RTOS-UH

Prof. Dr.-Ing. W. Gerth
Last update 21/06/2006

Vorwort

Mehr als zwnazig erfolgreiche Jahre der industriellen Anwendung von RTOS—
UH liegen hinter uns. Die Zahl der registrierten RTOS-UH Systeme, die bisher
das Licht der Welt erblickt haben, {iberschreitet langst die 40.000-er Grenze.
Der auflerordentliche Erfolg der 68k-Prozessoren in der Automatisierungstech-
nik hat dazu sicher seinen Teil beigetragen. Inzwischen ersetzen die schnelleren
PowerPC-Prozessoren bei immer mehr Einséitzen die 68k-Familie. Oft werde
ich gefragt, ob denn die Unterstiitzung der bewahrten 68k-Familie auch in Zu-
kunft mit vollem Engagement bei der Systempflege weitergehen wird. Wer das
vorliegende Handbuch genauer liest, kennt die Antwort: Weil es fiir die 68k-
und die PowerPC-Familie nur einen gemeinsamen Quellcode aller Systemkom-
ponenten fiir die Transferassemblierung gibt, ist es gar nicht méglich, den einen
oder den anderen Prozessortyp bei der Systempflege zu favorisieren.
Gegeniiber der Vorgéngerversion dieses Handbuches hat es kleinere Erweite-
rungen und Korrekturen gegeben. Nicht gedndert haben wir unsere priméren
Zielsetzungen:

e Kompaktheit:

Wiéhrend allgemein der Speicherbedarf selbst fiir einfachste Programm-
funktionen in den letzten Jahren stark angewachsen ist, passen Anwen-
dungen mit RTOS—UH immer noch in die kleineren EPROMs. Unser
besonderes Augenmerk gilt stets den embedded Anwendungen.

e Skalierbarkeit:

Die Anwendungen reichen vom kleinsten Controller, bei dem das kom-
plette System ohne externe Speicher direkt auf dem Chip abgelegt ist
(System on a Chip) bis zum komplexen VME-System mit hunderttau-
senden Zeilen von Quellkode. Auch Projekte mit vielen hundert Tasks
auf einem Prozessor sind keine Seltenheit.

e Nachvollziehbare Arbeitsweise:

Durch die PEARL-Orientierung des Betriebssystemes ergab sich zwangs-
ldufig eine klare und sehr prizise beschreibbare Architektur — optimal fiir
die Automatisierungstechnik.

e Echtzeiteigenschaften:

Der problematischste Bereich aller Echtzeit-Betriebssysteme — Input und
Output, Vernetzung — hat in RTOS—UH lidngst seine Schrecken verlo-
ren. Bei wichtigen Strukturmerkmalen — etwa der Verlagerung des I/0O auf
prioritéitsgerechte Ddmonprozesse — werden keine Kompromisse gemacht.
Wir versuchen stets, auch die unvermeidlichen Auswirkungen von Ver-
netzung und Multiwindowing auf die Echtzeiteigenschaften so gering wie
irgend moglich zu halten. Im Rahmen der wissenschaftlichen Weiterent-
wicklung haben wir ein objektives Mefiverfahren fiir die Dienstgiite eines
Echtzeitbetriebssystemes entwickelt und publiziert — damit konnten wir
die Systemstruktur nach wissenschaftlichen Kriterien weiter optimieren.

e Qualitiatssicherung:

Wir dokumentieren und verifizieren jede Anderung im System mit gréfiter
Sorgfalt. Bevor eine neue Version freigegeben wird, hat sie eine lange Test-
phase mit hochqualifizierten Testern zu iiberstehen. Wir verwenden von
der Qualitdtssicherungsnorm ISO 9000 die fiir Software giiltige Hand-
lungsanweisung ISO 9001-2 als interne Leitlinie. Viel aussagekréftiger ist
jedoch eine erfolgreich abgelegte offizielle Betriebsbewéhrtheitspriifung
nach DIN VDE 801/A1. Fiir diese Zertifizierung kommen nur Systeme in
Frage, die mit einer einzigen Version — das kann niemals die neueste sein —
viele Millionen fehlerfreie Betriebsstunden in verschiedenen Einsatzfillen
nachweisen konnen. In diesem Fall waren es 972 industriell eingesetzte
CPUs, die tiber 9 Millionen Stunden ausgewertet wurden.

e Anwenderkontakt:

Durch stindigen Kontakt mit den Anwendern eliminieren wir alle be-
kannten Fehler umgehend. Auch Anregungen zur Verbesserung greifen
wir gerne auf, soweit dies mit verniinftigem Aufwand moglich ist. Das
System liegt bei vielen modischen Nutzeroptionen gegeniiber der PC-
oder Workstation-Welt manchmal etwas zuriick. Ich denke aber, dafl eine
strukturell saubere Einbindung neuer Dinge fiir den Anwender am Ende
niitzlicher ist als eine Hauruck-Losung.

Die Urform dieses Handbuches wurde vor einigen Jahren von der Fa. IEP Han-
nover durch Umschreiben der alten Vorlage nach TEX initiiert. Aus dieser klei-
nen Dokumentation wurde inzwischen ein Werk mit iiber 700 Seiten.

Durch die Herstellung mit TEX gibt es das Handbuch auch als Postscript- und
als PDF-File. Bitte beachten Sie dazu den Wegweiser auf unserer Internetseite.

Wichtig:

Trotz aller Sorgfalt ist auch unser System hochstwahrscheinlich nicht fehlerfrei.
Gleiches ist auch fiir dieses Handbuch anzunehmen. Eine Haftung fiir Schéden,
die durch den Gebrauch von RTOS—UH oder durch Fehler in diesem Doku-
ment entstehen, wird ausdriicklich ausgeschlossen.

Bitte maximieren Sie die Zuverldssigkeit Ihrer Software und inspizieren Sie
zur rechten Zeit die Fehlerbulletins, die Sie {iber unsere Homepage erreichen
konnen!

www.rtos—-uh.de.

www.rtos.irt.uni-hannover.de.

http://www.rtos-uh.de
http://www.rtos.irt.uni-hannover.de

Diese Seite widme ich den vielen hochqualifizierten Helfern, die bei der Entste-
hung des Systemes mitgewirkt haben. Sie haben schwierige Teilprobleme mit
Ingenieursfleifl gelost und meist auch Code beigesteuert. Nur so konnte das
System seine heutige Reife erreichen. Mein Dank gilt insbesondere:

Dr.-Ing. Dipl.-Ing. Dipl.-Ok. A. Albert

Dipl.-Ing. R. Arlt
Dipl.-Ing. H. Bartels
Dipl.-Ing. U. Bartels
Dr.-Ing. S. Bunzel
Dipl.-Ing. A. Domeyer
Dipl.-Ing. A. Hadler

Prof. Dr.-Ing. R. Hausdorfer

Dipl.-Ing. M. Huck
Dr.-Ing. H. Husmann
Dipl.-Ing. I. Jovers
Dipl.-Ing. K. Koerth
Dipl.-Ing. B. Kroll

Prof. Dr.-Ing. K.-H. Niemann

Dr.-Ing. T. Lilge
Dr.-Ing. T. Probol
Dr.-Ing. B. Wolter

seinerzeit IRT Uni Hannover
heute Fa. esd Hannover
heute Fa. ATR
seinerzeit Hannover
seinerzeit Hannover
seinerzeit Hannover
heute Fa. IEP Hannover
heute FH Lippe

heute Fa. esd Hannover
seinerzeit Hannover
seinerzeit Hannover
heute Fa. IEP Hannover
heute Fa. IEP Hannover
seinerzeit Hannover
IRT Uni Hannover
seinerzeit Hannover
seinerzeit Hannover

Fiir Thre Anwendungen wiinsche ich Thnen viel Erfolg!

Hannover, im Juni 2006

Prof. Dr.-Ing. W. Gerth

(©1984 — 2006 Prof. Dr.-Ing. W. Gerth (fiir das Handbuch und RTOS-UH)
Dies ist die Handbuchversion 5.4 vom 21/06/2006 Sie umfafit 718 Seiten.

Inhaltsverzeichnis

1 Die innere Architektur

1.1
1.2
1.3
1.4

Was mufl der Systemanwender wissen?

Programme, Prozesse und Kontext

Beschreibung des RTOS—UH-Prozeimodelles

Das I/O-System

2 Betriebssystem RTOS-UH

2.1

2.2
2.3
2.4

2.5
2.6

Schnellkurs Teil 1: Erste Schritte
2.1.1 Einschalten
2.1.2 Erste Aktion
2.1.3 PEARL-Programmentwicklung

2.1.4 Retten des Programmes auf Platte oder
Diskette

2.1.5 Zeit sparen durch Multitasking
2.1.6 Das Bediensystem in Kiirze

2.1.7 Empfehlung fiir das weitere Anlernen

Schnellkurs Teil 2: Schnittstellen und Dations . .
Schnellkurs Teil 3: Typische Bedienungsfehler . .
Interpretation von Fehlermeldungen
2.4.1 Der Error-Dédmon
2.4.2 Beispiele fiir Fehlermeldungen
2.4.3 Der Exception-Handler

Das Pathlist-Konzept von RTOS-UH/PEARL

Einige technische Daten

17
17
18
21
24

27
27
27
28
29

34
36
36
40
41
44
46
46
47
48
49
53

INHALTSVERZEICHNIS

3 Bedienung des Systems

3.1

3.2

3.3
3.4
3.5

3.6

Struktur der RTOS-Shell
3.1.1 Die 8 Ebenen der Shell
3.1.2 ProzeBphilosophie der RTOS—UH-Shell
3.1.3 Das User-Environment
Umgang mit der Shell
3.2.1 Aufbau der Anweisungszeile
3.2.2 Bedienung durch den priméren Shellprozefl

3.2.3 Bedienung durch einen sekundéren Shell-
prozeB

3.2.4 Bedienfunktionen mit Hilfe der Datensta-
tion /XC oo

3.2.5 Zeitliche Hintereinanderschaltung von Be-
fehlen

3.2.6 Antwort der Shell im Fehlerfall
PEARL-codierte Bedienbefehle
Besonderheiten bei transienten Kommandos . . .
Die Shell-Sprache
3.5.1 Aufruf von Shellskripten
3.5.2 Sprachumfang Shell-Interpreter
3.5.3 Kommentare
3.5.4 Metazeichen
3.5.5 Shell-Variablen
3.5.6 E/A-Befehle
3.5.7 Ablaufsteueranweisungen
3.5.8 Bedingungs-Anweisungen
3.5.9 Zeichenketten-Behandlung
3.5.10 Verschiedene Anweisungen

Tabelle der Bedienbefehle

55
55
55
99
60
61
61
62

62

64

65
67
68
72

INHALTSVERZEICHNIS 7

3.7 Beschreibung der Bedienbefehle 99
4 Der Editor RT0S-WORD 227
4.1 Einleitungo oL 227
4.2 FErste Schritte 228
4.2.1 Offnen einer Datei 228
4.2.2 Statuszeile, Tabulatorleiste und Fenster-
aufbauo oL 230
4.2.3 Fenster-Elemente im Window-Modus . . . 232
4.3 Bearbeitung von Texten 232
4.3.1 Beschreibung der Bedienbefehle 232
4.3.2 Statusénderungen des Editors 233

4.3.3 Grundlegende Bearbeitung einer Datei . . 235

4.3.4 Befehle zum Blattern 239
4.3.5 Dateibefehle 241
4.3.6 Blockbefehle 245
4.3.7 Befehle fiir den Zeilenpuffer 247
4.3.8 Tabulatorbefehle 248
439 Marken 250
4.3.10 Das Hilfesystem 250
4.3.11 Befehle zum Aufrdumen 251
4.3.12 Zusétzliche Befehle im Window-Modus . . 251
4.3.13 Suchen und Ersetzen 254
4.3.14 Ausfithren von Batchdateien 255
4.4 Ubergabeparameter des Bedienbefehles 256
4.5 Die Fernsteuerung 257
4.6 Alphabetisches Verzeichnis der Kommandos . . . 259
4.7 Standardméfig unterstiitzte Terminals 264

4.8 Das Konfigurationsmodul 264

INHALTSVERZEICHNIS

4.8.1 Die Anpassung an Ihr Terminal 265
4.8.2 Beispielmodul 265
4.9 Besonderheiten bei der Einbindung in das Be-
triebssystem RTOS-UH 268
4.10 Statusmeldungen und Eingabeaufforderungen . . 269
4.11 Fehlermeldungen 272
4.12 Technische Daten 275
Programmieren in PEARL 277
5.1 Die PEARL-Compiler-Familie 277
5.1.1 Compilertypen und Zielprozessoren 277

5.2

5.3

5.4

5.1.2 Sprachliche Besonderheiten des UH-PEARL 281

Preprozessor-Anweisungen 286
5.2.1 Die Preprozessoranweisung DEFINE . . . 287
5.2.2 Die INCLUDE-Anweisung 288

5.2.3 Bedingte Kompilation: die Preprozes-
soranweisung IF 290

5.2.4 Bedingte Compilation: Schaltbarer Kom-

mentar.o 292
Globale Sondereinstellungen des Compilers . . . 293
5.3.1 SETLINE, MAXERR und MODE 293
5.3.2 Modulgréle, ROM-Code 295
5.3.3 Codegenerierung unterdriicken 296
Lokale Hilfs— und Testmodi des Compilers 297
5.4.1 Ubersetzungsprotokoll ein—/ausschalten . 297
5.4.2 Codeprotokollierung ein—/ausschalten . . 297
5.4.3 Markierungsoption ein—/ausschalten . . . 298
5.4.4 Seitenvorschub im Protokoll erzeugen . . 299

5.4.5 Index—, Selektor— und Parametertest akti-
VIEren . . .o oL 300

INHALTSVERZEICHNIS

5.5

5.6

5.7

5.4.6 EPROM-Prozedur erzeugen

5.4.7 Prozedurparameterstrukturanalyse unter-
driicken

5.4.8 Prozedurarbeitsspeicher reservieren
5.4.9 Konstantenpool leeren
5.4.10 Default-PRIO setzen
Umgang mit Datenstationen in PEARL
5.5.1 Festlegungen im Systemteil
5.5.2 Beschreibung AI und MB-Parameter . . .

5.5.3 Besonderheiten bei der formatierten Ein-
gabe (,GET¥) im UH-PEARL

5.5.4 Besonderheiten bei der formatierten Aus-
gabe (,PUT“) im UH-PEARL.

5.5.5 Erweitertes OPEN/CLOSE-Statement . .
5.5.6 E/A-Formate
5.5.7 Datenkonvertierungsformate
5.5.8 Steuerformate
5.5.9 Report- und Positionierungsformate

Umgang mit Feldern und Zeigern
5.6.1 Besonderheiten bei Feldzugriffen
5.6.2 Arbeiten mit Zeigervariablen
Einbaufunktionen L.
5.7.1 Mathematische Funktionen

5.7.2 Die Funktion ,,ST* zur Statusabfrage von
Datenstationen

5.7.3 Bitmapping Basis—Grafik
5.7.4 Besondere E/A-Operationen
575 READ/WRITE.
5.7.6 READ/WRITE mit S-Format
5.7.7 Die Einbaufunktion NOW

302
303
304
304
305
305
307

312

10

INHALTSVERZEICHNIS

5.8
5.9

5.7.8 Die Funktion DATE zum Einlesen des Da-

5.7.9 Die Einbaufunktion REFADD

5.7.10 Die Funktion ASSIGN zum Andern der
Datenstation

5.7.11 Die Funktionen RANF und DRANF zur
Erzeugung von Zufallszahlen

5.7.12 Die Funktion TASKST zum Feststellen ei-
nes Taskstatus

5.7.13 Prozeduren zum Lesen und Andern der
Taskprioritdt

5.7.14 Die Prozeduren TOIEES und TOIEED
zur Floatzahl-Wandlung

5.7.15 Die Prozeduren TORTOS und TORTOD
zur Floatzahl-Wandlung

5.7.16 PEARL-Unterprogramme fiir Shellfunk-
tionen oL oL

5.7.17 PEARL-Unterprogramme fiir Textstrings

5.7.18 PEARL-Unterprogramme fiir Datensta-
tionen L.

Aufruf von C-kodierten Unterprogrammen

Aufruf von Assembler—Unterprogrammen

5.10 Ausnahmebehandlung und Signale

5.10.1 Vorgédnge im Systemkern.
5.10.2 Exception-Héndler in PEARL

5.11 Fehlermeldungen zur Compile—Zeit

5.11.1 Lokal detektierbare Fehler
5.11.2 Bilanzdetektierbare Fehler
5.11.3 Nicht sprachbedingte Abbruchkonditionen
5.11.4 Warnungen
5.11.5 Abschlumeldungen

341
342

342

344

345

346

348

348

349
355

INHALTSVERZEICHNIS 11

5.12 Fehlermeldungen zur Laufzeit 385
5.12.1 Fehlermeldungen der implementierten ma-
thematischen Einbaufunktionen 387
6 Datenstationen 389
6.1 Datenstationen Az, Bz, Cz, UL 389
6.2 Datenstation BU 394
6.3 Eigene BU-Datenstation 397
6.4 DatenstationDz 402
6.5 Datenstationen ED/EDB 404
6.6 Datenstationen Fo/Hz 407
6.7 Stationszugriff iitber ,LD“ 409
6.8 Datenstation NIL 410
6.9 Parallel-Port 412
6.10 Datenstationen VI, VO 413
6.11 Datenstation XC 415
6.12 Prozefinterrupts 416
6.13 Einbindung eigener ProzeBinterrupts 417
7 Der RTOS-UH Assembler 419
7.1 Allgemeine Eigenschaften 419
7.2 Programmzeilenaufbau L. 420
7.2.1 Labelfeld 420
7.2.2 Operationsfeld 421
7.2.3 Operanden-Feld 424
724 Ausdriicke. 426
7.2.5 Die Assemblerdirektiven 427
7.3 Besonderheiten des T-Code 429
7.3.1 Problematische 68k-Befehle 429

7.3.2 Optimierter T-Code 430

12 INHALTSVERZEICHNIS
7.3.3 Zielmaschinenkonditionierte Befehle . . . 431
7.3.4 Formatdefinition 432

7.4 PowerPC-Assembler 435
7.5 Tabellenkapazitdat 436
7.6 FPU-Befehle und Maxi—Version 436
77 S-Records 440
7.8 Assembler-Fehlermeldungen 442
7.9 Einbettung von Assemblerprogrammen 446
7.9.1 Beispiele fiir Modul-/Taskkopfe 448
7.9.2 Task-Deklarationsblock 450
Innenstrukturen des Systemes 451
8.1 Die Systemtraps 451
8.1.1 Hinweise zur Benutzung der Traps 451
8.1.2 Tabelleder Traps. 453
8.2 Das Filesystem 551
8.2.1 Der Verwaltungskopf 551
8.2.2 Die Datenblocke 553
8.2.3 Eigene Driver fiir das RTOS—UH-Filesy-
stem oL 553
8.3 Das Communication Element 559
8.3.1 Benutzung und Aufbau des CE 559
8.3.2 Die Modebytes 562
8.4 Assemblerkodierte PEARL-Unterprogramme . . 566
8.4.1 Parameteriibergabe bei PEARL90 566
8.4.2 Der Signaturcheck in PEARL90 571
8.4.3 Der Feldbeschreibungsblock 574
8.5 Parameteriibergabe im alten PEARLSO 576
8.6 Umstellung von alten Assemblerunterprogram-

men auf PEARL90 586

INHALTSVERZEICHNIS 13

8.7 Hyperprozessorbefehle 595
8.8 E/A in Assemblersprache 605
8.9 Erginzung von E/A-Treibern 608
8.10 Exception-Handler 618
8.10.1 Einftthrung 618

8.10.2 Anschlufl des Exception-Handlers 619

8.10.3 Selbstverarbeitete Ausnahmebehandlungen 620

8.10.4 Interna 623

9 Das Scheibenkonzept 625
9.1 Die Systemkonfigurierung 625
9.2 Modifikation eines Systems 626
9.2.1 Beispielhafte Systemerweiterung 628

9.3 Beschreibung der Scheiben 634

10 Netzwerkoperationen 663
11 Glossar 671

12 Stichwortverzeichnis 685

Tabellenverzeichnis

14

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6

4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

5.1

Ubersicht iiber mogliche Shellprozesse 60
Schliisselworte der Shellsprache 92
Die vorbesetzten Shellvariablen 93
Metazeichen der Shellsprache 93
Sonderzeichen der Shellsprache 94
Kurznamen der Taskzustédnde 154
Kurznamen der Speichersektionen. 202
Erlaubte Textzeichen fiir den Editor RTos-WORD 229

Statuszeilenelemente des Editors RTos-WORD . 231
Der Einsetzmodus von RTos-WORD 234
Der Uberschreibmodus von RTos-WORD 235
Korrektur von Dateinamen bei RTros-WORD . . 242
Parameter von RT0S-WORD beim Verlassen einer

Datei. 0. 244
Farbzuordnungstabelle von Rros-WoORD 252

Rros-WoRD-Kommandos mit einem Buchstaben 259

Rros-WorD-Kommandos im ,E“-Submenii . . . 260
Rros-WorbD-Kommandos im ,,O“-Submenii . . . 261
Rros-WoRrD-Kommandos im ,,P“-Submenii . . . 261
Rros-WorD-Kommandos im , X“-Submenii . . . 262
Rros-WorbD-Kommandos im ,B“-Submenii . . . 262
Rros-WorD-Kommandos im ,Esc“-Submenii . 263
Datentypen in RTOS-UH/PEARL 282

TABELLENVERZEICHNIS 15

5.2 DIN/PEARL90-Abweichungen 285
5.3 Gerétebezeichner in PEARL 307
5.4 FErsatzformate bei LIST 319
5.5 Mathematische Funktionen in PEARL 329
5.6 Mathematische Funktionen beim 68881-PEARL . 331
5.7 Standardwerte der ST-Funktion bei der PEARL-

E/A .. 332
5.8 ST-Werte bei abgeschaltetem NE-Flag 334
5.9 Taskstatus. L. 346
8.1 Filesystem, Verwaltungskopf. 552
8.2 Filesystem, Datenblock 553
8.3 AufbaudesCEs. 561
8.4 CE, linkes Modebyte 563
8.5 CE, linkes Modebyte (untere 3 Bits) 563
8.6 CE, rechtes Modebyte 563
8.7 Betriebsbefehle des CEs 564
8.8 Statusbytedes CEs 565
8.9 Parameterschnittstelle bei PEARL90 567
8.10 Der Feldbeschreibungsblock in PEARL90 575

8.11 Struktur von Exception-Frames 624

16

TABELLENVERZEICHNIS

(Leere Seite vor neuem Kapitel)

Kapitel 1: Die innere Architektur

1.1 Was mufl der Systemanwender wissen?

Kaum ein Hersteller macht verwertbare Angaben iiber das innere Funktions-
modell seines Betriebssystemes. Das bedeutet, dafl eklatante Schwéchen des
Systemkonzeptes manchmal sehr lange unerkannt bleiben. Eine wichtige Frage
ist ja stets die nach einer sicheren und schnellen Reaktion des Rechnersystemes
auf Alarme und Ausnahmesituationen. Zu dem Thema ,, Reaktionszeit* hat sich
leider in letzter Zeit eine unserivse Unart eingebiirgert: sehr oft wird z. B. als
Reaktionszeit einfach nur jene Zeit angegeben, die vom Eintreffen des dufleren
Ereignissignales bis zum Beginn der Interruptroutine (Supervisorproze8 s. u.)
verstreicht. Diese Zeit ist bei RTOS—UH strukturbedingt absolut hervorra-
gend, doch verwenden wir sie niemals als Qualtitdtsmaf. Sie besagt namlich
fiir sich genommen iiberhaupt nicht, daf§ man sichere Echtzeitsoftware mit dem
System erzeugen kann. Man erlebt gerade bei dieser Frage oft, daf} es selbst sog.
,Fachberatern“ an jeglichem Verstédndnis fiir die innere Arbeitsweise der von
ihnen vertriebenen Systeme fehlt.

Mit diesem Kapitel wollen wir unsere Anwender in die Lage versetzen, bei der
Auswahl eines Betriebssystemes die richtigen Fragen zu stellen und treffende
Qualitétsargumente fiir die Verwendung unseres Systemes zu finden. SchliefSlich
haben wir mit den intellektuellen M&glichkeiten einer Universitét viele Proble-
me erkannt und gelost, die von anderen Systemen nicht beherrscht werden. Bei
fast jeder Echtzeitanwendung bleibt ein unbekanntes Restrisiko, weil im Pro-
bebetrieb stets nur irgendein kleiner Ausschnitt der im spéteren Betrieb denk-
baren zeitlichen Konstellationen wirklich getestet werden kann. Minimieren Sie
dieses Risiko — wenn moglich zu Null — und studieren Sie das Multitasking-
konzept unseres Systemes.

17

18 1.2 Programme, Prozesse und Kontext

1.2 Programme, Prozesse und Kontext

Der Begriff Programm ist sicher jedermann geldufig. Man versteht darunter
eine Handlungsanweisung an den Rechner, bestimmte Ablédufe selbstédndig aus-
zufithren. Wir unterteilen Programme in ,,Systemprogramme*“ und ,, Anwen-
derprogramme* . Erstere werden meist vom Hersteller des Betriebssystemes
stammen und sind Teil des Betriebssystemes. Anwenderprogramme enthalten
dagegen die eigentliche spezielle Problemlosung, z. B. Regelalgorithmen, Anla-
geniiberwachung oder die Bedienerunterstiitzung. Anwenderprogramme benut-
zen die (zumeist universellen) Systemprogramme, wiihrend es eine umgekehr-
te Abhéingigkeit nicht gibt. Dieser eingefiihrte Programmbegriff ist jedoch lei-
der nicht ausreichend zum Versténdnis eines modernen Multitasking-Echtzeit-
Betriebssystemes.

FEine zentrale Bedeutung in modernen Echtzeitmultitaskingsystemen hat der
Begriff Prozef3. Darunter verstehen wir den Vorgang, der ablduft, wenn der
Prozessor ein Programm bearbeitet. Wenn unser Rechnersystem nur einen Pro-
zessor besitzt, so kann zu jedem Zeitpunkt stets nur genau ein Prozefl wirklich
ablaufen. Anders ausgedriickt: Es ist zwar moglich, ja sogar iiblich, dafl es mehr
als einen Prozef§ gibt, es haben jedoch nur immer genauso viele eine Ablauf-
geschwindigkeit > 0, wie es verfiigbare Prozessoren im System gibt. Prozesse
sind also quasi die Inkarnation von Programmen, sie sind Subjekte, die nach ei-
ner Programmvorschrift handeln, aber manchmal voriibergehend bewegungslos
verharren.

Wenn der Prozessor einen Proze ablaufen 1d8t, dann muf} er sich einige Noti-
zen machen, z. B. welcher Maschinenbefehl als néchster zu bearbeiten ist, sowie
einige Zwischenresultate, die er sich in seinen Registern auf dem Chip ,,merkt*.
Wenn der Prozef} eine Weile ruht und der Prozessor einen anderen lebendig wer-
den 148t, so mufl die Gesamtheit dieser ,Notizen“ aufgehoben werden, damit
eine korrekte Fortfithrung des im Moment ruhenden Prozesses spater moglich
ist. Die Gesamtheit dieser Hilfsinformationen nennen wir den Kontext. Aus
wieviel Daten dieser Kontext besteht, hingt vom Prozessor und vom Prozef ab:
beim 68000 geniigen fiir die ,,Nutzerprozesse“ (s. u.) 80 bytes, beim PowerPC
dagegen sind es mindestens 160 Bytes. Bei Benutzung des Gleitkommarechen-
werkes des PowerPC kann das Volumen des Kontextes sogar iiber 400 Bytes
erreichen. Bei den sogenannten , Supervisorprozessen® (s. u.) besteht der Teil
des Kontextes, den sie brauchen und dndern, oft nur aus wenigen Bytes.

1.2 Programme, Prozesse und Kontext 19

Wenn der Prozessor einen Prozef ruhen 14fit, um einen anderen (weiter) zu
bearbeiten, so rettet er den alten Kontext und laddt den neuen: das nennen
wir Kontextswitch. Wegen des grofleren Datenvolumens ist der Begriff aber
eigentlich nur beim Umschalten zwischen den ,, Nutzerprozessen“ gebrauchlich.
Auch der Begriff Prozeflumschaltung ist in der Regel nur fiir den Wechsel
von einem Nutzerprozel zum anderen iiblich. In den Diagrammen verwenden
wir das Kiirzel ,,csw* fiir diese Umschaltung.

Um es noch einmal zu veranschaulichen, hier eine Ubertragung der obigen Fach-
begriffe in das normale Leben: Auf Papier gedruckte Noten treten an die Stelle
der Programme. Das Flotenspiel ist der Prozef3, der diese Handlungsanweisung
(Programm) lebendig werden 148t. Die Flote samt Spieler ist logischerweise das
Aquivalent zum Prozessor. Wenn mehrere Stiicke gleichzeitig gespielt werden
miissen, es aber nur einen Flotenspieler gibt, so muf der Spieler auf seiner Flote
abschnittweise mal dieses und mal jenes Stiick weiterspielen. Dazu muf er sich
aber mindestens die jeweils ndchste Note und die giiltige Tonart als ,, Kontext*
fiir jeden dieser Prozesse merken und bei Wiederaufnahme des Stiickes erneut
installieren. (Gottseidank gibt es solcherlei ,, Katzenmusik* nur in den Multi-
taskingbetriebssystemen und nicht bei Konzerten ...)

In der ...ix-Welt sind die ,,Prozesse“ normalerweise an einen Nutzerarbeits-
platz gebunden und wollen nichts miteinander zu tun haben (sie streiten sich
hochstens um die Resourcen). Erst in neuerer Zeit (POSIX-Norm-Versuch)
denkt man dort an eine besondere Form von Prozessen, die ,, Threads“ ge-
nannt werden. In einigen ...ix-Derivaten sind die Threads bereits heute instal-
liert. Threads sollen immerhin gemeinsame Speicherzellen kennen. Ob mit der
POSIX-Schnittstellennorm nach all den Jahren der Diskutiererei am Ende ir-
gendetwas fiir die Automatisierungstechnik brauchbares herauskommt, kann
man weiterhin anzweifeln. Das PEARL-Prozeflkonzept ist sicher erheblich um-
fassender, dabei aber auch flexibler und viel praxisorientierter.

20 1.2 Programme, Prozesse und Kontext

In unserer RTOS—UH-Welt kennen wir aus guten Griinden folgende zwei Sor-
ten von Prozessen:

e Supervisorprozesse.

Diese Prozesse laufen in RTOS—UH stets auf Systemebene im Supervi-
sormode des Prozessors. Es wiirde gegen das Sicherheitskonzept unseres
Systemes verstoflen, diese Sorte von Prozessen in die Hand des Nutzers
zu geben. Wie unten erldutert, gehoren u. a. die Interruptantwortrouti-
nen und die mit Systemtraps angestolenen Prozesse zu dieser Kategorie.
Diese Prozesse diirfen niemals Warteschleifen oder dhnliches ausfiihren,
denn ihre zeitliche Kiirze ist entscheidend fiir die sichere Echtzeitfunktion
des Systemes. Logischerweise soll das Datenvolumen ihres Kontextes so
klein wie moglich sein.

e Nutzerprozesse.

In der RTOS—UH-Welt nennen wir diese Prozesse auch , Tasks“ . Sie
entsprechen den PEARL-Tasks und damit in etwa den ,, Threads“ der
POSIX-Philosophie. Allerdings gibt es in RTOS—UH auch Prozesse
(z. B. die Shell-Prozesse), die eher den normalen Prozessen der ...ix-Welt
entsprechen. Das Wort ,Nutzer...“ bedeutet nicht zwingend, dafl in diese
Gruppe nur Prozesse gehoren, deren Programm ein Nutzer kodiert hat.
Auch die im System immer vorhandene Leerlauftask (#IDLE), sowie der
Errordémon (#ERRDM) und die I/O-Démonen sind in diesem Sinne Nut-
Zerprozesse.

1.3 Beschreibung des RTOS—UH-ProzefSmodelles 21

1.3 Beschreibung des RTOS—UH-Prozeflmodelles

Das Innenleben eines Echtzeitbetriebssystemes mit seinen Stérken und Schwii-
chen begreift der Ingenieur am besten an Hand eines sauber definierten ,,Pro-
zeBmodelles“ . Dazu studieren wir hier einfach einen hypothetischen Ablauf
langs der Zeitachse. Solche Prozef3/Zeit Diagramme werden vom Autor seit
sehr langer Zeit in der Prozefirechentechnikvorlesung benutzt. Sie haben sich
lingst beim Studium der verschiedensten Phénomene bewihrt. Als Ordinate
(vertikale Achse) wird mit wachsender Prioritdt nach oben fiir jeden Zeitpunkt
derjenige Prozefl markiert, dessen Ablaufgeschwindigkeit von Null verschieden
ist. Jeder Prozef} ist durch Prozesse, die im Diagramm unter ihm liegen, nicht
unterbrechbar, solange er selbst noch arbeiten kann.

Prozef3
A
IS 1o
IRx |
IR1 ¢
1RO
SF 1
PU {--

Tsy 4
Tsx |

Tsa
Idle 1 |

t t tot
IRO SF1 SF2 IRl Zeit

Ein beispielhaftes Prozef3/Zeitdiagramm von RTOS—-UH.

Y

An der Grenzlinie zwischen Supervisor- und Nutzerprozessen liegt der Pro-
zeflumschalter ,PU“. Er ist gleichzeitig der niedrigst priorisierte Supervisor-
prozefl. Jede Riickkehr des Prozessors aus dem Supervisormode oberhalb der
»,PU“-Linie in den User-Bereich fiihrt zu einer (evtl. sehr kurzen) Inspektion
der Sachlage durch den ,PU*“: es kommt zum Kontextswitch ,csw* oder nicht.
Im letzteren Fall wird dies durch eine nur kurze waagerechte Linie ohne Zusatz
»esw auf der ,PU“-Ebene dargestellt.

22 1.3 Beschreibung des RTOS—UH-Prozefmodelles

Im Diagramm dargestellt ist die durch einen Hardwareinterrupt bewirkte Ak-
tivierung der Task ,, TSa“, wie sie etwa durch das PEARL-Statement

WHEN IR0 ACTIVATE TSa;

vereinbart sein konnte.

Die Task TSa ruft dann eine Systemfunktion SF1 auf, z. B. ein erfolgreiches
REQUEST auf eine Semaphorvariable. Im obigen Beispiel wurde angenom-
men, dafl beim Aufruf einer weiteren Systemfunktion SF2 zufillig gerade ein
Hardwareinterrupt ausgelost wird, der zum echten ,,preemptive Contextswitch*
(CSW) zugunsten der Task TSx fiihrt. SF2 wird also abgebrochen, damit
TSx moglichst sofort starten kann. TSx ruft an ihrem dynamischen Ende die
Terminate- (end)-Systemfunktion SFe auf. Der PU exekutiert einen Contexts-
witch, der jedoch nur fiktiv in den Prozefl T'Sa zuriickfiihrt, da sofort die ab-
gebrochene Systemfunktion SF2 wieder in Bearbeitung genommen wird. Ein
eventueller interner Kontext von SF2 wird bedingt durch ihre Bauart dabei
neu erstellt - mufite also vorher nicht gerettet werden (s. u.).

Trotz der im Gegensatz zu anderen Betriebssystemen klaren Struktur von
RTOS-UH gibt es auch hier natiirlich Leistungsgrenzen.

So gibt es zwangsldufig durch die Maschinenbefehlssequenzen in den Supervi-
sorprozessen oberhalb der ,PU“-Linie Zeitabschnitte, in denen eine Umschal-
tung durch den ,,PU* nicht moglich ist — z. B. bei der Systemfunktion , Re-
quest Semaphore* zwischen Testen und Umsetzen der Variablen. Fiir die kor-
rekte Funktion des Semaphorkonzeptes ist es sogar zwingend notwendig, dafl
der ,PU“ diese beiden Operationen nicht teilen kann. Je langer aber jeweils die
ungiinstigste Zeitspanne einer solchen Behinderung des ,PU“ ist, desto schlech-
ter ist die Echtzeitqualitét (Determiniertheit) des Systemes! Es gibt tatséchlich
einige sogenannte Echtzeitsysteme, die hier je nach Nutzerprogrammsituation
keine obere Grenze zu kennen scheinen und eigentlich in der Echtzeit-DV nicht
eingesetzt werden diirften.

1.3 Beschreibung des RTOS—UH-Prozefmodelles 23

Die durch den ,,PU“ nicht aufspaltbaren Sequenzen sind in RTOS—UH im
Prinzip vorher statisch auszéhlbar, hdngen also z. B. nicht von der aktuellen
Speicherbelegung ab. Auch die Suche nach Platz oder irgendwelchen Objekten
im Speicher ist nach jeweils einer Handvoll Maschinenbefehle immer wieder
fiir den ,,PU*“ abbrechbar. Bei der Unterbrechung einer ,SF“ durch den ,PU*
gilt so eine Art , Throw-away“-Prinzip: Die ,,SF* selbst haben keinen eigenen
Kontext oder nur solchen, der bei Neubeginn der ,,SF* von alleine wiederkehrt;
was die ,,SF* bis zum Abbruch geleistet hat, wird einfach bei Wiederaufnahme
der verdrangten Task wiederholt. Dadurch entsteht theoretisch natiirlich ein
Verlust von Prozessorarbeitsleistung. Er ist jedoch in der Praxis kaum nach-
zuweisen. Lediglich beim Labortestbetrieb mit Signalgenerator und zyklischen
Interrupts im Frequenzbereich der (hohen) Systemleistungsgrenze beobachtet
man verfahrensbedingte charakteristische Phiénomene. Man beachte, dafl die
,verworfene Arbeit“ ja stets dem minderwichtigen, zu verdringenden Prozefl
aufgehalst wird. Diese Technik wurde in den modernen Versionen von RTOS—
UH sténdig weiter perfektioniert und ist sicher einer der Griinde fiir die sehr
gute Phasentreue, Determiniertheit und schnelle Reaktivitiat der aktuellen Im-
plementierungen.

Die Abbrechbarkeit von Systemfunktionen ist fiir den Regelungstechniker zwin-
gend. Multiusersysteme, wie z. B. normales Unix oder gewisse OS-z haben trotz
ihrer sonstigen Qualitdten hier ganz gravierende konzeptionelle Méngel, die sie
fiir typische anspruchsvolle Regelaufgaben ungeeignet machen: Irgendeine nie-
derpriore Task veranlafit eine Terminalausgabe, ruft dazu eine ,,SF* auf, und
schon ist der Reglerzyklus vollig zerstort, weil der Timerinterrupt erst am Ende
der SF zum Taskwechsel fithrt. Das grofle Gefahrenpotential durch die Verwen-
dung solcher Systeme wird hier sehr deutlich.

In RTOS—UH liegen oberhalb des Prozeumschalters folgende Supervisorpro-
zesse:

IS = [Interruptsperre, durch Software ein-/ausgeschaltet
IR = [Interruptroutinen, durch Prozessorhardw. aktiviert
SF = Systemfunktion, durch Software-IR/Trap aktiviert

24 1.4 Das I/O-System

Bei unserem System wird aus einsichtigen Griinden generell die Strategie ver-
folgt, moglichst wenig Aktionen von den Supervisorprozessen ausfithren zu
lassen. Wie an dem Proze-/Zeitdiagramm deutlich wird und oben schon ge-
sagt wurde, entziehen sie den Nutzerprozessen Prozessorleistung und gefahr-
den die Determiniertheit von Anwenderprogrammen. Sie sind deswegen quasi
Storenfriede im System. Im RTOS—UH ist darum die einzige Aufgabe der IR-
Prozesse die Verdnderung des Laufzustandes von Nutzerprozessen. Haben sie
den Laufzustand irgendeines Nutzerprozesses gedndert, dann hinterlassen sie
eine Notiz in einer zentralen Sammelflag. Gleiches tun auch die ,,SF“-Prozesse,
jedoch finden hier im Gegensatz zu den IR-Prozessen noch andere Aktionen
(Speichersuche etc.) statt.

Der RTOS—UH-Kern priift bei jedem , Abstieg® vom Supervisor- in den Us-
erstatus auf der PU-Ebene die oben erwéhnte Sammelflag, in der jede zwi-
schenzeitliche Taskzustandsénderung archiviert wurde. Der PU selbst ist der
niedrigst priorisierte Supervisorprozess des Systemes, lduft also im privilegier-
ten Mode des Prozessors mit vollem Instruktionssatz. Da auch die Aufgaben
des PU sehr langatmig werden konnen, ist er ebenfalls so konstruiert, dafl ein
preemptiver Contextswitch moglich ist.

Wichtiger Hinweis:

Das Interruptsystem des Prozessors ist in RTOS—UH bis auf sehr kurze Se-
quenzen immer offen. So konnen jederzeit Alarme oder Dateninterrupts das
System erreichen. Der Aufruf einer SF durch eine Nutzertask gefahrdet al-
so auch diese Art von Echtzeitreaktivitdt nicht. Grundsétzlich kann auch der
Anwender eigene TR-Prozesse zum System hinzufiigen, es ist aber unbedingt
erforderlich, daf} er sich an die Konventionen hélt und seine IR-Prozesse so ge-
staltet, daf} sie nach moglichst wenig Maschinenzyklen (z. B. 20) ihren Ausgang
(iiber die PU-Ebene!!) nehmen kénnen.

1.4 Das I/O-System

Die Ein- oder Ausgabe unter Verwendung von Geriten, die langsamer sind als
der Prozessor, ist eine Aufgabe des Betriebssystemes. Solche Geréte sind z. B.
Drucker, Plattenspeicher, ein Fenster auf dem Monitor oder auch eine ferne
Station im Netz.

1.4 Das I/O-System 25

Eine Besonderheit des RTOS—UH liegt hier in der Verwendung besonderer
Input- und Output-Tasks. Diese Tasks sind quasi dienstbare Geister des Sy-
stemes und werden darum hier auch ,I/O-Démonen® genannt. Eine Task, die
etwas drucken mochte, fiillt dazu ein sogenanntes ,,Communication—Element*
mit Text und Verarbeitungsvorschriften und iibergibt es an den Druckerdédmo-
nen. Der Druckerddmon kiimmert sich fortan autonom um die Ausfithrung des
Auftrages, wiahrend die auftraggebende Task schon wieder andere Aktivitdten
entfalten kann; wenn sie will, kann sie allerdings auch auf das Ende des Druck-
vorganges warten, ohne dabei den Prozessor zu belasten.

Fast alle anderen Systeme haben hier nur eine prozedurale Schnittstelle, und die
zugehorige Systemfunktion ist naturgemif sehr zeitaufwendig. Die gewaltigen
Nachteile aufwendiger Systemfunktionen wurden ja bereits in diesem Kapitel
herausgearbeitet. In RTOS—UH aktivieren und versorgen die Systemfunktio-
nen fiir die Ein- und Ausgabe dagegen nur den zustdndigen Damonen, der mit
einer Prioritit ganz knapp iiber seinem momentanen Auftraggeber eine nach
Prioritdten geordnete Warteschlange abarbeitet.

Ist ein Damon gerade mitten in einem Auftrag, wihrend ein neuer wichtigerer
Auftrag eingeht, so &ndert das System sofort seine Prioritéit genau passend, um
den Rest des alten Auftrages, so schnell es moglich ist, zu Ende zu bringen.
Damit ist eine Irritation hochpriorer Tasks durch Ein- Ausgabevorgéinge niedrig
priorer Prozesse in RTOS—UH auf ein kaum noch zu unterbietendes Maf
reduziert. Praktisch tritt eine Beeinflussung meist nur noch dann auf, wenn
hoch- und niederpriore Tasks Geriite gemeinsam benutzen, weil RTOS—-UH
die Auftrage aus guten Griinden nicht beliebig fein zerstiickelt.

So ist erklérlich, weshalb sogar Reglertasks mit Abtastzyklen im Millisekun-
denbereich zeitkonform arbeiten konnen, wihrend andere niedriger priorisierte
Tasks umfangreiche Datensétze von der Platte lesen oder dorthin schreiben.

26

1.4 Das I/O-System

(Leere Seite vor neuem Kapitel)

Kapitel 2: Betriebssystem RTOS-UH

2.1 Schnellkurs Teil 1: Erste Schritte
2.1.1 Einschalten

Systeme mit Monitorprogramm erwarten nach Meldung des Monitors die Ein-
gabe eines systemabhéingigen ,, Boot“-Befehles, andere starten RTOS—UH aus
dem EPROM oder booten automatisch.

Es dauert bis zu 20 Sekunden, bevor iiberhaupt etwas auf dem Sichtgerét
passiert. In dieser Zeit konfiguriert sich das Betriebssystem (automatic lin-
king) an Hand der im EPROM oder Bootbereich zusammengestellten System-
komponenten. Passiert auch nach ldangerer Zeit nichts, so mufl die Hardware
(Baudrate richtig?) untersucht werden. Ansonsten erscheint die Kopfzeile mit
Konfigurations— und Lizenzhinweisen, abgeschlossen mit der Meldung RESET.
Wann immer RESET erscheint, handelt es sich um einen sogenannten ,, Kalt-
start.

Nach dieser Reset-Meldung ist das System im leeren Grundzustand. Es kann
so konfiguriert sein, dal es nun sofort beginnt, auf der Platte nach Initialisie-
rungsfiles zu suchen. Diese stehen meistens im Ordner /HO/AUTO und heiflen
AUTOC, AUTOCx und AUTOW sowie AUTOWx. Dabei steht C fiir den Kaltstart- und
W fiir den Warmstartvorgang. Mit x ist die Nummer (1, 2, 3 ..) der jeweils
einzurichtenden Nutzerarbeitsplidtze gemeint. Mit diesen Initialisierungsfiles in
Shellsprache kann bei Bedarf natiirlich auch automatisch Anwendungssoftware
geladen werden.

,Leerer Grundzustand“ bedeutet aber auch, dafl eventuelle Editordateien im
Speicher oder dort bisher abgelegte Daten und Programme verloren sind. Auch
nach einem ,System Abort“ nimmt das System diesen Zustand automatisch
ein, wenn vorher durch fehlerhafte Programme wichtige RTOS—UH-eigene
Daten inkonsistent geworden sind. In solch einem Fall sollte man bei nicht
ROM-residenten Systemen besser neu booten.

