Traps für Semaphore und Bolt-Variablen zur Verfügung. Ande-
renfalls bieten sich ↑Message-Passing (falls Adressat bekannt ist) und
↑named Pipes (falls Adressat nicht bekannt ist) beim Austauschen von
Datenstrukturen zwischen ↑Tasks an.

Systemtrap ↑Trap.

Task ↑Prozeß zweiter Art.

Taskidentifier (TID) Zeiger auf den Anfang eines Taskkopfes. Die einzige
eindeutige (und schnelle) Identifizierungsmöglichkeit, da Tasknamen auch
doppelt vergeben sein können. Der TID der gerade laufenden Task liegt
in einer betriebssysteminternen Speicherzelle, damit RTOS-UH bei einem
Supervisor-Call (↑Trap) immer weiß, welcher ↑Prozeß 2. Art den ↑Trap
aufgerufen hat.

Taskkontext Alle Speicherzellen und Registerinhalte, die der ↑Prozeßum-
schalter retten muß, wenn eine Task den ↑Taskzustand laufend verliert
bzw. die der Prozeßumschalter besetzt, wenn eine Task den Zustand lau-
fend bekommt.

Taskkopf Speichersegment zur Definition einer ↑Task. Enthält wichtige Da-
ten, wie z.B. Namen, ↑Taskzustand, ↑Priorität und Adresse des ersten
ausführbaren Codes.

Taskwechsel Vorgang, bei dem der ↑Prozeßumschalter den Prozessor einer
↑Task wegnimmt und einer anderen zuteilt. Geschieht, falls eine höher-
priorisierte Task lauffähig wird oder die momentan laufende Task sich
beendet oder selbst blockiert.

Taskworkspace Speichersegment, das Platz für die Taskvariablen, den ↑Task-
kontext und verwaltungsinterne Daten, die sich auf die Task beziehen,
bietet.

11 Glossar 683

Taskzustand Einer der vier Zustände laufend, lauffähig, blockiert und schla-
fend, den eine ↑Task haben kann.

schlafend (dormant): Task ist geladen, ist jedoch in keinerlei Aktivität
verwickelt.

laufend (running): Prozessor ist der Task zugeteilt.

lauffähig (runable): Der Dispatcher teilt dieser Task den Prozessor zu,
sobald keine höherpriorisierte Task den Zustand lauffähig oder laufend
hat.

blockiert (blocked): Task darf den Prozessor nicht besitzen und wartet
auf ein Ereignis, das diese in den Zustand lauffähig versetzt. In RTOS-
UH aufgeteilt in:

• Wartend auf Beendigung der Ein- /Ausgabe (I/O?1)

• Wartend auf Freiwerden eines Semaphors / einer Boltvariablen
(SEMA)

• Wartend auf ↑Procedure-Workspace (PWS?)

• Wartend auf freiwerdende ↑CEs (Jede Task hat ein eigenes Kontin-
gent, damit eine Task nicht den gesamten freien Speicher allokieren
kann!) (CWS?)

• Wartend auf ↑Aktivierung an bestimmtem Zeitpunkt oder bei In-
terrupt (SCHD)

• Wartend auf Fortsetzung an bestimmtem Zeitpunkt oder bei Inter-
rupt (SUSP)

• Wartend auf eintreffende CEs (Nur bei ↑Betreuungstasks, SCHD)

• Unterbrochen (SUSP)

Trap ”Unterprogramm“ zur Bereitstellung von Betriebssystemdiensten, das
i.a. von einem ↑Prozeß zweiter Art aufgerufen wird. Ein Trap ist ein
↑Prozeß erster Art.

Umlenkung Möglichkeit, Ein- und Ausgabe sowie Fehlermeldungen mit an-
deren Pfaden als stdin, stdout und stderr (↑Environment) durchzuführen.

Umlenkung, permanente Neudefinition von stdin, stdout oder stderr (↑En-
vironment).

1In teletype geschriebenes Kürzel gibt an, wie die ↑Bedienbefehle L oder LU den Taskzu-
stand anzeigen.

684 11 Glossar

User-ID Systeminterne Nummer einer ↑primären Shell. Über diese Nummer
kann RTOS-UH den ↑Taskidentifier der Shell durch einen Tabellenzugriff
herausfinden. Jeder ↑Task in RTOS-UH ist eine User-ID und somit eine
primäre Shell zugeordnet. ↑Betreuungstasks nehmen immer die User-ID
des Auftraggebers an. ↑Error-Dämon und ↑Betreuungstasks schreiben
ihre Fehlermeldungen nach ↑stderr der zugehörigen primären Shell.

User-Mode Standard Mode eines Prozessors und für ↑Prozesse zweiter Art.
In diesem Mode ist ein ↑Taskwechsel erlaubt.

User-Stack Jede ↑Task hat einen eigenen Stack, der auch User-Stack heißt, da
eine Task im ↑User-Mode läuft. Er liegt gewöhnlich im ↑Taskworkspace,
kann aber auch in einem extra angeforderten Bereich liegen. In einem
↑Multitasking-Betriebssystem benötigt jede Task ihren eigenen Stack, da
Prozesse zweiter Art nicht nach dem ↑LIFO-Prinzip abgearbeitet werden
können.

Vaterprozeß ↑Shellprozeß, die einen ↑Shellsohnprozeß generiert hat. Kann
in RTOS-UH entweder auf die Terminierung des Sohnes warten oder sich
prioritätsgerecht den Prozessor teilen.

Verschieblichkeit Fähigkeit von RTOS-UH, an jeder beliebigen Stelle im
Speicher laufen zu können, da RTOS-UH nur PC-relative Bezüge enthält.

Warteschlange Sammlung von ↑Communication-Elementen, die an eine
(↑Betreuungs-)↑Task gesendet worden sind, aber noch nicht abgearbei-
tet werden konnten (Jede Betreuungstask hat eine eigene Warteschlan-
ge). Die Warteschlange ist prioritätsgeordnet, so daß CEs von Absendern
mit höherer ↑Priorität bei Eintreffen in die Warteschlange vor denen von
Absendern mit niedrigerer Priorität eingeordnet werden. Besitzt die emp-
fangende Task ↑variable Priorität, ist die Priorität der Task mindestens
genauso hoch wie die des höchstpriorisierten CEs in der Warteschlange.

Wiedereintrittsfestigkeit Code ist dann wiedereintrittsfest, wenn er von
beliebig vielen Tasks gleichzeitig genutzt werden kann, wobei die Rei-
henfolge des Austritts aus dem Code völlig unabhängig von der des
Eintritts ist. Bedeutet zwangsläufig ein Verbot von Adressierungsarten

”↑PC-Relativ“ und ”Absolut“ bei schreibenden Zugriffen. Beispiel: Der
Code aller ↑Shellsohnprozesse, die RTOS-UH bereitstellt, ist wiederein-
trittsfest. Dadurch braucht RTOS-UH bei der Generierung eines Sohnes
nur ↑Taskkopf und ↑Taskworkspace zu generieren.

Working-Directory Ordner eines Massenspeichers, der Nutzerdateien ent-
hält. Werden Bedienbefehlen relative Dateinamen übergeben, ver-
vollständigen sie i.a. den Pfad durch das Voranstellen des Working-
Directories.