27

28 2.1 Schnellkurs Teil 1: Erste Schritte

2.1.2 Erste Aktion

Im Gegensatz zu den meisten anderen Betriebssystemen passiert jedoch bei
Anschlag eines Zeichens auf der Tastatur zunéchst gar nichts. Hier mufl man
sich mit der ersten Besonderheit von RTOS—UH vertraut machen: Der Nutzer
mit seiner Tastatur ist nicht der Herrscher im System, sondern nur ein von
Zeit zu Zeit storendes externes Ereignis, auf das RTOS—UH prioritéitsgerecht
reagieren wird. Was aber tut der Prozessor zur Zeit? Der Prozefumschalter
hat festgestellt, dafl die einzige lauffdhige ,, Task“ die Leerlaufaktivitdt #IDLE
ist und 148t diese arbeiten. #IDLE ist immer lauffahig. Um den Prozessor von
seiner #IDLE-Task zu trennen, erzeugen wir einen Interrupt durch Anschlag
von

Ctrl A (Bei gedriickter Ctrl-Taste Taste A anschlagen)

Auch mit Ctrl B oder Ctrl C oder BREAK/Undo kann der Interrupt erzeugt
werden. Diese Befehle haben aber eine besondere Bedeutung. Mit Ctrl B ent-
scheidet man sich fiir eine Eingabe auf der seriellen Schnittstelle im Ba-Mode
(sieche dazu Seite 389). Mit Hilfe von BREAK/Undo kann man Bedienbefehle
selbst unterbrechen oder sich in verfranster Situation, z. B. im Editor, mit
einem , Notruf“ der Shell wieder befreien. Mit Ausnahme von Ctrl C oder
Break/Undo, dort dauert es etwa 2 Sekunden, erscheint sofort nach Anschlag
der Prompt ,,*“ und zeigt Eingabebereitschaft an.

! — Wann immer wir Bedienfunktionen des Rechners benttigen, muf
eine der obigen Tasten, i. a. Ctrl A, angeschlagen werden.

Mit dem Erscheinen des ,*“ iibergibt der Dispatcher (Prozefumschalter, PU)
gleich wieder an ,#IDLE“. Dennoch konnen wir jetzt eine Eingabe machen. Wir
sind ndmlich mit dem Bedieninterpreter (Shell) des Systemes verbunden.

! — Die Sprache des Interpreters darf nicht verwechselt werden mit
einer PEARL-Programmierung, auch wenn es viele ganz dhnli-
che oder gar gleiche Anweisungen gibt.

Die nun zuldssigen Eingaben werden in einem eigenen Kapitel spéter beschrie-
ben. Wir wihlen das Kommando

L

und schlieflen es mit Carriagereturn (CR) ab. Dieses Kommando bedeutet ,, List
all tasks“. Moglich wire dann etwa folgende Ausgabe:

2.1

Schnellkurs Teil 1: Erste Schritte

00001986 +FFF/1
000019D0 -001/1
00001A1A -00A/1
00001AAE -007/1
00001AF8 -006/2
00001B42 -002/1
00001B8C -001/1
00001BD6 -005/1
00001C20 -005/1

RUN
DORM
SCHD
RUN
DORM
DORM
DORM
RUN
DORM

TWS=00000D36
TWS=00000D92
TWS=00000E00
TWS=00000EB8
TWS=000010CE
TWS=000012E4
TWS=000014FA
TWS=000016B0
TWS=00001716

PC=00081192
PC=00000000
PC=00081DEC
PC=00082C84
PC=00000000
PC=00000000
PC=0008C9A0
PC=0008F4A8
PC=00000000

#IDLE

#EDFMN
#ERROR
#USER1
#USER2
#XCMMD
#UHFX6
#ACIA1L
#ACIA2

Dabei bezeichnet die erste Adresse den Ort, an dem der sogenannte ,, Taskkopf*
im verwalteten RAM zu finden ist. In der zweiten Spalte finden wir Prio-
ritdt/Usernummer des Prozesses. Negative Prioritédten sind fiir den Hoch-
sprachprogrammierer unerreichbar hoch. Der angezeigte Laufzustand (RUN,
DORM, SUSP etc.) ist beim L-Kommando genauer beschrieben.

2.1.2.1 Grof3 oder klein?

Im Gegensatz zum PEARL—Compiler akzeptiert der Bedienin-
terpreter alle Kommandos sowohl in Grofi— als auch in Klein-
schreibung. Aber man beachte dabei, dal Filenamen immer
gleich geschrieben werden miissen! Grof§ definiert — grof} refe-
renziert.

Nun kénnen wir z. B. den Befehl S eingeben (natiirlich erst nach erneutem
Anschlag von Ctrl A!) und sehen, wie der verwaltete Speicherbereich aufgeteilt
ist.

2.1.3 PEARL-Programmentwicklung

Folgende Aufgabe sei angenommen: Ein Rechenprozefl (,, Task“) soll fortwih-
rend die Zahlen 1.0, 2.0, 3.0, 4.0, etc. sowie deren Kehrwerte und Quadrate
ausgeben. Ein zweiter unabhéngiger Rechenprozefl soll jede Sekunde in einem
File notieren, welcher Wert gerade bearbeitet wird und den ersten Prozefl nach
100 Sekunden anhalten.

2.1.3.1 Festlegung eines ,, Working Directories* (,, WD)

Um fiir den Editor, Compiler, Lader usw. einfachere Ansprechwege zu erschlie-
Ben, geben wir den Befehl ,Change Directory“ ein:

CD /ED Der Slash bedeutet: ,ED* ist eine Datenstation. (Nur zwecks
Abwirtskompatibilitit akzeptiert das System vorlaufig auch
noch veraltete syntaktische Konstrukte. Aus friiherer Zeit

stammen CD ED. und CD ED:.)

30 2.1 Schnellkurs Teil 1: Erste Schritte

(Nach Ctrl A, wie immer vor einer Bedienbefehlseingabe . ..). Der Befehl wird
vom System bestétigt mit:

WD=/ED/- aktuelles Working Directory=/ED/
XD=/- kein Execution Directory

Die Vereinbarung bleibt bis zum neuen CD-Befehl oder , Kaltstart® erhalten.

2.1.3.2 Festlegung eines Execution Directory

Fiir unsere kleine Einfiihrungsaufgabe benétigen wir es nicht, aber es sei hier
erwéahnt: neben dem Working Directory existieren noch ein oder mehrere Exe-
cution Directories. Das sind Verzeichnisse, in denen die Bedienkomponente des
Systemes, die ,,Shell“, nach ihr unbekannten Bedienbefehlen sucht. Die Ande-
rung des Executingdirectories erfolgt mittels der Anweisung: CXD devpath — es
erfolgt dann auch die Ausgabe der aktuellen Einstellung.

2.1.3.3 Einloggen in den Editor

Wir geben das Kommando ED (nach Ctrl Al) ein und finden uns im Nu im Bild-
schirmeditor des Systemes wieder. Der Filename wurde vom System ,,defaul-
tiert“. Wir konnen (s. ED-Kommando) aber auch einen frei gewéhlten Filena-
men wéahlen, etwa ED TEST.

Erscheint ein chaotisches Bild, so geben Sie gleich die Zeichen ESC X (nachein-
ander anschlagen, ohne Ctrl A) ein, um den Editor sofort wieder zu verlassen.
Wir versuchen eine Umparametrierung mit Hilfe des Bedieninterpreters:

SD /A1/+1 01 oder
SD /A1/+1 02 oder
SD /A1/+1 03

und loggen erneut mit ED (bzw. ED TEST) in den Editor ein.

Hilft auch das nicht, so mufl ggf. das Terminal auf den Televideo oder VT-52
kompatiblen Mode umgestellt werden.

Standardméfig ist der Editor auf den Televideo—Typ eingestellt. Solange wir
im Editor sind, ist iibrigens der Zugang zum Bedieninterpreter verwehrt, weil
die Zeichen Ctrl A, Ctrl B und Ctrl C vom Editor abgefangen werden. Nur
Break/Undo ist fiir den groffiten Notfall, wenn man sich total verfranst haben
sollte, noch aktivierbar. Radikaler ist die Abort—Taste der CPU. Wir loschen
die erste Zeile mit ESC R (siehe Beschreibung des ED-Befehles auf Seite 136)
und geben ein:

2.1 Schnellkurs Teil 1: Erste Schritte 31

MODULE PROBE; /* Bezeichner sind max. 24 Zeichen lang*/;
SYSTEM; /* Leitet Definition der Datenstationen ein */;
Disp: A1<->; /* Datenstation der Ein-Ausgabe */;
File: /ED/Daten->; /* File zum Sammeln der Daten */;
PROBLEM; /* Leitet den Hardware-unabhaengigen Teil ein */;

SPECIFY Disp DATION INOUT ALPHIC CONTROL(ALL);
SPC File DATION OUT ALPHIC CONTROL(ALL);
DCL Ausgabenummer FIXED; /* Zaehler fuer Anzahl Ausdrueckex*/;

DCL (x,Leer) FLOAT; /* Aktuelles Argument, Leerzyk*/;
DCL Erstesmal BIT(1); /* Fuer Startvorgang */;
et x/;
Machs:TASK PRIO 50; /* Ausfuehrende Task */;
x=1.0; /* Startwert setzen */;
REPEAT; /* Unbegrenzte Wiederholschleife */;

PUT x, x*x, 1.0/x TO Disp BY SKIP, (2)F(20),E(20,7);
x=x + 1.0;

END; /* Schleifenende */;
END; /* Ende der Task Machs */;
/R x/;
Steuer:TASK PRIO 49; /* Ueberwachende Task */;

IF Erstesmal THEN
ACTIVATE Machs;
Ausgabenummer = 1;
Erstesmal = NOT Erstesmal;
FIN; /* Ende If-Bereich */;
PUT Ausgabenummer,x,Leer TO File BY F(8),(2)F(20),SKIP;
IF Ausgabenummer EQ 100 THEN
TERMINATE Machs;
PREVENT Steuer;

FIN;
Ausgabenummer=Ausgabenummer+1;

END; /* Ende der Task Steuer */;

Y R R S */;

Rest: TASK PRIO 100;/* Niedrige Prio f.Restkapazitaetsmessung */;
REPEAT Leer=Leer+1.0; END; END; /* Keine Wartephasen */;

/K x/;

start:TASK PRIO 48; /* Start-Task */;

Erstesmal = ’1’B; Leer = 0.0;
ALL 1 SEC ACTIVATE Steuer; ACTIVATE Rest;
END; /* Ende der Start-Task */;

MODEND; Ende des Modules.

32 2.1 Schnellkurs Teil 1: Erste Schritte

Wir verlassen den Editor, indem wir nacheinander (!) die Zeichen ESC und X
anschlagen. Im Gegensatz zum Ctrl A, bei dem die Ctrl-Taste nur eine Um-
schaltung der Tastatur bedeutet, ist ESC ein eigenes Zeichen. Eventuell kénnen
wir nun noch den File auf die Floppy oder die Platte retten (siche COPY-Befehl
auf Seite 115). Dann aktivieren wir die Bedientask (Ctrl A, wie iiblich) und
starten den Compiler:

P (CR) | /ED/SI kompilieren
P TEST (CR) | Editierter Filename war TEST.

Bei dieser Parametrierung erzeugt der Compiler das Ubersetzungsprotokoll auf
unserem Terminal. Genaueres iiber weitere Parameter (kein Protokoll etc.) fin-
den Sie beim PEARL-Befehl auf Seite 180. Schon nach wenigen Sekunden ist
das Programm iibersetzt. Falls es Tippfehler gegeben hat — der Compiler zeigt
sie uns an — miissen wir erneut mit ED bzw. ED TEST den Editor aufrufen. Das
korrigierte Programm wird dann erneut iibersetzt.

Irgendwann zeigt der Compilerlauf keinen Fehler mehr an. Jetzt kénnen wir
das ganze Modul in den Speicher laden:

LOAD (CR) | Objektcode-Filename wurde defaultiert

Sofort meldet der Lader, daf} er fertig ist, und wir geben das niichste Bedien-
kommando ein:

LU (CR) | (Bedeutung: List User—Tasks.)

Nun erhalten wir eine Liste, in der unsere 4 Tasks aufgefiihrt sind. Um das
Programm in Gang zu bringen, miissen wir nur noch die Task start aktivieren:
(Wie stets vor jeder Bedienung auch hier vorher Ctrl A anschlagen ...)

start (CR)

2.1 Schnellkurs Teil 1: Erste Schritte 33

Einen solchen Bedienbefehl gibt es nicht, wohl aber eine gleichnamige geladene
Task. So weifl das Bediensystem, die Shell, in diesem Fall, was zu tun ist: die
Task ,,start“ nimmt ihre Arbeit auf. Jetzt rasen Zahlen iiber den Bildschirm,
aber nach 100 Sekunden ist alles wieder ruhig. Wir schauen uns den File Daten
mit Hilfe des Editors an:

ED Daten | oder
ED /ED/Daten | falls kein WD vereinbart

Es ist zu erkennen, daf die Task Rest offensichtlich wesentlich mehr (100 bis
300 mal!) Runden als die doch viel hoher prioritierte Task Machs drehen konnte.
Die Ursache liegt in einem verborgenen Wartezustand von Machs: Das Terminal
ist zu langsam, und nach einer gewissen Anzahl Zeilen ist der Zwischenpuffer
im RTOS—UH voll. Dann bremst RTOS—UH die Task Machs mit der Folge,
daB der wartezustandfreie Rechenprozefl Rest blendend bedient werden kann.
Wenn Sie sich jetzt wundern, weil sie den eben beschriebenen Effekt nicht
beobachten konnten, dann haben Sie ein System mit emuliertem Terminal. Bei
solchen Systemen kommt Rest nicht von der Stelle, weil die CPU voll fiirs
»Malen“ beansprucht wird!!

Jetzt konnen Sie mit dem Programm ein paar Experimente machen. Sie kénnen
z. B. die Ausgabe aus Machs entfernen, um dann den Versuch zu wiederholen.
Dazu miissen Sie jedoch zunichst das Modul (Name: PROBE) aus dem System
entfernen. (Nebenbei: Rest geht’s inzwischen noch blendender, sie lduft und
lauft. ..) Das Entfernen dieses Modules erledigen wir mit:

UNLOAD PROBE* (* = ,Inklusive aller Tasks*)

Unschon, wenn wir mal den Stern vergessen haben sollten. Dann miissen wir
némlich anschliefend jede einzelne Task namentlich mit UNLOAD entfernen, z. B.
Unload Machs,Rest,Steuer,start (CR).

Wir loggen nun einfach erneut mit ED bzw. mit ED TEST in unseren Quellfile
ein, dndern diesen, iibersetzen ihn neu und laden ihn genau wie vorhin. Wichtig
ist, da} wir vor dem Laden wirklich das Modul entfernt haben, ggf. mit dem
LU-Befehl iiberpriifen, ob alle Tasks verschwunden sind.

34 2.1 Schnellkurs Teil 1: Erste Schritte

Bevor wir nun ein zweites Mal start aktivieren, sollten wir den Ausgabefile
Daten zuriicksetzen, z. B. mit

REWIND Daten oder

rewind Daten oder, falls kein Work.-Dir. vereinbart

REWIND /ED/Daten bzw. gleichwertig dazu:

rewind /ed/Daten Statt ,Daten“ jedoch nicht ,DATEN® oder ,daten*

oder durch Elimination des ganzen Files:

RM Daten oder
ERASE Daten

Sonst wiirden die neu produzierten Daten hinter die alten gesetzt. Jetzt konnen
wir wieder die Task start aktivieren. Damit ist ein kompletter Programment-
wicklungszyklus abgeschlossen.

2.1.4 Retten des Programmes auf Platte oder Diskette

Jetzt darf kein Netzausfall passieren, sonst ist das ganze erstellte Programm
unrettbar verloren. Aus diesem Grund legen wir nun eine Diskette (hier: Lauf-
werk 0) ein und formatieren sie neu:

RTOSFILES /FO der MSFILES /FO
FORM D /FO/B5DS80 ode FORM D /F0/C5DS80

Das rechte Anweisungspérchen gilt fiir den Fall, dafl aus irgendwelchen Griinden
nicht das RTOS-UH-eigene, sondern das ,,kompatible* PC-Format gewahlt wer-
den soll. Dabei steht D fiir Double density, B5 fiir das kompakteste ,,B“—Format
und C5 fiir das weniger effiziente aber kompatible ,,C“~Format. DS bedeutet
,Double sided“ und 80 steht hier fiir 80 Tracks. Die Formatierungsinformation
wird beim FORM wie ein Filename iibergeben.

2.1 Schnellkurs Teil 1: Erste Schritte 35

Wir sind nun ausnahmsweise fiir eine ganze Weile aus dem System ausgeblen-
det, weil das Formatieren bei den meisten Systemen eine sehr zeitkritische An-
gelegenheit ist. Zunéchst werden nacheinander beide Seiten beschrieben, dann
wird nach defekten Blocken gesucht — diese werden aus der Verwaltung gestri-
chen — und, das Ergebnis wird auf dem Terminal ausgegeben. Bei mehr als 9
defekten Blocken allerdings wird die Bearbeitung der Diskette abgebrochen.

Meist werden Sie eine Platte in Threm System haben, die bereits formatiert ist.
Dann kann man das kleine Testprogramm statt auf Diskette auch erst einmal
dort ablegen. Dazu ist in den folgenden Befehlen ,,/FO“ durch den Plattenbe-
zeichner, z. B. ,,/HO“ zu ersetzen.

Nun kénnen wir mit dem Befehl

DIR /FO (,,/..“ gibt an: Kein File, sondern Gerét)
nachsehen, wieviel Platz wir haben.

Das Retten unseres Programmes erledigen wir mit COPY:

COPY /ED/SI>/F0/xyz (Def. Filename fiir Userl)
COPY TEST>/F0/xyz (File-name war TEST)

Spéter konnen wir den File jederzeit wieder von der Diskette holen, etwa mit

COPY /FO/xyz > /ED/TEST (kein Work.-Dir.)
COPY /FO/xyz > /A1/ (Ausgabe auf Terminal)

2.1.4.1 Files geschlossen?

Zur Einsparung von Platten- und Diskettenoperationen werden, solange es geht,
das Inhaltsverzeichnis und der aktuelle Datenfile teilweise im Speicher gehalten.
Die Daten sind daher nur dann auf dem Medium gesichert, wenn alle Files
vor dem Herausnehmen geschlossen sind. Geben Sie dem System eine Chance,
priifen Sie, ob Sie die Diskette herausnehmen oder den Rechner abschalten
diirfen:

36 2.1 Schnellkurs Teil 1: Erste Schritte

CF /FO0/ Change Floppy, erzeugt eine Warnung, falls ein File noch offen ist.

FILES /F0/ Listet alle offenen Files auf, anschliefend wird mit
RETURN /FO/xyz,/F0/abcd jeder einzelne File geschlossen oder
SYNC /FO0/; CF /FO/FORGET eingegeben. Nun erst Diskette entnehmen.

Auch auf einer Festplatte miissen alle Files geschlossen sein, bevor Sie den
Rechner ausschalten oder Abort/Reset driicken. Ansonsten kann es passieren,
daf} langsam das gesamte File-System zerstort wird und alle Daten verlorenge-
hen! Dann sollten Sie retten, was zu retten ist, und neu formatieren. Der Lader,
Compiler, Copy etc. hinterlassen normalerweise keine offenen Files. Sie treten
darum nur bei UnregelméBigkeiten und abgebrochenen Programmen auf.

2.1.5 Zeit sparen durch Multitasking

Wenn Sie etwas experimentiert haben, so werden Sie schon bemerkt haben,
dafl unser System anscheinend tausend Dinge gleichzeitig erledigen kann. Sie
konnen z. B. einen COPY auf die Schnittstelle /A2/ oder /PP/ (Centronics)
in Gang setzen, und wihrend die Ausgabe lduft, ungehindert das néchste
Programm entwickeln. Die bei anderen Systemen oft zu findenden ,, Spooler*
sind auf Grund der kompromifilosen Multitasking-Architektur bei RTOS-UH
tiberfliissig. Man muf nur immer darauf achten, dafl stets nur eine Operation
pro File stattfinden darf, also nicht den gleichen File sowohl im Editor haben
als auch gleichzeitig kompilieren oder kopieren!

Dagegen konnen Sie ruhig wihrend der Kompilation eines Files den Kompila-
tionslauf eines anderen Files in Gang setzen oder diesen anderen editieren und
vielleicht zwanzig andere assemblieren. . .

2.1.6 Das Bediensystem in Kiirze

Bisher haben wir immer nur eine Anweisung in jeder Zeile benutzt. Wir kénnen
durchaus mehrere Anweisungen in eine Zeile schreiben und dabei festlegen, ob
diese , gleichzeitig* oder nacheinander zu erledigen sind:

P TEST -- load -- start

bedeutet: Kompiliere, wenn fertig (und 0 Fehler!) lade, wenn mit Laden er-
folgreich fertig, aktiviere start. Der Sinn der zeitlichen Kettung besteht darin,
dafl man vielleicht gerne mal irgendwohin méchte und das Programm in Aktion
sehen will, wenn man zuritick kommt. . .

2.1 Schnellkurs Teil 1: Erste Schritte 37

Dagegen werden bei dem Befehl
P TEST;COPY mist>/A2/;COPY kaese>/PP/

gleichzeitig ein Compiler und zwei Kopiervorgéinge lauffihig gemacht. Neben-
bei: /A2 ist die Stationsbezeichnung fiir die zweite serielle Schnittstelle, /PP die
Stationsbezeichnung fiir ein evtl. vorhandenes Parallelport (Centronics).

2.1.6.1 Fernsteuerung

Alle Befehle des Bedieninterpreters konnen auch von PEARL-Programmen aus
ausgefiihrt werden! Sie brauchen dazu nur den Eingabetext mit “PUT“ in die Sy-
stemdatenstation ,,/XC* (Remote-Control) einzuschreiben. Auch wenn es dank
der Shellsprache und bestimmter Unterprogramme (wie z.B. EXEC) hierzu auch
noch andere und elegantere Losungen gibt, betrachten wir einmal ein PEARL-
Beispiel, bei dem der Rechner sich um 16.00 Uhr selbst das Bedienkommando
zur Anzeige aller Files auf dem Plattenmedium /HO ,eingibt®:

MODULE TEST;
SYSTEM;

Bedien:/XC;
PROBLEM;

SPC Bedien DATION OUT ALPHIC;
Plattenschau:TASK;

PUT °DIR /HO’ TO Bedien BY A,SKIP;
END;
MODEND;

38 2.1 Schnellkurs Teil 1: Erste Schritte

Nach dem Ubersetzen und Laden geben Sie den Bedienbefehl
AT 16.00 ACTIVATE Plattenschau
ein und vergessen die Sache zunéchst einmal.

Wir hoffen nun doch sehr, daf3 Sie solche ,,Zeitbomben® nicht mutwillig fiir
den néchsten Nutzer im Rechner zuriicklassen und einen unerfahrenen Nach-
folger mit solchen oder schlimmeren schlafenden Bedienbefehlen erschrecken.
Allerdings kann man als Nutzer jederzeit sicherstellen, dafl sich keine ungewoll-
ten Einplanungen mehr im System befinden. Aus Sicherheitsgriinden gibt es
némlich keine Moglichkeit, solche Prozesse vor dem ,,L* oder ,,LU“~Kommando
zu verstecken. Eine sinnvollere Moglichkeit des /XC (bzw. der EXEC-Routine)
besteht in der Kreation von Blockkommandos:

Neu:TASK;

PUT ’Unload PROBE*;WE--P--Load--start’ TO Bedien;
END;

Nach dem Laden dieser Task braucht man nur noch jeweils den Befehl Neu
einzugeben (auch wihrend Machs lduft!) und findet sich im Window-Editor
wieder. Sobald man diesen verldflt, wird kompiliert, geladen und gestartet.

RTOS—-UH bietet allerdings auch hierzu noch andere Moglichkeiten, zum Bei-
spiel mit Hilfe des DEFINE-Befehles (siehe Seite 126) oder durch ein sogenanntes
»Skript“ in der Shellsprache.

2.1.6.2 Weitere Nutzer

An anderen Terminals, die ebenfalls einen Bedieninterfaceanschlufl besitzen, ist
die Bedienung nicht anders. Allerdings sollte man bei mehr als einem Nutzer
sich hierarchisch in das ED—Filesystem einloggen. Sonst riskieren Sie zufillige
Namensgleichheit bei den Files.

CD /ED/Mueller

Mit z. B. ED TEST wird nun mit voller Pathlist /ED/Mueller/TEST adressiert.
Wenn der andere Nutzer nicht auch ,,Mueller” heiffit und sich unter anderem
Namen einfiihrt, ist sein File TEST einer im anderen Zweig des Baumes.

2.1 Schnellkurs Teil 1: Erste Schritte 39

Das Konsolenterminal (User 1) hat allerdings vereinzelt doch einen Sondersta-
tus, z. B. bei Fehlermeldungen in Interruptprozessen.

2.1.6.3 Haben Sie eine Festplatte?

Bei grofileren Speichermedien (Festplatte oder Wechselplatte) sollten Sie Thre
Files immer nur hierarchisch organisieren, sonst stehen hinterher vielleicht 200
Files in der Root—Ebene, und Sie finden sich garantiert nicht mehr zurecht.
Man lege sich dazu ,,Ordner“, auch ,, Unterverzeichnisse* oder ,, Subdirectories*
genannt, mit Hilfe des MKDIR-Befehles (Beschreibung auf Seite 175) an:

mkdir /HO/usr
mkdir /HO/usr/mueller

Fortan konnen Sie etwa nach /HO/usr/mueller/TEST schreiben oder von dort
lesen. Greifen Sie haufiger darauf zu, so kann natiirlich mit

CD /HO/usr/mueller

der Zugriff vereinfacht werden. Leider miissen Sie jetzt aber beim Editie-
ren die ED-Files iiber die volle pathlist ansprechen. Wenn wir also den File
/HO/usr/mueller/TEST in Bearbeitung haben, konnte eine Kommandozeile
wie folgt uns weiterhelfen:

copy TEST > /ED/TEST -- ed /ED/TEST -- copy /ED/TEST > TEST

Bei diesem Befehl wird der File von der Festplatte geholt, editiert und anschlie-
Bend wieder zuriickgeschrieben.

2.1.6.4 Ein- und Ausgabe von Daten ganz allgemein.

Im folgenden Teil 2 des Schnellkurses finden Sie noch einige Tabellen zu den
Schnittstellen. Die Schnittstellen selbst sind einzeln im Kapitel 6 ab Seite 389
beschrieben. Es ist sehr wahrscheinlich, daf Thr System noch weitere Ein-
oder Ausgabeschnittstellen besitzt, zu denen Sie zusétzliche Beschreibungen
zur Ergdnzung des Handbuches erhalten haben, z. B. fiir den Windowmanager.

40 2.1 Schnellkurs Teil 1: Erste Schritte

2.1.7 Empfehlung fiir das weitere Anlernen

Studieren Sie bitte zunéichst noch die beiden folgenden Teile 2 und 3 des
Schnellkurses. Kurz, aber enorm wichtig, ist der Teil iiber die Bedienfehler-
teufel. Schlieflich sind in allen komplexen Computersystemen einige typische
Bedienfehler trotz aller Sorgfalt der Nutzer nie ganz auszuschlieen. Ab Sei-
te 44 haben wir die von uns beobachteten haufigsten Fehlbediensituationen
beschrieben.

Lesen Sie sich doch alle Befehle des Bedieninterpreters einmal in Ruhe durch!
Sie finden dort die detaillierte Information, die hier keinen Platz fand. Eini-
ge Bedienbefehle haben Sie ja schon benutzt, wenn auch z. T. nur mit einem
Teil der moglichen Parameter. Zur Sprache PEARL selbst finden Sie in diesem
Handbuch nur wenige Angaben. Dazu empfehlen wir Ihnen das PEARL90 Re-
ferenzbuch, welches die Fachgruppe 4.4.2 | Echtzeitprogrammierung PEARL*
der Gesellschaft fiir Informatik bereithélt, oder eines der PEARL-Lehrbiicher.

Auch wenn heute scheinbar alles iiber Windowtechnik erledigt wird und Sie
das RTOS—UH-eigene Multiwindowsystem benutzen: eine Beschiftigung mit
der Shellsprache ist weiterhin lohnend! Die Technik der Skripte ermoglicht im
RTOS—-UH néamlich verbliiffend einfach die Steuerung von Fensteroperationen
u. &.

2.2 Schnellkurs Teil 2: Schnittstellen und Dations 41

2.2 Schnellkurs Teil 2: Schnittstellen und Dations

Grundsitzlich existieren zwei Typen von Datenstationen, je nachdem ob sie
anndhernd mit Prozessorgeschwindigkeit die Daten iibertragen kénnen oder
nicht.

e D/A-Wandler, Digitalkoppler etc. sind quasi jederzeit bereit. Sie werden
darum nicht vom Betriebssystem als Betriebsmittel verwaltet, der Com-
pilercode greift direkt darauf zu.

e Terminalschnittstellen, Druckerports, Floppydisks etc. sind langsamer als
der Prozessor und werden daher nur unter Kontrolle von RTOS-UH
zugénglich gemacht. Die Bearbeitung erfolgt dhnlich wie am Postschal-
ter: Es werden ,, Warteschlangen®“ aufgebaut, und zu einem bestimmten
Zeitpunkt wird nur das jeweils vorne befindliche Datenpaket bearbeitet.

Die folgende Beschreibung gilt demnach nur fiir die Stationen des zweiten Types
mit Warteschlangen.

Zu jeder Station existiert eine Warteschlangennummer, LDN genannt (,,Logical
Dation—Number*). Benutzen mehrere anscheinend eigenstéindige Gerite (z. B.
Floppy 0, Floppy 1) gemeinsame Bausteine (Floppykoppler), so werden sie
dennoch nur durch eine einzige LDN représentiert. Die einzelnen Geréte werden
dann durch die sog. Untergliederungsnummer (DRIVE) unterschieden. Oft wird
die Untergliederungsnummer auch nur benutzt, um verschiedene Betriebsar-
ten eines einzigen Geriites anzuwéhlen. Die néchst feinere Unterteilung erfolgt
durch den ,,FILE-Namen* oder noch genauer durch eine baumférmige ,,Path—
List*.

Jede Warteschlange besitzt einen ,,Bediener“, quasi der Beamte am Postschal-
ter. Wir nennen diesen Bediener die ,,Betreuungstask“ der Warteschlange. Auch
die Bezeichnung ,,I/O-Dédmon* haben wir fiir diesen autonomen guten Geist
schon kennengelernt. Er ist ein Ddmon, weil er Betriebssystemaufgaben zur
Wahrung der Systemreaktivitédt in die Welt der Nutzerprozesse verlagert. Die
Aufgabe der Betreuungstask bzw. dieses Ddmonen besteht einfach nur darin,
die Warteschlange moglichst schnell abzubauen. Wie im téglichen Leben gibt
es auch hier ,ganz eilige Kunden“, die sich frech nach vorne dréangen, evtl.
direkt bis zum Schalter. Wie weit man sich vordréngen kann, hingt von der
Wichtigkeit des Auftraggebers ab: der Prioritdt der lese—/schreibwilligen Task.
(Der Name des I/O-Démonen ist fiir den Anwender uninteressant, er ist meist
analog zur Geriitebezeichnung gewihlt.)

42 2.2 Schnellkurs Teil 2: Schnittstellen und Dations

In PEARL—Programmen kann man nun den einzelnen Geriten frei wihlbare
Namen zuordnen. Das geschieht mit Hilfe des ,,Systemteiles“.

So bedeutet etwa
Drucker:/LP ;

folgendes: Im Programm wird das Symbol ,,Drucker” verwendet, als physika-
lisches Gerét wird das Gerét ,,/LP“ des zur Laufzeit benutzten Betriebssyste-
mes verwendet. Ein solches Gerdt mufl dort vorhanden sein, sonst erfolgt beim
Laden des Programmes eine Fehlermeldung. Es ist aber auch méglich, Daten-
stationen direkt tiber ihre LDN und Laufwerksnummer anzusprechen:

XYZ:LD/5.3/abcd/efg ; ! adressiert LDN 5, Drive 3

Die Station heifit XYZ, besitzt die Warteschlangennummer 5 und benutzt das
Laufwerk Nummer 3. Uber das ,,Directory“ namens ,abcd® wird der File ,efg®
adressiert. Man beachte, dafl die pathlist bei Bedarf auch noch wihrend des
Programmlaufes ganz (d.h. inklusive Geritebezeichner) oder im Filebezeichner-
teil durch das PEARL-statement ,,0PEN BY IDF...“ verdndert werden kann.
Dabei kann auch das aktuelle Working-Directory mit beriicksichtigt werden.
Durch weitere Zusétze kann auch der Betriebsmode modifiziert werden.

PUT und GET benutzen stets solche Stationen mit Warteschlangen.

Fiir alle Stationen gibt es im Bediensystem Bezeichner, zu denen LDN und DRIVE
automatisch generiert werden, z. B. /A1 fiir das Konsolenterminal = LD/0.0/.
Im Systemteil des Compilers darf man auf der rechten Seite der Namenszuord-
nung auch Bezeichner verwenden, die der Compiler nicht kennt und/oder die
im aktuellen Entwicklungssystem dem Bediensystem nicht bekannt sind. Solche
Bezeichner listet der Compiler unter ,, Extra Devices“ bei der Modulbilanz auf.
Sie miissen spéter im Zielsystem beim Laden vorhanden sein, sonst verursacht
ihre Ansprache einen Laufzeitfehler. Auch beim Linken solcher Module kénnen
dem Linker die Vereinbarungen iiber Datenstationen des Zielsystemes mitgege-
ben werden. Der Lader warnt beim Fehlen einer Station, sodafl derartige Fehler
nicht erst spéter bei der echten Benutzung der Station, sondern schon in der
Entwicklungsphase des Programmes erkennbar sind.

2.2 Schnellkurs Teil 2: Schnittstellen und Dations

43

Folgende Standarddatenstationen sind in allen Systemen enthalten:

Mnemo | LDN | DRIVE | Bemerkung

Al 0 0 | 1. Ser. Schnittstelle (A-Mode)

B1 0 2 | 1. Ser. —"— (B-Mode)

C1 0 6| 1. Ser. —"— (C-Mode)

ED 1 0 | EDFM-Filesystem (ASCIT-Mode)
EDB 1 1 | EDFM-Filesystem (Binir-Mode)
A2 2 0 | 2. Ser. Schnittstelle (A-Mode)

B2 2 2] 2. Ser. —"— (B-Mode)

UL 2 3]2 Ser. —"—~ (UL-Mode)

C2 2 6 | 2. Ser. —"— (C-Mode)

VO 7 0 | virtueller Out-channel (#VDATN)
VI 8 0 | virtueller In-channel (#VDATN)
XC 9 0 | external Commandprocessor

PP 10 0 | parallel Port (falls #PPORT)
NIL 15 0 | Nil-Dation

In Threm konkreten System sind sicherlich weitere DATIONs vorhanden, ein ty-

pisches Beispiel:

Mnemo

LDN | DRIVE | Bemerkung

FO
F1
HO
H1
H2
H3

W W wWwwww

. Floppy

. Floppy
. Partition Harddisk

. Partition Harddisk
. Partition Harddisk
. Partition Harddisk

T W N~ O
=N = N

Bei manchen Systemen ist auf der CPU-Platine eine 3. serielle Schnittstelle
vorhanden, dann gelten meist folgende Zuordnungen:

Mnemo | LDN | DRIVE | Bemerkung

A3 4 0 | 3. Ser. Schnittstelle (A-Mode)
B3 4 2 | 3.Ser. —"— (B-Mode)

C3 4 6| 3.Ser. —"— (C-Mode)

D3 14 0 | 3. Ser. Schn. Duplexkanal (out)

Die Zuordnungen weiterer DATIONs entnehmen Sie bitte den Unterlagen zu Ihrer
Systemimplementation, oder benutzen Sie ,,HELP-D*.

44

2.3 Schnellkurs Teil 3: Typische Bedienungsfehler

2.3 Schnellkurs Teil 3: Typische Bedienungsfehler

Hier erfahren Sie etwas iiber die typischen Bedienungsfehlerteufel — soweit sie

uns bekannt sind.

Der Ctrl S—
Teufel

Der ,,No—scroll“—
Teufel

Der Input—queue—
Teufel

Der Index—error—
Teufel

In diese Falle tappt man, wenn man aus Versehen statt
Ctrl A einmal das Zeichen Ctrl S anschlagt. Dann
kann der Fehlerteufel ndmlich das Terminal totlegen.
Das Ctrl S ist an sich sehr notwendig, um etwa rasen-
de Ausgaben anhalten zu kénnen (X,5f) — und dafiir
benutzen wir es ja auch absichtlich. Befreien Sie sich
aus der Situation und bieten Sie dem System Ctrl Q an
(Xon), mehrmals schadet nichts.

Er siedelt nur in einigen besonderen Terminals, die ei-
ne ,No scroll“—Taste besitzen. Oft hilft dann Ctrl Q
nicht, sondern nur die terminalseitige Aufhebung der
No-scroll-Bedingung.

Ein schwer zu bekdmpfender Parasit, der den ,,Beam-
ten“ am Postschalter befillt, er kann den aktuellen Auf-
trag nicht ausfithren. Eine Task veranlafit zum Beispiel
eine Leseoperation (GET) vom Terminal. Solange auf
dem Gerit die erwartete Zahl von Zeichen nicht ein-
gegeben wird, geht’s in der Schlange nicht voran. Trotz
der hohen Prioritdt kommt auch die Bedientask nicht
durch. Scheinbar reagiert das System auf Ctrl A nicht.
Uns bleibt nichts anderes zu tun als Ctrl A anzuschla-
gen, evtl. die Daten einzugeben oder ersatzweise so oft
die Carriagereturn—Taste zu betétigen, bis der Eingabe-
prompt der Shell erscheint.

Diese Art von Programmfehlern ist mit ihren mogli-
chen Effekten die Inkarnation der Teufelei schlechthin!
Er kann wohl alles Mogliche an Schidden im System an-
richten, von zerstorten Zeigern bis zu Systemabstiirzen,
die erst Stunden spéter auftreten. Gegen ihn gibt es nur
eine Waffe: Die ,,T“~Option des PEARL-Compilers. Da-
mit wird der unerlaubte Zugriff durch iiberschrittene In-
dexgrenzen in jedem Fall verhindert. Hat der Bold aber
bereits zugeschlagen, sollten Sie von Ihren Files retten,
was zu retten ist, und die ,RESET“-Taste aktivieren.

2.3 Schnellkurs Teil 3: Typische Bedienungsfehler 45

Der Parameter—
Teufel

Der Doppellade—
Teufel

Der PEARL90-Compiler priift liickenlos, ob Prozedu-
ren mit den richtigen Parametern aufgerufen werden.
Bei ihm bekannten Prozeduren aus dem eigenen Mo-
dul ist dieser Test liickenlos. Bei externen Prozeduren
kann er sich nur auf die Korrektheit der ihm mitgeteil-
ten Spezifikation verlassen. Stimmt die innere Struktur
der zur Laufzeit aufgerufenen Prozedur mit der Spe-
zifikation nicht iiberein, so sind katastrophale Folgen
wie beim Index-Error méglich. Genau wie beim Index-
error-Teufel so hilft auch hier die ,, T“~Option wirkungs-
voll. Es wird auch nur sehr wenig Prozessorzeit fiir den
Parameter-check verbraucht. Das Programm sollte aber
nach der Fehlermeldung keinesfalls fortgesetzt wer-
den, da eine Notreparatur wie beim Indexfehler nicht
moglich ist!

Seine Spezialitdt besteht darin, uns zu einem uniiber-
legten LOAD—Befehl zu verfithren, obwohl eine gleichna-
mige Task noch in der Verwaltung existiert. Mit jeder
Aktivierung der Task erwischen wir dann immer nur die
erste (meist alte) und wundern uns, dal Programménde-
rungen ohne Wirkung geblieben sind. Wir sollten dar-
um stets sicher gehen, dafl Doppelladen nicht auftreten
kann.

46 2.4 Interpretation von Fehlermeldungen

2.4 Interpretation von Fehlermeldungen
2.4.1 Der Error-Dimon

Der Betriebssystemkern von RTOS—UH bekommt bei seiner Arbeit Hilfe
durch die im Einfithrungsteil vorgestellten ,,Ddmonen“. Das sind im Prinzip
normale Nutzerprozesse (Tasks), die quasi eigenverantwortlich arbeitende gute
Geister des Systemes sind. Ddmonen finden wir bei RTOS—UH auch im Ein-/
Ausgabesystem und als Netzwerkdimonen. Hier interessiert uns zunéchst nur
der Error-Dédmon mit dem Tasknamen #ERRDM. Er hat die hochste Prioritét
aller Tasks im System und ist dazu gedacht, iiber eventuelle Irregularitdten
bei der Arbeit des Systemkernes zu berichten. Sein zweiter — hier nicht in-
teressierender — Aufgabenbereich ist das Starten des sogenannten , priméren
Shellprozesses* beim Anschlag der Ctrl A Taste.

Fiir jeden Nutzerarbeitsplatz gibt es ein sogenanntes User-Environment. Es
enthilt einen Puffer fiir Fehlermeldungen, der ringférmig verwaltet wird. Sei-
ne Grofle ist implementierungsabhéingig, in der Regel ist Platz fiir 6 bis 12
Meldungen. Kommen neue Fehlermeldungen an, bevor der Error-Démon durch
Textausgabe der alten wieder Platz im Puffer schaffen konnte, so gehen die
neuen Meldungen verloren. Aus diesem Grund sollte man sich nicht an vorbei-
huschenden Fehlerinformationen erfreuen, sondern daran denken, dafl vielleicht
wichtigere Nachrichten als die momentan visualisierten verloren gehen kénnen.
#ERRDM liegt in der Prioritat hoher als der Bedieninterpreter, bei manchen Ter-
minals mufl man bei vorbeirasenden Meldungen ziemlich hartnéickig auf die
Ctrl A Taste hacken, um wieder in das System zu kommen.

Jede Meldung iiber #ERRDM beginnt mit dem typischen ,,>>“ am linken Rand der
Terminalzeile. Diesem String folgt typischerweise der Name der verursachenden
Task, eine Adresse oder ein weiterer Name, sowie die eigentliche Botschaft. Je
nach Schwere des Fehlers wird die Task suspendiert oder kann weiterlaufen.

Die Fehlermeldung wird in den Error-Datenkanal desjenigen Nutzers geschrie-
ben, der dafiir verantwortlich gemacht wird. Verantwortung iibernimmt ein
Nutzer durch Absetzen eines Kommandos oder durch die Aktivierung einer
fehlerhaften Task. Ist die Verantwortlichkeit nicht feststellbar, z. B. bei Inter-
ruptprozessen, so wird der Konsolennutzer angesprochen.

Der Errordatenkanal, in den der Damon schreibt, kann mit einem besonderen
Kommando (PER = Permanent Error Redirection) permanent umdefiniert wer-
den. Dies ist sinnvoll, wenn man die Fehlermeldungen unbedienter Systeme in
einem File sammeln mochte.

2.4 Interpretation von Fehlermeldungen 47

2.4.2 Beispiele fiir Fehlermeldungen

Wir studieren hier exemplarisch einige Meldungen:
>> ABCD: 00008022 wrong op-code trap

Die Task ABCD ist auf einen unbekannten Befehl gelaufen, der Programmzéhler
steht jetzt auf 008022. Der falsche Befehl (Speicherfehler?, Feldiiberschreitung
ohne Tester?) muf} also kurz vor dieser Adresse zu finden sein. Wenn die Task
ABCD eine PEARL-Task ist und mit der /*+M */-Option iibersetzt wurde, wird
mit /Lzzzzr die Nummer der letzten registrierend iiberlaufenen Programm-
quellzeile ausgegeben. Diese kann man sich auch mit dem DL-Kommando (Dis-
play Line) ausgeben lassen.

>> COPY/26: (terminate)

Dies ist keine Fehlermeldung. Die Ausgabezeile dient als Hinweis, dafl der Sohn-
prozefl COPY/26 jetzt seine Arbeit beendet hat.

>> --77-—: (terminate)

Auch hier ist kein Fehler aufgetreten, sondern ein Sohnprozef§ hat sich termi-
niert und wollte sich verabschieden. Da der Error-Damon #ERRDM aber gerade
mit anderen Dingen beschiftigt war, konnte er die ,,Fertig—Meldung® erst aus-
geben, nachdem der Sohnprozefl schon aus dem Speicher verschwunden war.
Ein Name war zu diesem spéteren Zeitpunkt nicht mehr zu ermitteln. Die Mel-
dung tritt nur noch bei alten Shellmodulen auf, die nicht in der Lage sind, eine
eigene Ausnahmebehandlung auszufiihren.

>> **V200:0008FFA2 wrong address

Die Sterne bedeuten, daf} sich keine Task zuordnen 1&8t, weil der Fehler in ei-
nem Interruptprozefl aufgetreten ist. Dabei bedeutet V200, dafl der Interrupt-
prozef iiber den Exceptionvektor $200 angeschlossen ist. Fast immer bedeutet
eine solche Meldung eine bedrohliche Entwicklung. Tatséchlich konnte der Kol-
laps des Systemes nur durch den integrierten Interruptriickfallmechanismus von
RTOS-UH verhindert werden. Anders als in vielen anderen Systemen hingt
der Interruptprozefl trotz der gravierenden Fehlfunktion nicht, sondern wurde
geordnet abgebrochen.

48 2.4 Interpretation von Fehlermeldungen

>> MASTER:MURKS not suspended (continue)

Die Task MASTER hat eine CONTINUE-Anweisung fiir die Task MURKS ausgefiihrt.
Das Betriebssystem stellt aber fest, dafl MURKS gar nicht suspendiert ist und die
Anweisung somit ohne Wirkung bleiben muf3. Keine schlimme Sache, irgendein
kleinerer Denkfehler des Programmierers beim Tasking.