Stichwortverzeichnis 685

[

Stichwortverzeichnis

]
#EDFM (Task), 400
#ERRDM (Task), 46, 471
#ERROR (Task), 62
#IDLE (Task), 28, 622
#PPORT (Task), 408
#USERx (Task), 56
#VDATN (Task), 409
#XCMMD (Task), 56, 411
$4Exx (Trap), 449 ff
$A0xx (Trap), 449 ff
? – Bedienbefehl HELP, 151

A (Bedienbefehl), ↑ACTIVATE681
Ablaufsteuerung (Shellsprache), 81 ff
ACTIVATE (Bedienbefehl), 100
AFORM (PEARL-UP), 356
AFTER (Bedienbefehl), 101
ALL (Bedienbefehl), 102
Anwenderprogramm

- Begriffsdefinition, 18
APPEND (PEARL-UP), 336
Arbeitsspeicher

- Belegung anzeigen, 201
Arbeitsspeicherbereich festlegen (Scheibenkonzept), 646
AS (Bedienbefehl), ↑ASSEM681
ASSEM (Bedienbefehl), 103
Assembler

- 68k-Systemkonfiguration feststellen, 435
- Ausdrücke, 422
- Bedingungsanweisung, 417
- Beschreibung, 415
- Betriebsparameter, 416
- Direktive, 420, 423
- E/A

- Beschreibung, 601
- Treiber ergänzen, 604

- FPU-Befehle nutzen, 432
- FPU-Benutzung, 432

686 Stichwortverzeichnis

- File einbinden, 419
- Formatdefinition, 428
- Formate, Namensrestriktion, 428
- Hardware-Instruktion, 419
- Hyperprozessor, 420

- Befehle, 591–600
- ”MAXI“-Version, 432
- Modul codieren, 442
- Operanden-Feld, 420
- PEARL-Unterprogramm, 562

- Parameterübergabe, 562
- PEARL80-Unterprogramm

- Feldbeschreibung, 576
- Parameterbefehle, 577

- PowerPC, 431
- Programm einbetten, 442
- Programmzeilenaufbau, 416
- S-Records

- erzeugen, 436
- Tabellenkapazität, 432
- Task codieren, 442
- Umstellung von PEARL80 auf PEARL90, 582
-Fehlermeldungen, 438

Assembler-Unterprogramm (PEARL), 370
ASSIGN (PEARL-UP), 342
AT (Bedienbefehl), 105
Ausgabe, ↑E/A681
Ausnahmebehandlung, 614
/Ax-Datenstation, 385 ff

BADBLOCK (Bedienbefehl), 106
BASIC-Datenstation, 390
Batch-Datei (Rtos-Word), 255

- anlegen, Nr. 89
- ausführen, Nr. 90

Bedienbefehl
- Arbeitsspeicherbelegung anzeigen, 201
- Ausgabe umlenken, 179, 184
- Bibliothek einrichten, 160
- Code ohne Modulkopf ausführen, 150
- Communication Element löschen, 111
- Datenstation

- Parameter ändern, 203

Stichwortverzeichnis 687

- Datum
- anzeigen, 123
- einstellen, 124

- Eingabe umlenken, 152, 183
- Environment-Variable, 142
- Execution-Directory

- ändern, 120, 121
- anzeigen, 189

- Fehlermeldung umlenken, 144, 182
- File

- Erstellungszeitpunkt anzeigen/ändern, 214
- Fileanfang für Lese-/Schreibzeiger, 196
- Name ändern, 194
- anzeigen (aktive), 145, 660
- auslisten, 220
- kopieren, 115
- linken, 162
- löschen, 197
- mischen, 115
- schließen, 195
- speichern, 211

- Filesystemstatus, 109 f
- Hilfe der Shell anfordern, 151
- Interrupt

- freigeben, 141
- simulieren, 219
- sperren, 130

- MS-DOS-Filesystem, 176
- Massenspeicher

- Speicherkapazität anzeigen, 149
- formatieren, 147

- Modul
- assemblieren, 190
- compilieren, 180, 192
- entladen, 221
- laden, 169, 173

- Module
- linken, 191

- Nachricht senden (Netzwerk), 664
- PEARL-codiert, 68
- Programm

- assemblieren, 103, 190

688 Stichwortverzeichnis

- compilieren, 180, 192
- editieren, 136
- entladen, 221
- laden, 169, 173

- RTOS-Filesystem, 199
- S-Record

- entladen, 221
- erzeugen, 163, 186
- laden, 169, 173
- linken, 163

- Sektor markieren, 106
- Semaphorvariable

- freigeben, 193
- Shell

- spezielle installieren, 206
- Shellprozeß

- anzeigen, 225
- definieren (sekundären), 126

- Speicherzelleninhalt
- ändern, 208
- anzeigen, 132

- Stationsname anzeigen (Netzwerk), 665
- Stationsparameter anzeigen, 125
- String ausgeben, 135
- Tabelle aller, 95 ff
- Task

- Breakpoint löschen, 178
- Breakpoint setzen, 216
- Einplanung loschen, 185
- Trace-Mode, 178, 216
- Zustand anzeigen, 207
- aktivieren, 100, 105, 224
- anzeigen (geladene), 153, 174
- ausplanen, 185
- beenden, 213
- einplanen, 101, 102, 105
- entladen, 221
- fortsetzen, 105, 114, 224
- gleichpriorisierte bearbeiten, 205
- suchen, 134
- unterbrechen, 210

- Trace-Mode

Stichwortverzeichnis 689

- ausschalten, 178
- einschalten, 216

- Uhrzeit
- anzeigen, 112
- einstellen, 113

- Verbindung abbrechen (Netzwerk), 661
- Verzeichnis

- Inhalt anzeigen, 128, 146, 660
- einrichten, 175
- löschen, 175, 198

- Working-Directory
- ändern, 107, 119
- anzeigen, 107, 189

- Zeileneditor LINEEDIT , 155
- Zeilennummer aktiver Task anzeigen, 131
- Zugriff freigeben (Netzwerk), 666
- Zugriff sperren (Netzwerk), 662
- ausführen

- PEARL-UP, 350, 352
- Shellsprache, 90

- definieren (Scheibenkonzept), 643
- sequentiell bearbeiten, 223
- transientes Kommando, 72

Bedingte Kompilation
- in PEARL, 290

Bedingungsanweisung (Shellsprache), 84
Befehl

- transienten laden, 58
Befehlsdatei

- erstellen, 64
BEG (PEARL-UP), 356
Benamte Konstante

- mit Preprozessor definieren (PEARL), 287
Betriebssystem, ↑System681
Bezeichner (PEARL), 282
Bibliothek

- Lineedit einrichten, 155
- einrichten, 160

Bildschirm restaurieren (Rtos-Word), Nr. 72
Block (Rtos-Word), 245 ff

- ˜anfang markieren, Nr. 50
- ˜befehle ein-/ausschalten, Nr. 60

690 Stichwortverzeichnis

- ˜ende markieren, Nr. 51
- löschen, Nr. 74
- einfügen

- aus Blockpuffer, Nr. 57
- aus Datei, Nr. 59

- einrücken, Nr. 54
- kopieren, Nr. 52

- in Blockpuffer, Nr. 56
- löschen, Nr. 55
- speichern

- in Datei, Nr. 58
- verschieben, Nr. 53

Boltvariable
- Lesezugriff

- anfordern, 470
- freigeben, 490

- Schreibzugriff
- anfordern, 510
- freigeben, 476

BREAK (Shellsprache), 88
Breakpoint

- PEARL, 298
- anlaufen (Assembler), 491 f
- ausschalten, 178
- setzen, 216

/BU-Datenstation, 390 ff
- benutzerdefiniert, 393

/Bx-Datenstation, 385 ff
Byte vergleichen (Trap), 461

C
- PEARL-Unterprogramme nicht aufrufbar, 368
- Unterprogramme von PEARL aufrufen, 368

C (Bedienbefehl), ↑CONTINUE681
C-kodierte Unterprogramme von PEARL aus aufrufen, 368
Cache löschen, 455
capacity overflow

- Fehlermeldung bei LOAD, 171
CASE (Shellsprache), 82
CD (Bedienbefehl), 107
CD7TAS (Nucleus-Subroutine), 456
CF (Bedienbefehl), 109
CLEAR (Bedienbefehl), 111

Stichwortverzeichnis 691

CLOCK (Bedienbefehl), 112
CLOCKSET (Bedienbefehl), 113
CMD EXW (PEARL-UP), 350
CMPW (PEARL-UP), 359
Communication Element

- Aufbau, 557
- Begriff, 25
- Beschreibung, 555
- Betriebsarten, 558
- Modebytes, 558
- Warteschlange

- CE einreihen, 494, 545
- CE entnehmen, 530

- erzeugen, 475
- freigeben, 506
- löschen, 111

Compiler (PEARL), 277 ff
- Abschlußmeldung, 295, 378
- Breakpoint, 298
- Charakterselectortest, 300
- Codegenerierung unterdrücken, 296
- Codeprotokoll, 297
- EPROM-Prozedur, 302
- Feldindex testen, 300
- Markierungsoption, 298
- Optionen im PEARL-Quelltext, 278 ff
- Prozedurarbeitsspeicher reservieren, 303
- Prozedurparameter testen, 300
- Prozedurparameterstrukturanalyse unterdrucken, 302
- Übersetzungsprotokoll, 297

CONT (Shellsprache), 89
CONTINUE (Bedienbefehl), 114
COPY (Bedienbefehl), 115
CP (Bedienbefehl), ↑COPY681
CPB (Bedienbefehl), 115
CUD (Bedienbefehl), 119
Cursorbewegung (Rtos-Word), 236 f

- Bildschirmrand
- oben, Nr. 17
- unten, Nr. 18

- Blockanfang, Nr. 29
- Blockende, Nr. 30

692 Stichwortverzeichnis

- Dateianfang, Nr. 19
- Dateiende, Nr. 20
- Spalte

- physikalische, Nr. 34
- Suchen/Ersetzen (vorletztes), Nr. 31
- Wortanfang

- linkes Wort, Nr. 13
- rechtes Wort, Nr. 14

- Zeile
- logische, Nr. 33
- physikalische, Nr. 32

- Zeilenanfang, Nr. 15
- Zeilenende, Nr. 16
- links, Nr. 9
- oben, Nr. 12
- rechts, Nr. 10
- unten, Nr. 11

CUXD (Bedienbefehl), 120
/Cx-Datenstation, 385 ff
CXD (Bedienbefehl), 121

Dämon
- Begriffsdefinition, 46
- E/A-Dämon, 49

DATE (Bedienbefehl), 123
DATE (PEARL-UP), 341
Datei, ↑File681
Datei (Rtos-Word), 241 ff

- Name ändern, Nr. 47
- Text wechseln, Nr. 43
- komprimieren, Nr. 73
- löschen, Nr. 49
- öffnen, 228, Nr. 42
- schließen, Nr. 41, Nr. 45, Nr. 44
- speichern, Nr. 41, Nr. 46, Nr. 44

- automatisch, Nr. 47
Datenblock, 549
Datenkonvertierungsformat (PEARL)

- Bitkette, 317
- Festpunktzahl, 315 f
- Gleitpunktzahl, 315 f
- Uhrzeit, 318
- Zeichenkette, 316

Stichwortverzeichnis 693

- Zeitdauer, 318
Datenstation, 385 ff

-BASIC-Station, 390
- /BU-Station, 390 ff
- Bedienbefehl ausführen, 64, 411
- Datenquelle umlenken (Eingabe), 152, 183
- Datensenke umlenken

- Ausgabe, 179, 184
- Fehlermeldung, 144, 182

- Datensenke/-quelle (ideal), 406
- /Dx-Station, 398
- Editor-Station, 400
- Eigenschaften (Scheibenkonzept), 641
- Massenspeicher-Laufwerk, 403
- /NIL-Station, 406
- Name zuweisen (PEARL), 342
- /PP-Station, 408
- Parameter

- erzeugen (PEARL-UP), 366
- manipulieren (PEARL-UP), 364

- Parameter ändern, 203
- Pipe, 409
- Prozeßinterrupt ansprechen, 412
- Prozeßperipheriezugriff, 390
- Statusabfrage (PEARL), 331
- Typen, 41, 49
- Untergliederungsnummer, 41
- /VI-/VO-Station, 409
- Voll-Duplex-Betrieb, 398
- Warteschlangennummer, 41

- Mnemo ermitteln (PEARL-UP), 361, 362
- /XC-Station, 64, 411
- Zugriff über Warteschlangennummer, 405
- definieren

- PEARL, 305 ff
- Scheibenkonzept, 639

- parallele, 408
- serielle, 385 ff

- Ausgabe, 385
- Bedieninterface, 388
- Eingabe, 386 ff
- PEARL-Programm, 389

694 Stichwortverzeichnis

- Time-Out, 388
Datentransfer (PEARL)

- binär, 338
Datentypen (PEARL), 282 ff
DATESET (Bedienbefehl), 124
Datum

- anzeigen, 123
- einlesen (PEARL), 341
- einstellen, 124

- Assembler, 518
DD (Bedienbefehl), 125
DEFINE (Bedienbefehl), 126
Delimiter suchen (Assembler), 465
Device-Parameter-Differenz, 468
DEVMNEMO (PEARL-UP), 361
DIR (Bedienbefehl), 128, 660
DISABLE (Bedienbefehl), 130
Diskette, ↑Massenspeicher681
Dispatcher, ↑auch Prozeßumschalter681

- aufrufen, 467
- sperren, 495

DL (Bedienbefehl), 131
DM (Bedienbefehl), 132
DMX (Zusatzshellbefehl), 132
DR (Bedienbefehl), 134
DRANF (PEARL-UP), 344
Drucker-Datenstation, 408
/Dx-Datenstation, 398

E/A
- Ausgabe

- serielle Datenstation, 385
- umlenken, 179, 184

- Eingabe
- serielle Datenstation, 386 ff
- umlenken, 152, 183

- Fehlermeldung
- umlenken, 144, 182

- PEARL
- Formate, 314 ff
- formatierte, 312 f
- umparametrieren, 307

- Peripherie (Assembler), 500 f

Stichwortverzeichnis 695

- Shellsprache, 80 f
- Tastatureingabe, 28
- assemblercodiert, 601

- Treiber ergänzen, 604
- umlenken mit Bedienbefehl

- Ausgabe, 179, 184
- Eingabe, 152, 183
- Fehlermeldung, 144, 182

- umparametrieren (PEARL), 307
Ebenenmodell der Shell, 56
ECHO

- Bedienbefehl, 135
- Shellsprache, 80

ED (Bedienbefehl), 136
/ED-/EDB-Datenstation, 400 ff
Editor (Rtos-Word)

- Beschreibung, 227
- Blockoperationen, 245 ff
- Dateiauswahlfenster anzeigen, Nr. 82
- Eingabeaufforderungen, 269 ff
- Einsetzmodus, Nr. 1
- Fehlermeldungen, 272 ff
- Fensteraufbau, 230
- Fernsteuerung, 227, 257 f
- Kommando aus Batch-Datei, 255
- Konfigurationsmodul, 230
- Programm-Datei editieren, 229
- Randauslösung, Nr. 2
- Spaltenanzahl, 227
- Status ändern, 233 ff
- Statusmeldungen, 269
- Statuszeile, 230
- Tabulatorleiste, 231
- Text einrücken, Nr. 3, Nr. 54
- Übergabeparameter, 228, 256
- Überschreibmodus, Nr. 1
- Window-Modus, 232
- Wortumbruch, Nr. 4
- Zeichen (zulässige), 227, 229
- Zeilenanzahl, 227
- Zeilennummer, 230
- Zeilenoperationen, 247 ff

696 Stichwortverzeichnis

- aus Programm ausführen, 257
- starten, 227
- technische Daten, 275
- unterbrechen, Nr. 40

Editor (Beschreibung), 136
Einbaufunktion (PEARL), 329 ff

- Basis-Grafik, 335
- Binär-Transfer von Daten, 338
- Datenstationsname zuweisen, 342
- Datenstationsstatus, 331
- Datum einlesen, 341
- E/A-Funktionen, 336
- Floatzahl-Konvertierung IEEE → RTOS-Darst., 348
- Floatzahl-Konvertierung RTOS-Darst. → IEEE, 348
- Priorität lesen, 346
- Priorität ändern, 346
- Taskzustand ermitteln, 345
- Uhrzeit lesen, 341
- Zeigervariablen manipulieren, 342
- Zufallszahlen, 329, 344
- mathematische, 329

Einfügen (Rtos-Word)
- Leerzeichen, Nr. 7
- Leerzeile, Nr. 6
- Sonderzeichen, Nr. 8
- String, Nr. 88
- Zeilenpuffer, Nr. 62

Eingabe, ↑E/A681
Eingabeaufforderungen (Rtos-Word), 269 ff
Eingabeprotokoll aktivieren (Rtos-Word), Nr. 89
Einrücken (Rtos-Word), Nr. 3
Einsetzmodus (Rtos-Word), Nr. 1
ELIF (Shellsprache), 81
ELSE (Shellsprache), 81
ENABLE (Bedienbefehl), 141
ENVGET (PEARL-UP), 351
Environment, ↑User-Environment681
ENVSET (Bedienbefehl), 142
ER (Bedienbefehl), 144
Error-Dämon, 614
ESAC (Shellsprache), 82
Exception-Frame, 619