>> x:INTRPT overflow (activate)

Die Task x sollte vom Systemkern durch einen Interrupt (Zeittakt oder externes
Signal) aktiviert werden. Die Task x kann aber aus irgendwelchen Griinden dem
Aktivierungstakt nicht folgen. Vielleicht ist sie zu langsam und wird darum
nicht rechtzeitig fertig oder sie wurde suspendiert. Diese Priifeigenschaft des
Systemkernes ist ein wichtiges Element der Echtzeitqualitdten des Systemes.

2.4.3 Der Exception-Handler

Neuere Software in der RTOS—UH-Welt stot bei Irregularititen, fiir die
sie selbst verantwortlich ist, nicht mehr den Error-Démonen an. Stattdessen
wird bei solcher Software dem Systemkern die Adresse einer eigenen Fehlerbe-
handlungsroutine mitgeteilt. Diese Fehlerbehandlungsroutine wird in der Fach-
sprache auch ,,Exception Handler* genannt. Alle Shellprozesse benutzen diesen
Weg. Damit wird ein korrektes Weiterleben des Prozesses selbst nach fatalen
Situationen moglich. Exekutiert man etwa von der Shell aus einen DM-Befehl
mit Zugriff auf einen nicht vorhandenen Speicher, dann bringt der BUS-ERROR
die Shell nicht zum Halt. (In alten Versionen des Betriebssystemes wurde die
Shell wie eine normale Nutzertask durch solche Fehler blockiert und mufite mit
Break wiederbelebt werden).

Meldungen der Exception-Handler werden wie die des Error-Damonen inter-
pretiert, denn es werden in beiden Féllen die gleichen Texterzeugungsroutinen
benutzt. Die Meldungsausgabe erfolgt nun von der fehlerverursachenden Task
mit deren eigener Prioritét.

Da die Shellprozesse die Fehlerausgabe selbst erledigen, kann man deren Mel-
dungen mit dem Befehl ER (Error Redirect) auch temporér umlenken, ohne da8
der Error-Dédmon von dieser Umlenkung betroffen ist.

2.5 Das Pathlist-Konzept von RITOS-UH/PEARL 49

2.5 Das Pathlist-Konzept von RTOS-UH/PEARL

Wie bereits im Schnellkurs 2 erldutert, gibt es in der RTOS—UH-Welt zwei
Typen von Datenstationen: Typ I, der dermaflen schnell arbeiten kann, dafl
keine Wartephasen fiir den Prozessor anfallen (Digitale E/A, A/D— und D/A-
Wandler etc.) und Typ II, der beim Datentransport den Prozessor derart wenig
belastet, dafl es sinnvoll ist, die kostbare Prozessorleistung fiir andere Aufgaben
verfiigbar zu machen. Der Typ I wird nicht vom Betriebssystem unterstiitzt,
da seine Ansprache durch Nutzertask—eigenen direkten Maschinencode erfolgt.
Dieser Typ ist daher auch nicht iiber Bedienbefehle ansprechbar, allenfalls in
bestimmten Fillen durch seine Hardware-Adresse mit dem ,,SM“— bzw. ,,DM“—
Befehl.

Uns interessiert hier nur der Typ II, der in RTOS—UH mit den auf Seite 46
schon erwahnten ,Ddmonen® realisiert ist. In diesem Fall handelt es sich um
die Ddmonen des Ein-/ Ausgabesystemes, die ,,I/O-Déamonen®. Sie sind wie al-
le Ddmonen normale Tasks, auch der Begriff ,, Warteschlangenbetreuungstask*
beschreibt sie gut. Jeder I/O-Dédmon kiimmert sich um eine ihm zugeordnete
Warteschlange, in der seine Auftriage stehen. Wenn ein Nutzerprozefl z. B. auf
dem Drucker etwas ausgeben will, so reiht er in Wirklichkeit nur einen Ausga-
beauftrag in die Warteschlange des Druckerddmonen ein. Diese Warteschlange
ist, wie im Schnellkurs beschrieben, nach Prioritdten geordnet. Die moderneren
I/O-Démonen laufen mit variabler, selbstanpassender Prioritdt. Damit tragen
sie der aktuellen Auftragslage optimal Rechnung, behindern aber Nutzerpro-
zesse, die wichtiger als ihre Auftraggeber sind, praktisch nicht. Auch sonst
erinnern sie an Chaméleons: Sie verwenden die Nutzeridentifikation desjenigen
Prozesses, fiir den sie gerade arbeiten. (Wes Brot ich eB, des Lied ich sing .. .).

Wenn verschiedene Geréte eine gemeinsame, nur einmal vorhandene Kompo-
nente teilen miissen (z. B. ein Controller fiir mehrere Floppy—Laufwerke), so
gibt es hierfiir nur einen gemeinsamen Dadmon und einegemeinsame Warte-
schlange, was gewisse Einschriankungen bringen kann: Eine physikalisch echt
zeitlich parallele Arbeitsweise der beiden Geréte ist dann nicht moglich.

Fiir die Ansprache der Datenstationen iiber die sogenannte ,Pathlist® spie-
len diese internen Details allerdings keine Rolle. Die Adressierung jeder iiber
Bedienbefehle oder PEARL—Programme erreichbaren Datei geschieht auch im
RTOS-UH so wie es heute allgemein iiblich ist, ndmlich durch einen hierar-
chisch aufgebauten Pfad, eben jene bereits erwéhnte ,,Pathlist“:

/Geratebez/subdir/subdir/.../subdir/filename
/Netzrechner/Geratebez/subdir/.../subdir/filename

50 2.5 Das Pathlist-Konzept von RTOS-UH/PEARL

Durch das Zeichen ,/“ wird die Pfadliste auf der allerobersten Ebene, der
Root— (Wurzel-) Ebene begonnen. Anschliefend mufl entweder iiber einen im
System definierten Gerétebezeichner oder explizit numerisch eine Warteschlan-
ge (Warteschlangennummer= LDN) samt zugehoriger Untergliederungsnummer
(Laufwerk= DRIVE) folgen.

Zwischen Klein— oder Grofischreibung wird beim Gerétebezeichner im Gegen-
satz zum Rest der Pathlist nicht unterschieden. Eine numerische Angabe der
beiden Parameter LDN und DRIVE wird durch einen Sondergeritebezeichner
,LD/integer. integer/“ ermoglicht:

/LD/7.6/ steht fiir LDN=7, DRIVE=6.

Der endende Slash dieses Konstruktes darf niemals fehlen, auch nicht, wenn die
Pathlist hinter der DRIVE-Zahl ohnehin beendet ist. Wenn fiir DRIVE keine Zahl
angegeben wird, so substituiert das System den Wert 0. So ist z. B. /LD/3/
identisch zu /LD/3.0/.

! — Die maximale Liinge der Pfadliste ist begrenzt, allerdings ist die-
se Zahl keine interne RTOS-Konstante. Sie hiangt ausschliellich
von Threr Implementierung ab. Bei den dlteren Systemen durften
maximal 24 Zeichen benutzt werden — wobei der Gerétebezeich-
ner nicht mitzéhlt. Dieser Wert ist fiir die sehr kleinen Mikrokon-
trollersysteme immer noch eine gute Empfehlung, weil dadurch
an vielen Stellen Speicherplatz gespart wird. VME-Systeme und
die Apple-Systeme arbeiten heute meist mit einer Maximalldnge

von 64 Zeichen.

! — Auch der Querverkehr zu irgendwelchen anderen Rechnern im
Netz (RTOS-PDV-Bus—Netz, Ethernetkopplung, RTOS-Profi—
Bus—Netz etc.) zweigt von der Root-Ebene ab. Der Bezeichner
fixiert in diesem Fall sowohl das angewéhlte Netz als auch die
untergeordnet selektierte Rechnerstation. In dem angewihlten
Rechner befindet man sich dann erneut auf dessen Root—Ebene
und steigt von dort weiter iiber einen dort giiltigen Gerétebe-
zeichner ab.

/FO Eigene Floppy, Laufwerk 0
/A1 Konsolterminal
/ST3 PDV-Netz, Rechner No. 3

/LD/0,2/ Numerisch: LDN=0, DRIVE=2 (Konsole)

Wenn die Pathlist hinter dem Gerédtebezeichner endet, so wird
sie vom System gedanklich um ,,/--“ verldngert, wobei dieser
,Defaultfile“ mit Namen ,,--“ aber nicht explizit (z. B. /F0/-)

2.5 Das Pathlist-Konzept von RITOS-UH/PEARL ol

!

—

angegeben werden kann. Der Defaultfile hat fiir manche Pro-
gramme eine sinnvolle Bedeutung, z. B. bei COPY, wo er die au-
tomatische Substitution eines Teiles der Partnerpathlist bewirkt.

AufBler bei den nicht weiter untergliederungsfihigen seriellen
(z. B. /A1, /B2 etc.) oder parallelen (z. B. /PP) Rechnerschnitt-
stellen ist hinter dem Geritebezeichner, angehidngt durch ,,/*,
ein weiterer Bezeichner nétig. (Es sei denn, dafl man seine ganze
Floppy iiber /F0 als einen einzigen File ,,-=“ benutzt . ..). Dieser
Fortsetzungsbezeichner kann folgendes bedeuten:

1. Ein Unterinhaltsverzeichnis (Subdirectory).

2. Der Defaultfile in einem Unterinhaltsverzeichnis. (Dann en-
det hier die Pathlist hinter dem ,,/%).

3. Name einer Datei (Dann endet hier die Pathlist).

4. Ein Geritebezeichner (erzeugt LDN und DRIVE) passend fiir
den Rechner, der durch den vorhergehenden Bezeichner
iitber das Netz angewdhlt wurde. Hier ist jedoch aus Si-
cherheitsgriinden keine numerische Angabe méglich, son-
dern nur ein im Zielrechner freigegebener Bezeichner.

Beispiele zu 1 bis 4:

1. /FO/SYSTEM/... SYSTEM ist ein Subdirectory
/FO/SYSTEM/ Defaultfile Names ,,--* in /FO/SYSTEM
/FO/Daten File Daten auf Floppy Nr. 0

Ll A

/ST4/A1 Konsole des Rechners Nr. 4 im Netz
/ST6/ED/ . .. ED-File des Rechners Nr. 6 im Netz

Beispiele: Kopieren mit vollstédndigen lingeren Pathlists:

copy /st4/ed/mueller/prog.p > /st3/pp

type /ed/maier/test

cp /ed/prog>/F0/save/ (Geht nach /F0/save/prog!)
(cp ist die Kurzform von COPY)

Wie zu erkennen ist, darf der Punkt als Namensbestandteil ver-
wendet werden. Dies ist hauptséchlich gedacht, um beim Hantie-
ren mit Disketten anderer Softwareanbieter deren , Extensions*
verwenden zu kénnen. Bezeichner diirfen Ziffern enthalten.

Wegen der Kompatibilitdt zu dlteren RTOS—UH—Versionen, bei
denen Punkt und Doppelpunkt eine spezielle Bedeutung haben

92

2.5 Das Pathlist-Konzept von RI'OS-UH/PEARL

. —

— ndmlich Trennung des Gerétebezeichnerstrings vom Rest der
Pathlist — muf} vor Mifideutungen gewarnt werden, z. B. wird
ed.xy = ed:xy = /ed.xy = /ed:xy = /ed/xy

vom System als gleichwertig akzeptiert. Es sollte nur die letzte
Form Verwendung finden, da die &dltere Syntax sehr leicht zu
Fehlern bei der Adressierung im Rechnernetz fithren kann.

Ebenfalls aus Kompatibilitéitsgriinden wird als Gerédtebezeichner
auch noch der String ,Lz* angenommen, wobei ,,z* fiir eine Zahl
oder einen Buchstaben steht. Auch hier wird empfohlen, diese
Syntax fortan nicht mehr zu benutzen. (Die Zuordnung war da-
bei wie folgt: L4 = /LD/4,0/, LA = /LD/10,0/, LG = /LD/16,0/
etc.). Logischerweise sind daher LO und auch LD Geritebezeich-
ner, wenn man sie durch ein Versehen im falschen Kontext be-
nutzt!

Mit dem Bedienbefehl ,,CD* verdndert man ein sogenanntes
,, Working—Directory“. Dies ist ein vorderer Teil der Pathlist, der
immer dann automatisch vom System vorangestellt wird, wenn
eine Pathlist nicht mit dem Wurzelsymbol , /¢ startet.

Beispiel: CD /ed/mueller
type mist == type /ed/mueller/mist

Es ist immer irgendein Working—Directory definiert. Beim Start
des Systemes ist es ,,/“, so da} man in diesem Fall direkt mit
dem Gerétesymbol starten kann, d. h. ,load b2“ wird dann
wie ,load /b2“ behandelt. Es ist aber absolut nicht zu emp-
fehlen, sich diese nur um ein Zeichen kiirzere Adressierung anzu-
gewbhnen — es sei denn, dafl man grundsétzlich nie mit einem
Working—Directory arbeitet ... (wehe aber, man hilft dann ei-
nem anderen Nutzer, der mit Working—Directory arbeitet, bei
der Abfassung eines Bedienbefehles!)

2.6 Einige technische Daten 53

2.6 Einige technische Daten

Maximale Anzahl gleichz. aktiver Tasks: Nur durch Speicher begrenzt.
Maximale Anzahl von Semaphorvariablen: =~ Nur durch Speicher begrenzt.
Maximale Anzahl von ProzeSinterrupts: 32
Reaktionszeit, Prozefinterr., PEARL: 3...200 ps

je nach Prozessor

ProzefBumschalter (,,Dispatcher*): Rein ereignisgesteuert, kann auch Sy-
stemaufrufe niedriger priorisierter Tasks — das sind Supervisormodese-
quenzen — abbrechen (,echte* Preemption).

Task—Wechselzyklus A-B-A: etwa 7 ...400 ps

I/0-System: Priorititsgeordnete Warteschlangen mit eigenen Betreuungs-
prozessen (I/O-Démonen, I/O-Tasks). Die Ein— und Ausgabe arbeitet
asynchron und ist ohne Wartephasen des Auftraggebers moglich, wobei
die Information nicht umkopiert werden muf. Durch einen Trap (XIO)
wird ein unabhéngiger I/O-Dédmon gestartet. Damit werden wesentliche
Nachteile der sonst iiblichen unterprogrammgesteuerten Ein— und Aus-
gabe vom Prinzip her bereits vermieden.

Nutzerdatenstationen kénnen permanent oder temporér hinzugefiigt wer-
den.

Bedieninterpreter: In Universal-Maschinensprache codiert. Hierarchisches,
erweiterbares Shellkonzept mit einer leistungsfihigen Shellsprache.

PEARL90-Compiler: In virtuellem (VCP-) Code geschrieben, damit ex-
trem kompakt. Eine Version in native Code ist ebenfalls verfiigbar. Voll
kompatible Crossversionen fiir MS-DOS u. a. Systeme.

Portabilitat: Durch Austausch der Implementierungsscheibe an alle Rechner
anpaf3bar, fiir die ein Transferassembler existiert. (zur Zeit 680xx und
PowerPC 603/4)

System—(©)1982 ... 2003: Prof. Dr.—Ing. W. Gerth,
Institut fiir Regelungstechnik
Universitdt Hannover
Appelstr. 11

30167 Hannover

o4

2.6 Einige technische Daten

(Leere Seite vor neuem Kapitel)

Kapitel 3: Bedienung des Systems

3.1 Struktur der RTOS-Shell
3.1.1 Die 8 Ebenen der Shell

Dieser Abschnitt ist nicht fiir den eiligen Leser gedacht, sondern fiir diejeni-
gen, die gerne detaillierte Kenntnisse iiber das System erwerben méchten. Beim
ersten Lesen dieses Handbuches kann man evtl. gleich zu 3.2 auf Seite 61 wei-
terblattern.

Der Kern des Betriebssystemes kennt keine Shell. Viele eingebettete Syste-
me benétigen auch keine. Shell-lose Systeme entstehen, indem man bei der
Komposition des Systemes die entsprechenden Scheiben fortldfit. Jede mensch-
liche Kommunikation erfolgt mit Hilfe einer aus Systemsicht vollig gew6hn-
lichen Task, der Shelltask, auch , Shellprozel* genannt. RTOS—UH ist kein
PC-Betriebssystem, seine Shellphilosophie #hnelt eher den ,,...ix“-Systemen aus
der Multiuser-Workstationwelt — jedoch ohne deren echtzeit-riskanten Strate-
gien und unter Einsparung der Schutzmechanismen gegen ,,boswillige® Mitbe-
nutzer. Es wurde optimiert auf effiziente und sichere Echtzeiteigenschaften. Die
Forderung, quasi jederzeit Einblick und Eingriff nehmen zu koénnen — und dies
ohne die laufenden Echtzeitprozesse zu storen! —, stand bei der Entwicklung im
Vordergrund.

Es gibt verschiedene Arten von Shellprozessen. Gewissermaflen die ,, Vater®
jeder Bedienkommunikation mit dem System sind die ,,priméren Shellprozesse®.
Primére Shellprozesse konnen ,,permanent“ oder ,,temporar® sein.

Die Zahl permanenter primérer Shellprozesse wird bei der Komposition
des Systemes festgelegt. Sie d&ndert sich nach dem Einschalten nicht mehr. Per-
manente primére Shellprozesse laufen typischerweise durch den Anschlag von
Ctrl A auf einer ihnen fest (!) zugeordneten Eingabetastatur an und schrei-
ben einen Eingabeaufforderungsprompt. Sie représentieren gewissermaflen fest
installierte Nutzerarbeitsplatze des Systemes.

Die temporéren priméren Shellprozesse benétigt man z. B. fiir das Fern-
Einloggen iiber ein Netz. Es entstehen damit voriibergehend quasi weitere Nut-
zerarbeitsplitze. In aller Regel wird aus Sicherheitsgriinden den temporiren
priméren Shellprozessen eine deutlich niedrigere Prioritét als den permanenten
zugewiesen.

95

56 3.1 Struktur der RTOS-Shell

Alle priméren Shellprozesse besitzen ein ,, User-Environment* und sind der Ort,
an dem die ,, User-ID“ entsteht. Die sogenannten ,sekundéren“ Shellprozesse
sind Handlanger oder Abkémmlinge primérer Shellprozesse. Sie erben deren
User-1D und erhalten bestimmte Daten aus deren User-Environment als Kopie.
Die priméren Shellprozesse sind unsere eiserne Zugriffsreserve auf das System.
Sie kennen meistens eine Art ,Notruf* iiber die BREAK-Funktion der Tastatur.

In Wirklichkeit ist jeder ,,Shellprozef3“ eine vom Code her geradezu winzige
Task, nur ca. 200 Bytes grofi. Die komfortable ,RTOS—Shell“ entsteht erst
durch das ,Ebenenmodell“. Die Elemente der einzelnen Ebenen sind wieder-
eintrittsfeste Unterprogramme. Dazu gehort das ,,Shell Subroutine Package*,
abgekiirzt ,SSRP*“. Auch die Dekodierung der Befehle der Grundshell ., SHL“
ist in entsprechenden Unterprogrammen realisiert. Gleiches gilt fiir alle weite-
ren Zusatzshellmodule. Weil der Code des ,,SSRP“, des ,,SHL* und aller korrekt
kodierten Zusatzshells wiedereintrittsfest ist, kénnen ihn verschiedene Shellpro-
zesse gleichzeitig benutzen, ohne sich gegenseitig zu beeinflussen. Das Ebenen-
modell kann man sich in etwa wie folgt vorstellen:

E Ebene Funktion Identifikation

1 Shell-Proze Call E2 #USERxy ,#XCMMD
2 Shell-Subroutine—package UP-Sammlung | SSRPxy-slice

3 Die Grund-Shell Standardbefehle | SHLxy-slice

4 Extra—Shell Optionalbefehle | 77

5 Nutzer—Shellbefehle im ROM nach Wunsch ROM-slices

6 Nutzer—Shellbefehle im RAM nach Wunsch Speichersektion

7 Transiente Befehle nach Wunsch z.B. /FO/ABCD

8 Skript in Shellsprache nach Wunsch z.B. /HO/skript1l

Dieses 8—Ebenen—Schema beschreibt recht genau, wie die Verarbeitung eines
jeden eingegebenen Bedienbefehles funktioniert. Wir unternehmen eine Reise
durch die Ebenen und beginnen mit dem Anschlag von Ctrl A auf unserem
Terminal (bzw. auf der Tastatur, wiithrend der Eingabefocus im Kommando-
fenster unseres Schirmes ist).

Ebene 1: Wenn wir nach Anschlag von Ctrl A den Eingabeprompt (z. B.
das Zeichen ,*“) erhalten haben, so hat die Ebene 1, in die-
sem Fall eine ,primére permanente Shelltask“ (in der sich das
,» User—Environment“ befindet) diesen Prompt geschrieben und
anschliefend die Eingabe angestofen, auf die sie nun wartet. Se-
kundére Shellprozesse, so auch die spezielle Shell-Task mit Na-
men #XCMMD, (die gleichzeitig auch eine 1/O-Task ist) schreiben
keine Eingabeaufforderung, weil sie den Bedien-Befehlstext auf
irgend eine Weise bereits erhalten haben.

3.1 Struktur der RTOS-Shell 57

Ebene 2:

Ebene 3:

Ebene 4:

Ebene 5:

Ebene 6:

Ebene 7:

Wir lassen den Shellprozefi nicht lange warten, sondern geben
ihm nun den Text ,EinTest* als Befehl ein, Abschlufl mit CR.

Der Shell-Proze$ ruft mit diesem String das SSRP auf (es muf} al-
so vorhanden sein). Mit Hilfe des SSRP-Unterprogrammes sucht
der Shell-Prozefi nun zunéchst in der Tabelle der Grundshell
nach einem Befehl dieses Namens. Dabei wird zwischen Grof-
und Kleinschreibung nicht unterschieden. In unserem Fall wird
der Befehl ,EinTest* dort natiirlich nicht gefunden und die Su-
che geht automatisch in den im ROM (bzw. gebooteten RAM,
in dem das System sitzt) vorhandenen Extra—Shell-slices weiter.
Auch hier wird nicht zwischen Grof3- und Kleinschreibung unter-
schieden, wére ein Befehl ,,EINTEST® dort definiert, so wiirde er
unser Kommando iibernehmen. Auch die Befehle, die der Nut-
zer selbst zum System hinzugefiigt hat, werden am Ende dieser
Suche erfafit.

Nachdem auch diese Suche fehlgeschlagen ist, untersucht der
Shell-Prozef (der immer noch im SSRP-Unterprogramm steckt)
nun, ob es eine Task mit dem Namen ,EinTest* in der System-
verwaltung gibt, die dann behandelt wiirde, als ob man den Be-
fehl ,activate EinTest ...“ eingegeben hitte. Hierbei wird
dann wie beim ACTIVATE-Befehl zwischen Grof- und Kleinschrei-
bung unterschieden.

Die Suche geht weiter im von RTOS—UH verwalteten RAM.
Alle SMDL-Sektionen und auch alle PMDL-Sektionen werden un-
tersucht, ob es darunter einen Befehl ,EinTest“ gibt — ohne Un-
terscheidung von Grof3- und Kleinschreibung. (SMDL, PMDL siehe
Seite 201)

Nun wird der Befehl ,EinTest* versuchsweise als Bezeichner ei-
nes Files interpretiert. Weil er nicht mit dem Zeichen ,,/“ beginnt,
werden ihm nacheinander die vorhandenen Execution-Directories
vorangestellt. Vorher werden alle Kleinbuchstaben endgiiltig in
Groflbuchstaben verwandelt. Wird kein passender File mit Na-
men ,EINTEST® gefunden, so bricht der immer noch im SSRP lau-
fende Shell-Prozefl mit einer Fehlerantwort nach Stderr die wei-
tere Befehlsdekodierung ab. In der Fehlermeldung erscheint un-
ser Eingabebefehl jetzt als EINTEST, weil die Umwandlung nicht
riickgéngig gemacht wird.

58

3.1 Struktur der RTOS-Shell

Ebene 8:

Rekursion:

Wir nehmen an, ein File wurde gefunden. Er wird jetzt vom
Shell-Prozefl mit Hilfe entsprechender Code-Sequenzen des SSRP
gelesen, und der Anfangstext wird analysiert. Wenn der Inhalt
mit SO0... beginnt und wenn im System der RTOS-Lader vor-
handen ist (er ist eine eigene Scheibe und mit dem integrier-
ten LOAD-Befehl der Ebene 4 zuzuordnen), so wird der File
/.../.../EINTEST geladen. Enthélt er einen passenden Shell-
Befehl, so wird dieser als ,transientes Kommando® ausgefiihrt,
anderenfalls erfolgt ein Fehlerabbruch (,,....cannot execute®
nach Stderr). Transiente Kommandos erzeugen einen der Shell
unterlagerten eigenen Prozefl, im RTOS-UH auch Sohnpro-
zefl genannt, der das Laden tibernimmt und danach wieder ver-
schwindet. Der Shell-Prozefl wartet wihrend des Ladens auf die-
sen Sohn. Das in den Speicher geladene Modul verschwindet nach
Abarbeitung des Befehles automatisch.

Wenn der Inhalt des gefundenen Files nun nicht mit SO. . . anfing
und im System der optionale Shellspracheninterpreter vorhan-
den ist, so wird ein Sohnprozef} eingerichtet, der die interpreta-
tive Abarbeitung des Shellsprachprogrammes iibernimmt — ein
sekundérer Shellprozefl entsteht. Die primére Shell-Task tiber-
gibt diesem sekundéren Shellprozel bestimmte Daten aus ihrem
,, User-Environment“ und startet diesen. Die RTOS-Shellsprache
ist in einem eigenen Abschnitt beschrieben, der auf Seite 74 die-
ses Handbuches beginnt.

Man beachte, dafl der Shellspracheninterpreterprozefl der Ebene
8 nun selbst wieder das SSRP aufrufen kann und damit erneut
alle Folgeebenen durchlaufen werden kénnen. Wegen der Rekur-
sivitdt und Wiedereintrittsfestigkeit der RTOS—UH-Software
gibt es keine Probleme.

3.1 Struktur der RTOS-Shell 59

3.1.2 ProzeB3philosophie der RTOS—UH-Shell

Die ,,Shell“ als Partner unserer Kommunikation ist aus Sicht des Systemes eine
ganz gewoOhnliche Task, ein ,,ProzeB* im Sinne der Informatik. Allerdings ist
dies meist ein Prozel mit sehr hoher Prioritdt. Da Prozesse mit hoher Prioritét
generell hinsichtlich der Echtzeitreaktivitdt bedenklich sind, ist der Shellprozef}
so strukturiert, dafl er nur solche Aktionen selber ausfiihrt, die nur sehr wenig
Prozessorleistung erfordern. Es wére keine gute Losung, nun etwa die Prioritét
der ,,priméren Shellprozesse“ abzusenken — sonst kann man nédmlich sehr leicht
durch langer laufende Nutzerprozesse aus dem Systemzugriff herausgedriickt
werden. Die Prioritdt der permanenten priméren Shellprozesse kann dennoch
bei der Zusammenfiigung des Systemes iiber die User—Environment—Scheibe
frei festgelegt werden — fiir Einsatzfille, bei denen jede Bedienung immer den
sonstigen Aufgaben untergeordnet sein mus.

Das Problem dieser widerspriichlichen Anforderungen — Hohe Echtzeitgiite und
gleichzeitig einen immer schnell moéglichen Shellzugriff — wird beim RTOS—
UH-System durch Delegation von Aufgaben an niedriger priorisierte ,,Sohnpro-
zesse“ gelost. Typische Sohnprozesse sind etwa die Compiler und Assembler.
Auch die vom Nutzer in PEARL kodierten Shellfunktionen laufen grundsétz-
lich als Sohnprozesse ab — aus Sicherheitsgriinden, schliefllich kénnte der Nutzer
aus Versehen eine Unendlichschleife programmiert haben. Der Interpreter fiir
die Shellsprache lauft aus dem gleichen Grund ebenfalls als eigener Prozef} ab,
dessen Prioridt im Nutzer-Bereich liegt und damit deutlich niedriger als die der
priméren Shellprozesse ist.

Bei den Shellbefehlen, die Sohnprozesse generieren, kann man den Namen des
Prozesses selbst bestimmen und den Prozefl damit weiteren Manipulationen
zugénglich machen. Auflerdem kann mit Hilfe des ,,WAIT*“-Befehles auf das re-
guldre oder irregulire Ende eines Sohnprozesses gewartet werden. Mit Hilfe
der Namenswahl kénnten z. B. durch zyklische Einplanung einer COPY—Subtask
beliebige Befehle automatisch wiederholt werden:

COPY.X /ED/X1>/XC/;T X;ALL 10 SEC X

Der COPY-Prozefl schickt nun alle 10 Sekunden den Inhalt des Files /ED/X1
an den Shellprozefl #XCMMD, der die Befehle wie oben beschrieben auswertet
(Néheres in 3.2.4 auf Seite 64).

60

3.1 Struktur der RTOS-Shell

No. Prozef Prioritdt | Bemerkung
1 Primérer Shellprozefl sehr hoch | Wird durch Ctrl A aktiviert.
Netz-Shellprozef3 hoch Remote Login iiber Netz
2 Sohnprozef3 von 1,2,3 mittel Compiler, Assembler etc.
und/oder PEARL-kod. Shell-Befehl
Sekundirer Shellprozefl Shell-Folgebefehle des Sohnes
— oder Shellsprachinterpreter
3 XCMMD-Prozef3 variabel | gleichzeitig I/O-Prozef
—“— und sekundérer Shellprozef3
4 Lader fiir trans. Befehl hoch Fliichtiger Sohn von 1... 4

Tabelle 3.1: Ubersicht iiber mogliche Shellprozesse

3.1.3 Das User-Environment

Bei der Montage des Systemes wurden sogenannte ,,User-Environment“—Schei-
ben eingebunden, in denen u. a. die Zugriffspfade fiir ,,Stderr®, ,Stdin® und
»Stdout“ vordefiniert wurden. Das User-Environment liegt im Verwaltungs-
kopf jedes priméren Shellprozesses, der in der Tabelle im Abschnitt 3.1.2 mit
der Ifd. Nummer 1 als , Vater aller Shell-Aktivitdten“ zu finden ist. Bei tem-
poréren priméren Shellprozessen wird das User-Environment durch den Log-In
des Netzwerkhandlers eingerichtet. Im User-Environment ist auch der Platz fiir
das Working-Directory und mehrere (bei der Systemmontage parametrierbare
Zahl) Execution-Directories . Sie bestimmen die Pfadlisten, mit deren Hilfe die
Shell in den Ebenen 7 und 8 nach Kommandos sucht.

Die im User-Environment abgelegten Daten sind folgende:

Systemname | Bedeutung beeinflulbar?
Error-Buffers | Meldungsspeicher fiir Fehler nur ungewollt

NXD No. of Execution-Directories bei Systemgenerierung
STDE. .. Stderr-path iiber PER-Befehl
STDI... Stdin-path iiber PI-Befehl

STDO. .. Stdout-path iiber PO-Befehl

WXDIR W /X-Directory CD- und CXD-Befehle
ENVADR Pointer to Extra-Environment | mit ENVSET-Befehl

Die Daten des User-Environmentes werden vom priméren Shellprozef} fiir sei-
ne eigenen Aufgaben und die seiner Abkommlinge (Sohnprozesse, sekundére
Shellprozesse) unterschiedlich ausgewertet und weitergegeben.

3.2 Umgang mit der Shell 61

e NXD wird stets unveréndert weitergegeben.

e Von STDE... ,STDI... und STDO... wird eine lokale Kopie angefertigt,
auf die die Befehle ,I“, ,0“ und ,ER® fiir die Dauer einer kompletten
Befehlszeile einwirken. Mit jedem Aufwecken durch Ctrl A fertigt sich
der primére Shellprozefl die Kopie erneut an. Alle Sohnprozesse und se-
kundéren Shellprozesse erhalten im Moment ihrer Entstehung ihre eigene
Kopie dieser E/A-Pfadbeschreibungen.

e Beim WXDIR arbeitet ein primérer Shellprozefl stets mit seinem Original.
Die Befehle ,,CD“ und ,,CXD“ iiberdauern darum mit ihrer Wirkung Ende
und Neuaktivierung eines permanenten priméren Shellprozesses. Sohn-
prozesse und sekundire Shellprozesse erhalten dagegen eine Kopie und
arbeiten damit. Wenn solche Prozesse Working-/Execution-Directories im
User-Environment veréndern sollen, so sind die Befehle ,,CUD* und ,,CUXD*
zu verwenden. Bei priméren Shellprozessen ist die Wirkung von ,,CD“ und
,,CUD“ sowie ,,CXD*“ und ,,CUXD“ logischerweise jeweils vollig identisch.

3.2 Umgang mit der Shell

3.2.1 Aufbau der Anweisungszeile

In einer Anweisungszeile diirfen keine, eine oder mehrere Anweisungen ste-
hen. Mehrere Anweisungen in einer Zeile werden durch ein Semikolon oder das
Doppelminuszeichen ,,—-“ voneinander getrennt. Durch Semikolon getrennte
Anweisungen werden soweit moglich parallel abgearbeitet. Wenn die Anwei-
sungen zeitlich nacheinander abgearbeitet werden sollen, sind sie durch ,,—-“
zu trennen (siehe 3.2.5 auf Seite 65). Leeranweisungen sind auch zwischen Se-
mikolons zuléssig. Zwischenrdume (Blanks) sind zwischen Schliisselworten und
Parametern erforderlich, wenn andernfalls Mifiverstdndnisse entstehen konn-
ten. Mehrere Parameter in einer Parameterliste kénnen wahlweise durch Blanks
oder Kommata getrennt werden. Eine Zeile wird durch das Zeichen ,,Carriage—
Return® beendet.

Beispiele fiir zulissige Eingaben:

DM 5000;;; (mit Leeranweisungen)
SM 1000,1200;S;L;XYZ PRIO 50; TERMINATE ABCD;

T XYZ; TRACE TEST L344,23;

/HO/XD/QP SI /ED/Test LO /ED/Liste; (trans. Befehl)

62 3.2 Umgang mit der Shell

3.2.2 Bedienung durch den priméiren Shellprozef3

Die Zugriffszeit (nach Anschlag von Ctrl A) hidngt von der dem Terminal zu-
geordneten priméren Shelltask mit Namen #USERz und der aktuellen System-
belastung ab. Die typische Prioritdt permanenter primérer Shellprozesse ist
allerdings die zweithéchste — nach dem #ERROR-Damon — im ganzen System,
so daBl die Reaktion prompt erfolgen sollte.

! - Eine eventuell noch ,hiingende“ Eingabe (z. B. erwartet eine
Task eine Eingabe) kann den Zugriff verhindern. Erscheint das
Zeichen ,*“ nicht, daher probeweise , Carriage-Return“ einge-
ben.

Eine Eingabezeile darf max. 128 Zeichen lang sein.

Der Shellprozefl kann durch BREAK abgebrochen werden. Es erscheint dann ein
neuer Eingabeprompt. Die BREAK-Taste ist der letzte Rettungsanker, weil sie
auch Wartezustinde — z. B. mit ,WAIT“-Befehl erzeugte — aufheben kann. Aus-
gabevorginge des Shellprozesses werden sobald irgend moglich gestoppt.

Trotz der hohen Prioritit des Shellprozesses werden andere laufende Akti-
vitdten durch ihn praktisch nicht behindert, so dafl keinerlei Grund zur Zuriick-
haltung z. B. wiahrend einer laufenden Compilation besteht. Zeitlich aufwendi-
ge Operationen werden vom Shellprozef} ja bekanntlich durch Erzeugung von
Subtasks (Sohnprozesse) erledigt und damit auf eine niedrigere Prioritéitsebene
verlagert. Derartige Sohnprozesse oder sekundére Shellprozesse werden nicht
durch BREAK, sondern mit Hilfe von UNLOAD abgebrochen!

3.2.3 Bedienung durch einen sekundéren Shellprozef3

Sekundéare Shellprozesse entstehen durch das Anhingen von Befehlstext an
Sohnprozesse der Shell mit Hilfe zweier Minuszeichen. Genaueres dazu in 3.2.5
auf Seite 65. Mit Hilfe des DEFINE-Befehles ist es moglich, quasi einen ,,leeren®
Sohnprozefl zu erzeugen, dessen einzige Aufgabe die Execution von Shellbe-
fehlen unabhéngig von unserer priméren Shell ist. Auf diese Weise kann man
praktisch jedes beliebige Shell-Kommando einplanbar machen.

Soll zum Beispiel ein Befehl eingeplant werden, der alle 10 Sekunden den Inhalt
der Speicherzelle $4712 anzeigt, so kann das wie folgt erreicht werden:

DEFINE.DM4712--DM 4712; ALL 10 SEC ACTIVATE DM4712

Die Namenswahl ,,DM4712 erfolgte frei. Es ist aber natiirlich sinnvoll, die Auf-
gaben sekundérer Shellprozesse in ihrem Namen erkennbar zu halten. Wenn
man seiner Tétigkeit iiberdriissig ist, kann man ,,DM4712“ selbstverstdndlich
mit PREVENT ausplanen oder ihn mit UNLOAD véllig eliminieren.

3.2 Umgang mit der Shell 63

Dem Shellprozefi (Name im Beispiel ,,DM4712“) wurde im Moment der Aus-
fiihrung des DEFINE-Befehles Kopien von Stdin, Stdout, Stderr und WXDIR
mitgegeben. Verdndert man diese Daten spéter, so erreicht das den sekundéren
Shellprozef nicht. Umgekehrt — und auch das ist sehr erwiinscht — beeinflussen
Umlenkungen mit ,, I, ,0“, ,ER“, ,CD* und ,,CXD*“ des sekundéren Shellprozes-
ses den ,, Vater“-Shellprozef} nicht. Ausnahmen sind hier die Umlenkungen mit
,PI“ ,PO“, ,PER“, ,CUD“ und ,,CUXD“, die stets auf den priméren Shellprozefl
zuriickwirken — und darum sehr gefiihrlich sein kénnen: Lenkt man z. B. mit
PI die Eingabe auf eine Quelle um, von der keine Anweisungen kommen, so ist
die entsprechende primére Shell praktisch unbrauchbar geworden!

! — Wird ein sekundirer Shellproze, der ja eine normale Task ist,
von einer anderen als der einrichtenden priméren Shell aktiviert,
so erbt er nicht die Environment-Daten dieses Shellprozesses, da
seine bei der Definition gemachten Kopien nur von ihm selbst
verdndert werden konnen. Allerdings iibernimmt er die User-1D-
Nummer des Aktivierers. (Die jedoch bei gleichzeitiger mehrfa-
cher Aktivierung von verschiedenen priméren Shells nicht gepuf-
fert wird!)

Eine gewisse Umlenkung der Datenausgabe sekundérer Shellprozesse ist den-
noch mit Hilfe der Datenstation /TY moglich, wie an folgendem Beispiel er-
kennbar ist:

DEFINE.X--0 /TY--LU

Es wird das Terminal (bzw. Fenster), das der priméren Shell des Aktivie-
rers zugeordnet ist, durch Umlenkung innerhalb der sekundiren Shelltask (mit
Namen ,X“) als Ausgabe genommen. Man beachte, dafl das Konzept der se-
kundéren Shells nicht fiir kompliziertere Aufgaben gedacht ist; umfangreichere
Aktivitéiten erledigt man besser mit Hilfe von Skripten in der Shellsprache (sie-
he 3.5 auf Seite 74).

64 3.2 Umgang mit der Shell

3.2.4 Bedienfunktionen mit Hilfe der Datenstation /XC

Jedes ASCITI-Record, welches durch COPY oder Programmbefehle in die Ausga-
bestation /XC geschrieben wird, wird genauso behandelt, wie eine vom Nutzer
iiber seinen Shellprozef (Bedientask) abgesetzte Zeile. Damit ist auch das au-
tomatische und einplanbare Laden, Entladen, Compilieren etc. moglich.

Solange mit dem ,,0“-Kommando nicht anderes vereinbart, wird als Ausgabe-
gerat das jeweilige Standardausgabegerét ,,Stdout® aus dem User-Environment
des auftraggebenden Nutzers angenommen. Bei Umschaltung durch das ,,0“—
Kommando gilt dieses nur fiir den Rest der Zeile bzw. bis zum néchsten ,,0¢—
Kommando.
Beispiel 1: Beginnend um 12:00:00 Uhr soll alle 2 Sekunden der Zustand
der Task TRANS aufgelistet werden. Die Zusténde sollen in die
Datei /ED/ZUST geschrieben werden. Um 12:02:50 soll der letzte
Eintrag erfolgen:

COPY /A1/ > /ED/CMMD (Erstellung der Befehlsdatei)

=0 /ED/ZUST;SHOW TRANS;TERMINATE LIST

=Ctrl D (EOT) Eingabevorgang

COPY.LIST /ED/CMMD > /XC/;T LIST
AT 12:00:00 ALL 2 SEC UNTIL 12:02:50 LIST

Man kann die Kommando—Datei natiirlich bequemer mit einem
Editor erstellen! Man beachte, dal durch den Befehl COPY.LIST
ein benamter Kopierproze§ (Name = ,LIST“) entsteht, der
zunéchst nicht 13uft (wegen T LIST). Mit der letzten Zeile wird
der Prozefl ,LIST“ dann eingeplant.

Beispiel 2: Ein in PEARL geschriebenes Modul (TEST) soll sich selbst spur-
los aus der Verwaltung von RTOS—UH eliminieren:

3.2 Umgang mit der Shell 65

MODULE TEST;

SYSTEM; Shell:/XC;

PROBLEM; SPC Shell DATION OUT ALPHIC;
ABCD:TASK;

PUT °UNLOAD TEST*’ TO Shell BY A,SKIP;

SUSPEND;
END;

MODEND;

! — Die Prioritéit der Betreuungstask fiir die ,,/XC“~Warteschlange
héngt von der Prioritdt des schreibenden Prozesses ab und liegt
um eine Einheit hoher als dessen Prioritédt. Dennoch kann der im
letzten Beispiel eingebaute SUSPEND—Befehl evtl. zur Ausfithrung
kommen, weil noch andere Auftrige weiter vorne in der Warte-
schlange stehen kénnen und die mit dem ,,PUT“-Befehl abgesetz-
ten Anweisungen dadurch verzogert werden.

3.2.5 Zeitliche Hintereinanderschaltung von Befehlen

Bei lingerdauernden Aktivitdten benutzt die Shell Sohnprozesse, und diese
fiihren dann zu einer quasi parallelen Abarbeitung mehrer Bedienbefehle. Auf
diese Weise konnen Wartephasen — z. B. wenn der Compiler von der Platte
lesen mufl — einzelner Aktivitdten zugunsten anderer Bedienbefehle genutzt
werden: So wird eine optimale Ausnutzung des Prozessors erreicht. Dennoch
kann es wiinschenswert sein, verschiedene Bedienbefehle statt wie iiblich par-
allel nun zwangsweise sequentiell ablaufen zu lassen. Prinzipiell gibt es dafiir
zwei verschiedene Moglichkeiten.

66

3.2 Umgang mit der Shell

e Mit Hilfe des ,WAIT“-Befehles wird der Shellprozefl gezwungen, mit der

néchsten Anweisung in der Zeile erst zu beginnen, wenn die vorhergehende
Bedienanweisung beendet ist. Eine genauere Beschreibung von ,,WAIT® ist
auf Seite 223 zu finden.

WAIT;P;LOAD; ACTIVATE TASK1

Wiéhrend der Compilation und beim Laden laufen Sohnprozesse ab, auf
die unser Shellprozef jetzt jeweils wartet. Meistens wird es nachteilig sein,
dafl der Shellprozel dadurch wihrend der Bearbeitung der Zeile nicht
mehr fiir andere Aktivitdten zur Verfiigung steht. Auf Ctrl A reagiert
ein primérer Shellprozefl in dieser Zeit nicht, lediglich unser ,Notruf*
mit BREAK kann ihn aus der Blockierung befreien. Sohnprozesse geben in
der Regel einen Fehlerstatus an den iibergeordneten Shellprozef§ zuriick,
wenn dieser im ,, Wait-Mode* auf ihn wartet. Wiirde der Compiler einen
Fehler im Programm finden, so fithrt die Shell alle in der Zeile folgenden
Befehle nicht mehr aus, sondern schreibt ,, Befehl : operation failed
nach Stderr. Das Laden unterbleibt dann, ebenso die Aktivierung.

Wenn man die Anweisungen statt durch Semikolon durch zwei Minuszei-
chen trennt, so werden automatisch an den richtigen Stellen sekundére
Shellprozesse erzeugt, die die weitere Bearbeitung der Folgeanweisungen
iibernehmen. Der Shellprozefl wird also durch die Bearbeitung der An-
weisungsfolge nicht blockiert.

P--LOAD--ACTIVATE TASK1; DM 500

Nach dem Ubersetzen verwandelt der PEARL-Compiler sich in einen se-
kundéren Shellprozefl, der die Anweisungen LOAD--ACTIVATE TASK1 zu
bearbeiten hat. Sohnprozesse, die sich in sekundére Shellprozesse ver-
wandeln, unterdriicken ihre Endemeldungen. Der sekundére Shellprozef3
(er trigt noch den Namen des Compilers, braucht aber nicht mehr seinen
ganzen Speicher) fiithrt das Laden allerdings nur aus, wenn er selbst keinen
Fehler detektiert hat. Bei dieser Losung werden fehlerhafte Programme
nicht geladen, und die (primire) Shell bleibt frei fiir andere Aufgaben:
Der DM 500-Befehl wird schon in Bearbeitung genommen, wihrend der
Compiler l1duft. Interessant ist, dafl der Lader sich selbst am Ende in einen
sekundéren Shellprozefi verwandelt und die Anweisung ACTIVATE TASK1
mit auf den Weg bekommen hat. Die Aktivierung unterbleibt, wenn beim
Laden ein Fehler auftrat.