Stichwortverzeichnis 697

Exception-Handler, 48, 614
EXEC (Shellsprache), 90
EXEC (PEARL-UP), 352
Execution-Directory

- Pathlänge, 122
- User-Environment, 60
- ändern, 120, 121
- anzeigen, 189
- bei transientem Befehl, 57
- bei transientem Laden, 72
- ermitteln (PEARL-UP), 363

EXIT (Shellsprache), 90
EXPR (Shellsprache), 86

FALSE (Shellsprache), 84
Farbe ändern (Rtos-Word)

- Blockmarkierung, Nr. 76
- Kommandozeile, Nr. 79
- Statuszeile, Nr. 76
- Text, Nr. 78

Fehlerbehandlungsroutine, ↑Exception-Handler681
Fehlermeldung

- Beispiele, 47
- Error-Dämon, 46
- Lader, 171
- Linker, 167
- PEARL

- Compile-Zeit-Fehler, 373 ff
- Laufzeitfehler, 381 f
- mathematische Einbaufunktion, 383

- ausgeben (Assembler), 471 f
- spezifizieren (Assembler), 463 f

Fehlermeldungen (Rtos-Word), 272 ff
Feld

- Beschreibung im Assembler fur PEARL80, 576
- Grenzen testen (Assembler), 484–489
- Kurzformel, 322
- Zeiger auf, 326
- Zugriff (PEARL), 322

Feldbeschreibungsblock
- in PEARL90, 570

Fensteraufbau (Rtos-Word), 230
- Window-Modus, 232

698 Stichwortverzeichnis

Fensterbreite ändern (Rtos-Word), Nr. 80
Fensterhöhe ändern (Rtos-Word), Nr. 81
Fernsteuerung (Rtos-Word), 227, 257 f
Festplatte, ↑Massenspeicher681
FI (Shellsprache), 81
File

- Erstellungszeitpunkt anzeigen/ändern, 214
- Fileanfang für Lese-/Schreibzeiger, 196
- Name ändern, 194
- anzeigen (aktive), 660
- anzeigen (aktives), 145
- auslisten, 220
- einbinden (PEARL), 288
- kopieren, 115
- linken, 162
- löschen, 197
- mischen, 115
- öffnen (PEARL), 313
- schließen, 195

- PEARL, 313
- speichern, 211

FILES (Bedienbefehl), 145, 660
Filesystem, 547 ff

- Datenblock, 549
- Driver codieren, 549
- Hauptverwaltungsblock, 547
- MS-DOS, 176
- RTOS, 199
- Status, 109 f
- Verwaltungsblock, 547
- Verwaltungskopf, 547
- abfragen, 145, 176

FIND (Bedienbefehl), 146
FOR (Shellsprache), 82
FORM (Bedienbefehl), 147
FPU

- Ausnahmebehandlung, 614
- Benutzung bei Assemblercode, 432

FREE (Bedienbefehl), 149
/Fx-/Hx-Datenstation, 403

Gerätebezeichner (PEARL), 307
GET (PEARL), 312

Stichwortverzeichnis 699

GET DEVICE (PEARL-UP), 362
GET EXECDIR (PEARL-UP), 363
GET EXECPATH (PEARL-UP), 363
GET TASKNAME (PEARL-UP), 354
GET USER (PEARL-UP), 353
GET WORKDIR (PEARL-UP), 363
GET WORKPATH (PEARL-UP), 363
GETPIX (PEARL-UP), 335
GETPRI (PEARL-UP), 346
GO (Bedienbefehl), 150
Grundshell, 56

Hauptverwaltungsblock, 547
Header-Text (Scheibenkonzept), 653
? (Bedienbefehl), 151
HELP (Bedienbefehl), 151
Hilfemenü (Rtos-Word), Nr. 71
Hilfesystem (Rtos-Word), 250
Hyperprozessor, 420

- Befehle, 591–600
- einschalten, 532

I (Bedienbefehl), 152
I/O-Dämonen, 604
IDF DATION (PEARL-UP), 364
IF (Shellsprache), 81
INSER (PEARL-UP), 359
INSTR (PEARL-UP), 357
Interpreter

- für Shellsprache, 67
Interrupt

- Anzahl (maximal zulässige), 141, 412
- Buffer installieren (Scheibenkonzept), 637
- Prozeßinterrupt (PEARL), 412 ff
- Rückfallmechanismus, 607
- anschließen (Scheibenkonzept), 650
- eigene einbinden, 413
- freigeben, 141

- Assembler, 469
- simulieren, 219

- Assembler, 498, 533
- sperren, 130

- Assembler, 466, 495
IP (Bedienbefehl), 661

700 Stichwortverzeichnis

Kaltstart, 27, 656
Kapazitätsüberlauf

- des Compilers beim Prozeduraufruf, 564
Kommando, ↑Bedienbefehl oder Shellskript681

- transientes, 58, 72 f
Kommando-Datei, ↑Befehlsdatei681
Kommandoverzeichnis (Rtos-Word), 259 ff
Kommentar (Shellsprache), 76
KON (PEARL-UP), 358
Konfigurationsmodul (Rtos-Word), 230

- Beispiel, 265 f
- Beschreibung, 264
- Terminalanpassung, 265

Kontext
- Begriffsdefinition, 18

Kontextswitch
- Begriffsdefinition, 19
- Prozeßmodell, 21

Konvertierung
- Zahlenformat

- IEEE → RTOS, 348
- RTOS → IEEE, 348

Konvertierung (Assembler)
- ASCII-Zahl in Integer, 480
- Datum in ASCII, 462
- Hex.-Zahl in ASCII, 456
- Uhrzeit in ASCII, 457

L (Bedienbefehl), 153
Laufwerk

- Filesystem abfragen, 176
LE (Bedienbefehl), 155
LEN

- PEARL-UP, 356
- Shellsprache, 85

LIBSET (Bedienbefehl), 160
LINE (PEARL-UP), 335
LINEEDIT (Bedienbefehl), 155
LINK (Bedienbefehl), 162
LNK (Bedienbefehl), 163
LOAD (Bedienbefehl), 169
LOADX (Bedienbefehl), 173
LOCK (Bedienbefehl), 662

Stichwortverzeichnis 701

Löschen (Rtos-Word)
- Block, Nr. 55
- Blockpuffer, Nr. 74
- Wortende, Nr. 23
- Zeichen, Nr. 5

- links vom Cursor, Nr. 22
- Zeile, Nr. 24

- bis vom Zeilenanfang, Nr. 26
- bis zum Zeilenende, Nr. 25

- rückgängig machen, Nr. 27
- Block, Nr. 57
- Zeile, Nr. 28

LU (Bedienbefehl), 174

Makro ausführen (Rtos-Word), Nr. 91
Marke (Rtos-Word), 250

- anlaufen, Nr. 70
- setzen, Nr. 69

Massenspeicher
- Filesystemstatus, 109 f
- PEARL, 403
- Pfadlänge (maximal zulässige), 50
- Speicherkapazität anzeigen, 149
- Verzeichnis

- Inhalt anzeigen, 128, 146
- einrichten, 175
- löschen, 175, 198

- formatieren, 147
MES (Bedienbefehl), 664
Metazeichen (Shellsprache), 77, 93
MID (PEARL-UP), 357
Mitternacht, Besonderheiten, 112
MKDIR (Bedienbefehl), 175
Modul

- assemblieren, 190
- compilieren, 180, 192
- entladen, 221
- laden, 169, 173
- suchen (Assembler), 479

Modul-ID, 293
Module

- linken, 191
module overflow label - Fehlermeldung bei LOAD, 172

702 Stichwortverzeichnis

Modulgröße (PEARL), 295
Modulvariablenblock (Scheibenkonzept), 648
MS-DOS-Filesystem, 176
MSFILES (Bedienbefehl), 176

Netzwerk, 659 ff
- Datenkanal, 659
- Files anzeigen (aktive), 660
- Gerätebezeicher anzeigen, 660
- Nachrichten senden, 664
- Pathlist-Konzept, 50
- Stationsname anzeigen, 665
- Verbindung

- abbrechen, 661
- anzeigen (aktive), 660

- Verzeichnis anzeigen, 660
- Zugriff

- blockieren, 662
- freigeben, 666

- im PEARL-Programm, 660
/NIL-Datenstation, 406
NOLSTOP - Mode des PEARL-Compilers, 216
NOTRACE (Bedienbefehl), 178
NOW (PEARL-UP), 341
Nucleus-Subroutine, 451

- Hex.-Zahl in ASCII wandeln, 456
- Interrupt simulieren, 498

Nutzerprozeß
- Begriffsdefinition, 20

O (Bedienbefehl), 179
OWNST (Bedienbefehl), 665

P (Bedienbefehl), ↑PEARL681
Parameterübergabe

- Prüfung durch Signatur, 567
Parameterspace

- bei PEARL Prozeduren, 375
Pathlist

- Konzept, 49 ff
- Länge (maximal zulässige), 50

PEARL
- Abweichungen DIN/PEARL90, 285
- Assembler-Unterprogramm, 370

Stichwortverzeichnis 703

- Bedingt kompilieren, 290
- Benamte Konstante

- mit Preprozessor definieren, 287
- Besonderheiten, 281
- Bezeichner, 282
- Compiler, 277 ff

- Abbruchkonditionen, 376
- Abschlußmeldung, 295, 378
- Breakpoint, 298
- Charakterselectortest, 300
- Codegenerierung, 296
- Codeprotokoll, 297
- EPROM-Prozedur, 302
- Feldindex testen, 300
- Optionen im PEARL-Quelltext, 278 ff
- Prozedurarbeitsspeicher reservieren, 303
- Prozedurparameter testen, 300
- Prozedurparameterstrukturanalyse unterdrucken, 302
- Schaltbarer Kommentar, 292
- Switched comment, 292
- Übersetzungsprotokoll, 297

- Datenkonvertierungsformat, 315 ff
- Datenstation

- /BU-Station, 390 ff
- Bedienbefehl ausführen, 411
- Datensenke/-quelle (ideal), 406
- /Dx-Station, 398
- /ED-/EDB-Station, 400 ff
- Massenspeicher-Laufwerk, 403
- Pipe, 409
- Voll-Duplex-Betrieb, 398
- Zugriff über Warteschlangennummer, 405
- definieren, 305
- parallele, 408

- Datentypen, 282 ff
- Default-PRIO setzen, 304
- E/A

- Formate, 314 ff
- formatierte, 312 f, 313
- umparametrieren, 307

- Einbaufunktion, 329 ff
- Basis-Grafik, 335

704 Stichwortverzeichnis

- Binär-Transfer von Daten, 338
- Datenstationsname zuweisen, 342
- Datenstationsstatus, 331
- Datum einlesen, 341
- E/A-Funktionen, 336
- Floatzahl-Konvertierung IEEE → RTOS-Darst., 348
- Floatzahl-Konvertierung RTOS-Darst. → IEEE, 348
- Priorität ändern, 346
- Priorität lesen, 346
- Taskzustand ermitteln, 345
- Uhrzeit lesen, 341
- Zeigervariablen manipulieren, 342
- Zufallszahlen, 329, 344
- mathematische, 329

- Fehlermeldung
- Compile-Zeit-Fehler, 373 ff
- Laufzeitfehler, 381 f
- mathematische Einbaufunktion, 383

- Feldzugriff, 322
- File

- einbinden, 288
- öffnen, 313
- schließen, 313

- Gerätebezeichner, 307
- Interrupt, 412 ff
- Konstantenpool leeren, 304
- Modul-ID, 293
- Modulgröße, 295
- READ/WRITE

S-Format, 340
- ROM-Code, 296
- SYSTEM-Teil, 305
- Schlüsselworte, 282
- Sprachumfang, 281 ff
- Warnung

- Compile-Zeit-Meldungen, 378
- Zeigervariablen, 323
- Zielprozessor, 277
- serielle Datenstation, 389
-Preprozessor, 286

PEARL (Bedienbefehl), 180
PEARL-Shellbefehle XHELP-Support, 68

Stichwortverzeichnis 705

PEARL-Unterprogramm
- Bedienbefehl ausführen, 350, 352
- Datenstation

- Mnemo einer Warteschlangennummer ermitteln, 361,
362

- Parameter manipulieren, 364
- Parameter neu setzen, 366

- Execution-Directory ermitteln, 363
- Stringoperation, 355 ff
- Taskname ermitteln, 354
- User-Environment abfragen, 351
- Usernummer ermitteln, 353
- Working-Directory ermitteln, 363
- assemblercodiert, 562 ff

- Parameterübergabe, 562
PEARL80-Unterprogramm

- assemblercodiert
- Feldbeschreibung, 576
- Parameterbefehle, 577

PER (Bedienbefehl), 182
Peripherie-E/A (Assembler), 500 f
Pfadliste

- Konzept, 49 ff
- Länge (maximal zulässige), 50

PI (Bedienbefehl), 183
Pipe-Datenstation, 409
PIRTRI (Nucleus-Subroutine), 498
PO (Bedienbefehl), 184
PowerPC

- Assembler, 431
PREVENT (Bedienbefehl), 185
Priorität

- Prozeß/Zeitdiagramm, 21
- Taskaktivierung, 100–102
-einer laufenden Task ändern, 346
- einer laufenden Task lesen, 346

Programm
- Begriffsdefinition, 18
- assemblieren, 103, 190
- compilieren, 180, 192
- editieren, 136
- entladen, 221

706 Stichwortverzeichnis

- laden, 169, 173
PROM (Bedienbefehl), 186
Prozedur-Workspace

- Parameterspace, 375
- freigeben, 511
- suchen, 496, 538–543

Prozeß
- Begriffsdefinition, 18
- Nutzer-, 20
- Supervisor-, 20
- anzeigen, 225

Prozeß/Zeitdiagramm, 21
Prozeßinterrupt, ↑Interrupt681
Prozeßmodell, 21 ff
Prozeßperipherie

- Datenstationsanschluß, 390 ff
Prozeßumschalter, 21
Prozeßumschaltung, ↑Kontextswitch681
PUT (PEARL), 313
PWD (Bedienbefehl), 189

QAS (Bedienbefehl), 190
QLNK (Bedienbefehl), 191
QP (Bedienbefehl), 192
Qualitätssicherung, 2

Randauslösung (Rtos-Word), Nr. 2
RANF (PEARL-UP), 344
READ (PEARL-UP), 338
READ (Shellsprache), 80
Reaktionszeit, 17
Rechnerdatum, ↑Datum681
Rechneruhrzeit, ↑Uhrzeit681
REFADD (PEARL-UP), 342
RELEASE (Bedienbefehl), 193
RENAME (Bedienbefehl), 194
RETURN (Bedienbefehl), 195
REWIND

- Bedienbefehl, 196
- PEARL-UP, 336

RM (Bedienbefehl), 197
RMDIR (Bedienbefehl), 198
ROM-Code, 164

- PEARL, 296

Stichwortverzeichnis 707

RTOS-Filesystem, 199
RTOSFILES (Bedienbefehl), 199
Rueckfallmechanismus

- in Interruptroutinen, 607

S (Bedienbefehl), 201
S-Format bei READ/WRITE, 340
S-Record

- Aufbau, 436
- Compilerabschlußmeldung, 379
- Daten-Record, 436
- S0-Record, 436
- S9-Record, 437
- entladen, 221
- erzeugen, 163, 186, 436, 626, 627
- laden, 160, 169, 173
- linken, 163

SAVEP (PEARL-UP), 336
Scan-Tabelle (Scheibenkonzept), 633
Scanbereich (Scheibenkonzept), 631
Schaltbarer Kommentar (im PEARL-Compiler), 292
Scheibe, ↑Scheibenkonzept681
Scheibenkonzept, 621 ff

- Arbeitsspeicherbereich definieren, 646
- Bedienbefehl definieren, 643
- Beschreibung der Scheiben, 630 ff
- Datenstation definieren, 639
- Datenstationseigenschaften, 641
- Header-Text, 653
- IR-Vektoren anschließen, 650
- Interruptbuffer installieren, 637
- Kaltstart-Initialisierungscode, 656
- Modulvariblenblock, 648
- Scan-Tabelle erweitern, 633
- Scanbereich überspringen, 631
- Scheibe suchen (Assembler), 517
- Symbol, globales, 654
- Systemtask definieren, 634
- Trap anschließen, 650
- Warmstart-Initialisierungscode, 652