3.2 Umgang mit der Shell 67

3.2.6 Antwort der Shell im Fehlerfall

Wenn ein unzuléssiger Bedienbefehl eingegeben wurde, antwortet der veranlas-
sende Shellprozefl mit einer Meldung nach ,,Stderr*, der Standard-Fehleraus-
gabedatei (bzw. Gerét), die zum Zeitpunkt der Ausfithrung des fehlerhaften
Befehles vereinbart war. Mit den Bedienbefehlen ER und PER kann diese Aus-
gabe umgelenkt werden, z. B. in eine ,,Alertbox“ des Windowsystemes oder
in eine Sammeldatei auf Festplatte etc. Die Fehler fithren bis auf wenige Aus-
nahmen immer zum Abbruch der kompletten Bedienzeile. Bedienbefehle hinter
dem fehlerhaften kommen also in der Regel nicht mehr zur Ausfithrung. Aus-
nahmen gibt es z. B. beim UNLOAD-Befehl, der die Nichtexistenz von Modulen
oder Tasks zwar beklagt, aber dennoch weitermacht, weil das gewiinschte Ziel
ja erreicht wurde.

Die Fehlermeldungen der Shell haben folgendes Aussehen:

Bedienbefehl : Fehlerinfo
oder
< Shellprozessname > Bedienbefehl : Fehlerinfo

Die erste Form gilt fiir primére Shellprozesse, die zweite fiir sekundére. Unter
Bedienbefehl ist der inkriminierte Bedienbefehl samt allen Parametern — bis
zum néchsten Semikolon bzw. dem Zeilenende — zu finden. Die Fehlerinfo ist
abhéingig von der Art des Fehlers und selbsterklirend, bzw. bei den einzelnen
Bedienbefehlen beschrieben.

Der optional vorhandene Interpreter fiir die Shellsprache benutzt zum Teil die
Grundmechanismen der Shell, hat aber dariiber hinaus weitere eigene Fehler-
meldungen, z. B. bei Verletzung von Konventionen der Shellsprache.

68 3.3 PEARL-codierte Bedienbefehle

3.3 PEARL-codierte Bedienbefehle

Der modulare Aufbau der Shell (Bedieninterpreter) und ein entsprechender
Sonderteil im PEARL-Compiler lassen es zu, dafl zuladbare oder systemresi-
dente (ROM, Bootdisk) Bedienbefehle in PEARL geschrieben werden kénnen,
wobei ein evtl. Parametersatz des Bedienbefehles als Text an das PEARL-
Modul transferiert werden kann. Auflerdem werden die drei Datenstationen
Stdin, Stdout und Stderr des momentanen Shellprozesses fiir die PEARL-
Welt zugénglich gemacht:

1. Standard Input = Eingabegerit der Aufrufershell. Es kann mit dem I—
und PI-Befehl (Vorsicht!) umgelenkt werden.

2. Standard Output = Ausgabegerit der Aufrufershell. Es kann mit dem 0—
und PO-Befehl umgelenkt werden.

3. Standard FError = Error—Message—Sammeldatei der Aufrufershell. Es
kann mit den Befehlen ER und PER umgelenkt werden. Meist ist Stderr
nicht umgelenkt und ist dann das Terminal des Bedieners bzw. das Fen-
ster fiir die Kommandoeingabe.

Die Shell generiert einen Sohnprozefl; dessen Name und/oder Prioritéit vor-
gegeben werden kann. Dieser Sohnprozefl ruft mit dem unten beschriebenen
Parametersatz eine PEARL-Prozedur auf. Diese gibt einen Fehlerstatus (Er-
folg ja/nein) zuriick. Wenn es Shellfolgebefehle (mit 2 Minuszeichen angehéngt)
gibt und der Fehlerstatus ,,0.k.* ist, so verwandelt sich der Sohnprozef} in einen
sekundéren Shellprozef3, der die Folgebefehle interpretiert. Betrachten wir das
Beispiel in der Abbildung 3.3 (auf Seite 71).

Nach dem Ubersetzen (nur mit einem Compiler spiter als P16.6-D wenn die
XHELP-Unterstiitzung in {. .} nach dem Schliisselwort PROC genutzt wird!) und
Laden des Shellmodules kénnte man dann folgende Bedienbefehle eingeben:
xhelp;
Auf dem eigenen Terminal erscheint dann Zeile fiir Zeile eine Liste der Bedien-
befehle und diese enthilt folgende Zeile:
ECHOTX gibt Aufruftext aus.

Nun benutzen wir den neuen Befehl:

echotx Dies ist ein Test-Text;

Auf dem eigenen Terminal erscheint dann die folgende Zeile:

3.3 PEARL-codierte Bedienbefehle 69

Dies ist ein Test-Text (+CR wg. SKIP)

Anderes Aufrufbeispiel:

0 /ed/murks; echotx Soll in den Murks-file;

Nun wurde die Zeile ,Soll in den Murks-file“ in den File /ed/murks ge-
schrieben.

Weiteres Aufrufbeispiel:

echotx.z2 prio 12 PEARL-Compilation folgt -- P;

Es erscheint der Text ,PEARL-Compilation folgt“ und anschlieflend wird der
PEARL—Compiler gestartet. Nur zur Demonstration wurde ein Sohnprozefina-
me (z2) und eine Prioritéit angegeben.

-—>

Der iibermittelte Text beginnt immer mit dem ersten Zeichen hinter
der Liicke nach dem eigentlichen Bedienbefehl und endet vor dem Se-
mikolon oder dem Zeichen --, das den evtl. Folgebefehl einleitet. Der
Léngenparameter erhélt genau den dazu passenden Wert. Es ist Auf-
gabe des Programmierers, den Text — etwa mit passenden Unterpro-
grammen — selbst zu analysieren, um z. B. Zahlenwerte, Parameter-
bezeichner etc. zu erkennen.

Der so erzeugte Shell-Befehl ist i. a. nur dann mehrbenutzerfest, wenn
im Shellmodule weder Tasks noch globale (d. h. auf Modulebene dekla-
rierte) Variable benutzt werden. Gleiches gilt auch fiir in einem evtl.
vorhandenen SYSTEM-Teil deklarierte DATIONs. Der Grund liegt einfach
darin, daf derartige Objekte nur einmal vorhanden sind und zu einem
Zeitpunkt nur einem einzigen Herrn dienen koénnen. Gleichwohl sind
natiirlich auch Félle denkbar, in denen es fiir mehrere Nutzer nur eine
Server—Task geben darf, die sich ihre Auftridge z. B. iiber einen Ring-
puffer von den verschiedenen Nutzern holt (Nur aus diesem Grund 148t
der PEARL—Compiler auch in den Shellmodulen Modulvariable und
DATIONs zu).

3.3 PEARL-codierte Bedienbefehle

Die Bildung einer ,Scheibe“, um die Bedienbefehle EPROM- (oder
Bootdisk—) resident zu machen, geschieht auf die iibliche Weise, wie sie
spéter (z. B. Seite 630) noch beschrieben wird, durch Angabe von CODE-
und VAR-Adressen. (Wobei — s. 0. — die 13-er Scheibe des Variablen-
Blockes evtl. leer ist und nicht in das EPROM {ibernommen zu werden
braucht). Der Compiler gibt eine Meldung aus, ob der Einsatz des PROM—
Befehls (bzw. des Linkers) nétig ist oder ob das entstandene Modul frei
verschieblich ganz unkompliziert im EPROM (oder auf der Bootdisk)
abgelegt werden darf.

Shell-Module diirfen nur entladen werden, wenn sichergestellt ist, dal
kein Kommando dieses Modules mehr ausgefithrt wird. Ein UNLOAD
modnamex entlidt nur das Shell-Modul und nicht auch die evtl. auf
diesem Code noch laufenden Sohnprozesse!

3.3 PEARL-codierte Bedienbefehle

71

SHELLMODULE test; ! Eroeffnung eines ’Shellmodules’

Sages: ’ECHOTX’ ;

! Bedienbefehl ’ECHOTX’ wird definiert und mit interner
! PEARL-Prozedur Sages verbunden xxxx:’YYYYYY’; Evtl.

! weitere solche Verbindungen: PEARL-Name der Prozedur
! 1links, rechts vom Doppelpunkt der String des neuen

! Bedienbefehles. Nur Grossbuchstaben bei YYYYYY!

PROBLEM; ! SYSTEM oder PROBLEM beendet den speziellen
! Shell-Definitionsteil

Sages: PROC{’gibt Aufruftext aus.’} ((Stdin,Stdout,Stderr)
DATION INQUT ALPHIC IDENT,
Length FIXED, Text CHAR(255)) RETURNS(BIT(1));

Bis auf die Formalparameternamen und den evtl. Text
fuer XHELP ({}) muss die Prozedurdefinition immer
genau so aussehen. 0ft ist aber eine individuelle
Richtungsangabe fuer die 3 Dations zweckmaessig:
Stdin DATION IN ..., etc., da ja evtl. ein anderes
Geraet als das Terminal gemeint sein kann

DCL Istokay BIT(1) INIT (°1’B);

OPEN Stdout;

Istokay = Istokay AND ST(Stdout) EQ O;

PUT Text TO Stdout BY A(Length), SKIP;

Istokay = Istokay AND ST(Stdout) EQ O;

CLOSE Stdout;

Istokay = Istokay AND ST(Stdout) EQ O;

/* Info an Shell ob alles gelungen ist */

RETURN(Istokay); ! wird von Shell ausgewertet, wenn
! Folgekommando mit ’--’ folgt oder
I auf das Ende dieses Kommandos mit
I "WAIT’ gewartet wird.

END; ! An Shell angeschlossene Prozedur Sages
MODEND; ! Ende des Shell-Modules

Abbildung 3.3 Beispiel fiir ein Shell-Modul in PEARL

72 3.4 Besonderheiten bei transienten Kommandos

3.4 Besonderheiten bei transienten Kommandos

Wird von der Shell die Ausfiihrung eines Bedienbefehles verlangt, den sie
in den Ebenen 3 ... 6 nicht finden konnte, und existiert auch keine Task mit
diesem Namen in der Systemverwaltung, so wird vermutet, dal es sich um
ein ,transientes Kommando“ oder um einen ,,Skript“ in Shellsprache handelt
(siehe 3.5.2 auf Seite 76). Wenn ein Systemlader vorhanden ist (er kann darum
nicht als transientes Kommando benutzt werden!), wird zunéichst die Annahme
transientes Kommando® probiert, anderenfalls erfolgt der Ubergang in Ebene
8 zum Shellsprachinterpreter — falls vorhanden.

Wenn der Bedienbefehl mit ,,/“ beginnt, so wird angenommen, daf} ein Geréte-
bezeichner folgt, z. B. /F0/..., anderenfalls wird dem Befehl nacheinander
jedes vorhandene Execution-Directory vorangestellt. Die sich so ergebenden
File-Bezeichner werden versuchsweise getffnet, und der Inhalt wird auf Lad-
barkeit (Beginn mit ,,S0%) gepriift. Wird ein File des Namens gefunden und ist
er ladbar, so generiert die Shell einen Sohnprozel als Lader, der den Namen
des Befehles plus laufender Nummer erhélt. Die Shell wartet auf diesen Prozefi!
Anschlieffend wird das Kommando im hinzugeladenen transienten Modul ge-
sucht. Nach Bearbeitung des Befehles verschwindet das Modul wieder aus dem
Speicher.

Wenn man einen Befehl hiufiger bendtigt, so sollte man zur Zeitersparnis mit
Hilfe des ganz normalen ,,LOAD“-Befehles das Shellmodule laden. Es wird dann
zu einer Erweiterung der Ebene 6 (Shell-Modul im RAM) und zukiinftig nicht
mehr transient ausgefiihrt.

Beispiel:

Das Execution—Directory sei ,,/FO/CMD“. Hier befindet sich ein iibersetztes
Shellmodul (S-Records) mit dem Kommando MORE. Die Datei mufl auch den
Namen MORE haben.

Es miissen einige Restriktionen fiir transiente Kommandos beachtet werden.
Die Angaben unten gelten fiir neuere Versionen von RTOS—UH, erschienen
nach Februar 1994.

1. Der Filename mufl mit dem Kommandonamen {ibereinstimmen und darf
nur Grofibuchstaben enthalten. Bei neueren Systemen werden alle Klein-
buchstaben des eingegebenen Befehlsnamens in Grolbuchstaben verwan-
delt. Erst danach wird der File gesucht. Mit Hilfe des ,, LINK“-Befeh-
les konnen weitere alternative Filebezeichner angelegt werden, falls das
Shellmodul mehrere Befehle beherbergt.

Beispiel: xy123 sucht nach File XY123.

3.4 Besonderheiten bei transienten Kommandos 73

2. Bei vorhandenen Execution-Directories mufl nur der Kommandoname
eingegeben werden. Im Beispiel:

More; bei XD=/F0/CMD

3. Ohne Execution-Directory mufi die gesamte Pathlist (inklusive Device
und Kommandoname) eingegeben werden:

/F0/CMD/MORE; oder auch
/£0/cmd/more; wegen Umwandlung in Grofbuchstaben.

4. Das Testlesen erfolgt im I/O-Mode ,no errors“. Wenn der fileverwalten-
de I/O-Prozef} diese Unterdriickung nicht beherrscht, kann es zu von ihm
produzierten Fehlermeldungen, z. B. ,FILE-NOT-FOUND“ kommen — ob-
wohl die Suche anschlieSend erfolgreich ist.

5. Falls beim Laden eines transienten Kommandos die primére Shell iiber
den ,Notruf* der BREAK-Taste gerufen wird, so kiimmert sie sich nicht
weiter um ihren Sohnprozefl. Gleiches gilt, wenn ein sekundérer Shellpro-
zef3 von auflen abgebrochen wird, wihrend er auf den transienten Lader
wartet. Der Sohnproze§ (Lader) fiihrt die Ladeoperation zu Ende, aber
der transiente Bedienbefehl kommt nicht mehr zur Ausfithrung. Dadurch
lebt nun aber leider niemand mehr, der den Entladevorgang ausfithren
konnte. Zur Speicherersparnis empfiehlt es sich, das Modul dann gele-
gentlich von Hand zu entladen, denn die vom transienten Lader gelade-
nen Shellmodule kénnen nicht als Shellerweiterung der Ebene 6 benutzt
werden. (Fiir Insider: die AEB1-Scheibe wird vom Transientlader neu-
tralisiert, damit niemals mehr als ein Shellprozefl auf dem Code laufen
kann.)

6. Sehr wenige Befehle, z. B. ,MSFILES“ und ,,RTOSFILES“ lassen sich prin-
zipbedingt nicht durch transienten Aufruf benutzen, weil deren Code noch
nach Abarbeitung des Kommandos benétigt wird. Ansonsten kann man
alle S-Rekords, die als Scheibe fiir die Shell-Ebenen 3 ... 6 geeignet sind,
auch transient benutzen.

74 3.5 Die Shell-Sprache

3.5 Die Shell-Sprache
3.5.1 Aufruf von Shellskripten

Programme in Shellsprache werden wie in der UNIX-Welt auch in RTOS—
UH , Skripte“ genannt. Von H. Husmann stammt die Software, mit der solche
Skripte auf drei verschiedene Arten zur Ausfiithrung gebracht werden kénnen:

1: path [positparal
2: EX [.sonprocname] [PRIO integer3] [SZ hexnumo] [path| [positpara)
3: SHELL [PRIO integer3] [SZ hexnumb| [path] [positparal

Beim Aufruf eines Shell-Skriptes wird ein fliichtiger, unabhéingiger Sohnprozefl
generiert, der den {iber path angesprochenen Textfile interpretiert.

1 Ist path nur ein Name, so wird eine solche Datei in den Execution-
Directories gesucht. Als ,, sonprocname® wird ,name/xx* generiert, wo-
bei ,zx* eine zweistellige Hexadezimalzahl mit automatischer Weiter-
schaltung ist. Steht das auszufithrende Skript nicht in den Execution-
Directories, ist bei path der vollstéindige Pfad anzugeben.

2 Mit dem Aufruf eines Skriptes i{iber die Befehle EX oder auch (in der
Langform) EXECUTE kénnen zusétzlich der Sohnprozefiname (.sonprocna-
me), die Prioritit des Sohnprozesses (PRI0O) und die Arbeitsspeichergrofie
(SZ) festgelegt werden. Fehlt der SohnprozeBname, wird der Defaultna-
me ,,EX/zz“ vergeben, wobei ,,zx* eine zweistellige Hexadezimalzahl mit
automatischer Weiterschaltung ist. Ist bei path nur ein Name angegeben,
wird eine gleichnamige Datei im Working-Directory gesucht.

3 Beim Aufruf iiber den Befehl SHELL gelten aufler beim Sohnprozefina-
men die gleichen Aufrufparameter wie beim Aufruf iiber EX. Als Name
erhélt der Sohnprozef} ,,#BSHzz“, wobei zz die Usernummer des Aufrufers
ist. Zusétzlich wird der Sohnprozef als sekundére Shell in das Userenvi-
ronment eingetragen und damit beim Anschlag der Taste ,CTRL A“ des
Users fortgesetzt. Die primére Shell ist dann nur noch iiber die ,,BREAK“-
Taste erreichbar. Das SHELL-Skript sollte in einer Endlosschleife Befehle
einlesen, ausfiihren und sich dann fiir den néchsten Anschlag der Taste
»CTRL A“ suspendieren. Damit kann man sich eine Shell mit eigenem En-
vironment und geringerer Prioritdt einrichten. Die sekundére Shell kann
mit dem EXIT-Befehl beendet werden. Nach einem Warmstart 1lauft das
SHELL-Skript neu an und bleibt als sekundére Shell aktiv. Pro User ist
nur eine sekundére Shell einrichtbar, der SHELL-Befehl darf nicht gesta-
pelt abgesetzt werden.

3.5 Die Shell-Sprache 75

Speicher:

path:

positpara:

Beispiele:

SZ hexnum6 oder SZ=herxnum6. Mit hexnumé kann der dy-
namische Arbeitsspeicher des Sohnprozesses bestimmt werden
(Default und Minimum: SZ=2000).

Der Parameter path mufl angegeben werden und bezeichnet
die auszufithrende Datei. Es wird eine Kopie mit dem Namen
/ED/filename/xxxx angelegt, um das mehrfache, parallele Ab-
laufen eines Skriptes zu ermoglichen.

Einem Shell-Skript kénnen beim Aufruf ,Positionsparameter®
mitgegeben werden. Der in positpara enthaltene Text wird wort-
weise (durch Leerzeichen getrennt) den Variablen $1 bis $n zuge-
wiesen. Sollen Parameter Leerzeichen enthalten, sind sie in Apo-
strophs einzuschlielen.

RMD /ed/*

Die Datei RMD wird in den aktuellen Execution-Directories ge-
sucht und dann interpretiert. Der Text ,,/ed/*“ ist im Skript
iiber die Shell-Variable $1 erreichbar.

EX PRIO 40 SZ 4000 /HO/TEST parameterl ’parameter 2’

Das Shell-Skript in der Datei TEST auf dem Festplattenlaufwerk
HO wird interpretiert. Die EX/xx Subtask besitzt die Prioritét
40 und erhilt $4000 Bytes Speicher. Die Texte ,parameter1“
und ,parameter 2 sind {iber die Shell-Variablen $1 und $2 im
Shell-Skript erreichbar.

SHELL /HO/XD/SHELL

Es wird eine sekundére Shell fiir den aufrufenden User eingerich-
tet. Im einfachsten Fall kénnte das Skript SHELL folgendermafien
aussehen:

: Privates Environment setzen,
: z.B. mit den Befehlen CD, CXD,

WHILE TRUE : Endlosschleife
DO
SUSP; : warten auf CTRL-A
ECHO -N >; : Prompt ausgeben
READ Kmd; : Kommando lesen
IF EXEC $Kmd; THEN : Kommando ausfuehren und
FI; : Fehlerabbruch durch

: IF...THEN FI; verhindern
DONE;

76 3.5 Die Shell-Sprache

Hinweis: Der Interpretercode ist wiedereintrittsfest, so dafl beliebig vie-
le Shell-Skripte gleichzeitig abgearbeitet werden kénnen (sofern
noch dynamischer Speicher zur Verfiigung steht).

3.5.2 Sprachumfang Shell-Interpreter

Ein Shell-Skript ist eine Aneinanderreihung von Anweisungen, wobei eine An-
weisung ein Bedienbefehl oder ein Kommando aus dem Befehlssatz des Shell-
Interpreters sein kann. Innerhalb eines Interpreterbefehls konnen Bedienbefehle
an jeder Stelle stehen, an der eine Anweisung stehen darf. Beim Auftreten eines
Fehlers in einem Bedienbefehl wird der logische Wert ,falsch* zuriickgegeben.
Bei Bedienbefehlen, die eine Subtask generieren, kann mit dem Shellbefehl
LWAIT“ auf die Beendung gewartet werden. Nur im ,, Waitmode® erreicht ein
Fehler der Subtask das Shellskript.

Die Syntax der Shell-Skripte ist an die der ,,UNIX Bourne-Shell“ angelehnt.
Im folgenden werden alle Kommandos des Shell-Interpreters mit ihrer Syntax
und ihrer Bedeutung erklirt. Der Shell-Interpreter akzeptiert Schliisselworter
in GroB- und Kleinschreibung. Eine vollsténdige Liste der Schliisselworter be-
findet sich in Tabelle 3.5.10.8, in der Syntaxbeschreibung sind sie durch die
Schriftart ,,teletype“ gekennzeichnet. In eckigen Klammern stehende Teile der
Syntaxbeschreibung sind optional und kénnen auch entfallen. Beschreibungs-
teile in geschweiften Klammern kénnen beliebig oft oder iiberhaupt nicht ein-
gesetzt werden. Alternativen sind in Klammern gesetzt und durch das Zeichen
| getrennt.

Uber den Befehl .[/ Gerdit /Pfad /]| Name kénnen sogenannte ,Subskripte auf-
gerufen werden. Fehlen Gerdt und Pfad, wird die Datei Name in den Execution-
Directories gesucht. Ein Subskript ist ein Unterprogrammaufruf ohne Uberga-
beparameter. Es kann jedoch auf alle Variablen des Aufrufers zugegriffen wer-
den. Mit dem Ende des Subskriptes (EXIT-Befehl) kehrt man in das aufrufende
Skript zuriick. Fiir ein Subskript wird kein eigener Prozef gebildet.

3.5.3 Kommentare

Kommentare beginnen mit der Zeichenfolge Doppelpunkt Leerzeichen und en-
den mit dem Zeilenende. Sie kénnen beliebig in den Prozedurtext eingestreut
werden. Die Zeichenkette Doppelpunkt Leerzeichen verliert ihre Bedeutung nur,

wenn sie in Anfiihrungszeichen (,,:“) oder in Apostrophs (“:") eingeschlossen
wird.

3.5 Die Shell-Sprache 77

3.5.4 Metazeichen

Zeichen mit spezieller Bedeutung werden Metazeichen genannt. Dazu gehoren
die Zeichen: %, 7, $, *, :, \, “, 7, ;, CR. Die Zeichen Stern und Fragezeichen
sind sogenannte Wildcards und werden bei Zeichenvergleichen eingesetzt. Der
Stern représentiert dabei beliebig viele beliebige Zeichen, wiahrend das Frage-
zeichen genau ein beliebiges Zeichen vertritt. Das Dollarzeichen kennzeichnet
mit darauffolgendem Namen den Wert einer Variablen (siehe 3.5.5). Durch
das Einschliefen eines Bedienbefehls in Hochkommata (z. B. ~S") wird sei-
ne Ausgabe in eine Variable umgelenkt (siche 3.5.5.1). Das Voranstellen des
Zeichens \ bewirkt fiir ein folgendes Metazeichen, dafl es seine besonderen Ei-
genschaften verliert und als normales Textzeichen interpretiert wird. Folgt dem
Zeichen \ eine dezimale Zahl, so wird ein Zeichen mit dem der Zahl entspre-
chenden ASCII-Code eingesetzt (z. B. \4 entspricht dem Zeichen CTRL-D; \42
entspricht dem Zeichen , *“). Einige fest vereinbarte Sonderzeichen erreicht man
iiber \B, \F, \N, \0, \R und \T, siehe Tabelle Seite 94. Durch Einschliefen in

Anfithrungszeichen (“ ... “) werden folgende Metazeichen zu normalem Text
* 7 : ; CR\’ durch Einschliefen in Apostrophs (...) dagegen
*7: ; CR\§$ ¢

3.5.5 Shell-Variablen

Shell-Variablen enthalten grundsitzlich nur Zeichenketten (im folgenden auch
als ,,String®“ bezeichnet). Auch Zahlen, die mit dem EXPR Kommando (siehe
3.5.9.2 auf Seite 86) verarbeitet werden, sind als String gespeichert. Den Wert
einer Variablen erhélt man, indem man dem Namen ein Dollarzeichen ($) vor-
anstellt. Variablennamen miissen mit einem Buchstaben oder einer Ziffer be-
ginnen und diirfen nur Buchstaben und Ziffern enthalten.

Die Variablen $1, $2, ...werden beim Aufruf des Shell-Interpreters mit den
,,Positionsparametern“ der Kommandozeile besetzt. Diese Positionsparameter
enthalten der Reihe nach, bei $1 beginnend, die einzelnen Textworte der Kom-
mandozeile:

/HO/XD/XYZ Dies ist ein test

’

erzeugt die Inhalte $1 = Dies’ , $2 = “ist’ , $3 = “ein’ usw.

In der Variablen $# findet man die Anzahl der Positionsparameter. Auflerdem
werden noch $7, $Q und $$ vom Interpreter gesetzt (siehe Tabelle).

78 3.5 Die Shell-Sprache

1- Positionsparameter der Aufrufzeile

alle Positionsparameter durch ein Leerzeichen getrennt

$

$

$H4 Anzahl der Positionsparameter
s$Q

$

? Austrittsstatus des zuletzt ausgefiihrten Bedienbefehls
Kein Fehler —> $?="0; Fehler —> $7="1"
$$ Name der Interpreter-Subtask
$0 Name der interpretierten ED-Datei
$EOF | Austrittsstatus des letzten READ-Befehls

Vorbesetzte Shell-Variablen

3.5.5.1 | Wertzuweisung an Shellvariable

Shell-Variablen kann durch die Verwendung des Gleichheitszeichens ein Wert
zugewiesen werden. Das Ende der zugewiesenen Zeichenkette ist entweder das
Zeilenende oder das Semikolon.

Syntax: variablenname = string (; | CR)

DIR=/F0/SYS : $DIR wird /FO/SYS zugewiesen
CD $DIR : entspricht CD /F0/SYS

N ’

TEXT ‘Diese Zeile enthaelt Metazeichen: * 7 $:\ 7

TEXT = "Diese Zeile enthaelt Metazeichen: * 7 : \ ~; 7

Die Verkettung von Zeichenketten ist durch einfaches Aneinanderhéingen
moglich. Folgt einem Variablennamen bei einer Verkettung direkt ein Buchsta-
be oder eine Ziffer, dann mufl er durch geschweifte Klammern vom folgenden
Text abgegrenzt werden.

DIR = /F0/SYS : $DIR wird /FO/SYS zugewiesen
DAT $DIR/DATEI; : $DAT wird /FO/SYS/DATEI zugewiesen
COPY $DAT>/ED/TEXT : /FO/SYS/DATEI wird nach /ED/TEXT kopiert

DIR2 = $DIRTEM; : DIR folgt ein Buchstabe, daher wird die
: Variable mit dem Namen DIRTEM angesprochen

DIR2 = ${DIR}TEM; : $DIR2 wird /FO/SYSTEM zugewiesen
COPY $DIR2>/ED/SYS : /FO/SYSTEM wird nach /ED/SYS kopiert

3.5 Die Shell-Sprache 79

Es ist weiterhin moglich, die Ausgabe eines Bedienbefehls in eine Variable ein-
zulesen. Dazu mufl der Bedienbefehl in Hochkommata eingeschlossen werden:

Speicher = 'S~ : Die Ausgabe des S Kommandos wird der
: Variablen $Speicher zugewiesen

3.5.5.2 | Implizite Wertzuweisung ‘

Syntax: Variablennamel = ${ Variablenname2 (— | = | 7)String }

Der Wert einer nicht gesetzten Variablen ist die leere Zeichenkette. Wenn z. B.
$WERT nicht gesetzt ist, wiirde der Befehl VAR = $WERT, der Variablen $VAR also
nichts zuweisen. Ein impliziter Wert kann mit Hilfe der folgenden Notationen
zugewiesen werden:

Bsp. 1L: DIR = ${DIR2 - DIR2 ist nicht gesetzt}

Ist $DIR2 gesetzt, wird der Wert von $DIR2 zugewiesen, anderenfalls wird $DIR
der Text ,DIR2 ist nicht gesetzt“ zugewiesen.

Bsp. 2: DIR = ${DIR2 = /F0/SYS}

Ist $DIR2 gesetzt, wird der Wert von $DIR2 zugewiesen, anderenfalls wird $DIR2
und dann auch $DIR der Text ,,/F0/SYS“ zugewiesen.

Bsp. 3: DIR = ${DIR2 ? DIR2 ist nicht gesetzt}

Ist $DIR2 gesetzt, wird der Wert von $DIR2 zugewiesen, anderenfalls wird die
Meldung ,DIR2 ist nicht gesetzt“ an das Standard-Ausgabegerit ausgege-
ben, und die Ausfithrung wird abgebrochen.

80 3.5 Die Shell-Sprache

3.5.6 E/A-Befehle

3.5.6.1 | Der Ausgabe-Befehl ECHO

Syntax: ECHO [-N] string (; | CR)

Der dem ECHO-Kommando folgende string wird auf das ,,Standard-Out-Gerat“
des Skriptes ausgegeben. Mit dem ,,0“-Kommando kann die Ausgabe umgelenkt
werden (siehe Seite 179). Der auszugebende String wird durch das Zeilenende
oder durch ein Semikolon beendet. Ohne die -N Option wird ein Zeilenvorschub
angehingt, mit -N erfolgt kein Zeilenvorschub.

Beispiel: DIR=/F0/SYS; ECHO \7 ‘Der Wert von $DIR ist : $DIR

Es wird der Text ,Der Wert von $DIR ist : /FO/SYS® mit Bell (\7 —>
ASCII-Code 7 entspricht Bell) ausgegeben.

Beispiel: 0 /ED/TEXT; ECHO -N ”Die Uhrzeit ist : CLOCK ”
Der Text ,Die Uhrzeit ist : xx:yy:zz ...“ wird in die Datei /ED/TEXT
geschrieben.

3.5.6.2 |Der Einlese-Befehl READ ‘

Syntax: READ wariable {variable } (; | CR)
oder READ [-N|-E] wariable (; | CR)

Der READ-Befehl liest Eingaben vom ,,Standard-In-Gerit* des Users (Die Ein-
gabe kann durch das ,, I“-Kommando umgeleitet werden, siehe Seite 152). Er-
reicht man beim Lesen von einer Datei das Dateiende, enthélt die Shell-Variable
$EQOF eine ,,1“, ansonsten eine ,,0“. Ohne -N Option wird die eingelesene Zeile
einer oder mehreren Variablen, die dem READ-Befehl folgen, zugewiesen. Dabei
wird den ersten Variablen jeweils ein Wort (Wortgrenze ist das Leerzeichen)
und der letzten Variablen der Rest der Zeile zugewiesen. Als Zeilenende gelten
,Carriage-Return“=$0D, ,Linefeed“=$0A und ,,End of Text“=$04, wobei
das Zeichen ,Carriage-Return® nicht zugewiesen wird.

Mit -N Option wird einer Variablen die komplette eingelesene Zeile einschlief3-
lich evtl. vorhandener fithrender Leerzeichen zugewiesen. Mit -E Option wird
ein Einzelzeichen gelesen, dabei werden auch alle Steuerzeichen zugewiesen.

3.5 Die Shell-Sprache 81

Beispielprogramm: READ X Y Z
Eingabe: Diese Zeile wird gelesen (CR)
Ergibt: $X: Diese $Y: Zeile $Z: wird gelesen

Beispielprogramm: READ -N X
Eingabe: Diese Zeile wird gelesen (CR)
Ergibt: $X: Diese Zeile wird gelesen

Beispielprogramm: REWIND /ED/TEXT; I /ED/TEXT; READ ZEILE
Ergibt: $ZEILE: Erste Zeile aus /ED/TEXT

3.5.7 Ablaufsteueranweisungen

3.5.7.1 |Die IF—Anweisung‘

Syntax: IF { Anweisung }
THEN { Anweisung } [ELSE { Anweisung } | FI (; | CR)

Die Anweisungen hinter dem IF-Kommando werden als Bedingungsfolge aus-
gefiihrt. Es sind sowohl Interpreteranweisungen als auch Bedienbefehle anwend-
bar. Die Bedingungsfolge wird beim ersten Auftreten des Ergebnisses falsch
oder fehlerhaft abgebrochen, und sofern vorhanden, der ELSE-Zweig ausgefiihrt.
Liefert sie den Wert ,,wahr* oder ,fehlerfrei“, wird der THEN-Zweig ausgefiihrt.
Danach wird die Ausfithrung der Shell-Prozedur hinter dem FI-Kommando
fortgefiihrt. Tritt innerhalb der Anweisungsfolge die Bedingung ,,unwahr* oder
ein Fehler auf, wird die IF-Anweisung abgebrochen und der Wert ,unwahr®,
ansonsten ,wahr“ zuriickgegeben. Die Befehlsfolge ELSE IF kann als ,ELIF“
abgekiirzt werden.

IF TEST $1 = TEXT : wenn $1 gleich TEXT ist
THEN : dann

ECHO “$1 ist gleich TEXT' : Ausgabe: $1 ist ...
ELSE : sonst

ECHO “$1 war nicht gleich TEXT’ : Ausgabe: $1 war ...

1 = TEXT : $1 = TEXT

FI : Ende der IF-Anweisung

82 3.5 Die Shell-Sprache

3.5.7.2 ’ Die CASE—Anweisung‘

Syntax: CASE Variable IN
{Muster { | Muster }) {Anweisung} ;; }
ESAC (; | CR)

Die CASE-Anweisung gestattet eine Mehrfachverzweigung. Sie vergleicht den
Wert der Variablen mit den Mustern. Das Zeichen ,,|“ ist als ,oder* zu ver-
stehen. Stimmt der Wert der Variablen mit einem Muster iiberein, wird die
zugehorige Anweisungsfolge ausgefithrt und danach die CASE-Anweisung ver-
lassen. Im Muster diirfen auch die Wildcards ,,Stern“ und ,, Fragezeichen® ver-
wendet werden.

Beispiel:
CASE $+# IN
1 | 2) ECHO 7ein oder zwei Parameter” ;; : $4# ist 1 oder 2
?) ECHO ”drei bis neun Parameter” ;; : $# ist ein Zeichen
*) ECHO ”mehr als neun Parameter” ;; : $# ist beliebig
ESAC

3.5.7.3 ’ Die FOR~Anweisung ‘

Syntax: FOR Steuervariable [IN [-(W|L)] String (; | CR)]
DO {Anweisung } DONE (; | CR)

Ohne den IN-Befehlsteil werden der Steuervariablen nacheinander die Positi-
onsparameter ($1 - $n) zugewiesen. Mit dem IN-Befehlsteil und -L (,,Line®)
oder fehlender Option wird der String zeilenweise, mit -W (, Word“) Option
wortweise, der Steuervariablen zugewiesen. Die Anweisungsfolge wird bei jedem
Schleifendurchlauf ausgefiihrt, bis alle Werte zugewiesen wurden. Der aktuelle
Wert der Steuervariablen ist iiber $Steuervariable erreichbar.

3.5 Die Shell-Sprache 83

Beispiel 1:
FOR VAR IN "DIR /HO : liest die Ausgabe von DIR /HO zeilenweise
DO : fiithre aus
ECHO $VAR; : gibt die aktuelle Zeile aus
DONE : Ende der FOR-Schleife
Beispiel 2:
FOR VAR : liest die Positionsparameter $1 - $n
DO : fiithre aus
ECHO $VAR; : gibt nacheinander $1 - $n aus
DONE : Ende der FOR-Schleife

3.5.7.4 | Die WHILE- und die UNTIL—Anweisung‘

Syntax: WHILE {Anweisung } DO {Anweisung } DONE (; | CR)
oder: UNTIL {Anweisung } DO {Anweisung } DONE (; | CR)

Die dem WHILE-Kommando folgenden Bedingungsanweisungen werden aus-
gefiihrt und beim ersten Auftreten der Bedingung ,,unwahr oder , Fehler* ab-
gebrochen. Solange die Bedingungsanweisungen den Wert ,,wahr* liefern, wird
der mit dem DO- und DONE-Befehl eingeschlossene Schleifenkern wiederholt. Bei
der UNTIL-Variante wird der Schleifenkern solange ausgefiihrt, bis die Bedin-
gungsfolge den Wert , wahr liefert. Sowohl bei der WHILE- als auch bei der
UNTIL-Anweisung wird vor dem Schleifenkern die Bedingungsanweisungsfolge
ausgefiihrt.

Beispiel:

DATE ="0"

UNTIL ER /NIL; DATESET $DATE : bis das Datum richtig gesetzt ist
DO : fithre aus

IF TEST $DATE !="0"; THEN
ECHO ‘Die Eingabe war falsch!’

FI
ECHO -N “Geben Sie das Datum in der Form TT-MM-JJJJ ein :’~
READ DATE : lies DATE vom Terminal

DONE : Ende der UNTIL-Schleife

84 3.5 Die Shell-Sprache

3.5.8 Bedingungs-Anweisungen

Bedingungsanweisungen werden in der WHILE-, UNTIL- und in der IF-Anweisung
benétigt, um Programmverzweigungen zu realisieren. Es kann grundsétzlich
jede Anweisung des Befehlssatzes und jeder Bedienbefehl als Bedingung dienen.
Ist die Anweisung keine spezielle Bedingungs-Anweisung aus diesem Kapitel,
dann wird bei fehlerfreier Ausfiihrung ,,wahr* und beim Auftreten eines Fehlers
falsch* zuriickgegeben.

3.5.8.1 |TRUE- und FALSE- Anweisung |

Syntax: (TRUE | FALSE) (; | CR)
Die TRUE- und FALSE-Anweisung kann beim Programmtest eingesetzt werden,

um bestimmte Programmzweige zwingend zu durchlaufen. Dabei liefert TRUE
den Wert ,,wahr® und FALSE den Wert , falsch®.

Beispiele fiir Endlosschleifen:

WHILE TRUE UNTIL FALSE
DO DO
DONE DONE

3.5.8.2 |Die TEST—Anweisung‘

Syntax: TEST log_Ausdruck {(-A|-0|-E) log_Ausdruck } (; | CR)

log-Ausdruck : ['] ((-Z|-N) $Variablenname |
String-1 [!] = String-2 |
Zahl_1 (-EQ|-NE|-GT|-GE|-LT|-LE) Zahl_2)

Das TEST-Kommando liefert in Abhéingigkeit vom folgenden Ausdruck den lo-
gischen Wert ,,wahr“ oder ,falsch®. Logische Ausdriicke kénnen miteinander
,UND* (-4), ,ODER* (-0) oder ,EXKLUSIV-ODER* (-E) verkniipft werden.
Bei einem TEST-Befehl iiber mehrere Zeilen sollte man -A, -0 oder -E an das
Zeilenende setzen, um die Beendigung durch das CR aufzuheben.

Die Ausdriicke werden von links nach rechts abgearbeitet, es kénnen jedoch
durch Einschlieflen in Klammern Gruppen gebildet werden. Das Ausrufungs-
zeichen (,,!“) bewirkt eine Negation des folgenden Ausdrucks. Die logischen
Ausdriicke haben folgende Bedeutung:

3.5 Die Shell-Sprache

85

-Z $Variablenname: wahr, wenn die Variable nicht existiert

: oder die Lénge Null ist
-N $Variablenname: wahr, wenn die Lange ungleich Null ist
String_1 = String_2 : wahr, wenn String_1 gleich String_2 ist
String_1 '= String_2: wahr, wenn String_1 ungleich String_2 ist
Zahl_1 -EQ Zahl_2 : wahr, wenn Zahl_1 gleich Zahl_2 ist
Zahl_1 -NE Zahl_2 : wahr, wenn Zahl_1 ungleich Zahl_2 ist
Zahl_1 -GTZahl_2 : wahr, wenn Zahl_1 groBer Zahl_2 ist
Zahl_1 -GEZahl_2 : wahr, wenn Zahl_1 groBergleich Zahl_2 ist
Zahl_1 -LTZahl_2 : wahr, wenn Zahl_1 kleiner Zahl_2 ist
Zahl_1 -LEZahl_2 : wahr, wenn Zahl_1 kleinergleich Zahl_2 ist

Beispiele:
IF TEST -Z $VAR : wenn $VAR nicht gesetzt ist
IF TEST -N $VAR : wenn $VAR gesetzt ist

IF TEST $FNAME = /ED/* -0 $FNAME = /ed/*
: wenn $FNAME gleich /ED/irgendwas oder /ed/irgendwas ist

IF TEST $# -GE 2 -A $# -LE 4
: wenn die Anzahl der Positionsparameter zwischen 2 und 4 liegt

WHILE TEST $ZAEHLER -LE 10 : solange $ZAEHLER kleiner 10
DO

3.5.9 Zeichenketten-Behandlung

3.5.9.1 [Die LEN-Anweisung]|

Syntax: LEN($ Variablenname) (; | CR)

Die LEN-Anweisung berechnet die Linge der folgenden Variablen, sie kann {iber-

all dort stehen, wo ein String oder eine Zahl stehen darf.

LAENGE = LEN($VAR) : LAENGE wird die Lénge von VAR

: Zugewiesen
IF TEST LEN($VAR) -LT 10 : wenn VAR kiirzer als 10 ist

86 3.5 Die Shell-Sprache

3.5.9.2 |Die EXPR—Anweisung‘

Syntax: EXPR arithmetischer Ausdruck (; | CR)

Der dem EXPR-Befehl folgende String wird als arithmetischer Ausdruck ange-
sehen. Es sind die Operationen +, —, *, / und % (% -- > Bestimmung des
Divisionsrestes) erlaubt. Bei Addition und Subtraktion sind Integerzahlen von
-30000000 bis +30000000 erlaubt, bei der Multiplikation und Division von
-32000 bis +32000. Der Ausdruck wird von rechts nach links abgearbeitet, wo-
bei Multiplikation, Division und Restbestimmung Vorrang vor Addition und
Subtraktion haben. Eine Gruppenbildung durch Einschlieflen in Klammern ist
moglich. Der EXPR-Befehl kann iiberall dort eingesetzt werden, wo eine Zahl
oder ein String stehen darf.

Hinweis:

Folgt dem EXPR-Befehl innerhalb einer TEST-Anweisung direkt ein Vergleichs-
operator (-EQ etc.), kommt es zu einem Syntaxfehler: das Minuszeichen wird
falschlich als Rechenoperator interpretiert. Zur Abhilfe kann man den Ver-
gleichsoperator an den Anfang der nichsten Zeile setzen. Ein Zeilenende oder
Semikolon beendet die Textanalyse des EXPR. Natiirlich hilft auch die vorherige
Zuweisung des EXPR-Ergebnisses in eine Variable, die dann im TEST verwendet
wird.

Beispiele:
ERGEBNIS=EXPR (3+4)*-5 : ERGEBNIS ist '-35
COUNT=0;
WHILE TEST $COUNT -LT 10 : solange COUNT kleiner 10
DO

COUNT=EXPR $COUNT+1 : increment COUNT

DONE

3.5 Die Shell-Sprache 7

3.5.9.3 |Die SEG—Anweisung‘

Syntax: SEG [[Begin], [End]] (String) (; | CR)

Mit Hilfe des SEG-Befehls ist eine Bildung von Teilstrings moglich. Durch Begin
wird der Anfang und durch End das Ende des Teilstrings im String festgelegt.
Begin und End miissen Zahlen sein oder Zahlen ergeben. Wenn Begin nicht
angegeben oder negativ ist, dann beginnt der Teilstring am Anfang des Strings.
Fehlt die Angabe von End, dann endet er mit dem Ende des Strings. Ist Fnd
minus Begin kleiner Null oder liegt der gewéhlte Bereich aulerhalb des Strings,
hat der Teilstring die Lange Null.

VAR=SEG[2,5] (abcdefghij) : VAR ist gleich “bede”
VAR=SEG[,7] (abcdefghij) : VAR ist gleich “abcdefg”
VAR=SEG[4,] (abcdefghij) : VAR ist gleich “defghij”
VAR=SEG[12,] (abcdefghij) : VAR ist leer ~~

VAR=SEG[3,EXPR LEN($VAR)-2] (abcdefghij)
: LEN($VAR) ist 10; 10-2 ist 8; VAR ist gleich “cdefgh”

3.5.94 ’ Die SET-Anweisung ‘

Syntax: SET [String] (; | CR)

Fehlt der Parameter String, wird eine Liste der Variablen auf dem aktuellen
Ausgabegerit (mit dem ,,0“-Kommando umlenkbar, sieche Seite 179) ausgege-
ben.

Ist ein String als Parameter vorhanden, wird er expandiert und dann wortweise
den Variablen $1 ... $n zugewiesen. Wortgrenzen sind dabei das Leerzeichen
sowie Steuerzeichen mit dem ASCII-Code kleiner 29. $# enthilt die Anzahl der
gebildeten Variablen n. Aus vorangegangenen Operationen gebildete Variablen
grofer $n bleiben vom SET-Befehl unbeeinflufit.

Beispiele:
SET : Ausgabe der Liste der Variablen
SET ”paral para2” :$1 = paral; $2 = para2; $# = 2
SET "pwd’ : die Ausgabe von pwd wird wortweise

: $1 ... zugewiesen

88 3.5 Die Shell-Sprache

3.5.9.5 | Die TOCHAR-Anweisung

Syntax: TOCHAR Carithmetischer Ausdruck) (; | CR)

Die sich durch den arithmetischen Ausdruck ergebende Zahl wird in das zu-
gehorige ASCII-Zeichen gewandelt. Das Ergebnis ist ein String (aus einem Zei-
chen) und kann iiberall eingesetzt werden, wo ein String stehen darf.

ECHO TOCHAR(66) : der Text ’B’ wird ausgegeben

VAR=TOCHAR (EXPR(66+1)) : entspricht VAR=C

3.5.9.6 |Die TOFIX-Anweisung

Syntax: TOFIX(FEinzelzeichen) (; | CR)
Diese Funktion wandelt ein Einzelzeichen in eine Zahl um. Das Ergebnis ist ein
String und kann iiberall dort stehen, wo eine Zahl oder ein String zugelassen
ist.