Schlüsselworte (PEARL), 282
Scrollen (Rtos-Word)

- abwärts, Nr. 35

708 Stichwortverzeichnis

- aufwärts, Nr. 36
SD (Bedienbefehl), 203
SEEK (PEARL-UP), 336
SEG (Shellsprache), 87
Seite (Rtos-Word)

- vorblättern, Nr. 37, Nr. 39
- zurückblättern, Nr. 38

Sektor
- defekten markieren, 106

Selbstkonfiguration, ↑Scheibenkonzept681
Semaphore

- testweise anfordern
- Assembler, 534

Semaphorvariable
- anfordern (Assembler), 509
- freigeben, 193

- Assembler, 508
SET (Shellsprache), 87
SET DATION (PEARL-UP), 366
SETPIX

(PEARL-UP), 335
SETPRI (PEARL-UP), 346
SH (Bedienbefehl), ↑SHOW681
SHARE (Bedienbefehl), 205
SHELL (Bedienbefehl), 206
Shell

- spezielle installieren, 206
Shell in der RTOS-Prozeßphilosophie, 59
Shell-Console als Bedienzugriff, 99
Shell-Ebene, ↑Ebenenmodell681
Shell-Subroutine-Package, 56
Shellbefehl

- Anweisungsformat, 61
- Bearbeitung

- parallel, 61
- sequentiell, 61, 65 f

- Eingabezeile, 62
- Fehlerantwort, 67
- PEARL-codiert, 68

Shellfunktion als PEARL-Unterprogramm, 349 ff
Shellmodul, ↑S-Record681
Shellprozeß

Stichwortverzeichnis 709

- Begriff, 55
- Begriffsdefinition, 20
- Fehlerantwort, 67
- Typen, 55 f
- Wartezustand, 62
- #XCMMD, 56
- abbrechen, 62
- primär, 55 f

- Ausgabe umlenken, 179, 184
- Eingabe umlenken, 152, 183
- Fehlerantwort, 67
- Fehlermeldung umlenken, 144, 182
- Parameter ändern, 63
- Priorität, 59
- User-Environment, 56

- sekundär, 56, 59
- Datenausgabe umlenken, 63
- Fehlerantwort, 67
- Parameter ändern, 63
- abbrechen, 62
- definieren, 126
- erzeugen, 62, 477

Shellskript, 76
Shellsprache

- Ablaufsteuerung, 81 ff
- Ausführung, 58
- Bedingungsanweisungen, 84
- E/A-Befehle, 80 f
- Interpreter-Subtask suspendieren, 91
- Interpretervariable löschen, 91
- Kommentar, 76
- Metazeichen, 77, 93
- Positionsparameter verändern, 90
- Programmschleife abbrechen, 88
- Prozedur

- beenden, 90
- unterbrechen, 91

- Schlüsselworte, 92
- Sonderzeichen, 94
- Sprung an Schleifenanfang, 89
- String als Anweisung ausführen, 90
- Stringoperation, 85 ff

710 Stichwortverzeichnis

- Subskript aufrufen, 76
- Variable, 77 f

- Wertzuweisung, 78 f
- anzeigen, 87
- vorbesetzte, 93

- ausführen, 74, 76
Shelltask, ↑Shellprozeß681
SHIFT (Shellsprache), 90
SHOW (Bedienbefehl), 207
Signatur

- Check in PEARL90, 567
- signaturlose Unterprogramme, 569

Skript, ↑Shellskript681
SLEEP (Shellsprache), 91
SM (Bedienbefehl), 208

”Sohn“-Prozeß, ↑sekundärer Shellprozeß681
Sonderzeichen (Rtos-Word), Nr. 8
Sonderzeichen (Shellsprache), 94
Spalte (Rtos-Word)

- max. zulässige Anzahl, 227
- physikalische anlaufen, Nr. 34

Speichersektion (Shell-Modul), 57
Speicherzelleninhalt

- ändern, 208
- anzeigen, 132

ST
(PEARL-UP), 331

Stationsparameter anzeigen, 125
Status ändern (Rtos-Word), 233 ff
Status einer Task, 153
Statusmeldungen (Rtos-Word), 269
Statuszeile (Rtos-Word), 230
String (Rtos-Word)

- einfügen, Nr. 88
- suchen, Nr. 63, Nr. 85
- suchen und ersetzen, Nr. 86
- suchen/ersetzen wiederholen, Nr. 87

Stringoperation
- PEARL-UP, 355 ff
- Shellsprache, 85 ff
- Trap, 465, 504, 515

SU (Bedienbefehl), ↑SUSPEND681

Stichwortverzeichnis 711

Supervisorprozeß
- Begriffsdefinition, 20

SUSP (Shellsprache), 91
SUSPEND (Bedienbefehl), 210
Symbol, globales (Scheibenkonzept), 654
SYNC (Bedienbefehl), 211
SYNC (PEARL-UP), 336
System

- Beschreibung, 621
- Grundzustand, 27
- Implementierungsstufen, 623
- Tastatureingabe, 28
- Zusatzscheiben, 624
- einschalten, 27
- erweitern, 624
- konfigurieren, 621
- modifizieren, 622

- Datenstation, 625
- E/A-Treiber einbinden, 628
- PEARL-Programm einbinden, 626

Systemprogramm
- Begriffsdefinition, 18

Systemtask
- E/A-Treiber, 604
- Scheibenkonzept, 634

Systemtrap, ↑Trap681

T (Bedienbefehl), ↑TERMINATE681
T-Code, 415, 425

- Konditionierte Befehle, 427
- Optimieren, 426

Tabulator (Rtos-Word), 248 f
- Leiste im Textfenster, 231
- Textrand rechts setzen, Nr. 68
- anlaufen, Nr. 54
- löschen, Nr. 67
- setzen, Nr. 66

Task
- Begriffsdefinition, 20
- Breakpoint

- löschen, 178
- setzen, 216

- Einplanung löschen, 64

712 Stichwortverzeichnis

- Name ermitteln (PEARL-UP), 354
- Priorität, 153
- Status ermitteln (PEARL), 345
- Statusinformation, 153
- Trace-Mode

- ausschalten, 178
- einschalten, 216

- Workspace, 153
- neu organisieren, 513

- Zustand anzeigen, 207
- aktivieren, 64, 100

- Assembler, 452, 454
- bei Ereignis, 224, 453, 473
- fester Zeitpunkt, 105
- implizit, 57
- zeitverzögert, 101

- anzeigen (geladene), 153, 174
- auf niederpriorisierte warten, 535
- ausplanen, 64, 185

- Assembler, 502 f
- beenden, 213

- Assembler, 520–523
- compilieren, 64
- einplanen, 64

- Assembler, 453, 473, 524–526
- fester Zeitpunkt, 105
- zeitverzögert, 101
- zyklisch, 102

- entladen, 64, 221
- Assembler, 523

- fortsetzen, 114
- Assembler, 458–460, 527–529
- bei Ereignis, 224, 459, 474
- fester Zeitpunkt, 105
- zeitverzögert, 101

- gleichpriorisierte bearbeiten, 205
- laden, 64
- suchen

- im RAM, 482 f
- in Speicherverwaltung, 134

- terminieren, 64
- unterbrechen, 210

Stichwortverzeichnis 713

- Assembler, 519, 529
TASKST (PEARL-UP), 345
Terminalunterstützungen (Rtos-Word), 264
TERMINATE (Bedienbefehl), 213
TEST (Shellsprache), 84
Text (Rtos-Word)

- Arbeitstext wechseln, Nr. 43
- Blockoperationen, 245 ff
- Farbe ändern, Nr. 76
- Fensterbreite ändern, Nr. 80
- Fensterhöhe ändern, Nr. 81
- Marke

- anlaufen, Nr. 70
- setzen, Nr. 69

- Seite
- vorblättern, Nr. 37, Nr. 39
- zurückblättern, Nr. 38

- String
- einfügen, Nr. 88
- suchen, Nr. 63, Nr. 85
- suchen und ersetzen, Nr. 86
- suchen/ersetzen wiederholen, Nr. 87

- Zeichen löschen, Nr. 5
- an Datei anhängen, Nr. 44
- blättern, 239 ff
- einfügen

- Leerzeichen, Nr. 7
- Leerzeile, Nr. 6
- Sonderzeichen, Nr. 8
- Zeilenpuffer, Nr. 62

- einrücken, Nr. 3, Nr. 54
- löschen

- Wortende, Nr. 23
- Zeichen, Nr. 5, Nr. 22
- Zeile, Nr. 24
- bis zum Zeilenanfang, Nr. 26
- bis zum Zeilenende, Nr. 25

- löschen rückgängig machen, Nr. 27
- Zeile, Nr. 28

- rechten Rand festlegen, Nr. 68
- scrollen

- abwärts, Nr. 35

714 Stichwortverzeichnis

- aufwärts, Nr. 36
Textanalyse, ↑Stringoperatation681
THEN (Shellsprache), 81
Thread

- Begriff, 19
TOCHAR (Shellsprache), 88
TOFIX (Shellsprache), 88
TOIEED (PEARL-UP), 348
TOIEES (PEARL-UP), 348
TORTOD (PEARL-UP), 348
TORTOS (PEARL-UP), 348
TOUCH (Bedienbefehl), 214
TRACE (Bedienbefehl), 216
Trace-Mode

- ausschalten, 178
- einschalten, 216

Transferassembler, 415
- .V–Adressierung, 425
- Nicht umsetzbare 68k-Befehle, 425

Trap
- ASCII-Zahl in Integer wandeln, 480
- Benutzungshinweise, 447
- Boltvariable

- Lesezugriff anfordern, 470
- Lesezugriff freigeben, 490
- Schreibzugriff anfordern, 510
- Schreibzugriff freigeben, 476

- Breakpoint anlaufen, 491 f
- Byte vergleichen, 461
- CE

- anlegen, 475
- aus Warteschlange entnehmen, 530
- freigeben, 506
- in Warteschlange einreihen, 494, 545

- Cache löschen, 455
- Datum

- einstellen, 518
- in ASCII wandeln, 462

- Device-Parameter-Differenz, 468
- Dispatcher

- aufrufen, 467
- sperren, 495

Stichwortverzeichnis 715

- Fehlermeldung
- ausgeben, 471 f
- spezifizieren, 463 f

- Feldindex testen, 484–489
- Hyperprozessor einschalten, 532
- Interrupt

- freigeben, 469
- simulieren, 533
- sperren, 466, 495

- Modul suchen, 479
- Peripherie-E/A, 500 f
- Prozedur-Workspace

- freigeben, 511
- suchen, 496

- Scheibe suchen, 517
- Semaphore

- testweise anfordern, 534
- Semaphorvariable, 508 f
- Shellprozeß erzeugen (sekundären), 477
- Stringoperation

- Delimiter suchen, 465
- Leerzeichen überlesen, 515
- Strings vergleichen, 504

- Tabelle der, 449
- Task

- aktivieren, 452, 454
- auf niederpriorisierte warten, 535
- ausplanen, 502 f
- beenden, 520–523
- einplanen, 453, 473, 524–526
- entladen, 523
- fortsetzen, 458, 460, 474, 527–529
- suchen, 482 f
- unterbrechen, 519, 529

- Task-Workspace neu organisieren, 513
- Uhrzeit

- berechnen, 493
- einstellen, 518
- in ASCII wandeln, 457
- lesen, 505

- Warteschlange analysieren, 481
- Workspace

716 Stichwortverzeichnis

- freigeben, 516
- suchen, 538–543

- anschließen (Scheibenkonzept), 650
- benutzereigen, 451

Treibertask, 604
TRIGGER (Bedienbefehl), 219
TRUE (Shellsprache), 84
TYPE (Bedienbefehl), 220

Überschreibmodus (Rtos-Word), Nr. 1
Uhrzeit

- anzeigen, 112
- bei Systemüberlastung, 112
- berechnen, 493
- einstellen

- Assembler, 518
- PEARL, 113

- lesen
- Assembler, 505
- PEARL, 341

/UL-Datenstation, 385 ff
Umstellung

- Assemblerunterprogramme von PEARL80 auf PEARL90,
582

UNLOAD (Bedienbefehl), 221
UNLOCK (Bedienbefehl), 666
UNSET (Shellsprache), 91
UNTIL (Shellsprache), 83
User-Environment

- Beschreibung, 60 f
- Fehlermeldepuffer, 46
- Parameter, 60
- Übergabe an Shellskript, 58
- Variable, 142
- in PEARL abfragen, 351
- wo es ist, 56

User-Identifikation, 99
- Netzshellprozeß, 99
- Parameter, 99

Usernummer feststellen (PEARL-UP), 353

Variable
- Shellsprache, 77 f
- User-Environment, 142

Stichwortverzeichnis 717

- Wertzuweisung (Shellsprache), 78 f

”Vater“-Prozeß, ↑primärer Shellprozeß681
Verwaltungsblock, 547
Verwaltungskopf, 547
Verzeichnis

- Inhalt anzeigen, 128, 146, 660
- einrichten, 175
- löschen, 175, 198

Voll-Duplex-Betrieb (Datenstation), 398

WAIT (Bedienbefehl), 223
Warmstart, 652
Warnung

- /BU-Station, 392
- Compile-Zeit-Meldungen (PEARL), 378
- wiedereintrittsfeste Assemblerprogramme, 371

Warteschlange
- Betreuungstask, 49
- CE einreihen, 494, 545
- CE entnehmen, 530
- analysieren, 481

WHEN (Bedienbefehl), 224
WHILE (Shellsprache), 83
WHO (Bedienbefehl), 225
Window-Modus (Rtos-Word), 232
Working-Directory

- Pathlänge, 108
- User-Environment, 60
- ändern, 107, 119
- anzeigen, 107, 189
- bei OPEN-Anweisung, 42
- ermitteln (PEARL-UP), 363

Workspace
- Task-, 153
- freigeben, 511, 516
- suchen, 538–543

Wortende löschen (Rtos-Word), Nr. 23
Wortumbruch (Rtos-Word), Nr. 4
WRITE (PEARL-UP), 338

/XC-Datenstation, 411
XHELP (Bedienbefehl, 151

Zahlenformat

718 Stichwortverzeichnis

- Konvertierung IEEE → RTOS, 348
- Konvertierung RTOS → IEEE, 348

Zeichen (Rtos-Word)
- einfügen, ↑Einsetzmodus (Rtos-Word)236

- Leerzeichen, Nr. 7
- löschen, Nr. 5

- links von Cursor, Nr. 22
Zeichenkettenanalyse, ↑Stringoperation681
Zeigervariablen

- als Prozedurparameter, 325
- auf Felder, 326

Zeigervariablen (PEARL), 323
- manipulieren, 342

Zeile (Rtos-Word)
- Leer˜einfügen, Nr. 6
- ˜nendesignal, Nr. 2
- ˜nnumerierung aktualisieren, Nr. 75
- anlaufen

- logische, Nr. 33
- physikalische, Nr. 32

- löschen, Nr. 24
- Zeilenanfang, Nr. 26
- Zeilenende, Nr. 25

- logische, 230
- max. zulässige Anzahl, 227
- physikalische, 230
- umbrechen, Nr. 21

Zeilennummer
- anzeigen (aktive Task), 131

Zeilenpuffer (Rtos-Word), 247 f
- Inhalt suchen, Nr. 63
- Zeilenende in Puffer kopieren, Nr. 61
- editieren, Nr. 64
- einfügen, Nr. 62

Zeilenumbruch (Rtos-Word), Nr. 21
Zufallszahlen (PEARL), 344
Zyklische Einplanung von Tasks , 102

	RTOS--UH
	Vorwort
	Inhaltsverzeichnis
	Tabellenverzeichnis
	Die innere Architektur
	Was muß der Systemanwender wissen?
	Programme, Prozesse und Kontext
	Beschreibung des RTOS--UH-Prozeßmodelles
	Das I/O-System

	Betriebssystem RTOS--UH
	Schnellkurs Teil 1: Erste Schritte
	Einschalten
	Erste Aktion
	PEARL--Programmentwicklung
	Retten des Programmes auf Platte oder Diskette
	Zeit sparen durch Multitasking
	Das Bediensystem in Kürze
	Empfehlung für das weitere Anlernen