ECHO TOFIX(A) : der Text ’65’ wird ausgegeben

VX=EXPR(TOFIX(A)+1) : ergibt VX=66

3.5.10 Verschiedene Anweisungen

3.5.10.1 |Die BREAK—Anweisung‘

Syntax: BREAK [n] (; | CR)

Durch das BREAK-Kommando kann eine FOR-, WHILE- oder UNTIL-Schleife ver-
lassen werden. Ist der Parameter n angegeben, dann wird die Schleife beim n-
ten Durchlauf abgebrochen, fehlt n, erfolgt der Abbruch unmittelbar. Es wird
immer die innerste Schleife unterbrochen.

3.5 Die Shell-Sprache 89

Beispiel:
DATE =70
UNTIL ER /NIL; DATESET $DATE : bis das Datum richtig gesetzt ist
DO : fithre aus
BREAK 5 : maximal 5 Versuche

IF TEST $DATE !="0"; THEN
ECHO “Die Eingabe war falsch!“

FI
ECHO -N ‘Geben Sie das Datum in der Form TT-MM-JJJJ ein :’
READ DATE : lies DATE vom Terminal

DONE : Ende der UNTIL-Schleife

3.5.10.2 | Die CONT-Anweisung

Syntax: CONT [n] (; | CR)

Mit Hilfe des CONT-Kommandos kann an den Anfang einer FOR-, WHILE- oder
UNTIL-Schleife gesprungen werden. Ist der Parameter n angegeben, dann wird
der Schleifenzéhler auf n gesetzt; fehlt n, erfolgt der Sprung an den Anfang der
Schleife. Es ist immer nur die innerste Schleife betroffen. Der Schleifenzéhler
wird bei der WHILE- und UNTIL-Schleife nur vom BREAK-Kommando ausgewer-
tet. Bei FOR-Schleifen mit Positionsparametern bestimmt er den niichsten Pa-
rameter; bei der FOR-Schleife mit ,,IN“ und ,,String* bestimmt er die néchste
Position im String.

Beispiel:
FOR LINE IN -L 'S’ : lies S zeilenweise ein
DO : fiihre aus
IF TEST -Z $MARK : wenn MARK nicht gesetzt ist
THEN :
MARK = “SET’; : MARK wird gesetzt
CONT 15; : beginne mit der 15. Zeile
FI : Ende wenn MARK nicht gesetzt ist
ECHO $LINE : gibt S ab der 15. Zeile aus

DONE : Ende der FOR-Schleife

90 3.5 Die Shell-Sprache

3.5.10.3 | Die EXEC-Anweisung

Syntax: EXEC String (; | CR)

Der Parameter String wird als Anweisung ausgefiihrt. Dabei wird der String
zunéchst expandiert und anschliefend in einem zweiten Durchlauf interpretiert.
Sind nach der Expansion noch Metazeichen enthalten, so werden sie vom In-
terpreter auch als solche behandelt! Erlaubt sind Bedienbefehle und die Anwei-
sungen ECHO, EXIT, SHIFT, SLEEP, SET, UNSET sowie alle Zeichenkettenbefehle
von LEN bis TOFIX der Seiten 85 ... 88. Beim ersten Fehler bricht das EXEC
Kommando ab und gibt als Ergebnis ,,falsch“ zuriick.

Beispiel:

kommando ="DIR /HO/PFAD;”

IF EXEC $kommando

THEN ECHO "ok”; : DIR /HO/PFAD Kommando fehlerfrei
ELSE ECHO "fehler”; FI; : DIR /HO/PFAD fehlerhaft

3.5.10.4 | Die EXIT-Anweisung

Syntax: EXIT [n] (;]| CR)

Der EXIT-Befehl bewirkt ein sofortiges Beenden der Shell-Prozedur. Der Para-
meter n ist der Fehlercode des Skriptes:

EXIT (-1) : fehlerfrei mit Endemeldung
EXIT (0) : fehlerfrei ohne Endemeldung
EXIT (1) : fehlerhaft

3.5.10.5 |Die SHIFT—Anweisung‘

Syntax: SHIFT (; | CR)

Bei Anwendung des SHIFT-Befehls werden die Positionsparameter wie folgt
umbenannt: $n--> $n-1, wobei $1 verlorengeht. $# wird dabei dekrementiert.

Hinweis:

$n bleibt nach dem SHIFT erhalten! Die letzte giiltige Variable erhélt man nur
iiber $#.

3.5 Die Shell-Sprache 91

Beispiel:
WHILE TEST $# -GT O : solange Positionsparameter vorhanden sind
DO
ECHO $1 : gibt $1 aus
SHIFT $2 > $1 ... $# = $#-1
DONE

3.5.10.6 |Die SLEEP-Anweisung‘

Syntax: SLEEP n (; | CR)

Die Fortfithrung der Shell-Prozedur wird fiir n Sekunden unterbrochen. Die
Zahl n muB eine Integerzahl zwischen 1 und 32767 sein.

3.5.10.7 | Die SUSP—Anweisung‘

Syntax: SUSP (; | CR)

Durch den SUSP-Befehl wird die Interpreter-Subtask suspendiert. Insbesondere
beim Aufruf eines Bediener-Skriptes iiber den Befehl ,SHELL“ kann mit dem
SUSP-Befehl auf das ,,CTRL A“ von der Bedienerkonsole gewartet werden.

3.5.10.8 | Die UNSET-Anweisung

Syntax: UNSET [$ Variablenname] (; | CR)

Mit Hilfe der UNSET-Anweisung kénnen Variablen aus der Verwaltung des
Shellsprachinterpreters entfernt werden. Der dafiir vorher belegte Speicherplatz
steht damit dem System (und damit auch dem Interpreter) wieder fiir andere
Zwecke zur Verfiigung.

Beispiel: UNSET $VAR1 $HILFE : Loschen der Variablen $VAR1und $HILFE

3.5 Die Shell-Sprache

BREAK : Abbruch einer Schleife

CASE : Mehrfach-Verzweigung

CONT : Sprung an den Anfang einer Schleife

DO : Beginn des Anweisungsteils einer Schleife
DONE : Ende des Anweisungsteils einer Schleife
ECHO : Textausgabe

ELSE : Alternativzweig einer IF-Anweisung

ELIF : Abkiirzung fiir ELSE IF

ESAC : Ende der CASE-Anweisung

EXEC : Ausfithrung eines Kommandos

EXIT : Abbruch des Shell-Skriptes

EXPR : Berechnung eines arithmetischen Ausdrucks
FALSE : liefert den logischen Wert , falsch*

FOR : Anfang der FOR-Schleife

FI : Ende der TF-Anweisung

IF : Beginn der IF-Anweisung

IN : Beginn des Strings in einer FOR-Schleife
IN : Beginn der CASE-Musterliste

LEN : Bestimmung der Lénge einer Variablen
READ : Anfordern einer Eingabe

SEG : Bilden eines Teilstrings

SET : Wortweise Zuweisung an die Positionsparameter
SHIFT : Verschieben der Positionsparameter
SLEEP : Unterbrechung der Shell-Prozedur fiir bestimmte Zeit
SUSP : Suspendiert die Interpreter-Subtask
TEST : Ermittlung einer logischen Bedingung
THEN : Anweisungsteil einer IF-Anweisung
TOCHAR : Ausdruck in ASCII-Zeichen wandeln
TOFIX : Zeichen in Zahl des ASCII-Codes wandeln
TRUE : liefert den logischen Wert ,,wahr*

UNSET : Variable aus Verwaltung eliminieren
UNTIL : Beginn der UNTIL-Schleife

WHILE : Beginn der WHILE-Schleife

Tabelle 3.2: Schliisselworte der Shellsprache

3.5 Die Shell-Sprache

93

$1 - $n | Positionsparameter der Aufrufzeile

$H# Anzahl der Positionsparameter

$@ alle Positionsparameter durch ein Leerzeichen getrennt

$? Austrittsstatus des zuletzt ausgefiihrten Bedienbefehls
Kein Fehler -> $7="0"; Fehler -> $7="1’

$%$ Name der Interpreter-Subtask

$0 Name der interpretierten ED-Datei

$EOF | Austrittsstatus des letzten READ-Befehls

Tabelle 3.3: Die vorbesetzten Shellvariablen

Wildcard; beliebige Anzahl beliebiger Zeichen

Wildcard; genau ein beliebiges Zeichen

mit darauffolgendem Namen: Variablenwert

Ausgabe eines Bedienbefehls wird eingelesen

mit Doppelpunkt+Leerzeichen beginnt ein Kommentar

bitte in der nichsten Tabelle nachsehen!

Einschlielen einer expandierten Textkonstanten

Einschlieflen einer Textkonstanten

Anweisungsende

CR

Zeilen- oder Anweisungsende

Tabelle 3.4: Metazeichen der Shellsprache

94

3.5 Die Shell-Sprache

\mz | Metazeichen mz als normales ASCII-Zeichen
\dz | ASCII-Code der Dezimalzahl dz

\B | Backspace, Code $08

\F | Formfeed, Code 12=$0C

\N | Newline, Code 10=$0A

\O | End of Text, EOT, Code 4=$04

\R | Carriage Return, CR, Code 13=$0D

\T | Tabulator, Code 9=$09

Tabelle 3.5: Sonderzeichen der Shellsprache

3.6 Tabelle der Bedienbefehle 95

3.6 Tabelle der Bedienbefehle

Bedienbefehle, die nur optional vorhanden sind, werden in Schrigschrift darge-
stellt.

A oder”’ tasknamelist Aktivierung von Tasks ggf. mit
Angabe der Laufprioritét.

ACTIVATE tasknamelist Wie ,A“

AFTER schedule,task Einplanung zeitverzogert

ALL schedule,task Einpanung, zyklisch

AS paralist Assemblieren durch Sohnprozef3

ASM paralist Zusatzname fiir ,, MINI“—Assembler

ASSEM paralist Wie ,,AS*

AT schedule,task Einplanung fiir Zeitpunkt

AUTOSTART tasknamelist Task autostartfihig machen, s.
,PROM*

BADBLOCK device/block Markieren eines ungiiltigen Blocks

C tasknamelist Continue suspended Tasks

CD pathlist Working-Directory festlegen

CF pathlist-list Platten/Disketten montieren etc.

CLEAR [devbez.] Loéschen von RTOS-UH-CE’s

CLOCK Uhrzeit + néchste Einplanung
ausgeben

CLOCKSET time-specif. Rechneruhr stellen

CONTINUE tasknamelist Wie ,,C*

COPY paralist Kopieren und/oder mischen von
Files

Cp paralist wie ,,COPY*“

CUD pathlist Working-Directory festlegen

CUXD pathlist-list Execution-Directories festlegen

CXD pathlist-list Execution-Directories festlegen

DATE Systemdatum ausgeben

DATESET date Systemdatum setzen

DD device Parameterbytes anzeigen

DEFINE paralist temporére Shelltask erzeugen

96

3.6 Tabelle der Bedienbefehle

DIR
DISABLE
DL

DM

DR
ECHO
ED
ENABLE
ENVSET
ER
ERASE
FILES
FIND
FORM
FREE

GO

HELP
I

L

LE

LIBSET
LINEDDIT

LINK
LNK
LOAD
LOADX
LU
MKDIR

pathlist-list
eventcode

taskname

adress-parameter

taskname
textstring
paralist
eventcode
paralist
pathlist
pathlist-list
pathlist-list
pathlist-list
paralist

pathlist

paralist

optionlist
pathlist
[options]

[options]

file-list

[options]

path>newname

paralist
paralist

paralist

pathlist

Directories auflisten
Prozeflinterrupt(s) abklemmen
Aktuelle Zeilennummer ausgeben
Display Memory

Display Registers of Task
Ausgabe des Textstrings
Einloggen Texteditor
Prozeflinterrupt(s) scharf machen
Umgebungsvariable setzen
Stderr umlenken

Loéschen von Files, s. ,RM*
Auflisten der aktiven Files
File-Index ausgeben
Platte/Floppy formatieren

Freien Platz auf dem Medium
ausgeben

Prozefl auf angegebener Adresse
starten
Hilfefunktion der Shell

Stdin umlenken
Alle Tasks mit Zustidnden auflisten

Line-Edit installieren /
konfigurieren / entladen

Library einrichten

Line-Edit installieren /
konfigurieren / entladen

Aliasname fiir Datei anlegen
Linken von Modulen in S—Rekords
Linken und Laden von Modulen
LOAD + extended search
Usertasks mit Zustédnden auflisten

Directory neu einrichten

3.6 Tabelle der Bedienbefehle

97

MSFILES

NOTRACE

O

P

PEARL
PER

PI

PO
PREVENT
PROM

PWD

QAS
QP

RELEASE
RENAME
RETURN
REWIND
RM

RMDIR
RTOSFILES

S

SB

SD
SHARE
SH
SHOW
SM

pathlist

taskname

pathlist
paralist
paralist
pathlist
pathlist
pathlist
tasknamelist

modulelist

paralist

paralist

sema—adr-list
pathlist>newname
pathlist—list
pathlist—list
pathlist—list
pathlist—list
pathlist—list

[options]
device
device

prio
tasknamelist
tasknamelist

adr.expr., value

Umschalten auf MS-DOS
kompatibles Filehandling

Adressen— und Zeileniiberwachung

abstellen
Stdout umlenken

PEARL-Programm kompilieren
Langform von ,, P

Permanent Stderr umlenken
Permanent Stdin umlenken
Permanent Stdout umlenken
Einplanungen 16schen

Erzeugung von S—-Record von
PEARL-Programmen fiir
EPROM-Betrieb
Working-Directory und
Execution-Directory ausgeben

Programm schnell assemblieren

PEARL—Programm schnell
kompilieren

Semaphore freigeben
Umbenennen eines Files
Files zuriickgeben

Files zuriickspulen

Wie ,ERASE*
Directories 16schen

RTOS-UH Filemanagement
einschalten
Speicherbelegung ausgeben

Setze Baudrate, serielles Port
Parameterbytes setzen
Timesharing

Taskzusténde ausgeben
Langform von SH

Speicherzelle(n) setzen

98 3.6 Tabelle der Bedienbefehle

SU tasknamelist Tasks suspendieren

SUSPEND tasknamelist Langform von ,,SU“

SYNC device Synchronisieren des Filesystemes

SYSTEM_ABORT Warmstart durchfiihren

SYSTEM_RESET Kaltstart durchfithren

T tasknamelist Tasks beendigen

TAPP paralist Transferassembler PowerPC

TERMINATE tasknamelist Langform von ,, T*

TOUCH options,pathlist File-Erstellungsdatum
zeigen/&ndern

TRACE taskname,adr/line Adrefi—/Zeileniiberwachung
einschalten

TRIGGER eventcode Interrupt simulieren

TYPE paralist Aulflisten eines Files

UNLOAD namelist Tasks/Module entfernen

WAIT Warten auf Sohnprozef3

WHEN event, schedule Task fiir Interrupt einplanen

WHO Primére Shellprozesse auflisten

3.7 Beschreibung der Bedienbefehle 99

3.7 Beschreibung der Bedienbefehle

Die Beispiele auf den folgenden Seiten gehen der Einfachheit halber immer
von einer Bedienung iiber die primére Shell der ersten seriellen Schnittstelle
(#USER1) des Rechners aus. Bei ,,embedded* Mikrokontrollern existiert manch-
mal nur diese ,Console“ als einziger Bedienzugriff. Die , Consolen-Shell“ hat
stets die User-ID 1 (die systemintern als 0 abgelegt ist). Beziiglich nicht ange-
gebener Parameter der typischen sohnprozefigenerierenden Befehle (COPY, P,
AS, ...) gelten fiir die Consolen-Shell folgende Default-Parameter:

/A1 Stdout, Stdin, Stderr (/TY) der primiren Shell
/ED/SI | Default-Source-Input und ED-Arbeits-File

/ED/SR | Default-Output S-Rekords fiir Compiler, Assembler
/ED/LB | Default-Library-File fiir den Lader bei undef. Symbole
/ED/SC | Default-Scratch-File fiir Assembler

Bei der Bedienung iiber eine Shell (primér oder sekundér) mit der User-ID n>1
verdndern sich die Default-Vorbesetzungen durch einen Anhang unmittelbar an
den Filenamen. Dieser Anhang besteht aus einem Zeichen und ist identisch mit
der User-ID. Die User-ID zdhlt 1,2,3, ... ,9,A,B, ... ,Z. (Systemintern
sind allerdings mehr moglich).

Statt /ED/SI heifit der File /ED/SIn, z. B. /ED/SI5
Statt /ED/SR heifit der File /ED/SRn, z. B. /ED/SR9
Statt /ED/LB heifit der File /ED/LBm, z. B. /ED/LBC
Statt /ED/SC heif}t der File /ED/SCn, z. B. /ED/SC3

wobei n z. B. mit Hilfe des ,L“- oder ,,WHO“-Befehles (siehe Seite 225) inspiziert
werden kann.

! — Man beachte, daB8 ein primirer NetzshellprozeB nach dem Aus-
loggen seine User-ID verliert. Beim Neueinloggen kann eine an-
dere User-ID zugeordnet werden. Man ist darum gut beraten,
seine File-Situation beziiglich eventueller Defaultfiles vor dem
Ausloggen zu ordnen.

100

3.7 Beschreibung der Bedienbefehle

A/ACTIVATE Activate Task (by Priority)

SYNTAX:

Beschreibung:

Beispiel:

Hinweis:

ACTIVATE taskname [PRIO integer3]
> taskname [PRIO integers3]

A taskname [PRIO integer3]
taskname [PRIO integer3]

Die Task taskname wird mit der Prioritét integer3 aktiviert.

Ist die Task bereits aktiv, so wird der Aktivierungszihler der
Task erhoht (die Anzahl der gepufferten Aktivierungen wird
erhoht); eventuell bestehende Einplanungen der Task auf Zeit-
punkte oder Interrupts werden nicht beeinflufit.

Fehlt der Zusatz PRIO, so wird der Defaultwert aus der Task—
Definition eingesetzt. Das gleiche gilt, wenn integer3 gleich Null
ist. integer3 ist eine maximal 3—stellige Ganzzahl.

Die Shell priift selbst nicht, ob die Task vorhanden ist. Der Akti-
vierungsbefehl kann also zur Auslésung eines Fehlersignals durch
den Kern von RTOS—UH (hier ... not loaded) fiihren.

ACTIVATE XYZ PRIO 123;test;’ABCDE

Die Task XYZ wird mit der Prioritit 123 aktiviert, wiahrend
die Tasks test und ABCDE unter Verwendung ihrer Default—
Prioritédten aktiviert werden.

Wenn der Taskname gleich einem Bedienkommado ist, kann die
Kurzform (nur Taskname) nicht angewendet werden, da zuerst
auf ein giiltiges Kommando gepriift wird.

3.7 Beschreibung der Bedienbefehle 101

Delayed Activation or Continuation AFTER

Syntax: AFTER duration ACTIVATE taskname [PRIO integer3]
AFTER duration CONTINUE taskname
AFTER duration ALL duration UNTIL clock

ACTIVATE taskname [PRIO integers3]

AFTER duration ALL duration DURING duration

ACTIVATE taskname [PRIO integer3]

Mit diesem Befehl kann man die zeitverzogerte Aktivierung oder Fortset-
zung einer Task vorplanen. Bestehende Einplanungen fiir eine Aktivierung (bei
ACTIVATE) bzw. zur Fortsetzung (bei CONTINUE) werden geléscht, und die an-
gegebene Einplanung wird eingetragen.

Wird bei ACTIVATE keine Prioritédt angegeben, so wird die taskeigene Default—
Prioritdt eingesetzt. Die aktuelle Prioritédt einer laufenden Task wird jedoch
nicht gedndert, sondern erst, wenn die Einplanung zur Aktivierung fiihrt.

duration:

ALL:

Hinweis:

Beispiele:

integer5 HRS integer5 MIN integer5[.integer3] SEC

Dabei ist integer5 eine maximal 5-stellige Ganzzahl und integer3
ein max. 3-stelliger Dezimalbruch. Bis zu 2 Zeiteinheiten (HRS,
MIN, SEC) diirfen fehlen, die Reihenfolge HRS - MIN - SEC muf
jedoch eingehalten werden.

sieche ALL-Schedule (Seite 102). Eine mit DURING angegebene
Zeitdauer rechnet ab der ersten Aktivierung. Diese Kombination
ist im ,, DIN-Basic-PEARL* nicht erlaubt, aber im RTOS-UH-
PEARL wie hier implementiert.

An Stelle der Schliisselworte ACTIVATE und CONTINUE sind auch
deren Kurzformen Hochkomma (’) bzw. C zulissig. Die ange-
gebene Verzogerungszeit rechnet ab dem Eintritt des néchsten
Clock—Ticks. Der Abstand der Clockticks betridgt bei heutigen
680zz-Implementierungen 1 msec, bei dlteren z. T. auch 2, 3 oder
4 msec. Ist bei solchen Systemen die Anzahl der Millisekunden
fiir die Gesamtverzogerung nicht durch den Abstand der Clock—
Ticks ohne Rest teilbar, so tritt die Aktivierung bzw. Fortsetzung
mit dem ersten Clock—Tick nach Ablauf der Zeitspanne ein.

AFTER 0.25 SEC CONTINUE XYZ
AFTER 10 MIN 5 SEC ALL 1 SEC ACTIVATE XYZ PRIO 70
AFTER 5HRS59MIN22.558EC ACTIVATE XYZ

102 3.7 Beschreibung der Bedienbefehle

ALL ALL-Schedule

Syntax: ALL duration ACTIVATE taskname [PRIO integer3]
ALL duration UNTIL clock ACTIVATE ...
ALL duration DURING duration ACTIVATE ...

Es wird eine zyklische Einplanung fiir die angegebene Task definiert und evtl.
bestehende zeitliche und ereignisgekoppelte (WHEN) Einplanungen zur Aktivie-
rung geldscht. Die erste Aktivierung erfolgt mit dem n#chsten Clock—Tick und
wiederholt sich — ggf. bis zur Endzeit — von da an zyklisch.

Wird die Prioritét (3-stellige Ganzzahl) nicht angegeben, so wird die taskeigene
Prioritdt genommen.

duration: ist vom Typ: integerd HRS integer5 MIN
integers. [integer3] SEC

dabei ist integer5 eine maximal 5—stellige Ganzzahl und integer3
ein max. 3—stelliger Dezimalbruch.

Es diirfen bis zu 2 Zeiteinheiten (HRS, MIN, SEC) weggelassen
werden, die Reihenfolge HRS - MIN - SEC muf} jedoch stets ein-
gehalten werden.

clock: ist vom Typ: integer2:integer2:integer2[. integers]

integer2 ist eine 1 bis 2-stellige Dezimalzahl und integer3 ein
max. 3-stelliger Dezimalbruch.

Hinweis: An Stelle des ACTIVATE ist auch die Kurzform mit Hochkomma
vor dem Tasknamen zuléssig.

Zeitdauer und Uhrzeit werden intern als Vielfache von Milli-
sekunden gerechnet. Je nach Implementierung werden jedoch
Clock-Ticks von 1 oder 4 ms als Interruptbasis benutzt. Ist der
Zyklus nicht ohne Rest durch diese Basis teilbar, so werden die
Zeitintervalle langer oder kiirzer, aber im Mittel richtig, reali-
siert.

Beispiele: ALL 0.02 SEC ACTIVATE XYZ PRIO 30
ALL 13 HRS 2.005 SEC ’XYZ
ALL 2 MIN UNTIL 13:05:55.66 ACTIVATE XYZ
ALL 7000 SEC DURING 14000 SEC ACTIVATE ABC

ABC wird 3 mal aktiviert — sofort, nach 7000 sec und nach 14000
sec.

3.7 Beschreibung der Bedienbefehle 103

Assemble Program AS/ASSEM

Syntax: AS.sonprocname [PRIO integer3] [size--spec] [parameterlist]
AS [PRIO <nteger3] [size--spec] [parameterlist]
ASSEM. sonprocname [PRIO integer3]
ASSEM [PRIO integer3] [size--spec] [parameterlist]
— zusitzlich fiir den ,, MINI“~Assembler (nur 68000-Befehle):
ASM [PRIO integer3] [size--spec] [parameterlist]

Der Befehl dient zum Ubersetzen von Programmen, die in der 680zz-Maschinen-
sprache formuliert sind. Die Shell generiert zu diesem Zweck einen eigenstéandi-
gen SohnprozeB mit vom Nutzer vorgegebenem Namen oder, falls in der zwei-
ten Form benutzt, einem Systemnamen AS/zz oder ASSEM/zx. Fiir xx wird eine
zweistellige Hexzahl mit automatischer Weiterschaltung eingesetzt. Die Prio-
ritdt des Sohnprozesses kann vorgegeben oder dem System {iberlassen werden
(Default: 20).

Ebenso kann der dynamische Arbeitsspeicher des so erzeugten 2-Pass—RTOS—
UH-Assemblers vorgewiihlt oder die vom System standardméfig gewéhlte
Grofle von 5 kB benutzt werden. Wenn das Feld size—spec benutzt wird, so
ist dies bis maximal 8Z=10100 (64 kB) sinnvoll.

Da der Assembler wiedereintrittsfest codiert ist, kénnen, solange der Speicher-
platz reicht, beliebig viele Programme gleichzeitig assembliert werden, wobei
stets derselbe, im ROM gespeicherte Assembler benutzt wird.

parameterlist: Es werden die Elemente SI (Source Input), LO (List Output), CO
(Code Output) und SC (SCratch—pad) akzeptiert. Die Reihenfol-
ge ist bedeutungslos, die Liste darf auch leer sein. Fiir fehlen-
de Angaben werden die ,,Default—Werte“ des Systems eingesetzt
(SI=/ED/SI, LO=/A1/, CO=/ED/SR, SC=/ED/SC).

Wird ein Parameter auf den Wert NO gesetzt, so gelten dennoch
davor oder dahinter gemachte Vereinbarungen bzw. die Default-
werte, wenn der Assembler das Gerédt im Ausnahmefall benotigt.

Das SCratch—pad wird nur benétigt, wenn das Geriit fiir ST nicht
riickspulbar ist (z. B. /VI/, /A2/). Ist das Geriit fiir ST riickspul-
bar, so erfolgt sowohl bei SC=NO als auch bei fehlendem SC-
Parameter zweimaliges Lesen der SI-Datei ohne SCratch—pad
Benutzung. Wird beim Aufruf des Assemblers nur eine Datei

104

3.7 Beschreibung der Bedienbefehle

Beispiele:

Hinweis:

angegeben, so wird diese als SI-Datei betrachtet.
AS.T PRIO 40 SZ 4000 /F1/QUELLE>/A2/ LO NO

Name des Sohnprozesses ist ,,T“. Nur fehlerhafte Zeilen mit Feh-
lerbeschreibung iiber /A1/ ausgeben — keine Liste. Ausgabe der
S—Records iiber /A2/. Da SI als Floppy—Datei riickspulbar und
SC nicht angegeben ist, wird der File QUELLE auf /F1/ zweimal
gelesen und kein SCratch—pad benutzt.

ASSEM
Aufruf ASSEM/zz mit Default—Werten.
ASSEM.X /A2/>NO LO /A1/ SC /F1/BX

Name des Sohnprozesses ist ,,X“. Nur Syntaxpriifung der iiber
/A2/ eingegebenen Programmzeilen, Ausgabe der Liste iiber
/A1/. S-Records werden nicht erzeugt. Der Eingabetext wird
auf der Datei BX auf Floppy /F1/ zwischengespeichert (und ist
dort spéter verfiigbar).

Soweit riickspulbare Files benutzt werden, erfolgt automatisch zu
Beginn eine REWIND— und zum Abschluf} eine RETURN-Operation.

Der generierte Sohnprozefl verschwindet nach Abschlufl der As-
semblierung vollstindig aus dem System, es sei denn, daf} evtl.
Folgebefehle (mit 2 Minuszeichen angehéngt) den Sohn zunéchst
noch in eine sekundére Shell verwandeln.

Weitere Erlauterungen zum Assembler finden Sie ab Seite 419.

3.7 Beschreibung der Bedienbefehle 105

At given time activate or continue
Syntax: AT clock ACTIVATE taskname [PRIO integer3]
AT clock CONTINUE taskname
AT clock ALL duration ACTIVATE taskname [PRIO integer3]
AT clock ALL duration UNTIL clock ACTIVATE ...
AT clock ALL duration DURING duration ACTIVATE ...

Mit diesem Befehl ist die Einplanung zur Aktivierung oder Fortsetzung einer
Task zu einem bestimmten Zeitpunkt moglich. Der Befehl funktioniert anson-
sten wie eine Einplanung mit AFTER, siehe Seite 101; statt der relativen Zeit-
spanne bei AFTER wird bei AT ein absoluter Zeitpunkt festgelegt.

clock:

ALL:

Beispiele:

Hinweis:

integer2:integer2:integer2[. integer3]
integer2/3 sind max. 2— bzw. 3-stellige Dezimalzahlen.

siehe ALL. Die Kombination AT...ALL ist im ,,DIN-Basic—
PEARL® nicht erlaubt, jedoch im Compiler wie hier implemen-
tiert.

AT 0:10:00 CONTINUE test
AT 7:00:0 ALL 2 SEC UNTIL 9:0:0 ACTIVATE XYZ PRIO 8

Ist die angegebene Uhrzeit kleiner als die Istzeit, so wird der
Wert von clock um 24 Stunden inkrementiert.

106 3.7 Beschreibung der Bedienbefehle

BADBLOCK| Badblock setting

SYNTAX: BADBLOCK /dewv/Bnnnn

Wenn auf einer Diskette oder Festplatte ein einzelner Sektor unbrauchbar ge-
worden ist, so mufl entweder der ganze Datentriger neu formatiert werden
(Verlust aller darauf gespeicherten Daten) oder dem zustindigen Filehandler
muf} mitgeteilt werden, dafl er in Zukunft diesen defekten Sektor nicht mehr
benutzt. Dazu ist dieser Befehl geeignet. Weil jeder Sektor Teil eines sogenann-
ten ,,Blockes® ist, der eine logische Verwaltungsnummer triagt, kann stets nur
der komplette Block aus der Systemverwaltung herausgenommen werden. Die
Blocknummer erhélt man aus den Fehlermeldungen des Filehandlers.

Beispiel: BADBLOCK /HO/B20

Es wird der Block mit der Nummer 20 aus der Verwaltung der
Festplatte HO entfernt.

Anwendung: Sobald der Filemanager einen Block mit der Meldung ,,ID-Field
not found“ oder ,CRC-Error ...“ meldet, sollte daran gedacht
werden, mit Hilfe des BADBLOCK-Kommandos den angezeigten
Block aus der Verwaltung herauszunehmen. Weil der gesamte
File, in dem der defekte Block steht, zundchst geloscht werden
muf}, sollte man immer erst mehrmals versuchen, ob sich die
Datei nicht doch noch (zumindest bis zur defekten Stelle) retten
148t.

Angenommen, der Filemanger gab die folgende Meldung aus:
>>drivername. . /dev/path: ID-Field not found in Block 20
Aktion des Nutzers:

RM /dev/path
RM /dev/path (muf explizit ein zweites Mal eingegeben werden)
BADBLOCK /dev/B20

3.7 Beschreibung der Bedienbefehle 107

Change Directory

Syntax: CD devpath

Der Befehl CD erlaubt es, fiir nachfolgende Bedienbefehle der ausfithrenden
Shell ein ,, Working-Directory“ zu vereinbaren oder die bisherige Vereinbarung
zu dndern. Das Working-Directory wird bei allen Befehlen, die mit Devices und
Files arbeiten, immer dann eingesetzt, wenn der Dev-File-Bezeichner nicht auf
der Root—Ebene, d. h. nicht mit dem Zeichen ,,/* beginnt. Das aktuell giiltige
Working-Directory kann mit dem Befehl ,,PWD“ abgefragt werden (Seite 189).

Jeder Nutzer kann sich sein individuelles Working-Directory einrichten und
wird damit bei der Verwaltung hierachisch organisierter Dateien unterstiitzt.
Der CD-Befehl wirkt allerdings nur auf die Umgebung der ausfithrenden Shell.
Bei priméren Shellprozessen ist das das User-Environment.

Normale sekundére Shellprozesse verdndern mit CD nur ihre eigene nach auflen
abgeschlossene Umgebung. CD ist darum nicht geeignet, um in einem Auto-
Exec-File, der nach XCMMD kopiert wird, das User-Environment zu veréndern.
Zu diesem Zweck ist der Bedienbefehl CUD vorgesehen.

Mit dem SHELL-Befehl erzeugte sekundédre (Bourne-) Shells benutzen jedoch
das gleiche Execution- und Working-Directory wie die primére Shell, von der
sie abstammen. Hier wirkt CD dann genau wie ein CUD.

devpath: Bezeichnet einen Filezugriffspfad im System, der wie ein Direc-
tory nach rechts verldangerbar ist, z. B.

/ED, /FO, /HO/Maier/simul oder /A1l.

Beginnt devpath nicht auf der Root-Ebene, so wird ihm das zu
dem Zeitpunkt vereinbarte Working-Directory vorangestellt.

Backpath: Man kann sich mit Hilfe des Befehles
CDh ..

im aktuellen Working-Directory um einen Pfadabzweig riick-
wirts bewegen, wie im folgenden dargestellt:

WD=/HO/TEST/UGRUP ->CD .. => WD=/HO/TEST
Entsprechend kann mit
CD ../..

usw. gleich um mehrere Abzweige zuriickgegangen werden.

108 3.7 Beschreibung der Bedienbefehle

Loschen: CD NO l6scht das Working-Directory. Ein geloschtes Working-
Directory erscheint mit dem Text WD=/-

Beispiel 1: CD /ED/ Die Shell antwortet:
WD=/ED/-
XD=/-
Damit ist als Working-Directory /ED/ vereinbart
Ein COPY-Befehl konnte jetzt so aussehen:

COPY /FO/TEST>TEST1

Beispiel 2a: CD /HO/PROG Die Shell antwortet:
WD=/HO/PROG
XD=/-
Zur Compilation konnte man schreiben:

P MESS>/ED/TESTSR LO NO Das Programm
/HO/PROG/MESS
wird iibersetzt.

Beispiel 2b: CD MIST Die Shell antwortet:
WD=/HO/PROG/MIST
XD=/~-

! — Man beachte vorsorglich, daB man keine Working-Directories
vereinbart, die spéter die Restriktionen bestimmter File-Handler
verletzen. Alle bekannten File-Handler beherrschen jedoch min-
destens jeweils 7 Zeichen zwischen den Pfadtrennern ,,/¢.

! — Die maximale Linge des Working-Directorys — der er6ffnende
/¢ und der Gerdtename samt folgendem ,,/“ z&hlen dabei nicht!
— ist implementierungsabhéingig. Defaultimplementierungswert
sind 64 Zeichen. Bei Verletzung der Obergrenze reagiert die Shell
mit ,,... path too long“ und Abbruch der Kommandozeile.

3.7 Beschreibung der Bedienbefehle 109

Change Filesystemstate

SYNTAX: CF /discdevice/extrainfo
CF /discdevice/

Beschreibung: Es wird dem System mitgeteilt, dal sich der Filezustand der
angegebenen Diskette bzw. der Wechsel- oder Festplatte in ir-
gendeiner Weise dndern wird. Der Befehl ist auch geeignet, um
sich zu vergewissern, dafl keine Teile des Filesystems mehr im
Speicher gehalten werden, man also das Laufwerk ausschalten
oder die Diskette entnehmen darf.

extrainfo: Hier gibt es verschiedene Textstrings, die vom System akzeptiert
werden. Wir nehmen als beispielhaftes Discdevice einmal /FO an:

CF /F0 Uberpriifung, ob das Filesystem inak-
tiv ist. Falls nicht, wird eine Fehler-
meldung ausgegeben. Das Filesystem
bleibt jedoch aktiv.

CF /FO/FORGET Filesystem abwerfen ohne Abgleich mit
den Daten auf der Disc. Waren Daten
nicht zuriickgeschrieben, d. h. Files of-
fen, so sind sie nun (aufler bei vorher-
gehendem ,SYNC*) nicht auf der Disc
gesichert, also Vorsicht!

CF /FO/MOUNT Das Directory wird getffnet, um in Zu-
kunft mit hoherer Geschwindigkeit ar-
beiten zu koénnen. Solange keine Files
offen sind, sind die Daten auf dem Me-
dium jedoch stets mit dem Speicherin-
halt im Einklang. (Lese-Cache fiir das
Directory mit write-thru-Betrieb)

CF /FO/RECALL Falls das System durch einen Klap-
peninterrupt beim Wechsel der Dis-
kette oder Platte alarmiert wurde, so
kann nun das Wiedereinlegen angezeigt
werden. Befehl mufl aus Sicherheits-
griinden zweimal eingegeben werden.

CF /FO/UMNT Beendigung des montierten Zustandes.

110

3.7 Beschreibung der Bedienbefehle

Hinweise:

Fehler:

Beispiele:

CF /F0/Vx x=0,1,2 oder 3. Wenn eine Floppy di-
rekt mit einem FD-Controller gesteu-
ert wird, so kann die Steprate des Kon-
trollers (O=schnellste, 3=langsamste)
verandert werden. Gilt dann fiir alle
Laufwerke an diesem Kontroller.

Bei Systemen mit Klappenabfragemoglichkeit kann entschieden
werden, was nach irrtiimlich entnommener Diskette geschehen
soll. Beim Wiedereinlegen (RECALL) wird die noch im Speicher
vorhandene Verwaltung weiterbenutzt, wird eine falsche Disket-
te eingelegt, so wird diese zerstort. RECALL muf} nach Einlegen
zweimal gegeben werden.

CF /F1/RECALL;DIR /F1/;CF /F1/RECALL

Man sollte sich fiir das Entnehmen der Disketten die Benutzung
des CF—Befehles zur Regel machen. Die Systemwarnung soll dann
zum Retten noch geodffneter Files animieren. Der FORGET-Mode
ist als Softwarereset auch ohne Klappenabfrage sinnvoll einsetz-
bar — mit entsprechender Vorsicht! — z. B. nach vorherigem
,,SYNC*. Man beachte, daf} die als Pfadname kodierten Komman-
dos stets mit Groflbuchstaben geschrieben werden miissen.

Kein Device angegeben, oder Device ist keine Disc, oder der mo-
mentane Zustand ldst die Operation nicht zu.

>>> ... :Fz directory active (Files noch offen).
CF /F1/ ; cf /f0/ ; CF /FO/V2

CF /F1/FORGET; (Vorsicht!!)

CF /HO/MOUNT;

CF /FO/RECALL; (Nur bei Systemen mit Klappentest).

3.7 Beschreibung der Bedienbefehle 111

Clear Device (optional) CLEAR

SYNTAX:

Beschreibung:

Beispiel:

CLEAR /device/

Mit diesem Kommando wird auf den Treiber einer Warteschlange
ein ,,Continue* abgesetzt, sodaf liegen gebliebene CE’s vom Typ
RTOS durch den Treiber entfernt werden kénnen. Dabei sind nur
besondere kundenspezifische Treiber zugelassen.

Falls eine Task, die ein ,,GET* auf eine serielle Schnittstelle abge-
setzt hat, von der Seite terminiert wird, so ist die Schnittstelle
durch das Eingabe—CE solange blockiert, bis ein entsprechendes
Endezeichen oder die angeforderte Anzahl der Zeichen erreicht
ist. Mit Hilfe des CLEAR Befehls kann der I/O-Treiber veranlafit
werden, das CE sofort aus seiner Verwaltung zu entfernen und
ist somit bereit fiir neue Auftrige.

CLEAR /B2/

Bemerkung: Dieses Kommando ist systemfeindlich und wird nur von wenigen

Hinweis:

I/O-Déamonen richtig bearbeitet. Insbesondere wirkt es nicht auf
Datenstationen mit dem Attribut ,,formatierbar®, da diese offene
Verwaltungsstrukturen im Speicher halten.

Falls auf das angegebene Device noch von einer Task CE’s pro-
duziert werden, so kommt es zum Konflikt zwischen der Task
und dem CLEAR-Befehl, wobei die Shell lingere Zeit blockiert
sein kann. Den CLEAR-Befehl kann man dann durch den ,Not-
ruf* der Shell mit BREAK abbrechen.

112

3.7 Beschreibung der Bedienbefehle

’C LOC K‘ Inspect computer—clock
SYNTAX: CLOCK
Beschreibung: Es wird der aktuelle Stand der Rechneruhr ausgegeben. Aufler-

Beispiele:

Hinweis:

dem wird die Uhrzeit des zeitlich néchstfolgenden Einplanungs-
zeitpunktes hinzugefiigt.

Selbst wenn im System iiberhaupt keine zeitlichen Einplanungen
vereinbart wurden, wird ein néchster Einplanungstermin ange-
geben. Dies ist die ,,Geisterstunde“, in der die zentrale Riick-
stellung der Uhr und aller Planungszeitpunkte um 24 Stunden
erfolgt.

CLOCK Ausgabe: 05:24:59 NEXT SCHED 10:55:30
CLOCK Ausgabe: 22:01:12 NEXT SCHED 24:00:00

Die Ausgabe der Geisterstunde im letzten Beispiel zeigt an, dafl
fiir den laufenden Tag keine Zeiteinplanungen zur Aktivierung
oder Fortsetzung mehr vorliegen.

Zeigt die Rechneruhr eine deutliche Tendenz zum Nachgehen, die
nicht auf Ungenauigkeiten des Quarzoszillators beruhen kénnen,
so ist das Betriebssystem iiberlastet.

Eventuell kann der Austausch des Betriebssystems gegen eines
mit groflerem Abstand der Clock—Ticks oder der Austausch des
Prozessors gegen eine schnellere Version erforderlich sein.

Eine Uberlastung, die sich auf die Ganggenauigkeit der Uhr aus-
wirkt, kann normalerweise nicht durch regulére Nutzerprogram-
me, sondern nur durch eine zu grofie Zahl oder zu zeitaufwendige
Interruptprozesse Threr Implementierung verursacht werden.

3.7 Beschreibung der Bedienbefehle 113

Set Computer—clock to given time ’C LOCKSE T‘

SYNTAX: CLOCKSET clock

Beschreibung: Die Rechneruhr wird auf die angegebene Uhrzeit gestellt. Es
empfiehlt sich, vorher alle zeitlichen Einplanungen zu loschen,
da bei Vorriicken der Uhrzeit u. U. eine grofie Zahl von Aktivie-
rungen bzw. Fortsetzungen sofort und gleichzeitig fillig werden
konnen.

clock: integer2:integer2:integer2[. integers]
integer2/3 sind max. 2— bzw. 3-stelige Ganzzahlen.
Beispiel: CLOCKSET 13:00:00
CLOCKSET 0:0:10.5

Hinweis: Es wird nur die Software—Uhr Thres Rechners gestellt. Das Stellen
der Hardware—Uhr kann implementationsabhéngig auch erfolgen.

114 3.7 Beschreibung der Bedienbefehle
C/CONTINUE Continue Task
SYNTAX: CONTINUE taskname

C taskname
Beschreibung: Die angegebene Task wird aus dem Zustand ,,suspended” in den

Beispiel:

Laufzustand gebracht.

Die Shell priift zwar, ob die Task vorhanden ist, jedoch nicht,
ob sie — wie es sein sollte — im suspendierten Zustand ist. Der
Auftrag wird nach der Identifikation der Task an das Betriebssy-
stem abgesetzt. Von dort erfolgt ggf. die Auslosung des Fehlersi-
gnals ... not suspended. Solch ein Fehler ist an sich harmlos,
er fithrt aber dazu, dal die Shell — wie iiblich — den Rest der
Befehlszeile nicht mehr bearbeitet.

CONTINUE ABCD; C XYZ; CONTINUE E

3.7 Beschreibung der Bedienbefehle 115

Kopieren CP/CPB/COPY

SYNTAX: COPY. sonprocname [PRIO integer3] [size-speclparamlist
COPY [PRIO integer3] [size--spec] paramlist

urzform: CP ... statt COPY ... CPB ... statt COPY ...

inarmode:
Der Befehl dient zum Kopieren und Mischen von Dateien. Die Shell generiert
dazu einen eigenstindigen Sohnprozefi (Task) mit vom Nutzer vorgegebenem
Namen oder einem vom System erzeugten Namen COPY/zz oder CP/zz. Fiir zx
wird eine zweistellige Hexzahl mit automatischer Weiterschaltung eingesetzt.
Die Prioritdt des Sohnprozesses kann vorgegeben oder dem System iiberlassen
werden — Defaultwert ist 20.
Da der im Betriebssystem liegende Programmcode wiedereintrittsfest ist,
konnen — solange der Speicher fiir den ca. 200 Byte grofien Task-Kopf reicht
— beliebig viele unterschiedliche COPY-Befehle abgesetzt werden, die im Multi-
tasking parallel bearbeitet werden.
Sind sowohl Ein— wie Ausgabedatei formatierbare Geréte (siche dazu SD-Befehl
auf Seite 203), so findet ein bindrer Transfer der Daten statt, d. h. der Kopier-
vorgang ist erst beendet, wenn das Ende der Eingabedatei erreicht ist. Es wird
in diesem Fall nicht auf ein EOT ($04) reagiert. Daneben kann durch Verwen-
dung des Befehles CPB der bindre Transfermodus erzwungen werden — sinnvoll
z.B. wenn im /ED-Filesystem binédre Dateien abgelegt werden sollen. Allerdings
wird CPB nur bei riickspulbaren Quellfiles akzeptiert, weil sonst (z.B. bei seri-
eller Schnittstelle) kein Ende des Datenstromes erkannt wiirde.

paramlist: Es gelten die Parameter
SI (Source-Input)
€0 (Copy/Corrected Output)
SC (Source Correction/Command)

Fehlen SI oder CO, so werden die Defaultwerte des Systems ein-
gesetzt (SI=/A1/, CO=/ED/SI), was normalerweise nicht sinnvoll
sein diirfte.

Bei der Angabe des CO-Parameters kann der Dateiname wegge-
lassen werden, wenn der Name vom SI iibernommen werden soll.
Die Pathliste muf3 aber angegeben werden.

Es gibt — abhéngig davon, ob SC angegeben wurde oder nicht
— zwei verschiedene Betriebsfille:

1. SC fehlt oder SC=NO

116

3.7 Beschreibung der Bedienbefehle

Der bei SI angegebene File wird vollstdndig auf den bei
CO angegebenen File iibertragen. Es werden max. 128 Zei-
chen zu je einem ,,Record“ zusammengefa3t und ggf. — je
nach Device-Parametersatz der CO-Datei geméfl Seite 203
— nach Erginzung eines Zeichens LF auf die Ausgabeda-
tei iibertragen. Als Ende eines ,Record“ auf der SI-Seite
gelten auch die Zeichen LF, CR und EoT. Die Ubertra-
gung wird beendet, wenn ein ,,Record” nur aus dem Zeichen
EOT besteht oder das Gerét der SI-Datei eine End—of-file—
Bedingung festgestellt hat. Bei Ubertragungsfehlern wird
der Sohnprozef3 vorzeitig beendet und verschwindet nach
Ausgabe entsprechender Meldung iiber das Terminal. Auch
die normale Beendigung wird durch ...name (terminate)
angezeigt.

. SC wurde einer Eingabedatei zugeordnet.

Es werden die Zeilen aus den Quellen SI und SC gemischt
und als ,,Records® auf die CO-Datei iibertragen. Die Anwei-
sungen zum Mischen und — bei riickspulbarer SI-Datei —
auch zum Umschichten der aus SI stammenden Zeilen wer-
den als Kommandos ebenfalls {iber das SC-Gerét eingege-
ben. Als Unterscheidungsmerkmal zwischen Kommandos
und einzumischendem Text auf dem SC-Gerét dient das
Zeichen am Anfang einer Zeile. Steht dort das Zeichen +,
so wird die Zeile als Kommando interpretiert. Mit + begin-
nende Zeilen kénnen also nicht eingemischt werden.

+33-455 Ubertrage die Zeilen Nr. 33 bis einschlieBlich 455
aus dem SI-File in den CO-F'ile. Anschliessend kénnen
beliebig viele Zeilen (die nicht mit + beginnen) einge-
geben werden, die direkt nach CO iibertragen werden.

+755 Ubertrage nur die Zeile Nr. 755 aus dem SI-File in
den CO-File.

+855-840 Unzuléssig, die zweite Zeilennummer darf nie-
mals kleiner als die erste sein. Es wird die ,,Komman-
do-Fehler“—Kondition (s. u.) angenommen.

+399-402 Die Riickkehr vor oder auf die letzte bereits aus
dem SI-File iibertragene Zeile ist nur bei riickspul-
barem SI-File erlaubt, sonst wird die ,,Kommando-
Fehler“—Kondition angenommen (s. u.). Nach dem
Riickspulen wird die SI-Datei durch Lesen von An-

3.7 Beschreibung der Bedienbefehle 117

Beispiel:

Fehler:

fang an auf die angegebene Stelle positioniert und die
Ubertragung wie gewiinscht durchgefiihrt.

COPY.Z PRIOC 16 /FO/ALT>/F1/NEU

Name des Sohnprozesses ist Z. Mit Prioritéit 16 wird der File ALT
von Floppy 0 in den File NEU der Floppy 1 kopiert, bis der File
ALT an sein Ende oder eine mit EOT beginnende Zeile gekommen
ist.

CP /F1/Quelle>/F0/Ziel SC /A1/

Name des Sohnprozesses und Prioritdt werden vom System
gewdhlt. Es werden Kommandos zum Mischen iiber das Gerét
/A1/ erwartet.

Annahme SI-Inhalt: AAAAAAAAA (1. Zeile)
BBBBB (2. Zeile)
Cccc (3. Zeile)

Angenommene SC-Zeilen: +2-3
KKKK
+1 (SI riickspulbar)
JJJJ
+2
Eor

Ergebnisfile: BBBBB
cccC
KKKK
AAAAAAAAA
JJJJ
BBBBB
Eot

Der Mischvorgang wird beendet, sobald entweder vom SI- oder
vom SC-File eine Endebedingung (EOT oder End-of-file) er-
kannt wird, also auch dann, wenn eine Zeile hinter der letzten
auf SI vorhandenen Zeile adressiert wird.

Wird ein falsches Kommando erkannt (Adressierung einer Zeile
hinter der letzten vorhandenen ist kein Fehler), so wird die Mel-
dung ... wrong command ausgegeben und die Task suspendiert.
Nach der Fortsetzung wird das Kommando erneut erwartet.

118 3.7 Beschreibung der Bedienbefehle

COPY /HO/mueller/dat1>/H1/meier/

Die Datei dat1 wird von /HO/mueller nach /H1/meier/ kopiert.
Der Name der Datei bleibt gleich.

! — COPY filename > oder
COPY filename >.
bedeutet , kopiere in das aktuelle Working-Directory mit altem

Filenamen®“ — sofern ein Working-Directory definiert ist (sonst
Fehler).

! — Files mit dem Device-Parameter ,riickspulbar“ (siche Seite 203)
werden automatisch mit REWIND ertffnet bzw. neu eingerichtet
und zum Abschlufl mit RETURN zuriickgegeben. Wenn eine Datei
auf sich selbst kopiert werden soll, bricht der COPY—Befehl mit
y,wrong command“ ab.

3.7 Beschreibung der Bedienbefehle 119

Change User-Environment-Directory CuUD

SYNTAX: CUD dewpath

Dieser Befehl ist eine Sonderform des CD-Befehles. Es gelten alle Angaben der
Seiten 107 ff. Die Besonderheit besteht darin, daff mit CUD nicht das momentane
lokale Working-Directory neu eingestellt wird, sondern dasjenige, welches zur
priméren Shell des ausfithrenden Nutzers gehort.

Nur mit CUD kann man aus Shellskripten heraus das Working-Directory der
priméren ,,Ur“-Shell verdndern. Die lokalen Vereinbarungen des Skriptes blei-
ben unberiihrt. Logischerweise macht der Befehl keinen besonderen Sinn, wenn
er von einer priméren Shell aufgerufen wird: die Wirkung von CD und CUD ist
dann vollig identisch. Gleiches gilt auch fiir die speziellen sekundéren Shells,
die durch den SHELL-Befehl (siche Seite 206) von einer priméren Shell erzeugt
wurden, da sie fortan die erzeugende priméren Shell vertreten.

Beispiel: CUD /ED

Im Gegensatz zum CD-Befehl antwortet die Shell beim CUD nicht mit der Aus-
gabe der aktuellen Einstellungen.

120 3.7 Beschreibung der Bedienbefehle

CUXD Change User-Environment Execution-Directory

SYNTAX: CUXD devpathl][,] devpath2[,] ...

Dieser Befehl ist eine Sonderform des CXD-Befehles. Es gelten alle Angaben der
Seiten 121 ff. Die Besonderheit besteht darin, daf3 mit CUXD nicht die momen-
tanen lokalen Execution-Directories neu eingestellt werden, sondern jene, die
zur priméren Shell des ausfithrenden Nutzers gehoren.

Nur mit CUXD kann man aus Shellskripten heraus die Execution-Directories
der priméren ,, Ur“-Shell verdndern. Die lokalen Vereinbarungen des Skriptes
bleiben unberiihrt. Logischerweise macht der Befehl keinen besonderen Sinn,
wenn er von einer priméren Shell aufgerufen wird: die Wirkung von CXD und
CUXD ist dann vollig identisch. Gleiches gilt auch fiir die speziellen sekundéren
Shells, die durch den SHELL-Befehl (siehe Seite 206) von einer priméren Shell
erzeugt wurden, da sie fortan die erzeugende priméren Shell vertreten.

Beispiel: CUXD /ED /H1/XD

Im Gegensatz zum CXD-Befehl antwortet die Shell beim CUXD nicht mit der
Ausgabe der aktuellen Einstellungen.

3.7 Beschreibung der Bedienbefehle 121

Change Execution-Directory CXD

SYNTAX: CXD devpathl],] devpath2[,] ...

Der Befehl Change—Execution—Directory erlaubt es, die von der aktuellen Shell
nach transienten Kommandos und Skripten in Shellsprache (siehe Seite 76)
zu durchsuchenden Directories zu definieren. Mit jedem CXD-Befehl werden,
mit dem ersten beginnend, alle Execution-Directories neu festgelegt, fiir die
devpath—-Angaben vorhanden sind. Weiter hinten folgende Vereinbarungen blei-
ben bestehen. Die Anzahl der definierbaren Execution-Directories ist implemen-
tierungsabhéngig, Defaultwert ist 2.

Normale sekundére Shellprozesse verdndern mit CXD nur ihre eigene nach aufien
abgeschlossene Umgebung. CXD ist darum nicht geeignet, um in einem Auto-
Exec-File, der nach XCMMD kopiert wird, das User-Environment zu verédndern.
Zu diesem Zweck ist der Bedienbefehl CUXD vorgesehen.

Mit dem SHELL-Befehl erzeugte sekundéire (Bourne-) Shells benutzen jedoch
das gleiche Execution- und Working-Directory wie die primére Shell, von der
sie abstammen. Hier wirkt CXD dann genau wie ein CUXD.

devpath: Bezeichnet einen Filezugriffspfad im System, der wie ein Direc-
tory nach rechts verlangerbar ist, z. B.

/ED, /FO, /HO/Maier/simul etc.

Beginnt devpath nicht auf der Root-Ebene, so wird ihm das zu
dem Zeitpunkt vereinbarte Working-Directory — und nicht ei-
nes der Execution-Directories! — vorangestellt. Der Befehl macht
darum fast immer nur mit vollen — auf der Root-Ebene begin-
nenden — devpath-Angaben Sinn.

Loschung: CXD NO loscht das erste Execution-Directory. Ein gel6schtes
Execution-Directory erscheint mit dem Text XD=/-, oder es wird
nicht aufgelistet, falls nur noch unbesetzte ,XDs* folgen. Sollen
mehrere Directories geloscht werden, so ist die entsprechende
Anzahl NO oder ,,/“ als Parameter anzugeben.

122

3.7 Beschreibung der Bedienbefehle

Beispiel 1: CXD /ED/ Die Shell antwortet:

WD=/xxxx

XD=/ED
Damit ist als Exec.-Directory /ED/ vereinbart
Ein transienter Befehl konnte jetzt so aussehen:

QP paralist

Beispiel 2: CXD /ED /HO/XD Die Shell antwortet:

WD=/XxXXX

XD=/ED

+ /HO/XD
Nun sind 2 XDs aktiv

Man beachte vorsorglich, dal man keine Execution-Directories
vereinbart, die spéter die Restriktionen bestimmter File-Handler
verletzen. Alle bekannten File-Handler beherrschen jedoch min-
destens jeweils 7 Zeichen zwischen den Pfadtrennern ,,/¢.

Die maximale Lénge des Execution-Directories ist implemen-
tierungsabhéngig. Dabei z&hlen der eroffnende ,,/“ und der
Geriitename samt folgendem ,,/* nicht mit. Der Kern defaultiert
die Obergrenze zunéchst auf 24 Zeichen. Die heute gebrauchli-
chen Entwicklungssysteme sind in der Regel auf 64 Zeichen ein-
gestellt. Bei Verletzung der Obergrenze reagiert die Shell mit
,--. path too long“ und Abbruch der Kommandozeile.

3.7 Beschreibung der Bedienbefehle 123

Show Date

SYNTAX: DATE

Beschreibung: Es wird das aktuelle Datum der RTOS—-UH-Datumszeile
ausgegeben. Wurde diese Zelle noch nicht gesetzt (s. Befehl
DATESET), so wird eine Folge von Minus—Zeichen ausgegeben.

Beispiel: DATE
Ausgabe: 01-01-1987

DATE

(Datumszelle war noch nicht gesetzt)

124 3.7 Beschreibung der Bedienbefehle
DATESE T‘ Set Computer—Date
SYNTAX: DATESET date
Beschreibung: Die Datumszelle von RTOS—UH wird gesetzt. Implementati-
onsabhéngig kann auch eine vorhandene Hardware—Uhr gesetzt
werden.
date: Eine Zeichenkette mit dem Aufbau tt-mm-jjjj
tt: Tag
mm: Monat
jjij: Jahr (zwischen 1984 und 2162)
Fehler: Es wird gepriift, ob Anzahl Tage/Monat und Anzahl Mona-
te/Jahr zuliissig ist. Im Fehlerfall erscheint die Meldung
...... : date wrong
Beispiel: DATESET 29-02-1988

Das Datum wird auf den 29.02.1988 gesetzt.

3.7 Beschreibung der Bedienbefehle 125

Display device—parameters

SYNTAX:

Beschreibung:

Beispiel:

Hinweis:

DD /device/

Fiir die angegebene Station wird der Inhalt der aktuellen Para-
meterbytes ausgegeben. Die Bedeutung der einzelnen Bits ent-
nehmen Sie bitte der Beschreibung des SD-Kommandos auf Seite
203. Das Kommando wird intern {iber die DM-Funktion bearbei-
tet. Dadurch werden mehr Bytes ausgegeben als fiir die angege-
bene Station signifikant sind.

DD /A1/
Ausgabe Adresse des Parameterfeldes und Inhalt:
zzzzrrze: 3300

Lies: LF nach CR erginzen ($20), dialogfihig ($10), Ausgabe
moglich ($02) und Eingabe moglich ($01).

DD /ED/
zzzzzrzr: C780

Lies: riickspulbar ($80), braucht open/close ($40), ldschen
moglich ($04), Ein—/Ausgabe mdoglich ($03), DIR erlaubt ($80).

DD /VI/

zzzzzzzz: 0500

Lies: 16schen moglich ($04), Eingabe moglich ($01).

DD /PP/

zrrzzzzr: 2200

Lies: LF nach CR ergénzen ($20), Ausgabe moglich ($02).

Wenn (mit CD) ein Working-Directory vereinbart wurde und dem
Devicenamen kein ,,Slash“ vorrangeht, so gilt die DD—Operation
fiir das mit CD-fixierte Gerit (,LDN“), also nach CD /ED/ und DD
B2 z. B. fiir alle ED-Files!!

126 3.7 Beschreibung der Bedienbefehle

DEFINE Define Shell Process

SYNTAX: DEFINE -- commands to ezecute
DEFINE. sonprocname -- commands to execute

Mit dem Befehl lassen sich sekundére Shellprozesse definieren. Dazu bildet die
ausfithrende Shell einen Sohnprozefl mit dem Namen sonprocname und beauf-
tragt ihn mit der Ausfithrung der bis zum Semikolon folgenden Bedienbefehle.
Fehlt die Angabe von sonprocname — was nicht sinnvoll ist (!) — so wird vom
System ein Name der Form DEFINE/zz generiert. Der Sohnprozefl verschwin-
det nach Ausfithrung der Kommandos nicht, sondern kann spéter immer wieder
namentlich aktiviert werden. Erst mit einem UNLOAD-Befehl wird er wieder ent-
fernt.

Die auf diese Weise als Prozefl definierten Einzelbefehle oder Befehlsgruppen
sind anschlieffend den iiblichen Taskmanipulationen — Einplanungen auf Zeit
oder Ereignis etc. — zugénglich.

Beispiel: DEFINE.X--DL Y; T X Keine erste Aktion!
P.Y /ed/prog LO NO -- Prevent X; All 1 sec X

Jede Sekunde wird die Zeilennummer des Ubersetzungslaufes an-
gezeigt. (Damit’s nicht so langweilig ist . ..) Der Compiler 16scht
bei erfolgreichem Abschlufl die Einplanung fiir das Blockkom-
mando X selbst wieder.

Entwicklung eines Programmes in /ED/SI. Start—Task sei RUN,
Modulname test. Modul test wurde schon einmal geladen.

define.neu--ed--p lo no--unload test*--load--RUN
ausprobieren des Programmes etc., dann: neu
ausprobieren des Programmes etc., dann: neu
ausprobieren, am Ende der Sitzung dann:

unload neu,testx*

Wie man leicht erkennen kann, ist der Turnaround—Zyklus durch
das Blockkommando neu erheblich angenehmer geworden.

Internes: Der Ablauf entspricht genau dem von allen normalen Sohnpro-
zessen, z. B. P, COPY, LOAD, ED etc. mit angeschlossenen Folge-
befehlen — lediglich eine eigentliche Operation des Sohnes fehlt,
und das Verschwinden am Ende der Aktion wird unterdriickt.

3.7 Beschreibung der Bedienbefehle 127

Fehler:

o

Der so erzeugte Shellprozef§ ist nicht gut fiir Mehrnutzerbetrieb
geeignet, da er mit eingefrorenen Kopien der Environment-Daten
seiner Vatershell arbeitet. Dennoch ist eine gewisse dynamische
Redirektion des Outputs mit Hilfe der Station /TY moglich:

DEFINE.X--0 /TY-- LU;

Wird ein sonprocname irrtiimlich zum zweiten Mal verwendet,
erfolgt die Meldung ,,wrong label“. Eine Operation findet dann
nicht statt.

128 3.7 Beschreibung der Bedienbefehle

Directory listing

SYNTAX: DIR [-E|-Al|-EA] dev/pathlist

Der Befehl zeigt den Inhalt eines Haupt- oder Unterverzeichnisses an. Die Aus-
gabe erfolgt nach Stdout. Die angegebene dev/pathlist mufl auf ein unterglie-
dertes Gerét oder ein Directory zeigen. Dies kann entweder durch Angabe eines
geeigneten Geratebezeichners — erkennbar an den Gerateparametern geméfl Sei-
te 203, z. B. /ED/, /Fx/, /Hx/, etc.— geschehen oder durch Pfadgebung zu einem
Unterinhaltsverzeichnis. Die zur entsprechenden LDN (Warteschlangennummer)
gehorende 1/O—Task schreibt nach Erhalt des Befehles selbsttitig eine Liste der
zum bezeichneten Inhaltsverzeichnis gehorenden Files in den Stdout-File bzw.
auf das Stdout-Gerit.

Obwohl der ED-Filehandler nur pseudohierarchisch arbeitet, physikalisch also
keine Unterdirectories angelegt werden, erhélt man auch bei ihm eine Liste aller
iiber den angegebenen Pfad erreichbaren Files.

Parameter: Die folgenden Parameter kénnen beim DIR-Kommando angege-
ben werden. Es werden dann zusétzliche Informationen ausgege-
ben.

-E gibt Dateien mit Datum und Uhrzeit der letzten Anderung
aus.

-A gibt alle Dateien ab dem angegebenen Path aus (inklusive
aller darunterliegenden Subdirectories mit ihren Dateien).

-EA gibt alle Dateien ab dem angegebenen Path mit Datum
und Uhrzeit aus.

Fehler: Wenn die Geriteeigenschaft kein DIR-Kommando zulidfit (sie-
he 8SD-Befehl Seite 203), so wird der DIR-Befehl mit
,befehlsstring: operation failed® abgewiesen.

Aus der angesprochenen I/O-Task sind die verschiedenen Feh-
lermeldungen moglich, z.B.:

..... DRIVE_NOT_READY (Floppy/Festplatte)
..... TRACKOOO_NOT_FOUND
..... DIRECTORY_NOT_FOUND

Beispiel: DIR /FO/,/F1/,/H1/USR/MUELLER
DIR /ED/MAIER/QUELLFILES
DIR -> Hier war mit CD ein Working-Directory fixiert!
0 /ED/FILELIST;DIR /F0/

3.7 Beschreibung der Bedienbefehle 129

Hinweis:

DIR -E /FO/mist

Es werden die Dateien des Subdirectories mist mit Datum und
Uhrzeit in einer Liste ausgegeben.

DIR -A /H1/

Ergibt ein Gesamtverzeichnis aller Dateien auf der Winchester

/H1/.

Mit dem 0-Befehl kann die Liste in einen beliebigen File gelenkt
werden, bei den neueren Systemen auch in einen solchen, der zur
LDN der mit DIR angesprochenen I/O—-Task gehort.

Man denke aber daran, daf} der File, in den die Ausgabe des DIR-
Befehles umgeleitet wird, am Ende nicht automatisch geschlos-
sen wird. Dies muf} ggf. durch einen Extrabefehl (z. B. Return)
nachgeholt werden.

130

3.7 Beschreibung der Bedienbefehle

’D ISABLE Disable Processinterrupt

SYNTAX:

Beschreibung:

Beispiel:

Hinweis:

DISABLE EV hexznum8

Von dem Bitmuster heznums, das bei Eingabe von weniger als
8 Hexziffern durch Ergénzen fiihrender Nullen gebildet wird,
wird das 1-er—-Komplement gebildet. Dieses wird logisch ,,UND*
mit der Event—enable-maske des Systems verkniipft und das
Ergebnis nach dorthin zuriickgeschrieben. Dadurch werden die
durch ,Einsen“ in heznum8 gekennzeichnete Prozefi—Interrupts
gesperrt.

DISABLE EV 1
DISABLE EV FFFFFFFF (alle Proze-IR gesperrt)
DISABLE EV O (unsinnig, ohne Wirkung)

Die Anweisung entspricht der gleichnamigen PEARL-Operation.

3.7 Beschreibung der Bedienbefehle 131

Display Line—number of Task

SYNTAX: DL taskname

Der Befehl erlaubt einen ,,Schnappschuf3“ beziiglich der momentanen Aktivitit
der mit taskname angegebenen Task, sofern diese die Ausgabe einer , Zeilen-
nummer“ unterstiitzt und eine Zeilenregisterzelle an der richtigen Stelle ih-
res Workspace besitzt. Das ist bei PEARL-kodierten Tasks immer der Fall,
wenn die angegebene Task oder von ihr benutzte Prozeduren mit der Zeilen-
markiereroption iibersetzt wurden und sie zum Zeitpunkt des DL—-Kommandos
Workspace besitzt. Auch die RTOS—UH eigenen Assembler, Compiler sowie
der COPY-Befehl versorgen eine entsprechende Zeilenregisterzelle. Auch bei der
Ausfithrung von Shellskripten kann mit DL die aktuell ausgefiihrte Zeilennum-
mer angezeigt werden.

Beispiel: DL REGEL

Hinweis: Es wird die letzte registrierte Zeilennummer (bis zu 5 Dezimal-
stellen) ausgegeben.
Wenn nur Teile des Programms mit der Markeroption {ibersetzt
wurden, kann es sein, dafl die Zeilennummer auf einen langst
verlassenen Programmpfad zeigt.

Wird der Wert 0 ausgegeben, so wurde noch keine Zeilennummer
registriert.

Bei nicht fiir den DL-Befehl geeigneten, assemblerkodierten Tasks
wird auch eine scheinbare Zeilennummer ausgegeben, diese stellt
jedoch nur einen Zufallswert dar, weil die Zeilenregisterzelle ver-
mutlich fiir andere Zwecke benutzt wird.

! — Bei dlteren Systemen wurde bei Anwendung dieses DL-Befeh-
les auf den Assembler, PEARL—-Compiler oder einen COPY-
Sohnprozel wird die aktuell iiberlaufene Quellzeilennummer als
hexadezimaler Wert ausgegeben. (Bei den aktuellen Systemen
dezimale Ausgabe bis max. 65535)

Fehler: Moglich sind:

>>... not loaded oder
>>... not active

132

3.7 Beschreibung der Bedienbefehle

SYNTAX:

Display Memory

DM hez-add-ezpression (Fall A)
DM hez-add-exprl hez-add-ezpr2 (Fall B)

Beschreibung: Je nachdem, ob ein oder zwei Adreflausdriicke angegeben wur-

den, sind zwei Betriebsfille moglich:

Fall A Der Wert von hex—add—expression wird auf die nichstklei-

nere oder gleiche gerade Zahl abgerundet und als Start-
adresse fiir die Ausgabe benutzt. Mit dieser Startadresse
beginnend werden die Hexadezimalwerte der folgenden 8
Worte aus dem Speicher mit ihren ASCII-Werten ausge-
geben. Steuerzeichen werden durch Punkte dargestellt.

Fall B Der Wert von hez—add—expressionl wird wie im Fall A als

Startadresse gewertet. Ist der (ebenfalls auf geraden Wert
gerundete) Wert von hez—add—ezpression2 kleiner als die
Startadresse, so wird er als Anzahl der (mindestens) aus-
zugebenden Bytes gewertet; ist er groffer oder gleich der
Startadresse, so werden alle Speicherzellen bis mindestens
hex-add-expression2 aufgelistet. In jedem Fall werden gan-
ze Blocke von 8 Worten (16 Bytes) in jeder Zeile aufgelistet.

hex-add-expression: Eine Folge von maximal 8-stelligen Hexadezimalzah-

Beispiel:

Hinweis:

len, die durch +/- Zeichen miteinander verbunden sind. Da-
mit soll dem Anwender in erster Linie das miihselige Addie-
ren/Subtrahieren z. B. von Ladeadressen und relativem Abstand
erspart werden.

DM 5000 Ausgabe der Bytes $5000 ... $500F
DM 610+20,100 Ausgabe der Bytes $630 ... $72F
DM 37FF 3901 Ausgabe der Bytes $37FE ... $390D

Der Zugriff auf die Speicherzellen erfolgt im Usermode des Pro-
zessors. Dadurch ist es bei manchen Rechnern nicht moglich,
sich alle Speicherstellen anzusehen, da die Hardware einen ,,Bus-
Error* auslost, worauthin der Shellprozefl abgebrochen wird.

Als Erweiterung hierzu ist ein Zusatzshellbefehl DMX zuladbar
(oder transient ausfiihrbar), der folgende Zusatzparameter er-
laubt:

-S Zugriff im Supervisormode, sonst

3.7 Beschreibung der Bedienbefehle 133

Zugriff im Usermode
-B Zugriff mittels Befehl MOVE.B und byteweise Darstellung
-W Zugriff mittels Befehl MOVE.W und wortweise Darstellung
-L Langwortzugriff (MOVE.L) und Darstellung

-M Zugriff mittels Befehl MOVEP.W und wortweise Darstellung,
dabei werden nicht gelesene Byte mit einem ? dargestellt

-P Zugriff iber PIT-Trap, nur interessant fiir PBUS—Zugriffe

Fehlt in der Parameterliste des Befehls DMX die Angabe -S, wird
der geforderte Zugriff im Usermode ausgefiihrt.
Mit dem DMX sind dann folgende Beispiele méglich:

DMX -S 400 zeigt einen Speicherdump ab Adresse $400, dabei
erfolgt der Zugriff im Supervisormode.

DMX -B 3000 5 zeigt einen Speicherdump der Adressen $3000
bis einschliefilich $3005, der Zugriff erfolgt im Usermode und
byteweise.

DMX -SL 4444 zeigt die Zelle $4444 in einem Langwort, und der
Zugriff erfolgt im Supervisormode und langwortweise.

134

3.7 Beschreibung der Bedienbefehle

SYNTAX:
Beschreibung:

Beispiel:

Hinweis:

Display Registers of Task

DR taskname

Die angegebene Task wird in der Speicherverwaltung gesucht. Ist
sie dort nicht vorhanden, so erfolgt Meldung >> taskname not
loaded. Ist die Task zwar vorhanden, aber im Zustand DORM, so
erfolgt Meldung >> taskname not active.

Anschlielend werden die Register der Task ausgegeben. Die Aus-
gabe erfolgt in spartanischer Schlichtheit, da die Anweisung oh-
nehin nur fiir Bitmuster—Freaks oder Assembler—Programmierer
interessant ist:

Adr: A7 (US) A7 (SS) DO D1
Adr: D2 D3 D4 D5
Adr: D6 D7 A0 Al
Adr: A2 A3 A4 A5
Adr: A6 St5/4 St3/2 St1/0

Mit St sind die letzten 6 Worte des System—Stacks gemeint. So
ist z. B. St1/0 die Adresse hinter einer TRAP-Instruktion, wenn
diese auf Taskebene ausgefiihrt wurde.

DR XVY

Bei suspendierten Tasks konnen die Registerinhalte mit Hilfe
des SM-Kommandos veréndert werden, wenn man die bei DR an-
gegebenen Adressen (s. linker Rand) der Registerablageplitze
verwendet.

3.7 Beschreibung der Bedienbefehle 135

Echo text

SYNTAX: ECHO textstring

Mit diesem Befehl 1&8t sich auch ohne den Shellsprachinterpreter ein (fast)
beliebiger Text auf dem aktuell giiltigen Standard-Output Gerét ausgeben.

ECHO Laden des Modules XY fertig;

produziert eine Ausgabe des Textes, wobei das Semikolon und das Doppelminus
(Zeichenpaar --) nicht mehr mit ausgegeben werden, sondern als Beginn eines
Nachfolgebefehles an die Shell gewertet werden.

Will man diese Zeichen ebenfalls ausgeben, so mufl der entsprechende Textteil
entweder mit Hochkommata () oder mit Génsefiichen (") umrahmt werden.
Bei einer Umrahmung mit Hochkommata diirfen auch Génsefiiichen im Text
stehen und umgekehrt.

ECHO Das Zeichen ’;’ wird nun gedruckt; oder
ECHO ’Das Zeichen ; wird nun gedruckt’;

ECHO "Das Zeichen ’ wird nun gedruckt";
ECHO ’Das Zeichen " wird nun gedruckt’;

Man beachte, dafi es bei der Anwendung des Befehles aus der Grundshell kleine
Unterschiede bei der Auflésung ,,umrahmter* Texte im Vergleich zum ECHO-
Befehl der Shell-(skript-)sprache gibt. Hat man mit dem optionalen ENVSET-
Befehl eigene oder globale Environment-Variablen der Shell angelegt, so wer-
den diese als Argumente des ECHO-Befehles auch im Falle einer Umrahmung
substituiert.

ENVSET MIST=ABCDE;
ECHO ’$MIST’;

ergibt den Text ABCDE als Ausgabe.

136

3.7 Beschreibung der Bedienbefehle

SYNTAX:

Beschreibung:

Parameter:

Sichtgerit:

Edit a File

ED. sonprocname [PRIO integer3] [parameterlist] (Form

)

ED [PRIO integer3] [parameterlist] (Form 2)

Es wird eine fliichtige unabhiingige Task mit vom Nutzer (1.
Form) oder vom System (2. Form) vorgegebenem Namen erzeugt
und gestartet. Ein vom System (2. Form) generierter Name hat
den Aufbau ED/zz. Die Standardprioritéit fiir den Editor ist 15
($OF hexadezimal). Der Editor ist ,reentrant, es kann also mit
dem gleichen Code (auch ROM-Resident) auf mehreren Termi-
nals gleichzeitig gearbeitet werden — es miissen nur unterschied-
liche Dateien editiert werden.

Es werden die Parameter SC (Scratch-Datei, auf der der Editor
arbeiten soll) und SI (Source-Input, Port, iiber den der Nutzer
Eingaben téitigt) akzeptiert.

/SC/ muf eine ED-Datei der Form /ED/xyz sein, sonst wird
der Editor sofort mit der Meldung wrong 1dn (mode) abgebro-
chen und verschwindet aus dem System. /SI/ muf} ein Sicht-
gerét sein, welches im System als ,, dialogfihig* bekannt ist (siehe
SD—Befehl), sonst erfolgt ein Abbruch mit der Meldung wie bei
falschem SC—Paramter. Die Angabe von SC kann entfallen. Die
folgenden Aufrufe sind dquivalent:

ED /ED/name bzw.
ED SC /ED/name und
ED SC=/ED/name

Bei fehlenden Parametern wird SC=/ED/SIz und SI=/Az/ einge-
setzt, wobei x die LDN der Schnittstelle des Nutzer ist.

Es ist nahezu jedes Terminal oder aber das RTOS—UH-Win-
dowsystem als Arbeitsplatz geeignet, wenn von der Struktur fol-
gende Bedingungen erfiillt werden:

e Typ: TELEVIDEO TVI 925, 950 oder VT52 und kompatible.

24 oder 25 Zeilen mit jeweils 80 Zeichen.

Automatischer UP-Scroll bei LF in der untersten Bild-
schirmzeile.

Autowraparound = autom. CR + LF nach Anschlag des
80. Zeichens einer Zeile (No Wrap parametrierbar)

3.7 Beschreibung der Bedienbefehle 137

Steuerung:

Betriebsmodi:

e Kein automatischer LF nach Erhalt eines CR.

e Cursorsteuerung iiber $0A, $0B, $0C, $08, $16 (Umpara-
metrierung auf ESC-Sequenzen moglich).

e Betrieb wie bei der Shell im Full-Duplexmode.

Nach dem Start wird die erste Seite des Files aufgeblittert. FExi-
stierte der File vorher nicht, so wird er mit der Zeile

*File was installed by ED

als einziger Information neu im System eingerichtet. Der Editor
arbeitet ohne Zwischendatei direkt auf dem angegebenen ED-
File, Anderungen sind daher von sofortiger Wirkung auf die Da-
tei.

Die Verdnderung einzelner Zeichen erfolgt durch Anfahren der
Position auf dem Bildschirm und Eingabe eines neuen Zeichens
(Replace-Mode). Der Editor arbeitet stets im Replace-Mode.

Sonderfunktionen werden durch Anschlag des Zeichens ESC an-
gewéhlt, wobei der nachfolgende Buchstabe die Operation be-
zeichnet. Die Operationsbezeichner wurden im Sinne einer leich-
ten Merkbarkeit gewéhlt (siche folgende Operationstafeln).

Es sollten nur Zeichen eingegeben werden, die einen ASCIT-Wert
von grofler $1F haben. Enthélt die Datei Zeichen, deren Wert
kleiner als $1F ist — z. B. durch einen COPY-Befehl erzeugt —,
so werden diese mit dem Zeichen @ abgebildet.

Abweichend von dieser Regel darf in die erste Spalte ein Zei-
chen $04 (EoT) eingegeben werden, um das Ende des Textes zu
markieren (fiir eine Ubertragung via Schnittstelle wichtig).

Der Editor kennt zwei Betriebsmodi, die durch den SD-
Bedienbefehl der Shell, siehe Seite 203, verdndert werden kénnen.

Der Normalmode ist standardméifBig eingestellt. Der Cursor—
ESC-Mode kann mit dem Kommando SD /Az/+1 01 eingestellt
werden. Der Normalmode wird mit SD /Az/+1 00 eingestellt.

Die ESC-Sequenzen fiir Ein—/Ausfiigungen wurden so gelegt,
dafl moglichst viele unterschiedliche Terminals benutzt werden
koénnen.

Tabelle der vom Editor genutzten Zeichen zur Cursorsteuerung:

138 3.7 Beschreibung der Bedienbefehle

Funktion Normalmode Cursor-ESC-Mode
! $0A, $16,7J oder V ESC B

7 $0B oder K ESC A

— $0C oder L ESC C

— $08 oder H ESC D

Insert Char ESC — ESC Q

Delete Char ESC «— ESCW /ESCP
Insert Line ESC | ESCE / ESCL
Delete Line ESC 1 ESC R / ESCM

Terminals: TELEVIDEO TV925 DEC VT52

Funktionen: Die folgende Tabelle enthélt die iiber Escape-Sequenzen anwéhl-
baren Befehle. Der Editor "merkt” sich also keinerlei ,, Komman-
domodus* o. 4., sondern erkennt dies an dem Anschlag der Esc-

Taste.

Mnemonik Code Erklarung

Forward 10 Li ESCF Fenster 10 Zeilen weitersetzen.

Exit ESC X Ausstieg aus dem File, Beendigung des
Editors.

Home ESC H 1. Zeile, 1. Spalte des Files anlaufen
und Keybuffer 16schen. Der File wird
verdichtet.

Ins Keybuffer ESC 1 Der Keybuffer wird vor der Zeile, in der
der Cursor steht, eingesetzt.

Keybuffer ed. ESC K Der Keybuffer wird angelaufen, und es
konnen in ihn Zeichen eingesetzt wer-
den.

New Numbers ESC N Alle Zeilennummern werden aktuali-
siert und der Keybuffer geloscht.

Overlay Keyb. ESC O Der Keybuffer wird mit der Zeile, in

der der Cursor steht, ab der Position
des Cursors gefiillt.

Search Keyb. ESC S Es wird in dem File nach dem im Key-
buffer enthaltenen Text gesucht. Die
Suche beginnt ab der aktuellen Cursor-
position in Richtung Fileende.

Tabulator set ESC T Tabulatormarke setzen.

Unmask Tabul. ESCU Tabulatormarke 16schen.

Verify Pict. ESCV Fenster aus der Datei neu nachladen.
Hilft bei unklaren Situationen.

Zone Select ESC Z Das Fenster wird auf die angegebene

Zeilennummer neu positioniert.

3.7 Beschreibung der Bedienbefehle 139

!

Beispiel:

Bei den o. a. Escape-Sequenzen diirfen auch kleine Buchstaben
mit gleicher Wirkung benutzt werden. Es empfiehlt sich, von
Zeit zu Zeit tiber ESC H eine Verdichtung des Files zu forcie-
ren, insbesondere wenn nur noch wenig Platz im Speicher ist.
Bricht der Editor seine Bearbeitung mit der Meldung ... no
mem. suspended ab, so kann nach Bereitstellung von geniigend
Speicher die Task mit CONTINUE fortgesetzt werden. Gelingt dies
nicht, so kann der ED-File dennoch gelesen werden, allerdings
ist die zuletzt aufgebldtterte Seite nicht im aktuellen Zustand. Es
sollte nun unbedingt die Task mit einem UNLOAD entfernt werden,
da bei einer Fortsetzung des Editors nach gewaltsamer Verénde-
rung des Files ein Absturz bzw. eine BAD POINTER. EXITUS Mel-
dung erscheint und Verénderungen am File nicht ausgeschlossen
sind.

Die iibergeordnete primére Shell des Terminals ist wiahrend einer
Editor-Sitzung iiber CTRL A nicht erreichbar. Sie miissen vorher
iiber ESC X aussteigen. Allerdings kann iiber die BREAK—Taste
dennoch die Shell bei gleichzeitig aktivem Editor aktiviert wer-
den. Dies ist jedoch nur fiir den Notfall vorgesehen. Die aktuelle
Seite des ED-Files mufl danach iiber ESC V restauriert werden.

Zum Loschen der Anzeige des Keybuffers muf dieser iiber ESC
K angelaufen und dann mit T (Cursor UP) verlassen werden.
Der Inhalt bleibt aber weiterhin erhalten (z. B. fiir die Funktion
Suchen: ESC S).

Wenn das verwendete Terminal (z. B. ITOH CT 101) keinen
Auto-Wrap—Mode besitzt oder dieser nicht wie oben angegeben
funktioniert, so kann mit SD /Az/+1 yy der Editor umparame-
triert werden. Das Setzen des Bit mit Wertigkeit 2 in yy bewirkt,
daf} die LF-Generierung nun vom Editor ibernommen wird. Das
Terminal mufl nun so eingestellt werden, dafl nach Anschlag des
80. Zeichen in einer Zeile der Cursor in der 80. Spalte stehen
bleibt. Es kénnen z. B. mit SD /Az/+1 3 die Funktionen ,,curs—
ESC* und ,,no wrap around“ vereinbart werden.

SD /A2/ 3301 Port2: dialog, LF nach Cr, Curs=ESC, IN/OUT
ED /ED/marion Der File marion wird editiert.

Nach der Vereinbarung eines ,, Working-Directories“ (sieche Befehl
CD) konnen die Dateien hierarchisch organisiert werden:

Der Nutzer hat das Working-Directory /ED/ABC angelegt. Die
Eingabe von:

140

3.7 Beschreibung der Bedienbefehle

ED Affe richtet eine Datei mit dem Namen
/ED/ABC/Affe ein, und diese wird editiert.

Durch die Verwendung von Working-Directories kann im Mehr-
nutzerbetrieb ein versehentliches Benutzen von Dateien ande-
rer Nutzer vermieden werden. Dazu richten sich alle in einem
System arbeitenden Nutzer unterschiedliche Working-Directories
ein, iiber diese erfolgt dann der Zugriff auf die einzelnen den Nut-
zern zugeordneten Dateien.

Nutzerl legt mit CD /ED/Nutz1 sein Working-Directory fiir sich
fest, Nutzer2 legt CD /ED/Nutz2 fest usw.

Wenn nun beide Nutzer das Kommando:

ED mein eingeben, editieren sie die folgenden im System enthal-
tenen Files:

Nutzerl: /ED/Nutz1/mein und
Nutzer2: /ED/Nutz2/mein usw.

3.7 Beschreibung der Bedienbefehle 141

Enable Processinterrupt ENABLE

SYNTAX:

Beschreibung:

Beispiel:

Hinweis:

ENABLE EV heznum8

Mit dem aus hexnum8 erhaltenen Bitmuster werden die Proze-
Binterrupts freigegeben, an deren Bitposition eine 1 in hexnum8
enthalten ist. Es konnen 32 verschiedene Prozefinterrupts ange-

sprochen werden. ENABLE EV 1 Prozeflinterrupt Nr.1 wird
freigegeben

ENABLE EV FF Nr.1-8 werden freigegeben
ENABLE EV O unsinnig, da ohne Wirkung

Diese Anweisung entspricht der gleichnamigen Anweisung der
Sprache PEARL und erfiillt die gleiche Funktion auf System—
Kommandoebene.

Nach einem Kaltstart des Systemes sind zunéchst alle Prozefin-
terrupts abgeschaltet. Die jeweils benotigten miissen daher vor
ihrer Benutzung mit diesem Kommando oder durch die entspre-
chende PEARL-Anweisung eingeschaltet werden.

142 3.7 Beschreibung der Bedienbefehle

’E N VSE T‘ Environment Set (optionaler Bedienbefehl)

SYNTAX: ENVSET wariable=textstring
ENVSET -G wvariable=textsiring
ENVSET -R wvariable
ENVSET -R
ENVSET -G -R warzable
ENVSET -G -R
ENVSET -S size
ENVSET -G -S size
ENVSET
ENVSET -G

Mit dieser Anweisung konnen lokale (arbeitsplatzgebundene) oder globale (-G,
fiir alle Arbeitsplitze gleich) Environment-Variable mit einem Textwert besetzt
werden. Die Parameter (R,S und G) kénnen auch klein geschrieben werden. Mit
ENVSET definierte lokale oder globale Variablen kénnen mit vorangestelltem
$-Zeichen in Shellbefehlen an Stelle des Textes, den sie beinhalten, benutzt
werden. Das Objekt textstring endet am Semikolon bzw. am Doppelminus (--).

Die Environmentvariablen werden in speziellen Speichermodulen (#ENV/x) an-
gelegt, deren Grofe (Defaultwert ist $200=512 Bytes) man nur mit dem allerer-
sten ENVSET-Befehl (also bei noch nicht existierendem Environment!) einstellen
kann:

ENVSET -S 1000 |4 kB lokal vorsehen
ENVSET -G -S 2000 |8 kB globales Env.
ENVSET PF=/HO/TEX/TEST.TEX | Lokale Definition
COPY $PF > /ED/A | Benutzung

ENVSET -G SV=CP /HO/xy > /HO/xy.bak |Globale Definition
$SV | Benutzung

Der Befehl ENVSET ohne Parameter erzeugt eine Liste aller zur Zeit gespeicher-
ten lokalen Environment-Variablen und listet zusétzlich alle eventuell vorhan-
denen unverédnderlichen Systemvariablen auf. Der Befehl ENVSET -G erzeugt
analog dazu eine Liste aller zur Zeit gespeicherten globalen Environment-
Variablen.

3.7 Beschreibung der Bedienbefehle 143

Der Zusatzparameter -R (Remove) gestattet das Loschen aller oder einer ein-
zelnen Environmentvariablen.

ENVSET | Listet alle lokalen Variablen, auch Sysvars
ENVSET -R SV | Losche die lokale Variable SV

ENVSET -R | Losche alle lokalen Variablen

ENVSET -G -R | Losche alle globalen Variablen

Beim lokalen ENVSET-Befehl werden neben den zur aktuellen Shell gehérende
Environmentvariablen auch eingebaute platzgebundene Variablen angezeigt.
Dabei konnen jedoch diese eingebauten Variablen, etwa WORKDIR, EXEDIR. .,
STDOUT, STDIN, STDERR, EDITOR, TIMEBASE und P_TYPE nur angezeigt, jedoch
nicht geloscht oder verédndert werden. Zu deren Verdnderung — soweit {iber-
haupt moglich — bediene man sich der dafiir vorgesehenen Befehle, z.B. ER, I,
0 sowie CD usw.

Fiihrt man den ENVSET-Befehl aus einem Skript heraus aus (siehe Seiten 76
ff.), so wird der Befehl vom Shellinterpreter selbst dekodiert und neben dem
globalen oder lokalen Environment wird auch eine gleichnamige Skriptvariable
gesetzt oder verindert — und zwar unabhéngig davon, ob das lokale oder globale
(-G Option) Environment angesprochen wurde.

Beim Ersetzen der Environmentvariablen durch ihren (Text-)Wert (durch die
Shell oder im Skript) wird zuniichst immer im lokalen Environment gesucht.
Nur wenn das Objekt dort nicht gefunden wurde, erfolgt eine Suche im globalen
(fiir alle Nutzer gleichen) Environment.

Wird die Bourne-Shell von der priméren Shell aus gestartet, so erbt sie alle
zum Startzeitpunkt definierten Environmentvariablen als Kopie. Dabei werden
zunéchst alle globalen Variablen kopiert und als Skriptvariable angelegt. An-
schlieend werden alle lokalen Variablen iibernommen — wobei ggf. gleichnami-
ge aus dem globalen Environment stammende Skriptvariablen iiberschrieben
werden. Damit ist gesichert, dass das lokale Environment quasi eine hohere
Prioritat besitzt.

Verdndert man in einem Skript die Inhalte der in diesen Skript hineinkopierten
Variablen durch Wertzuweisung (. ..=...), so dndert sich nichts am Environ-
ment — eben auch nicht an dem, aus dem die Objekte kopiert wurden.

144

3.7 Beschreibung der Bedienbefehle

SYNTAX:
Beschreibung:

Beispiel:

Error Redirect

ER pathlist

Als Standard-Error Datenstation (Stderr) der Shell, die die-
sen Befehl ausfiihrt, wird fortan die durch pathlist bezeichnete
Datensenke verwendet. Die Wirksamkeit beschrankt sich auf die
Kommandos im Rest der Kommandozeile. Der Befehl ist dar-
um im Gegensatz zum ,,PER“-Befehl nicht riskant: die Fehler der
niichsten Befehlszeile schreibt die Shell weiterhin in die bisherige
Datenstation.

Hat man ein PEARL-Shellmodul geschrieben, welches nach
Stderr seine Daten schreibt, so kann man durch Vorschalten
dieses Befehles ohne weiteren Kodieraufwand jede beliebige Da-
tensenke des aktuellen Rechners nutzen.