	Schnellkurs Teil 2: Schnittstellen und Dations
	Schnellkurs Teil 3: Typische Bedienungsfehler
	Interpretation von Fehlermeldungen
	Der Error-Dämon
	Beispiele für Fehlermeldungen
	Der Exception-Handler

	Das Pathlist-Konzept von RTOS--UH/PEARL
	Einige technische Daten

	Bedienung des Systems
	Struktur der RTOS-Shell
	Die 8 Ebenen der Shell
	Prozeßphilosophie der RTOS--UH--Shell
	Das User-Environment

	Umgang mit der Shell
	Aufbau der Anweisungszeile
	Bedienung durch den primären Shellprozeß
	Bedienung durch einen sekundären Shellprozeß
	Bedienfunktionen mit Hilfe der Datenstation /XC
	Zeitliche Hintereinanderschaltung von Befehlen
	Antwort der Shell im Fehlerfall

	PEARL--codierte Bedienbefehle
	Besonderheiten bei transienten Kommandos
	Die Shell-Sprache
	Aufruf von Shellskripten
	Sprachumfang Shell-Interpreter
	Kommentare
	Metazeichen
	Shell-Variablen
	E/A-Befehle
	Ablaufsteueranweisungen
	Bedingungs-Anweisungen
	Zeichenketten-Behandlung
	Verschiedene Anweisungen

	Tabelle der Bedienbefehle
	Beschreibung der Bedienbefehle

	Der Editor Rtos-Word
	Einleitung
	Erste Schritte
	Öffnen einer Datei
	Statuszeile, Tabulatorleiste und Fensteraufbau
	Fenster-Elemente im Window-Modus

	Bearbeitung von Texten
	Beschreibung der Bedienbefehle
	Statusänderungen des Editors
	Grundlegende Bearbeitung einer Datei
	Befehle zum Blättern
	Dateibefehle
	Blockbefehle
	Befehle für den Zeilenpuffer
	Tabulatorbefehle
	Marken
	Das Hilfesystem
	Befehle zum Aufräumen
	Zusätzliche Befehle im Window-Modus
	Suchen und Ersetzen
	Ausführen von Batchdateien

	Übergabeparameter des Bedienbefehles
	Die Fernsteuerung
	Alphabetisches Verzeichnis der Kommandos
	Standardmäßig unterstützte Terminals
	Das Konfigurationsmodul
	Die Anpassung an Ihr Terminal
	Beispielmodul

	Besonderheiten bei der Einbindung in das Betriebssystem RTOS-UH
	Statusmeldungen und Eingabeaufforderungen
	Fehlermeldungen
	Technische Daten

	Programmieren in PEARL
	Die PEARL-Compiler-Familie
	Compilertypen und Zielprozessoren
	Sprachliche Besonderheiten des UH--PEARL

	Preprozessor-Anweisungen
	Die Preprozessoranweisung DEFINE
	Die INCLUDE-Anweisung
	Bedingte Kompilation: die Preprozessoranweisung IF
	Bedingte Compilation: Schaltbarer Kommentar

	Globale Sondereinstellungen des Compilers
	SETLINE, MAXERR und MODE
	Modulgröße, ROM-Code
	Codegenerierung unterdrücken

	Lokale Hilfs-- und Testmodi des Compilers
	Übersetzungsprotokoll ein--/ausschalten
	Codeprotokollierung ein--/ausschalten
	Markierungsoption ein--/ausschalten
	Seitenvorschub im Protokoll erzeugen
	Index--, Selektor-- und Parametertest aktivieren
	EPROM--Prozedur erzeugen
	Prozedurparameterstrukturanalyse unterdrücken
	Prozedurarbeitsspeicher reservieren
	Konstantenpool leeren
	Default-PRIO setzen

	Umgang mit Datenstationen in PEARL
	Festlegungen im Systemteil
	Beschreibung AI und MB-Parameter
	Besonderheiten bei der formatierten Eingabe („GET“) im UH--PEARL
	Besonderheiten bei der formatierten Ausgabe („PUT“) im UH--PEARL.
	Erweitertes OPEN/CLOSE--Statement
	E/A--Formate
	Datenkonvertierungsformate
	Steuerformate
	Report- und Positionierungsformate

	Umgang mit Feldern und Zeigern
	Besonderheiten bei Feldzugriffen
	Arbeiten mit Zeigervariablen

	Einbaufunktionen
	Mathematische Funktionen
	Die Funktion „ST“ zur Statusabfrage von Datenstationen
	Bitmapping Basis--Grafik
	Besondere E/A--Operationen
	READ/WRITE
	READ/WRITE mit S-Format
	Die Einbaufunktion NOW
	Die Funktion DATE zum Einlesen des Datums
	Die Einbaufunktion REFADD
	Die Funktion ASSIGN zum Ändern der Datenstation
	Die Funktionen RANF und DRANF zur Erzeugung von Zufallszahlen
	Die Funktion TASKST zum Feststellen eines Taskstatus
	Prozeduren zum Lesen und Ändern der Taskpriorität
	Die Prozeduren TOIEES und TOIEED zur Floatzahl--Wandlung
	Die Prozeduren TORTOS und TORTOD zur Floatzahl--Wandlung
	PEARL-Unterprogramme für Shellfunktionen
	PEARL-Unterprogramme für Textstrings
	PEARL-Unterprogramme für Datenstationen

	Aufruf von C-kodierten Unterprogrammen
	Aufruf von Assembler--Unterprogrammen
	Ausnahmebehandlung und Signale
	Vorgänge im Systemkern
	Exception-Händler in PEARL

	Fehlermeldungen zur Compile--Zeit
	Lokal detektierbare Fehler
	Bilanzdetektierbare Fehler
	Nicht sprachbedingte Abbruchkonditionen
	Warnungen
	Abschlußmeldungen

	Fehlermeldungen zur Laufzeit
	Fehlermeldungen der implementierten mathematischen Einbaufunktionen

	Datenstationen
	Datenstationen Ax, Bx, Cx, UL
	Datenstation BU
	Eigene BU--Datenstation
	Datenstation Dx
	Datenstationen ED/EDB
	Datenstationen Fx/Hx
	Stationszugriff über „LD“
	Datenstation NIL
	Parallel--Port
	Datenstationen VI, VO
	Datenstation XC
	Prozeßinterrupts
	Einbindung eigener Prozeßinterrupts

	Der RTOS--UH Assembler
	Allgemeine Eigenschaften
	Programmzeilenaufbau
	Labelfeld
	Operationsfeld
	Operanden--Feld
	Ausdrücke
	Die Assemblerdirektiven

	Besonderheiten des T-Code
	Problematische 68k-Befehle
	Optimierter T-Code
	Zielmaschinenkonditionierte Befehle
	Formatdefinition

	PowerPC-Assembler
	Tabellenkapazität
	FPU--Befehle und Maxi--Version
	S--Records
	Assembler--Fehlermeldungen
	Einbettung von Assemblerprogrammen
	Beispiele für Modul--/Taskköpfe
	Task-Deklarationsblock

	Innenstrukturen des Systemes
	Die Systemtraps
	Hinweise zur Benutzung der Traps
	Tabelle der Traps

	Das Filesystem
	Der Verwaltungskopf
	Die Datenblöcke
	Eigene Driver für das RTOS--UH-Filesystem

	Das Communication Element
	Benutzung und Aufbau des CE
	Die Modebytes

	Assemblerkodierte PEARL-Unterprogramme
	Parameterübergabe bei PEARL90
	Der Signaturcheck in PEARL90
	Der Feldbeschreibungsblock

	Parameterübergabe im alten PEARL80
	Umstellung von alten Assemblerunterprogrammen auf PEARL90
	Hyperprozessorbefehle
	E/A in Assemblersprache
	Ergänzung von E/A-Treibern
	Exception-Handler
	Einführung
	Anschluß des Exception-Handlers
	Selbstverarbeitete Ausnahmebehandlungen
	Interna

	Das Scheibenkonzept
	Die Systemkonfigurierung
	Modifikation eines Systems
	Beispielhafte Systemerweiterung

	Beschreibung der Scheiben

	Netzwerkoperationen
	Glossar
	Stichwortverzeichnis