ER /HO/NIL; MKDIR /HO/POOL;

In diesem Beispiel erspart man sich die lédstige Fehlermeldung,
falls das Directory ,,POOL schon vorhanden war. Man bekommt
allerdings auch nicht mit, wenn auf der Platte kein Platz mehr
ist o. &.

Man beachte, daf3 die Shell vor dem Hineinschreiben in die Da-
tenstation Stderr den File nicht 6ffnet, das macht der Handler
der Datenstation notfalls automatisch. Auch wird der File am
Ende nicht geschlossen. Auf diese Weise ist das akkumulierende
Sammeln von Fehlermeldungen in einem File moglich, man muf
allerdings dafiir Sorge tragen, dafl der File irgendwann geschlos-
sen wird oder hiufig genug SYNC-Befehle einstreuen.

Eine wichtige Bedeutung hat der ER-Befehl in der Shellsprache,
z. B. um in einem Skript Fehlermeldungen selbst anzunehmen. In
der grafischen Bedienoberfliche kann man mit ihm Meldungen
in eine ,, Alert-Box* lenken.

3.7 Beschreibung der Bedienbefehle 145

List Files

SYNTAX: FILES device--list

Es werden die Namen der auf den angegebenen Geréten zur Zeit aktiven Files
ausgegeben. Das sind Dateien, die sich im getffneten Zustand befinden, weil aus
ihnen gelesen wurde oder etwas hineingeschrieben wurde, ohne dafl es bisher
einen abschlieenden Close- (=RETURN-)Befehl gegeben hiitte. Auch nach einer
evtl. REWIND-Operation ist ein File im aktiven Zustand.

Bei Benutzung eines Working-Directories (siehe CD-Befehl) werden nur die dem
vereinbarten Working-Directory zugeordneten Files ausgegeben.

Beispiele: FILES /ED/ /F0O/ alle aktiven /ED/— und /F0/—Files
FILES /F1/ alle aktiven /F1/-Files
Fehler: Wird ein Gerét addressiert, das nicht in Files untergliedert ist,

so erfolgt die Meldung
befehlsstring: operation failed

und die weitere Bearbeitung der Befehlszeile unterbleibt. Wird
dagegen ein nicht existierendes Verzeichnis angew#hlt, so wird
dies nicht moniert, sondern angegeben, dafl darunter keine akti-
ven Files gefunden wurden.

146 3.7 Beschreibung der Bedienbefehle

File Index

SYNTAX: FIND [parameter] devpathl devpath2...

Mit dieser Anweisung 148t sich ein sogenannter File-Index erstellen, der fiir al-
le File-Verzeichnisse auf allen Geréten die stets gleiche Ausgabeform hat. Der
Befehl ist im Gegensatz zu DIR oder FILES darum besonders gut geeignet, um
File-Verzeichnisse von Skripten in Shellsprache normiert erstellen und abarbei-
ten zu konnen. Skripte wie CPX u. &. stiitzen sich auf FIND ab.

Man erhélt fiir jeden File die volle zur Verfiigung stehende Information, so
auch den ,Startblock“, mit dem sich z. B. beim RTOS—UH-eigenen Flop-
py/Festplattenfilehandler Files evtl. sogar noch nach Verlust des Directories
lesen lassen.

Jeder File wird mit seinem kompletten Zugriffspfad aufgelistet, jedoch ohne
den fiithrenden /dev/-Pfadanteil.

devpath.: Hierbei muf es sich um einen Bezeichner fiir ein Verzeichnis han-
deln. Der Befehl veranlait den adressierten E/A-Treiber, die un-
ten angegebene Information nach Stdout zu senden. Ohne Zu-
satzparameter werden nur die Files und Unterverzeichnisse der
mit devpath angesprochenen Ebene aufgelistet.

parameter: Es ist nur die Option
-A (oder -a) yalle®

vorgesehen. Damit wird erreicht, dafl nun auch alle Unterver-
zeichnisse sowie deren Unterverzeichnisse (etc.) aufgeschliisselt
werden. Vorsicht: Das kann bei Festplatten einen fiirchterlich
langen File-Index erzeugen!

Beispiele: FIND /HO/XD
FIND -A /ED/SIMULA

juasi ,genormte* Struktur einer Ausgabezeile sieht wie folgt aus:

’ path \ no. of bytes \ Uhrzeit \ Datum \ Start-block ‘

| SIMULA/test | 32627 [09:51 | 27-05-1993 [$00041A16 |
Fehler: Wenn das Gerét nicht in Verzeichnisse untergliederbar ist, so
wird mit ,,. .. operation failed“ die Bearbeitung der laufen-

den Befehlszeile abgebrochen.

3.7 Beschreibung der Bedienbefehle 147

Formatting of a Floppy or Harddisc FORM

SYNTAX: FORM S /Floppydevice/ forminfo (single density)
FORM D /Floppydevice/ forminfo (double density)
FORM D /Harddiscdev/ forminfo (Festplatten nur double!)

Auf dem angegebenen Floppylaufwerk wird neben der eher hardwaretechni-
schen Softsektorierung auch das Filesystem des Filemanagers installiert. Alle
bisher auf der Floppy/Festplatte gespeicherten Daten sind unwiderruflich ver-
loren. Die auf das FORM—-Kommando folgenden Eingaben miissen in Grofibuch-
staben eingegeben werden.

S Single-Density Disketten (kaum noch unterstiitzt)
D Double—Density Disketten

forminfo: Die Formatanweisung wird aus 3 Parametern gebildet. Im ersten
wird mit einer Buchstabe/Zahl-Kombination mitgeteilt, welche
Aufteilung in wieviel Sektoren und ob 5“/3,5% oder 8“ formatiert
werden soll. Der zweite Parameter gibt eine ein— oder doppelsei-
tige Formatierung an. Im dritten Paramter wird mit einer 1- bis
4-stelligen Zahl die Anzahl der Tracks mitgeteilt.

Der 1. Parameter:

xy | seclen | sec/track | blk/track | typ. Medium

A5 256 16 1x4k 3.5 und 5“ DD-Disk. RTOS
B5 1024 5 1x5k 3.5 und 5“ DD-Disk. RTOS
Ch5 512 9 1x4.5k 3.5¢ und 5 DD RTOS+MSDOS
A8 256 26 1x6.5k 8“ und 5“ HD-Disk. RTOS

B8 1024 8 1x8k 8“ und 5“ HD-Disk. RTOS

C8 512 15 1x7.5k 8“ und 5“ HD RTOS+MSDOS
AH 256 32 2x4k 3.5“ HD-Disk. RTOS

BH | 1024 10 2x5k 3.5“ HD-Disk. RTOS

CH 512 18 2x4.5k 3.5 HD-Disk. RTOS+MSDOS
BJ 1024 20 4x5k 3.5” ED-Disk. RTOS

CJ 512 36 4x4.5k 3.5” ED-Disk. RTOS

W5 512 Blocksize 4k SCSI Harddisc

W6 512 Blocksize 16k SCSI Harddisk

X5 Platte mit 1024-er Sektoren

148

3.7 Beschreibung der Bedienbefehle

Der 2. Parameter:

SS
DS
Hz
Bxxxxx

single sided Disketten

double sided Disketten

mit z Képfen der Winchester

SCSI-Platte mit xxxxx (dezimal) Blocken, die eine
Grofle haben, wie sie durch den ersten Parameter
des FORM-Befehles festgelegt ist. (z. B. 4 kByte)

Der 3. Parameter: (entfillt bei ,B* als zweitem Parameter!)

1- bis 4-stellige dezimale Anzahl Tracks.

Nach dem Formatieren wird jeder Block gelesen und im Feh-

lerfall fiir das Filesystem ausgesondert. Bei mehr als 9 un-
brauchbaren Blocken wird die Operation mit ,wrong i/o“ oder
,ABORTED_COMMAND_ERROR“ abgebrochen. Zur Zeit werden die
Blocke aber nicht auf Ubereinanderfaltung gepriift (z. B. wenn
Drive bei DS nur eine Seite schreiben kann).

>> ...
>> ...
>> ...
>> ...

! —
Fehlermeldungen:
Beispiele:

:Fx
:Fx
:Fx
:Fx

DRIVE NOT READY
DEVICE_WRITE_PROTECTED
TRACK_000_NOT FOUND
ID_FIELD_NOT_FOUND (Beim Verify)

FORM D /F0/B5SS80 single sided RTOS—UH-Disk
FORM D /HO/W5B21800 SCSI-Festplatte, ca. 88 Mbyte

Nach dem Absetzen des Kommandos MSFILES /F0/:
FORM D /F0/C5DS80 double sided MS-DOS-Disk

3.7 Beschreibung der Bedienbefehle 149

Inspect FREE Storage on Disc FREE

SYNTAX: FREE dewpath

Beschreibung: Es wird der noch vorhandene freie Platz auf dem angegebenen
Gerét — eine Floppy oder Festplatte — ausgegeben.

devpath: Nur der Geréteteil wird ausgewertet. Es muf3 sich um ein Gerét
mit der Eigenschaft ,formatierbar® (siehe Seite 203) handeln,
sonst beendet die Shell die laufende Zeile mit der Fehlermel-
dung ,,... operation failed“. Wurde ein Working-Directory
vereinbart (siehe Befehl CD), wirkt der Befehl auf das im Directoy
vereinbarte Device.

Beispiele: FREE /F1/
Es wurde das Working-Directory /F0/ vereinbart. Der Befehl
FREE;

wirkt dann auf das Floppydevice /FO/.

3.7 Beschreibung der Bedienbefehle

SYNTAX:

Beschreibung:

Beachte:

Beispiele:

Hinweis:

Go and execute

GO AD hezadr

GO. sonprocname [PRIO integ3] [SZ sizehexnum] AD
hezadr

GO.sonprocname AD hezadr

Es wird vom System ein Sohnprozefl gebildet, der entweder
einen Systemnamen GO/zz oder den angegebenen Tasknamen
(2. Form) erhilt. Die Task wird mit dem minimal moglichen
Workspace ausgestattet und erhélt die angegebene Startadresse.
Anschliefend wird sie mit der angegebenen Prioritdt bzw. der
Defaultprioritidt 50 gestartet.

Dies ist eine Hilfskonstruktion fiir maschinennahe Programmie-
rung. So kann eine kurze Codesequenz schon mal ohne jeden
Taskheader zur Ausfiihrung gebracht werden. Auch kénnen im
ROM liegende User-Tasks ggf. iiber diesen Weg exekutiert wer-
den. Privilegierte Befehle fithren zur Fehlermeldung ,>> zyz
not privileged“.

GO.TEST AD 2000
GO AD 5000 SZ 5000
GO.CHECK PRIO 2 AD 8EO000

Es lassen sich noch SI und CO-Parameter angeben, die jedoch nur
dann Bedeutung haben, wenn der Anwender sich die Informa-
tionen aus dem (nur Insidern bekannten) Header des generierten
Sohnprozesses selbst herausholt.

Durch Angabe eines SZ-Parameters kann die Grofle des fiir den
Sohnprozefl angeforderten Task—Workspace vorbestimmt werden
(siehe Beispiel).

Wenn angegeben, darf der SZ-Parameter die zum Uberleben des
Systemes notwendige Mindestgrofie keinesfalls unterschreiten, da
der Kontext in den Taskworkspace passen muf. Ein fiir alle bis-
herigen Hardwareplattformen ausreichender Wert ist SZ=100.

3.7 Beschreibung der Bedienbefehle 151

Help

SYNTAX:

HELP/?

HELP Form a)
HELP -D Form b)
HELP -E Form c)
XHELP Form d)

? identisch zu Form a)
? -D identisch zu Form b)
? -E identisch zu Form c)

Mit diesem Bedienbefehl kann eine Kurzinformation iiber das aktuelle System
angefordert werden:

a)

Ohne Parameter: Es wird eine Liste der in der Shell vorhande-
nen speicherresidenten Bedienbefehle ausgegeben. Die Liste ist in
der Reihenfolge geordnet, in der die Befehle vom Scanner erfaft
werden. Auch speicherresident hinzugeladene eigentlich transiente
Shellerweiterungen werden aufgelistet, sofern sie aktiv ansprech-
bar sind. Die Suche im RAM wird allerdings erst nach der Suche
im Systembereich gestartet.

Mit Parameter -D oder -d: Es werden die Datenstationen des aktu-
ellen Systemes aufgelistet. Dabei wird auch ihre LDN und die Lauf-
werksnummer DRIVE ausgegeben. Vorsicht: Es wird hexadezimale
Kodierung verwendet, wiahrend der Datenstationscode /LD/x.y/
bei x und y Dezimalzahlen erwartet.

Mit Parameter -E oder -e: Es werden die im System vorhandenen
fest eingebauten globalen Symbole samt der zugehorigen Adresse
ausgegeben. An Hand des Vorspannes ,,~* lassen sich PEARL90-
Symbole erkennen. Leider sieht man nicht, um welche Art Objekt
es sich dabei genau handelt. Symbole, die mit dem Zeichen # be-
ginnen, dienen der Selbstkonfiguration des Betriebssystems und
sind fiir den Nutzer nicht zugénglich.

Der Aufruf iiber XHELP entspricht der Form a) — jedoch wird fiir
jeden Bedienbefehl eine komplette Zeile ausgegeben. Die Befehls-
namen werden dadurch ungekiirzt ausgegeben. Auflerdem kann
evtl. vorhandener Beschreibungstext (siehe Seite 68) ausgegeben
werden. Wird XHELP mit Zusatzparametern aufgerufen, so verhélt
er sich wie der normale HELP-Befehl.

3.7 Beschreibung der Bedienbefehle

SYNTAX:

Beschreibung:

Beispiel:

Input—device specification

I pathlist

Als Standard-Input (Stdin) der Shell, die diesen Befehl ausfiihrt,
wird fortan die durch pathlist bezeichnete Datenquelle verwen-
det. Die Wirksamkeit beschrénkt sich auf die Kommandos im
Rest der Kommandozeile. Der Befehl ist darum im Gegensatz
zum ,,PI“-Befehl nicht riskant: die néchste Befehlszeile liest die
Shell weiterhin vom bisherigen Gerét.

Hat man ein PEARL-Shellmodul geschrieben, welches von Stdin
seine Daten liest, so kann man durch Vorschalten dieses Befeh-
les ohne weiteren Kodieraufwand jede beliebige Datenquelle des
aktuellen Rechners nutzen.

I /HO/SOURCE/TEXT1.TXT; CONVERT;

CONVERT konnte eine PEARL-kodierte Shell sein, der man im obi-
gen Beispiel einen Inputfile .../TEXT1.TXT anbietet. Eine wei-
tere wichtige Bedeutung hat der ,, I“-Befehl in der Shellsprache,
z. B. beim READ.

3.7 Beschreibung der Bedienbefehle 153

List Task States

SYNTAX: L [-s[o]l-u[ol] | [-0]

Beschreibung: Fiir alle im System existierende Tasks werden die Statusinfor-
mationen aufgelistet. Durch die Angabe der Parameter kann eine
Selektierung der Ausgabe erfolgen.

S Es werden nur Systemtasks — alle, die mit einem # begin-
nen — aufgelistet.

U Es werden nur die Usertasks, die sich im System befinden,
aufgelistet.

O Es werden nur die Tasks aufgelistet, die dem jeweiligen
Nutzer zur Zeit ,,gehoren*.

Beispiel: L Es werden alle Tasks aufgelistet.
L -U0 Es werden die eigenen Usertasks gelistet.
Die Statusinformation hat folgenden Aufbau:
Adr Prio/User (resident) Status TWS=xzzzr PC=zzzz Name

Prio: Gibt die Prioritdt der Task an. Prioritdten von $1 — $FFF sind
Anwenderprioritéiten. Negative Prioritéiten liegen iiber den An-
wenderprioritdten und sind dem Betriebssystem vorbehalten.

User: Gibt an, welchem User die Task zugeordnet ist. User Nummern
sind fortlaufend von 1 bis n, entsprechend der Zahl der seriellen
I/O-Kanile vergeben.

Resident: Erscheint bei Tasks, deren Taskworkspace auch nach dem Ter-
minieren der Task erhalten bleibt. Bei zyklisch aktivierten Tasks
mit kurzen Einplanungsintervallen kann das ,,Resident,, Attribut
zur Verkiirzung der Verwaltungszeiten benutzt werden.

TWS= Hier wird die Adresse des Taskworkspace ausgegeben. Ist sie
00000000, so besitzt die Task noch keinen Workspace (z. B. hat
sie noch keine CPU—Zeit bekommen, oder es war noch zu keinem
Zeitpunkt geniigend Platz).

PC= Hier wird der letzte vom Dispatcher auf Task—Grundebene giilti-
ge und festgestellte Wert des Programmzéhlers ausgegeben.

Name: Gibt den Namen der Task an. Tasknamen, die mit # beginnen,
sind Systemtasks und lassen sich nicht mit UNLOAD entfernen.

154

3.7 Beschreibung der Bedienbefehle

Status:

Hier werden die folgenden Abkiirzungen eingetragen:

CWs?

DORM
1/07
PWS?

RUN
SCHD

SEMA

SUSP

°e?

Task wartet auf Zuteilung eines Communication—Elemen-
tes, weil sie infolge reger Ausgabetéitigkeit auf ein langsa-
meres Gerét ihr Kontingent ausgeschopft hat.

Die Task ruht zur Zeit, keine Aktivitét.

Task wartet auf Beendigung einer Ein—/Ausgabe.

die Task wartet darauf, dafl irgendwo ein passendes Spei-
cherstiick frei wird. In der Regel wird auf Procedur-
workspace gewartet, es ist aber auch moglich, dafl auf ein
»CE®“ gewartet wird, wobei das zustehende Kontigent (s.
CWS? oben) noch nicht ausgeschopft ist.

Die Task ist lauffahig oder lauft.

Task ist fiir eine Aktivierung vorgeplant, die entsprechende
Bedingung (Zeit,Ereignis) ist aber noch nicht eingetreten.
Task wurde durch vergebliches REQUEST auf eine Sema-
phorvariable oder vergebliches RESERVE bzw. ENTER auf ei-
ne Boltvariable blockiert. Es ist auch moéglich, dafl die Task
mit Hilfe des WFEX-Traps auf die Beendigung einer anderen
Task wartet. Shellprozesse im WAIT-Mode warten auf diese
Weise auf Sohnprozesse.

Task wurde suspendiert und wartet auf die CONTINUE-
Operation. Bei System I/O-Tasks wird auf das Ende des
laufenden Records gewartet.

Die Task ist durch mehrere Bedingungen gleichzeitig
blockiert, z. B. weil sie durch eine externe SUSPEND-—
Operation zusitzlich verriegelt wurde. Dieser Zustand wird
vom Systemkern auch eingestellt, wenn diese im Supervi-
sormode laufen und dabei einen Fehler verursacht haben.

Tabelle 3.6: Kurznamen der Taskzustidnde

3.7 Beschreibung der Bedienbefehle 155

install Lineedit (optional) LE/LINEEDIT

SYNTAX:

Beschreibung:

LINEEDIT [options] [device]

Die Befehle LE bzw. LINEEDIT installieren, konfigurieren bzw.
deinstallieren den Zeileneditor LINEEDIT fiir das angegebene
Eingabe-Gerét. Der LINEEDIT verwaltet die iiber ein dialogféhi-
ges Datenterminal erfolgten Eingaben.

Der LINEEDIT bietet u.a. die Moglichkeit, iiber die Cursor-Tasten
alte Zeilen zuriickzuholen, ggf. zu modifizieren und dann erneut
der Shell zur Bearbeitung zu iibergeben.

Um die gewiinschte Eingabezeile schnell zu finden, kann man
auch die ersten Zeichen der gewiinschten Zeile eingeben und da-
nach die Cursortasten betétigen. Der LINEEDIT sucht dann nur
nach den Zeilen, die mit den angegebenen Zeichen beginnen. Fin-
det er keine solche Zeile, so zeigt er weiterhin alle Zeilen an.

Wird eine Eingabe abgeschlossen, so wird sie im sogenann-
ten History-Buffer abgespeichert. Ist der Puffer des LINEEDIT
vollstandig gefiillt, so werden bei neuen Eingaben so viele alte
Zeilen geloscht, bis geniigend Platz vorhanden ist. Alte Zeilen
werden auch bei mehrfacher Auswahl nur einmal im Puffer ab-
gelegt.

Der History-Buffer des LINEEDIT l48t sich auch in eine Textda-
tei abspeichern und zu einem spéteren Zeitpunkt wieder einlesen.
Man kann also z.B. nach dem Einschalten des Rechners direkt
die Befehle noch einmal benutzen, die man tags zuvor eingetippt
hat. Natiirlich kann man auch von Hand eine Textdatei mit allen
fiir ein spezielles Projekt benotigten Befehlen mit einem Editor
erstellen. Wann immer man an diesem Projekt arbeiten méchte,
ladt man die Datei in den LINEEDIT und kann die Befehle kom-
fortabel aufrufen.

Der LINEEDIT bietet noch einige weitere zum Editor UH-
WORD kompatible Tastaturkommandos zum Editieren einer
Zeile.

156

3.7 Beschreibung der Bedienbefehle

Im Umgang mit élteren Eingaben stehen folgende Kommandos zur Verfiigung;:

Taste Funktion Erklarung
1 one line up eine Zeile zuriick (éltere Zeilen), eventuell
suchen
! one line down eine Zeile vorwérts (neuere Zeilen), evtl. su-

Y delete line
to first entry
to last entry

"XR;
"XC;

"0 push line to Buf.

chen

Zeile aus History-Buffer 16schen

zur dltesten Zeile im History-Buffer springen
ans Ende des History-Buffer springen, Ein-

gabezeile 16schen

Vom Nutzer eingegebene Zeile in den Histo-

ry-Buffer schreiben (ist sinnvoll, wenn man
nach der Eingabe eines langen Befehl merkt,
das doch zunéchst noch ein anderer Befehl
auszufiihren ist)

Zur Bearbeitung einer Zeile kennt der LINEEDIT zusétzlich folgende Komman-

dos:
Taste Funktion Erkldarung
Cr exit Eingabe beenden
Eot exit Eingabe beenden ¢
Esc Cr truncate and exit Eingabezeile hinter dem Cursor 16sch-
en und und Zeile an Task schicken, die
die Eingabe erwartet
(backspace) backspace Zeichen links vom Cursor 16schen
— cursor left Cursor ein Zeichen nach links
— cursor right Cursor ein Zeichen nach rechts
"N clear line Eingabezeile 16schen
DEL delete char Zeichen unter dem Cursor 16schen
INS insert char Zeichen einfiigen
“XD cursor to linebegin Cursor zum Zeilenanfang
"XS cursor to lineend Cursor zum Zeilenende
XY truncate line Eingabezeile hinter dem Cursor 16sch-
en
T clear end of word Wort rechts vom Cursor 16schen
“F cursor word right Cursor ein Wort nach rechts
"A cursor word left Cursor ein Wort nach links

“beenden, falls Autostop fiir EOT aktiv

3.7 Beschreibung der Bedienbefehle 15

7

Parameter:

Optionen:

Sofern device angegeben ist, wird der LINEEDIT fiir das angege-
bene Gerit installiert, konfiguriert oder deinstalliert. Ist dieser
Parameter nicht angegeben, so wird das Stdin-Device der dem
Nutzer zugeordneten Shell verwendet.

Bei einigen Optionen kann direkt hinter dem Optionsbuchstaben
optional eine 1 bzw. 0 folgen. Die 1 bedeutet Aktivierung und die
0 Deaktivierung der Option. Diese Optionen sind standardméfig

inaktiv.

-7

-X

-BLl0[1]

-I[lol1]
-0Clol1]

-PLl0[1]

-S=xxx

-D=xxx

Anzeige aller Parameter und Optionen (Online-
Hilfe).

LINEEDIT deinstallieren.

Diese Option legt fest, ob das Zeichen Backspace
($08) als Backspace oder als Cursor links zu in-
terpretieren ist (-B — als Cursor links interpre-
tieren).

Einfiige-Mode aktivieren.
Klingel bei Fehleingaben deaktivieren.

Normalerweise bearbeitet der LINEEDIT alle
Eingabe-CEs. Bei aktiver P-Option werden je-
doch die CEs, deren Pfad nicht mit dem Instal-
lationspfad des LINEEDIT iibereinstimmen, di-
rekt an die I/O-Task geschickt.

Diese Option legt die Grofle des History-Buffers
fest. Sie darf nur bei der Installation des Li-
NEEDIT angegeben werden. Fehlt sie, so hat
der History-Buffer eine Grofle von 1KByte. Als
Wert sind nur Potenzen von zwei zugelassen. Die
Eingabe erfolgt als Hexadezimalzahl.

Es ist i.a. nicht sinnvoll, sehr kurze Befehle (z.B.
’S” oder 'LU’) abzuspeichern. Mit dieser Option
1483t sich eine minimale Zeilenldnge angeben, ab
der der LINEEDIT die Zeile in seinen Puffer auf-
nimmt. Kiirzere Zeilen werden nicht im History-
Buffer gespeichert. Standardméfig speichert der
LINEEDIT alle Zeilen.

3.7 Beschreibung der Bedienbefehle

Sichtgeriit:

-F=xxx Diese Option definiert eine Default-Datei zum Spei-

chern und Lesen des History-Buffers.
-R=xxx Mithilfe dieser Option 148t sich eine Textdatei in den
LINEEDIT einlesen. Soll aus der mittels F-Option de-
finierten Default-Datei gelesen werden, so ist -R=&
anzugeben.
-W=xxx Mithilfe dieser Option 148t sich der History-Buffer
in eine Textdatei schreiben. Existiert die Datei be-
reits, so wird sie iiberschrieben. Soll in die mittels
F-Option definierte Datei geschrieben werden, so ist
-W=& anzugeben.

Eine spezielle Konfiguration des LINEEDIT fiir das verwendete
Terminal oder den Windowmanager ist nicht erforderlich. Der
LINEEDIT kennt die Steuerzeichen der meisten Terminals (Tele-
video, VT52,VT100, usw.). Zur Ansteuerung benutzt er nur die
druckbaren Zeichen und das allgemein verfiighbare Steuerzeichen
Backspace ($08). Mehrzeilige Eingaben sind nur méglich, wenn
das Sichtgerédt einen Autowraparound durchfiihrt.

Es folgt eine vollstindige Aufstellung aller dem LINEEDIT be-
kannten Steuersequenzen:

exit CR; $04(Autostop bei EOT aktiv);
truncate and exit Esc Cg;
backspace $07; $08(Option B nicht aktiv);

cursor left $08(Option B aktiv); Esc D; Esc [D;

cursor right $0C; Esc C; Esc [C;

delete char $7F; Esc $08; Esc P; Esc W; Esc

Esc D; Esc Esc [D;

insert char

Esc $0C; Esc Q; Esc Esc C; Esc
Esc [C;

cursor to linebegin

"XD; "QD;

cursor to lineend

“XS; "QS;

clear line

"N; Esc $0A; Esc Esc B; Esc Esc
[B;

truncate line

“XY; "QY;

3.7 Beschreibung der Bedienbefehle 159

clear end of word “T;

cursor word right “F;

cursor word left "A;

toggle B-Option "B;

toggle I-Option B

one line up 0B; Esc A; Esc [A;
one line down 0A; Esc B; Esc [B; 16;
delete line “Y Esc 0B; Esc Esc A; Esc Esc [A;
to first entry "XR; "QR;

to last entry "XC; "QG;

push line to Buf. "0;

Einbindung in RTOS—UH: Der Bedienbefehl LE bzw. LINEEDIT erzeugt eine

Beispiele:

Task, die sich vor die Betreuungstask der Eingabeschnittstelle
setzt. Diese Filtertask empfangt von RTOS—UH alle CEs fiir
die jeweilige Schnittstelle. Alle CEs, die keine Eingabe erwarten,
schickt sie direkt weiter an die I/O-Task. Nur Eingabe-CEs ohne
bindren Transfer mit einer Datenlinge (RECLEN) grofer eins,
eingeschaltetem Echo und aktivem Autostop bei CR bearbeitet
die Filtertask weiter.

LE -D=4 -IB -F=/HO/AUTO/MYCOMAND -R=&

Fiir die eigene Eingabeschnittstelle wird der Zeileneditor LINEE-
DIT eingerichtet. Alle Eingaben, die kiirzer als vier Zeichen sind,
werden nicht abgespeichert. Der LINEEDIT wird im Einfiige-
Modus betrieben, das Zeichen $08 wird als Cursor links inter-
pretiert. Die Datei /HO/AUTO/MYCOMAND ist standardméflig zum
Speichern und Lesen des History-Buffers zu erwenden. Abschlie-
Bend werden die in der Datei /HO/AUTO/MYCOMAND (-R=&) gespei-
cherten Befehle eingelesen. Dies ist ein typischer Aufruf, wie er
in der Startup-Datei eines jeden Benutzers stehen koénnte.

LE -W=& -X

So konnte die letzte Aktivitdt vor dem Ausschalten des Rechners
aussehen: Der Inhalt des History-Buffers wird in die voreinge-
stellte Datei gesichert und der LINEEDIT deinstalliert.

160 3.7 Beschreibung der Bedienbefehle
’L IBSE T‘ Library einrichten
SYNTAX: LIBSET [[+][filel+file2+...] | [-R [filez]]]

Beschreibung: Die typische Anweisung sieht wie folgt aus:

LIBSET +filel+file2+ ...

Sie legt eine Library mit den Beziigen zu den Dateien filel, file2
etc. an, in denen globale Symbole bereits geladener S-Records
abgelegt sind, wenn beim Laden derselben die Files filef und file2
mit Hilfe der ,,Code-Output“-Option des Laders erzeugt wurden,
d.h. dem Lader als CO-Parameter iibergeben wurden.

Zum Beispiel:

LOAD SREC1 CO filel

LOAD SREC2 > file2

CO und > sind wie iiblich gleichwertig. Der Vorteil dieser Library
ist, dafl beim Laden eines S-Records, in dem Querbeziige durch
globale Symbole zu den S-Records SREC1, SREC2 ... bestehen,
nicht immer wieder alle S-Records in der Ladeliste anzugeben
sind. Stellt der Lader beim Laden eines S-Records offene Quer-
beziige fest, wird die Library nach diesen durchsucht. Bei der
Programmentwicklung ist also immer nur noch das sich gerade
in Bearbeitung befindliche Modul zu laden und zu entladen.

Die Anweisung

LIBSET -Rfilex

entfernt den Bezug auf die Datei filex aus der Library. Wird filex
nicht angegeben, werden alle Beziige der Library geloscht.

Entladen Sie kein Modul, wenn noch der Eintrag der in diesem
Modul vorhandenen globalen Symbole in der Library besteht!
Dieser ist mit der Option ,,-R“ zuvor zu entfernen. Werden die

3.7 Beschreibung der Bedienbefehle 161

Beispiel:

Dateien mit den Symboladressen geloscht, ohne den Bezug in
der Library zu entfernen, meldet das System beim Laden mit
offenen Beziigen das Nichtvorhandensein dieser Datei, und der
Ladevorgang wird abgebrochen.

Die Anweisung

LIBSET

ohne Parameter listet alle Dateien auf, die in der Library enthal-
ten sind.

LIBSET +ACO+BCO Fiigt ACO und BCO der Libery hinzu.
LIBSET ACO+BCO Setzt die Libery auf ACO und BCO

162

3.7 Beschreibung der Bedienbefehle

SYNTAX:

Beschreibung;:

Beispiel:

Besonderheit:

Link Filenames

LINK filename > newfilename

Mit dieser Anweisung wird ein alternativer neuer Filename (ne-
wfilename) in das Fileverzeichnis eingetragen, in dem sich das
existierende File filename bereits befindet.

Mit der Anweisung;:
LINK /HO/ABCD/GROSS > gross;

erreicht man, dafl der Inhalt des Files /JHO/ABCD/GROSS zukiinf-
tig auch iiber den Zugriffspfad /HO/ABCD/gross erreichbar ist.
Dabei werden keine Inhalte kopiert, sondern es wird in das Direc-
tory (Hier:/HO/ABCD/) nur ein weiterer Zeiger unter dem neuen
Namen eingerichtet. Beim FIND-Befehl erkennt man dies daran,
daf , gelinkte* Files denselben Startblock besitzen.

Weil auch der dazugelinkte Filename einen vollstdndigen Verwal-
tungsblock erhilt, kann auf diese Weise gleichzeitiges multiples
Lesen ein- und derselben Datei durch mehrere Tasks ermoglicht
werden. (Natiirlich darf nicht gleichzeitig irgendein Schreiber den
File benutzen!)

Gelinkte Files unterliegen gewissen Restriktionen, die vom je-
weiligen File-Handler abhidngen. Im MSDOS-kompatiblen Disc-
Filehandler ist die Anwendung von LINK nicht mdoglich. Allge-
mein gilt, dal man vor der Entfernung des Files mit Hilfe des
RM—Befehles zunéchst die dazugelinkten alternativen Zugriffsna-
men beseitigen muf}. Links bei RTOS-formatierten Disketten und
Festplatten sind an der Dateiléinge 0 erkennbar.

3.7 Beschreibung der Bedienbefehle 163

Link S-Records (optionaler Bedienbefehl) LNK

SYNTAX:

Beschreibung:

LNK
LNK. sonprocname [PRIO <nteger3] [linkspeclist]
LNK [integer3] [linkspeclist]

Es wird ein Prozel zum Linken mehrerer S-Records zu einem
einzigen Ladefile generiert. Der Name kann entweder durch son-
procname vorgegeben werden, oder er wird mit LNK/zz vom Sys-
tem gewéhlt. In beiden Fillen kann die Prioritdt dieser Linker—
Task durch eine max. 3-stellige Ganzzahl vorgegeben werden.
Bei nicht angegebener Prioritét wird ein Wert von 20 eingesetzt.

Fehlt der Zusatz linkspeclist, so wird ein Linkvorgang mit den
Defaultwerten des Aufrufers fiir SI, CO und LO eingeleitet.

linkspeclist ist eine Liste von Geréte/File-Namen und eine evtl.
Arbeitsspeichergroflenangabe. Die Elemente dieser Liste werden
durch Leerzeichen oder Kommata getrennt.

Programmgrofle: SZ heznum6 oder SZ=heznumé

Mit hexnum6 wird die Grofie des verfiigbaren Arbeitsspeichers
vorgegeben. Die neueren Linkerversionen kennen 2 Betriebsar-
ten: Der Small-Mode ist der herkémmliche Linkermode. Dabei
ist der Speicherraum fiir die globalen Symbole merkbar begrenzt.
Oberhalb von SZ=1D000 schaltet der Linker in den Large-Mode,
bei dem die globalen Symbole durch ein Hash-Verfahren im nun
groferen Speicher effizienter abgelegt werden. Der maximal aus-
nutzbare Wert ist SZ=FE0000 und ermoglicht praktisch unbe-
grenzt viele globale Symbole.

Gerite/Filenamen: Es werden die Parameter SI (S-Rekord-Input), CO (Code—

Linkerbefehle:

Output) und LO (List—-Output) akzeptiert.

Die im folgenden erlduterten Linkeranweisungen kénnen direkt
in die zu linkenden S-Records eingefiigt werden. Komfortabler
und iibersichtlicher ist aber die Verwendung von Steuerdateien,
die dem Linker als Source-Input anzugeben sind und in denen
die erforderlichen Anweisungen aufgefiihrt sind.

#WD Pathlist; Vereinbarung eines Working-Directory fiir folgende INCLUDE-

Anweisungen. Bei folgenden INCLUDE-Anweisungen wird das

164

3.7 Beschreibung der Bedienbefehle

»$“—Zeichen durch den unter Pathlist angegebenen String er-
setzt.

#WDIR Pathlist; Identisch mit #WD.

#INCLUDE filespecifier; Bei der Bearbeitung eines INCLUDE setzt der Linker sei-

ne Arbeit mit der Bearbeitung des angegebenen Files fort und
kehrt nach der Bearbeitung dieses Files an die Stelle hinter der
Anweisung zuriick. Der filespecifier muf3 auf dem aktuellen Sys-
tem ein giiltiges File selektieren. Wird nur ein Filename angege-
ben, wird das aktuelle Working-Directory des Users nach diesem
File durchsucht.

Innerhalb der Include-Datei gilt zunéichst das beim Aufruf giilti-
ge ,WD*“ es kann aber dort auch ein lokales ,WD* verein-
bart werden, das dann nur in diesem File und eventuell tieferen
Include-Leveln gilt. Nach der Riickkehr aus einem Includefile ist
das beim Aufruf giiltige ,, WD* wieder gesetzt.

#INCLUDE $file; Das ,,$“-Zeichen wird durch den unter ,WD* angegebenen

String ersetzt. Sonst wie oben.

MODNAME Name; Bei Verwendung dieser Anweisung erhélt das Gesamtmodul

CONDLNK ;

einen vorgeschalteten Modulkopf mit dem angegebenen Namen.
Dieser darf maximal 6 Zeichen lang sein. Fehlt die MODNAME-
Anweisung, erhilt das Gesamtmodul den Namen des ersten Mo-
duls, auf das der Linker trifft. Soll das Gesamtmodul einen ande-
ren Namen erhalten, der langer als 6 Zeichen lang ist, kann ein
entsprechendes Modul mit dem PEARL-Compiler erzeugt und
dem Linker als erstes File angeboten werden.

Sinnvoll ist die MODNAME-Anweisung insbesondere dann, wenn
bei der ROM-Code-Erzeugung das Gesamtmodul erneut in den
Speicher geladen werden soll, um z. B. den DUMP-Befehl zu ver-
wenden. Die Verschiebung der Adresse durch den vorgeschalte-
ten Modulkopf wird dann vom Linker automatisch berticksichtigt
(siehe vom Linker ausgegebene Speicherliste).

,Conditional Linkmode On“ fiir Library Linking. ,,Im Conditio-
nal Linkmode* wird ein eingegebenes S-Record-File nur dann ins
Ausgabefile gelinkt, wenn in diesem File offene globale Referen-
zen vorher bearbeiteter Files definiert sind (Bibliotheksfunkti-
on), ansonsten wird das Eingabefile ignoriert.

UNCONDLNK; ,,Conditional Linkmode Off¢.

ROMCODE;

Einschalten der ROM-Code-Erzeugung. Alle einzugebenden

3.7 Beschreibung der Bedienbefehle 165

ROMCODE+;

CODE= ...
VAR= ...

HIDE;

UNHIDE;

(PEARL-) Files miissen mit eingeschalteter ,,CODE=* und ,, VAR=*
Option des Compilers iibersetzt sein. Der Linker erzeugt als Aus-
gabe einen S—Recordfile, der nur hexadezimale Werte enthalt,
zwar ladbar aber nicht ausfithrbar ist, weil er nur auf den an-
gegebenen ROM- und RAM-Adressen im Zielrechner lauffahig
ist.

Einschalten der ROM-Code-Erzeugung wie oben. An die Ausga-
bedatei wird nun jedoch ein zusétzlicher — mit SO und S9 einge-
rahmter Block — angehéngt, der alle nicht versteckten globalen
Symbole exportiert. Damit kann man nachtréiglich an E-Prom-
residente Programme noch weitere Module anlinken. Siehe dazu
auch das HIDE- und UNHIDE-Kommando.

Durch diese Anweisungen lassen sich die Codeadresse und die Va-
riablenadresse bei der ROM-Code-Erzeugung bliebig vorgeben.
Damit kénnen die bei der PEARL-Compilation gemachten Ver-
einbarungen vollig legal {ibersteuert werden. Ist das Schliissel-
wort ROMCODE nicht vorhanden, werden die Eingabefiles vor-
gelinkt, d. h. alle lokalen Label innerhalb der S-Records entfernt
und auf die in der Linker-Speicherliste angegebenen Adressen
verschoben, um dann z. B. erneut gelinkt oder mittels des PROM-
Befehls bearbeitet zu werden.

Durch diese Anweisungen lassen sich die in den folgenden ein-
zulesenden S-Rekords definierten globalen Symbole verstecken
bzw. wieder aufdecken. Versteckte globale Symbole werden im
erzeugten S-Rekord normal benutzt aber nicht global exportiert.
Sie sind in der ggf. ausgegebenen Liste durch ein der hexadezi-
malen Adresse nachgestelltes i (fiir internal) zu erkennen. Stan-
dardméBig befindet sich der Linker im UNHIDE-Mode.

DEVICE Name Hexz/; Durch dieses Kommando wird eine DATION mit der Be-

zeichnung Name definiert. Damit koénnen die vom Compiler
als Extra-Devices adressierten Geriite des Targetsystemes ein-
gebunden werden. Die vierstellige Hexadezimalzahl Hex4 ist die
Device— und Drive-Nummer (z. B. 0302 fiir /HO).

Bei der ,WD*- und der INCLUDE-Anweisung kann das vorstehende #-Zeichen
auch weggelassen werden.

Beispiele:

Die Steuerdatei (z. B. /HO/LK/LINKES):

166

3.7 Beschreibung der Bedienbefehle

! Mit dem Ausrufezeichen beginnen Kommentare.
WD /HO/REGELUNG/

MODNAME REGLER

INCLUDE $MESSENSR

INCLUDE $PIDSR

INCLUDE $GRAFIKSR

HIDE ! Grafik-package verstecken

INCLUDE /HO/GRAFIK/GRAFDRV

UNHIDE ! Globale Symbole der folgenden Dateie
INCLUDE AUSGABSR

INCLUDE ../TESTSR

n exportieren.

Durch die Anweisung
LNK SI /HO/LK/LINKES CO /HO/PIDREGSR;

erzeugt der Linker ein Modul mit dem Namen ,REGLER“. Abge-
legt wird es in der Datei ,,/HO/PIDREGSR“. Die effektiven Zugriffs-
pfade fiir die sechs gelinkten Teilmodule ergeben sich in diesem
Fall wie folgt:

/HO/REGELUNG/MESSENSR /HO/REGELUNG/PIDSR
/HO/REGELUNG/GRAFIKSR /HO/GRAFIK/GRAFDRV
/HO/LK/AUSGABSR /HO/TESTSR

3.7 Beschreibung der Bedienbefehle 167

Fatale Fehler, die zum Abbruch fithren:

NO SRECORD FILE
das bearbeitete File ist kein S-Record oder Steuerfile.

CHECKSUM ERROR (FATAL)
die Priifsumme eines S-Records ist falsch.

WRONG LINKER INPUT
es liegt ein gravierender Fehler in dem S-Record vor.

MISSING /S0/S9/DATAREC
die Struktur eines S-Records ist falsch.

ODD NO (FATAL)
globales Symbol mit ungerader Adresse oder Kopf eines Files
steht auf ungerader Adresse.

TABLE ERROR (FATAL)
Fehler bei Organisation der Listen des Linkers (sollte bei S-
Records fehlerfrei iibersetzter Sources nicht auftreten).

FILE READ ERROR
Fehler beim Zugriff auf ein File.

HIGHNIBBLE INCONST ERROR
Overflow iiber einen 3 Byte Wert mit Vorzeichen.

LINKER PASS 1 ERROR TERMINATED
leichter Fehler in Pass 1 (Pass 2 wird nicht gestartet).

NO SKEW IN FILE NO: O
Linker wurde erst nach vollsténdiger Abarbeitung von Files in
den romable Mode geschaltet.

SYNTAX ERROR (CONTINUE)
Fehler bei Bearbeitung einer Linkeranweisung, fithrt zum Ab-
bruch nach Pass 1.

Uberbriickbare Fehler sowie Warnungen des Linkers:

WARNING: RTOS - SHELLEXTENSIONS LOST

ein Modul wird iiberzeigert, das RTOS-Shellextensions enthélt,
die spéter vom System (nur beim Laden in das RAM!) nicht
mehr gefunden werden konnen. Tritt auf, wenn fiir ein Shellm-
odul MODNAME verwendet wird oder ein Shellmodul nicht das
erste File der Includeliste ist.

168

3.7 Beschreibung der Bedienbefehle

DOUBLE :
eine doppelte Definition eines Symbols wird ignoriert.

UNDEF SYMBOL: ... AT ADRS:

bei der ROM-Code-Erzeugung wurde ein Symbol , requested®,
das nicht definiert ist; der Fehler kann nachtréglich nicht vom
Linker korrigiert werden, die Benutzung der erzeugten Codes ist
riskant.

WARNING : RTOS - FILEHEAD MISSED
im erzeugten Output File konnte kein giiltiger RTOS-Filehead
gefunden werden; Laden des Files ist riskant.

LINKER PASS 1 OVERFLOW ENTER P2
lokaler Overflow; Linker beschiftigt sich in diesem Linklauf nur
noch mit lokalen Symbolen und bindet die Files nicht.

IGNORING FILE WITH ABSOLUT ADRESSDEFINITIONS

ein Lénge-Null File, das absolute Adressdefinitionen enthéilt,
wird vom Linker im non-romable Mode nicht bearbeitet, um kei-
nen rechnerabhéngigen Code zu erzeugen.

WARNING: NO SKEW IN FILE NO:
im romable Mode wurde ein File gefunden, das keine Skews ent-
hielt. Skews plaziert der Compiler, um den Versatz zwischen logi-
scher und physikalischer Adresse zu fixieren. Hochstwahrschein-
lich wurde beim Ubersetzerlauf das Einschalten der Compiler—
Option fiir ROM-Code vergessen.

LINKER COMMAND ERROR

Die MODNAME-Anweisung wurde im ROM-Code-Mode verwen-
det, obwohl die Adressverwaltung nicht vom Linker durchgefiihrt
werden soll.

3.7 Beschreibung der Bedienbefehle 169

Load and Link Programm LOAD

SYNTAX:

Beschreibung:

AdreBangabe:

LOAD
LOAD. sonprocname [PRIO integer3] [loadspeclist]
LOAD [PRIO integer3] [loadspeclist]

Es wird ein Sohnprozef3 generiert, dessen Name entweder durch
sonprocname vorgegeben wird oder mit Namen LOAD/zz vom
System gewéhlt werden soll. In beiden Féllen kann die Prioritét
dieser Lader—Task durch eine max. 3—stellige Ganzzahl vorgege-
ben werden. Bei nicht angegebener Prioritdt wird ein Wert von
20 eingesetzt.

Fehlt der Zusatz loadspeclist, so wird ein Ladevorgang vom
Standard-Ladefile des Systems und des Nutzers eingeleitet. Es
wird auf den von unten nach oben gesuchten ersten freien pas-
senden Speicherbereich geladen.

Bleiben noch globale Symbole offen, so durchsucht der Lader
den Scan—Bereich des Systems nach 17er—Scheiben, um Referen-
zen ggf. von dort zu befriedigen. Sind dann immer noch globa-
le Beziige offen, wird der Lader mit einer entsprechenden Mel-
dung suspendiert. Soll vorher auch das RAM noch nach 17—er—
Scheiben durchsucht werden, so ist der LOADX-Befehl (Seite 173)
zu verwenden.

Der Ladevorgang kann durch die Angabe der loadspeclist para-
metriert bzw. als bindendes Laden formuliert werden.

loadspeclist ist eine Liste von Gerite/File-Namen und Adref-
oder Groflenangaben. Die Elemente dieser Liste werden durch
Leerzeichen oder Kommata getrennt.

AD heznum8 oder AD=heznum8

Dabei steht hexnumS fiir die maximal 8—stellige Hexadezimal-
zahl, bei der der Lade/Bindevorgang beginnen soll. Erst der hier
generierte Lader priift spéter, ob der Adrelbereich iiberhaupt
zum Laden verfiigbar ist. Diese AdreBangabe ist aufer fiir Test-
zwecke (glatte Adresse) aus der Sicht von RTOS-UH ein un-
erwiinschter Eingriff.

Programmgréfle: SZ heznumé oder SZ=heznuméb

Mit heznum6 wird die Grofle des ersten zu ladenden Modules
vorgegeben und damit die GroBenangabe — falls vorhanden —

170 3.7 Beschreibung der Bedienbefehle

im Ladereingabetext {ibersteuert. Dies darf natiirlich nur so ge-
schehen, dafl der SZ—Wert grofler als die tatséichliche Modulgrofie
ist.

Geriite/Filenamen: Es werden die Parameter SI (S-Rekord-Input), SC (Source
after Continuation), LO (List-Output) und CO (Code Output)
akzeptiert.

LO Wenn LO nicht angegeben wird, so werden nur fehlende Glo-
balsymbole auf dem Defaultgerdt aufgelistet. LO /ED/LABEL
z. B. bewirkt, da beim Ladeschlufl die Zuordnungstabelle Sym-
bol/Adresse in die Edit-Datei LABEL geschrieben wird. Dieser
forcierte List-Output enthélt auch jene Symbole, die der Lader
aus dem eigenen System-Eprom (bzw. dem in das RAM geboo-
teten Gesamtsystem) als 17er—Scheiben gefunden hat.

SI Mit Hilfe des Parameters SI kann eine Liste von Modulquellen
angegeben werden. Die einzelnen Quellen werden durch das Zei-
chen + getrennt. Soweit Querbeziige durch globale Symbole zwi-
schen den einzelnen Modulen existieren, werden sie vom Lader
durch einen integrierten Bindevorgang realisiert.

LOAD SI=/ED/LIB1+/ED/LIB2 (SI= kann entfallen)

SC Der Parameter SC (Source after Continuation) dient zur Angabe
einer ggf. benutzten ,, Reservedatei“, die der Lader immer wieder
als Quelle zur Fortsetzung des Bindevorgangs anlduft, solange
noch unbefriedigte Globalreferenzen existieren. Nach der Mel-
dung ,zyz suspended loader input“ wird die Auffiillung die-
ser Datei bzw. der Defaultdatei /ED/LB bei fehlendem SC erwar-
tet und anschliefend ein CONTINUE-Kommando fiir den Lader—
Sohnprozefl. Will man die Referenzen nicht nachreichen, weil
man absolut sicher ist, daf} sie nicht benutzt werden, so sollte
aus Platzgriinden der Lader—Sohnprozefl mit UNLOAD eliminiert
werden.

LOAD.X PRIO 5 AD 6000 SZ 2000 /B2+/B2+/F0/QUELLE

Name des Sohnprozesses ist X, Prioritit des Ladevorgangs ist 5.
Das erste von Port 2 kommende Modul wird ab Adresse 6000 ge-
laden und auf die Grofle von 2000 vergrofert. An dieses Modul
wird das néchste von Port 2 stammende Modul angebunden. Die
Ablageadresse dieses Moduls ist nicht bekannt. Das gleiche gilt
fiir das dritte von Floppy—Laufwerk 0, File QUELLE stammende
Modul, welches ebenfalls hinsichtlich der globalen Symbole an-
gebunden wird.

3.7 Beschreibung der Bedienbefehle 171

CcO

!

—

LOAD SZ 5000 /F1/TEST LO /A1 SC /B2

Der File TEST von Floppy Laufwerk 1 wird geladen und die Li-
ste der globalen Symbole samt Adressen iiber Port 1 ausgege-
ben. Der Lader hat den Namen LOAD/zz und lduft mit Prioritat
20. Unbefriedigte Globalreferenzen kénnen, falls vorhanden, iiber
das Port 2 ergénzt werden.

Mit Hilfe eines optionalen CO-Parameters kann der Lader einen
S-Rekord-File ausgeben, der als sogenanntes , Null-size-Modul*
linkbare Adressinformation aller beim Laden abgelegten globa-
len Symbole enthilt. Symbole aus den eigenen 17-er—Scheiben
werden jedoch nicht in den CO-File geschrieben. Der so erzeug-
te File kann zusammen mit dem LIBSET-Befehl eine enorme
Verkiirzung der Turnaround-Zeit bei Multi-Modul-Bearbeitung
bewirken. Néheres siche LIBSET auf Seite 160.

LOAD SI=PR1+PR2+PR3 CO=1kfilel23

legt ein Null-size-Modul mit Filenamen 1kfile123 unter dem ak-
tuellen Working-Directory an. Das kénnte ein Unterprogramm-
paket sein, dafl man in Zukunft 6fter benutzten mochte, ohne
daf} jedes Mal der Programmecode geladen werden mu$.

Fehlermeldungen: Beim Laden von Dateien, die durch den PEARL—Compiler

erzeugt wurden, konnen bei fehlenden Programmmarken oder
anderen Fehlern unbefriedigte Vorwértsbeziige zuriickbleiben,
die von der Ladertask moniert werden. Daher diirfen nur als
fehlerfrei vom Compiler ausgewiesene Module geladen werden!
Doppelt definierte Globalsymbole werden wihrend des Ladevor-
ganges aufgelistet.

Zeichen, mit denen der Lader nichts anfangen kann, fithren zum
Abbruch des Ladevorgangs mit der Meldung ,wrong loader
input®.

Werden mehrere Module gleichzeitig geladen, mufi die Shell
bei relativen Pfadnamen das Working-Directory voranstellen.
Reicht der Expansionspuffer der (implementationsabhiingigen)
Shell nicht aus, erfolgt die Fehlermeldung capacity overflow.
Der Lader lduft in diesem Fall gar nicht erst an.

Ist der Abstand zwischen Aufruf einer PC-relativen Adresse und
ihrer Definition weiter als 32 KByte entfernt (z.B. bei der Ver-
wendung des CASE/ALT/FIN Konstruktes), kommt es trotz feh-
lerfreier Ubersetzung beim Laden zur Fehlermeldung module

172

3.7 Beschreibung der Bedienbefehle

Hinweise:

Linker:

overflow label.

Die Anzahl vorgebbarer Modulquellen ist nur durch die Puffer-
grenze der aufrufenden Shell und nicht durch den Lader selbst
begrenzt.

Mit dem PEARL-Einphasencompiler ohne S= ... erzeugte Da-
teien enthalten in ihrem Kopf nicht die Programmgrofie des Mo-
dules, sondern einen Pauschalwert (2000). Bei Programmen, in
denen nur ein PEARL—codiertes Modul vorkommt, sollte dieses
als erstes geladen werden und die tatséchliche Programmgrofie
(s. Compilerbilanz) durch SZ vorbesetzt werden.

Es kann eine nahezu unbegrenzte Zahl solcher LOAD-Komman-
dos abgesetzt werden, die im Multitasking parallel bearbeitet
werden. Dabei diirfen diese Ladevorgéinge keine gemeinsamen
Quellfiles benutzen, da sonst die Eingabedatei entweder zerfled-
dert gelesen wird oder es aber wegen des exklusiven Lesens nur
zum Uberleben des ersten Ladeprozesses reicht.

Der von einem solchen Ladeprozef3 gerade bearbeitete Speicher-
bereich wird wéhrend des Ladevorganges als Speichersektion
vom Typ PWSP in der Verwaltung von RTOS—UH gefiihrt. Wird
der Laderprozel terminiert (und zweckméBigerweise auch mit
UNLOAD entfernt), so verschwindet auch das zuletzt angefangene
Modul aus der Verwaltung.

Werden dem Lader mehrere (S0-S9) S-Record-Blocke in einer
Datei angeboten, so werden diese beim Laden ebenso gelinkt, als
wenn sie aus mehreren Dateien stammen wiirden, die mit + ver-
bunden wurden. Damit ist es moglich, bei grofieren Projekten
die S-Records aller schon getesteten Module in einer Datei zu
vereinigen und nur noch die neuen S-Records aus einer eigenen
Datei zu laden. Allerdings ist hier zu priifen, ob nicht das Vor-
linken mit Hilfe des Linkerbefehles LNK giinstiger ist. Lesen Sie
dazu bitte auf den Seiten 163-168 nach.

3.7 Beschreibung der Bedienbefehle 173

Load extended ’L OADX

SYNTAX:

Beschreibung:

LOADX
LOADX. sonprocname [PRIO integer3] [loadspeclist]
LOADX [PRIO <nteger3] [loadspeclist]

Es wird ein Sohnprozef3 generiert, dessen Name entweder durch
sonprocname vorgegeben wird oder mit Namen LOADX/zz vom
System gewéhlt werden soll. In beiden Féllen kann die Prioritét
dieser Lader—Task durch eine max. 3—stellige Ganzzahl vorgege-
ben werden. Bei nicht angegebener Prioritdt wird ein Wert von
20 eingesetzt.

Der Befehl ist funktionell v6llig identisch zum normalen LOAD,
der ab Seite 169 genau beschrieben ist. Der einzige Unterschied
besteht darin, dafl bei unbefriedigten Beziigen auf globale Objek-
te noch in allen geladenen Modulen nach 17er Scheiben gesucht
wird. Erst wenn auch das fehlschligt, folgt die Selbstsuspendie-
rung. Die 17er Scheiben kann ein Assemblerprogrammierer ge-
neriert haben, oder aber der PEARL-Compiler hat sie mit der
/*+G */-Option innerhalb einer Prozedurdefinition erzeugt.

Sinn dieser erweiterten Ladeanweisung ist es, dafl man sich &hn-
lich wie beim LIBSET-Befehl (Seite 160) eine private Unterpro-
grammbibliothek im RAM halten kann. Andererseits ist die Su-
che je nach Systemladezustand eventuell zeitaufwendig; aus die-
sem Grund, ist die Operation nicht als Standardoperation im
normalen LOAD enthalten.

Man beachte, dafl bei der Benutzung des CO-Parameters keine
Eintrége fiir globale Symbole aus den 17er Scheiben in die er-
zeugten S-Records geschrieben werden.

174 3.7 Beschreibung der Bedienbefehle

List User Task

SYNTAX: LU

Beschreibung: Die Anweisung wirkt wie das L-Kommando, jedoch werden die
beim Kaltstart des Systems bereits vorhandenen Systemtasks
nicht mit aufgelistet. Es werden alle im System befindlichen
User—Tasks gelistet, ohne Beriicksichtigung der User-Nummer.
Das Kommando ist eine Kurzform fiir L -U, ndheres ab Seite
153.

Beispiel: LU

3.7 Beschreibung der Bedienbefehle 175

Make Directory MKDI R‘

SYNTAX:

MKDIR pathlist-list

Beschreibung: Der Befehl MKDIR erlaubt die Einrichtung von Subdirectories und

ermoglicht damit eine hierarchische Dateiverwaltung. Mit dem
Befehl RMDIR lassen sich vereinbarte Directories wieder 16schen.

pathlist-list: Es sind alle Geréite erlaubt, bei denen das entsprechende Bit fiir

pathlist:

Beispiele:

Hinweise:

MKDIR im Device-Wort gesetzt ist (siche SD-Befehl). Die ein-
zelnen Elemente der Liste werden durch Kommata oder Zwi-
schenrdume getrennt.

1 bis 7 Buchstaben oder Ziffern pro Pfadelement sind erlaubt
(unter MS-Verwaltung bis zu 8). Es gilt die iibliche Syntax der
Pathlist: die Pfadelemente sind durch ,,/“ zu trennen. Wird mit
der MS—-DOS kompatiblen Dateiverwaltung gearbeitet, so kann
ein Element der Pathlist aus max. 8 Buchstaben oder Ziffern,
gefolgt von einem Punkt und weiteren 3 Zeichen bestehen.

MKDIR /FO/USER1

Auf der Diskette in Laufwerk /FO/ wird das Subdirectory USER1
angelegt. Dort kénnen jetzt Dateien abgelegt werden, z. B. mit

COPY /ED/SI>/FO/USER1/DATEI1
MKDIR /FO/USER1/DATEN1

In dem Subdirectory USER1 wird ein weiteres Subdirectory
DATEN1 angelegt.

MKDIR /FO0/PROG.PRL

Auf der Diskette im Laufwerk 0 wird das Subdirectory PROG.PRL
angelegt.

Mit DIR /FO/ bekommt man jetzt alle Dateien und Direc-
tories der Root—Ebene. Ein Directory ist am nachgestellten
Schragstrich zu erkennen. Mit DIR /FO/USER1 erhilt man die
Dateien und weiteren Subdirectories des Directorys USER1.

176

3.7 Beschreibung der Bedienbefehle

’M SFILE S‘ DOS-filesystem definition

SYNTAX: MSFILES device, device,

Beschreibung: Das mit device bezeichnete Gerdt — typischerweise eine Flop-
py oder ein Plattenspeicher — wird unter die Verwaltung des
MS-DOS-Filemanagers gestellt. Wurde z. B. bisher die Floppy
/F0/ als RTOS—UH-Diskette behandelt, so wird nach Abset-
zen des Befehles MSFILES /F0/ jetzt eine MS—DOS-Diskette im
Laufwerk FO erwartet.

Beispiel: Eine Atari— oder MS—DOS—Diskette mit File PA.TXT soll auf
eine RTOS—UH-Diskette kopiert werden, ungeachtet der evtl.
spéateren Nachbehandlung wegen anderer Sonderzeichen und Zei-
lenendekennung. Hinterher wird nur noch mit RTOS-UH-
Disketten gearbeitet.

MSFILES /F1 | unter MS—-DOS—Verw.

RTOSFILES /FO | unter RTOS—UH-Verw.

CP /F1/PA.TXT>/FO/PAPER | Kopiere

RTOSFILES /F1 | Wieder RTOS-UH-Verw.
Hinweise: Ob Ihr Filesystem nach dem Einschalten unter der RTOS—UH-

oder unter der MS—-DOS-Verwaltung anléuft, héngt von Ihrer
Implementierung ab. Mit den neueren Filemanagern ist das nor-
malerweise nicht mehr wichtig, weil sie automatisch den jeweils
anderen auf den Plan rufen, wenn sie beim Zugriff auf das Me-
dium erkennen, dafl das Medium unter der anderen Verwaltung
angelegt ist. Soll das Medium neu formatiert werden, so muf} lo-
gischerweise die gewiinschte Verwaltung explizit eingestellt wer-
den.

Wenn noch Files auf dem Gerét geoffnet sind, so wird der Be-
fehl nach Meldung ,,... directory active ...“ zuriickgewie-
sen. Man kann aber das ,, Vergessen* des nicht mehr benotigten
Filesystems genau wie beim CF (Change Floppy)-Befehl erzwin-
gen. Dies erfolgt durch eine spezielle Pseudo—pathlist:

SYNC /F0/ (siehe SYNC, zum Retten)
MSFILES /FO/FORGET (VergiB alte Floppy)

Welches Filesystem auf der Floppy gerade giiltig ist, kann man
jederzeit iiber den Befehl FILES (z. B. FILES /F0/) erfragen,

3.7 Beschreibung der Bedienbefehle 177

Hinweis:

da bei dessen Ausgabe die Verwaltungsstruktur mit erscheint —
auch dann wenn kein File ge6ffnet ist.

Wenn nicht fiir alle Laufwerke einer Warteschlange der gleiche
Filemanager zustindig ist (wie im Bsp. oben), legt die Betreu-
ungstask im Speicher eine Transfertabelle fiir die Zuordnung
Laufwerk<->Filemanager an, die {iber das S-Kommando sicht-
bar ist, auch wenn kein File offen ist. Die Tabelle verschwindet
wieder, sobald der zusténdige Filemanager eine Verbindung her-
stellt und danach alle Verbindungen auf ihn selbst zeigen. Im
obigen Bsp. ist der Block hinterher noch existent, weil das letz-
te RTOSFILES vom MS—DOS-Filemanager ausgefithrt wird. Mit
RTOSFILES /F1,/F1 als letztem Befehl i. 0. Bsp. spart man folg-
lich einige Bytes Speicher ein.

Neuere Treiber erledigen die Anpassung an das zusténdige For-
mat automatisch. Die Anweisung ist dennoch notig, wenn eine
Diskette neu formatiert werden solll Beim FORM-Befehl wiirde
sonst die zufillig letzte benutzte Diskettenverwaltungsform auf
der neuen Diskette eingerichtet.

178 3.7 Beschreibung der Bedienbefehle

’N OTRAC E‘ No Tracing for specified Task

SYNTAX: NOTRACE taskname, taskname ...

Beschreibung: Die angegebene Task wird aus dem Trace-Mode entlassen (siehe
TRACE). Dabei wird die Breakpointadresse geloscht.

Befand sich die angegebene Task nicht im Trace-Mode, so ist die
Anweisung ohne Wirkung.

Wie bei der TRACE-Anweisung wird der aktuelle Laufzustand der
Task durch diese Anweisung nicht geéndert.

Beispiele: NOTRACE TEST XYZ
NOTRACE INIT

3.7 Beschreibung der Bedienbefehle 179

Output—device specification @
SYNTAX: 0 pathlist
Beschreibung: Die Ausgabe der Shell wird auf das angegebene Gerit bzw. in den

pathlist:

Beispiele:

angegebenen File umgeleitet. Die momentan giiltige lokale Kopie
von ,,Stdout” wird verindert. Alle Ausgaben des ausfithrenden
Shellprozesses, (aufler Fehlermeldungen), die durch die folgen-
den Kommandos dieser Zeile veranlafit werden, erfolgen auf dem
angegebenen Gerét bzw. in den File.

Es werden alle der Shell Thres RTOS—UH bekannten Devices
akzeptiert, z. B. /A1/, /A2/, /ED/dir usw. Als Trennsymbol zum
nachfolgenden Kommando sind ein Semikolon und ein Leerzei-
chen erlaubt.

0 /A2/;L;S

Es werden die Taskliste und die Speicherbelegung tiber den Port
2 ausgegeben.

0 /ED/TEST DIR /FO/;0 /F1/X S

Directory von Laufwerk /F0/ in die Datei /ED/TEST schreiben,
danach Speicherbelegung auf Floppyfile /F1/X.

180

3.7 Beschreibung der Bedienbefehle

P/PEARL Compile PEARL-Programm

SYNTAX:

Beschreibung:

parameterlist:

PEARL oder P
PEARL. sonprocname [PRIO integer3] [parameterlist]
PEARL [PRIO <nteger3] [parameterlist]

Es wird ein unabhéngiger Sohnprozefl generiert, dessen Name
entweder durch sonprocname vorgegeben oder vom System mit
P/zz bestimmt wird. zz ist eine zweistellige Hexzahl mit automa-
tischer Weiterschaltung. Ebenso kann mit dem Kommando die
Prioritéit der Bearbeitung durch eine 3-stellige Ganzzahl festge-
legt werden. Fehlt die PRIO-Angabe, wird ein Standardwert von
20 eingesetzt. Fehlt die parameterlist, so wird ein Ubersetzungs-
lauf gestartet, der von dem Standard—Inputfile des Nutzers liest
und auf dem entsprechenden Outputfile die S-Records ablegt.
FEin Listing wird auf das entsprechende Terminal ausgegeben.

ist eine Liste von Geréite/Filenamen und einer Grofienangabe.
Die Elemente der Liste werden durch Leerzeichen oder Kommata
getrennt.

Arbeitsspeicher: SZ heznumé oder SZ=heznumé

Geriite/File:

Mit hexnum6 kann der dynamische Arbeitsspeicher des Compi-
lers bestimmt werden. Der Mindestwert betrégt 500, vom System
wird ein Wert von 2800 (entspricht ca. 10 KByte) eingesetzt.
Maximal ist ein Wert von 10100 sinnvoll. Die gew&hlte Spei-
chergréfe beeinfluBt die Ubersetzungsgeschwindigkeit praktisch
nicht. Faustregel fiir sehr lange PEARL-Programme (mehr als
4000 Zeilen):

SZ=(Max. Zahl lebender P-Symbole)*14 + 2000

Es werden die Parameter SI (Source Input), LO (List Output)
und CO (Code Output) ausgewertet. Fiir fehlende Angaben wer-
den die Default—Werte des Systems und Nutzers eingesetzt. Bei
CO und LO ist zum Abschalten auch der Geriitebezeichner
NO bzw. /NO zuldssig. Fiir LO kann nebeneinander ein ech-
ter Gerite/File- Bezeichner und LO=NO angegeben sein: der
Compiler wird dann die Kopfzeile, Fehlermeldungen, eventuelle
lokale Teillistings und die Schlubilanz zum angegebenen Gerét
bzw. File senden. Zwischen den Parametern und den zugewie-
senen Objekten setzt man typischerweise einen Zwischenraum.
Auch das Zeichen ,=“ ist moglich, dann ist allerdings kein Zwi-
schenraum vor und hinter dem ,,=“ mehr zuléssig.

3.7 Beschreibung der Bedienbefehle 181

Beispiele:

Hinweise:

PEARL.X PRIO 40 SZ 5000 /FO/TEST>/F1/BCOD LO /A1l/

Das Programm auf Floppylaufwerk 0 in der Datei TEST wird
iibersetzt. Der Code wird in die Datei BCOD auf Floppylaufwerk
1 geschrieben. Das Ubersetzungsprotokoll wird iiber die Schnitt-
stelle /A1/ ausgegeben. Name des Sohnprozesses ist X.

P

Mit den Defaultwerten fiir SI (/ED/SI fiir USER1), LO (/A1/ fiir
USER1) und CO (/ED/SR fiir USER1) wird ein Compiler (Name des
Sohnprozesses P/zz) gestartet.

P.PEARL /A2/>NO LO /ED/ERROR LO NO

Der Quelltext wird iiber Port /A2/ erwartet, es wird kein Code
erzeugt und die Ausgabe fehlerhafter Zeilen erfolgt in die Datei
/ED/ERROR. Name des Sohnprozesses ist PEARL.

Der Compilercode ist wiedereintrittsfest, so dafi beliebig viele
— sofern Platz fiir den dynamischen Speicher ist — verschiede-
ne Ubersetzungsvorginge gleichzeitig im Multitasking ablaufen
konnen.

Fehlermeldungen, weitere Eigenschaften und Steuermdglichkei-
ten des PEARL—Compilers sind ab Seite 277 ausfiihrlich be-
schrieben.

182

3.7 Beschreibung der Bedienbefehle

PER

SYNTAX:
Beschreibung:

Beispiel:

Permanent Error Redirect

PER pathlist

Als Standard-Error Datenstation (Stderr) der priméren Shell,
unter dessen Nutzer dieser Befehl zur Ausfithrung kommt, wird
fortan die durch pathlist bezeichnete Datensenke verwendet. Die
Wirksamkeit erfaflt nicht die Kommandos im Rest der Komman-
dozeile. Der Befehl ist im Gegensatz zum ,,ER“-Befehl mit ge-
wissen Risiken verbunden: die Fehler der néchsten Befehlszeilen
schreibt die Shell in die neue Datenstation — wenn es geht. Kann
in die Station nicht geschrieben werden, entstehen neue Fehler-
meldungen, die wiederum nicht geschrieben werden kénnen etc.

PER /HO/NIL;

Nach dieser Zeile bleiben einem fortan alle Fehlermeldungen er-
spart! Zu empfehlen ist das natiirlich nicht.

Man beachte, dafl die Shell vor dem Hineinschreiben in die Da-
tenstation ,,Stderr* den File nicht 6ffnet, das macht der Handler
der Datenstation notfalls automatisch. Auch wird der File am
Ende nicht geschlossen. Auf diese Weise ist das akkumulierende
Sammeln von Fehlermeldungen in einem File moglich, man muf
allerdings dafiir Sorge tragen, dafl der File irgendwann geschlos-
sen wird oder héufig genug SYNC-Befehle einstreuen.

Eine wichtige Bedeutung hat der PER-Befehl bei unbedienten Sy-
stemen: eine besondere Task kann sich um Unregelméfigkeiten
im System kiimmern, diese ggf. auch archivieren. Die Task kann
dabei am Ende einer Pipe (Station /VI bzw. /V0) sprungbereit
alle Fehlertexte entgegennehmen.

Im Gegensatz zum ER-Befehl werden hier alle Fehlermeldungen,
die dem Nutzer zugeordnet sind, umgelenkt. Auch die Ausgabe
von Laufzeitfehlern irgendwelcher Tasks des Nutzers erfolgt auf
das vereinbarte Gerdt. Wird der Befehl von der Console gegeben
(User No.1), so werden auch Irregularitiiten bei Interrupts etc.,
die keinem Nutzer zugeordnet sind, umgelenkt.

3.7 Beschreibung der Bedienbefehle 183

Permanent Input—device specification

SYNTAX:

PI pathlist

Beschreibung: Als Standard-Input (Stdin) der Shell, die diesen Befehl ausfiihrt,

Beispiel:

wird fortan die durch pathlist bezeichnete Datenquelle verwen-
det. Die neue Vereinbarung gilt ab der néichsten Kommandozeile.

Warnung:

Der Befehl ist im Gegensatz zum ,,I“-Befehl sehr
riskant: man kann damit die primére Shell seines Ar-
beitsplatzes irreparabel unbrauchbar machen! Wird
der Input auf eine Station wegdirigiert, die man nicht
unter Kontrolle hat, so hilft auch kein Systemabort
aus der Klemme!

PI /WINAO/SHELL1;

Der Befehl ist fiir solche Systeme gedacht, bei denen eine primére
Shell in ein Fenster umgelegt wird, oder bei denen im Hochlauf
dynamisch Nutzerarbeitspldtze (primére Shells) entstehen. ,,PI¢
sendet zusétzlich einen speziellen I/0O-Befehl ab, der auch den
»,Ruf“ der Shell mit Ctrl A auf das neue Eingabegeriit legt. (Nur
die in der Praxis in Frage kommenden I/O-Démonen verstehen
diesen Befehl!).

184

3.7 Beschreibung der Bedienbefehle

SYNTAX:
Beschreibung:

Beispiel:

Permanent Output Redirect

PO pathlzst

Als Standard-Output Datenstation (Stdout) der priméren Shell,
unter dessen Nutzer der Befehl zur Ausfithrung kommt, wird
fortan die durch pathlist bezeichnete Datensenke verwendet. Die
Wirksamkeit erfaft jedoch nicht die Kommandos im Rest der
Kommandozeile. Der Befehl ist im Gegensatz zum ,,0“-Befehl
mit gewissen Risiken verbunden: die Ausgabetexte der Bedien-
befehle aus den nichsten Befehlszeilen schreibt die Shell in die
neue Datenstation — wenn es geht. Kann in die Station nicht
geschrieben werden, entstehen Fehlermeldungen auf dem Error-
Kanal.

PO /NIL;

Nach dieser Zeile bleiben einem fortan alle reguliren Textaus-
gaben der Shell erspart. Sinn macht das PO-Kommando nur in
Ausnahmefillen, etwa bei der Einrichtung eines Nutzerarbeits-
platzes in einem Fenster. Im allgemeinen ist man mit dem O-
Befehl besser bedient.

Man beachte, dafl die Shell vor dem Hineinschreiben in die Da-
tenstation ,,Stdout* den File nicht 6ffnet, das macht der Handler
der Datenstation notfalls automatisch. Auch wird der File am
Ende nicht geschlossen. Auf diese Weise ist das akkumulierende
Sammeln von Ausgabetext in einem File moéglich, man muf al-
lerdings dafiir Sorge tragen, dafl der File irgendwann geschlossen
wird oder héufig genug SYNC-Befehle einstreuen.

3.7 Beschreibung der Bedienbefehle 185

Prevent activation of Task ’P REVENT

SYNTAX: PREVENT taskname-list

Beschreibung: Alle Einplanungen auf Zeitpunkte oder Interrupts der einzel-
nen Tasks werden sofort geloscht. Auflerdem werden eventuell
bereits im Aktivierungspuffer stehende Neuaktivierungen durch
Ausrdumen des Puffers verhindert. Die Tasknamen kénnen durch
Kommata oder durch leere Zwischenrdume getrennt werden.

Beispiele: PREVENT ABCD,TT
PREVENT init
prevent overflowtask reglerprozess

Hinweis: Trotz geloschter Zeitplanung bleibt die Aufmerksamkeit der Pla-
nungsuhr fiir den in Aussicht genommenen Zeitpunkt erhalten.
Bei CLOCK wird also unter NEXT SCHED eventuell der Termin noch
aufgefiihrt, bleibt aber wirkungslos.

186

3.7 Beschreibung der Bedienbefehle

PROM Prepare for Read Only Memory

SYNTAX:

Beschreibung:

PROM name
PROM namex*

Wenn kein Linker (siehe Seiten 163 ff.) zur Verfiigung steht oder
aus irgendwelchen Griinden nicht eingesetzt werden soll, kann
mit Hilfe des PROM-Befehles alternativ auch durch die Shell ein S-
Rekord-Paket fiir ROM-residente Anwenderprogramme erzeugt
werden.

Aus in den RAM-Bereich geladenen Programmelementen (Mo-
dul oder Task) werden Scheibendaten fiir das RTOS-UH-
Autolink, die Systemkonfigurierung in der Kaltstartphase, er-
zeugt. Diese Scheibendaten werden als S-Records auf das Aus-
gabemedium der aufrufenden Shell (,,Stdout®) ausgegeben; fiir
jeden zu ,,prommenden* Speicherbereich werden ein ,,S0-Record*
(enthélt Lingenangabe), mehrere ,,S2-Records“ und ein ,,S9-
Record“ erzeugt. ,,S2-Records® werden von RTOS—UH stets
relativiert, d. h. die AdreBangabe im ,,S2-Record® z#hlt stets
relativ zur Ladeadresse. Mit den S-Rekords kann ein EPROM-
Gerdt (etwa MODIPROG) direkt angesteuert werden, um die
Scheibe(n) im Scanbereich im ROM abzulegen (s. Seite 625:
Scanbereich édndern, oder Seite 637 neue Tabelle anschlieflen).

Beim Einsatz des PROM-Befehls sind zwei Einsatzfille zu unter
scheiden:

1. Prommen normal compilierter und geladener PEARIL-
oder Assembler—Programme. name kann ein Modul- oder
ein Taskname sein. Folgt einem Modulnamen ein Stern
* (keine Wildcard), so werden alle auf dieses Modul im
Speicher unmittelbar folgenden Tasks neben dem Modul
ebenfalls bearbeitet. Es werden Scheibendaten fiir 13-er
Scheiben erzeugt, d. h. es wird ein Speicherbereich quasi
als Dump im EPROM abgelegt. Beim Erzeugen des Schei-
bentextes werden Nulldatenblocke durch die im 13—Code
vorgesehenen Datablocke weggekiirzt. Es empfiehlt sich da-
her unbedingt, nicht benttigte Initialdaten von Modulva-
riablen vor dem Absetzen des Befehles zu ,Nullen®, etwa
durch eine Hilfstask, die man vorher laufen 148t. Nach Ein-
bau der so erzeugten Scheibe generiert RTOS—UH beim
Kaltstart die entsprechenden Module bzw. Tasks an ge-
nau die gleichen Adressen, die die Objekte im Moment des

3.7 Beschreibung der Bedienbefehle 187

PROM—Befehles hatten. Es mufl vom Anwender dafiir ge-
sorgt werden, dafl RAM-PIlétze nicht doppelt belegt wer-
den! (RTOS—UH richtet dann den Block, der spiter vom
Scanner erfafit wird, einfach nicht ein). Sollen Tasks beim
Warmstart automatisch loslaufen, so benutzen Sie vor dem
PROM—Befehl den Befehl AUTOSTART modulname, taskname.

2. Prommen von mit der CODE=$...,VAR=$...—Option er-
zeugten PEARL-Programmen. name kann nur ein Mo-
dulname sein; name* wird impliziert und mufl nicht an-
gegeben werden. Nach dem Laden des kompilierten Pro-
grammes erscheint das Modul incl. aller eingeschlossenen
Tasks als Speicherblock mit der Kennung PMDL beim S—
Kommando. Es koénnen keine Tasks aus dem Modul ge-
startet werden. Der PROM-Befehl erzeugt nun nur fiir den
Bereich der Modulvariablen eine 13—er Scheibe, die beim
Kaltstart des Systems den Modulvariablenblock auf der
mit VAR=$... angegebenen Adresse einrichtet. Nullda-
tenblocke werden, wie im Fall 1, weggekiirzt; daher sollte
das Programm mit einer Size—Angabe iiber die SC=—Option
(Size and Clear) iibersetzt werden (spart EPROM-Platz).
Tasks werden in eine 1-er Scheibe umgesetzt, Prozeduren
ohne Scheibenkennung abgelegt. Es werden zwei SO-... S9-
Record-Blocke erzeugt; der erste Block umfafit die 13—er
Modulvariablenscheibe und kann auf beliebiger EPROM-
Adresse abgelegt werden, der zweite Block umfafit den
Code-Bereich und mufl im EPROM genau beginnend mit
der in der CODE=$...—-Option angegebenen Adresse abge-
legt werden. Hierzu kann es ggf. sinnvoll sein, die Ausgabe
des PROM—Befehls zunéchst in einen ED-File zu lenken, um
beide Blocke mit Hilfe von Editor und COPY zu trennen.
Damit wird die Eingabe des Adre—Offset beim EPROM-
mer erleichtert. Bei Systemen, die das Betriebssystem aus
dem RAM exekutieren, mufl bei der CODE=$... —Option
die spiitere tatsichliche Laufzeit—Adresse angegeben wer-
den. Dies betrifft alle Platten-Boot—Systeme und solche,
die beim Anlauf das EPROM in das RAM umkopieren
(wie es viele der 68020/30/40/60- und PowerPC- Systeme
tun). Fiir EPROM- und RAM-Layout orientiert man sich
an den Adre3— und Lingenangaben der Compiler—Bilanz.
Sollen Tasks beim Warmstart automatisch loslaufen, so
benutzen Sie auch hier vor dem PROM-Befehl den Befehl
AUTOSTART modulname, taskname.

188

3.7 Beschreibung der Bedienbefehle

Beispiele:

Die Operation erfolgt auf Ebene des Shellprozesses (!), ggf. sollte
mit 0 /ED/xyz der S-Recordtext daher aus Zeitgriinden zunéchst
in eine ED-Datei geschrieben werden. Driicken Sie in der Zeit
nicht die ,BREAK“~Taste, die Operation wiirde sonst abgebro-
chen! Sauberer ist es, einen sekundiren Shellprozefl; z. B. mit
Hilfe von ,,DEFINE“ mit der Aufgabe zu betrauen, insbesondere
wenn im Hintergrund noch andere Echtzeitaktivitdten ungestort
bleiben sollen.

0 /A2/;PROM Lager*;0 /A1/;CLOCK

Modul Lager und folgende Tasks an das Programmiergerit an
/A2/ senden, Uhrzeit erscheint wenn fertig.

DEFINE.xy PRIO 100--0 /ED/Buffer--prom Mausl--UNLOAD xy

Ein sekundérer Shellprozef (Name:xy) iibernimmt die Aufga-
be und vernichtet sich anschliefend selbst. Die Aktion lduft auf
niedriger Prioritédt ab: Modul Maus1 prommen, S-Records in ED—
File schreiben (fiir Fall 2, so lassen sich die Blocke fiir Modulva-
riablen und Tasks einfacher trennen).

3.7 Beschreibung der Bedienbefehle 189

Print Working Directory PWD
SYNTAX: PWD
Beschreibung: Das mit dem Befehl CD vereinbarte Working-Directory kann mit

Beispiele:

dem Befehl PWD (,,Print Working Directory®) angezeigt werden.
Weiterhin werden die z. Z. giiltigen Execution-Directories mit
ausgegeben.

PWD wenn die Shell darauf mit

WD=/-
XD=/~

antwortet, sind weder Working- noch Execution-Directory ver-
einbart.

PWD wenn die Shell darauf mit
WD=/ED/-
XD=/F0/cmmd

antwortet, ist das Working-Directory /ED/ und das Executing-
Directory /FO/cmmd vereinbart.

PWD wenn die Shell darauf mit

WD=/HO0/TEX/DOCUS
XD=/HO0/XD
+ /H1/XD2

antwortet, ist auf der Festplatte /HO das Working-Directory
TEX/DOCUS vereinbart. Transiente Befehle und Skripte sucht die
Shell zunéchst unter /HO/XD/. .. . Bei Miflerfolg wird anschlie-
Bend noch unter /H1/XD2/. .. gesucht.

190 3.7 Beschreibung der Bedienbefehle
Quick Assembling (optional)
SYNTAX: QAS oder

QAS. sonprocname [PRIO integer3] [parameterlist]

QAS [PRIO integer3] [parameterlist]
Beschreibung: Es wird der schnelle ,native coded” (68K-) Assembler aufgeru-

fen. Dieser kann transient (Zeitverlust, wenn er 6fter gebraucht
wird!) oder aus dem Speicher (vorher laden) benutzt werden.

Es gelten alle Angaben des normalen Assemblers, siche dazu Sei-
te 103. Einziger Nachteil dieses ca. 2 bis 3 mal schnelleren Uber-
setzers ist sein sehr viel lingerer Code. Wenn man max. ca. 150
kByte verschmerzen kann, so sollte man ihn bevorzugen.

Speichern Sie den S-Rekord-File des QAS sinnvollerweise im iibli-
chen Execution-Directory (z. B. unter /H0/XD). (Die Lizenz fiir
den normalen 68K-Assembler schlie3t die Verwendungsrechte des
»QAS* mit ein).

3.7 Beschreibung der Bedienbefehle 191

Quick Link S-Records (optional) QLNK

SYNTAX:

Beschreibung:

QLNK oder
QLNK. sonprocname [PRIO integer3] [parameterlist]
QLNK [PRIO <nteger3] [parameterlist]

Es wird der schnelle ,native coded“ Linker aufgerufen. Dieser
kann transient (Zeitverlust, wenn er 6fter gebraucht wird!) oder
aus dem Speicher (vorher laden) benutzt werden.

Es gelten alle Angaben des normalen Linkers, siche dazu Seite
163. Einziger Nachteil dieses ca. 2 bis 3 mal schnelleren Linkers
ist sein sehr viel laingerer Code. Wenn man max. ca. 150 kByte
verschmerzen kann, so sollte man ihn bevorzugen.

Speichern Sie den S-Rekord-File des QLNK sinnvollerweise im
iiblichen Execution-Directory (z. B. unter /HO/XD). (Die Lizenz
fir den normalen Linker schliefit die Verwendungsrechte des
»QLNK* mit ein).

192 3.7 Beschreibung der Bedienbefehle
Quick PEARL Compilation (optional)
SYNTAX: QP oder

QP. sonprocname [PRIO integer3] [parameterlist]

QP [PRIO integer3] [parameterlist]
Beschreibung: Es wird der schnelle ,native coded“ PEARL-Compiler aufgeru-

fen. Dieser kann transient (Zeitverlust, wenn er 6fter gebraucht
wird!) oder aus dem Speicher (vorher laden) benutzt werden.

Es gelten alle Angaben des normalen Compilers, siehe dazu Seite
180. Einziger Nachteil dieses ca. 2 bis 3 mal schnelleren Uber-
setzers ist sein sehr viel lingerer Code. Wenn man max. ca. 300
kByte verschmerzen kann, so sollte man ihn bevorzugen.

Speichern Sie den S-Rekord-File des QP sinnvollerweise im iibli-
chen Execution-Directory (z. B. unter /H0/XD). (Die Lizenz fiir
den normalen Maxi-PEARL-Compiler schliefit die Verwendungs-
rechte des ,,QP* mit ein).

3.7 Beschreibung der Bedienbefehle 193

Release Semaphorvariable ’R ELEAS E‘

SYNTAX:

Beschreibung:

Beispiele:

RELEASE hexznum8, hexnum8, . . .
RELEASE taskname, taskname, ...

Durch hezxnum8 werden Speicheradressen angegeben, die als
Semaphorvariablen in Benutzung sind. Wird dabei der Zustand
»Requested” (und task waiting) verlassen, so wird — falls noch
nicht gestorben — die erste (= hochstpriorisierte) wartende Task
freigegeben, die auf diese Semaphore wartete. Die Semavariable
bleibt in diesem Fall im Zustand ,,Requested“. Wird keine war-
tende Task ermittelt, so wird der Wert der Semavariablen um
eins erhoht.

Steht eine Task im Zustand ,, Waiting for SEMA“, so kann die
Semaphore, auf der die Task hingt, ,released“ werden. Ist die
Semaphore danach frei, lduft die Task weiter. Damit entfillt das
unten beschriebene Ermitteln der Adresse der Semaphore.

Die Adressen miissen natiirlich zunéchst ermittelt werden, dazu
empfiehlt sich die Benutzung globaler Symbole und Inspektion
der Lader-Liste (LO-Option).

RELEASE 4020,10112
RELEASE TEST

Wenn die Task TEST im Rechner vorhanden ist und auf einer
Semaphore , hidngt“, wird diese Semaphore ,released®.

194 3.7 Beschreibung der Bedienbefehle

’R ENAME Rename File

SYNTAX: RENAME /device/pathlist/old_filename>new_filename

Beschreibung: Es wird der Name der angegebenen Datei in den neuen Namen
gedndert.

/device/old_name: Der Devicebezeichner kann z. B. die Form Fz oder Hz haben.
Ein Working-Directory wird ggf. beriicksichtigt. old_name sollte
ein giiltiger File-Name sein.

new_name: Es wird nur ein Filename ohne Pathlist akzeptiert.

Hinweis: Existiert bereits eine Datei mit new_name, so erfolgt eine Fehler-
meldung ,File in system“ und die Umbenennung unterbleibt.

Beispiele: RENAME /FO/MIST>HALLO
Die Datei MIST auf dem Laufwerk FO wird in HALLO umbenannt.
Es existiert ein Working-Directory /HO/sub1/sub2:
RENAME DAT1>DAT2
Die Datei /HO/sub1/sub2/DAT1 wird in DAT2 umbenannt.

3.7 Beschreibung der Bedienbefehle 195

Return Files ’R ETUR N‘

SYNTAX: RETURN pathlist-list

Beschreibung: Eine Floppy-, Platten— oder ED-Datei wird aus der Verwaltung
von RTOS—UH entlassen. Vorher wird die Datei geschlossen.
Die Anweisung wird als Kommandofehler behandelt, wenn ein
angegebenes Objekt keine Floppy—, Platten— oder ED-Datei ist.

pathlist-list: Es handelt sich um eine Liste, deren Elemente durch Leerzeichen
oder Kommata getrennt werden. Ein Element der Liste besteht
aus einem Device-Bezeichner (z. B. /F0/) und einem Filenamen.
Ein eingestelltes Working—Directory wird entsprechend beriick-
sichtigt.

Optionen: Es ist die Option -A (oder -a) zugelassen. Damit kénnen auch
Files, die in exklusiver Belegung (auch anderer Nutzer!) sind,
bedingungslos zuriickgegeben werden. Die Option ist nicht er-
forderlich, wenn das RETURN von einer priméren Shell auf eine
dem Nutzer zugeordnete Datei ausgefithrt wird.

Beispiel: RETURN /F1/QUELLE, /FO/XYZ
RETURN mist bei eingestelltem WD: /FO/-
RETURN -A /ED/SOURCE1;

! — Wenn der angesprochene File nicht gesffnet ist, so antwortet das
System mit einer ,,... not found“-Meldung. Die Ursache: der
Filehandler sucht bei diesem Befehl nur unter den von ihm getff-
neten Files und Directories.

196

3.7 Beschreibung der Bedienbefehle

'REWIN D] Rewind Files

SYNTAX:

REWIND pathlist-list

Beschreibung: Die angegebenen Dateien werden zuriickgespult. Die Anweisung

fiihrt zum Kommandofehler, wenn das Device nicht riickspulbar
oder die Datei nicht vorhanden ist.

pathlist—list: Es handelt sich um eine Liste von Pfadlisten, deren Elemente durch

Beispiele:

Leerzeichen oder Kommata getrennt werden. Jedes Element der
Liste beginnt wie iiblich entweder auf der ,Root-Ebene“ mit ,,/“
oder bezieht sich auf das aktuelle Working-Directory.

REWIND /F1/QUELLE,/F0/XYZ
REWIND /ED/myfile
REWIND /SN7/ST29/H0/TEX/DOCU1

Im letzten Fall wird der Rechner /SN7 (im RTOS-UH ty-
pischerweise eine Ethernetkopplung) als Gateway zur Stati-
on /ST29 benutzt. Dort wird auf der Festplatte /HO der File
TEX/DOCU1 auf seinen Anfang gesetzt.

Es konnen nur existierende Files zuriickgespult werden. Neue Fi-
les konnen mit REWIND nicht angelegt werden. Beachten Sie auch,
daB der File nach dieser Operation getffnet ist: die Plattenver-
waltung wird ,sprungbereit® gehalten und schreibt nicht mehr
alle Anderungen an anderen Files sofort auf das Medium zuriick.

3.7 Beschreibung der Bedienbefehle 197

Remove File

SYNTAX:

RM pathlist—list

Beschreibung: Die in der Parameterliste angegebenen Dateien werden unwi-

Beispiele:

Hinweis:

!

—

derruflich aufgegeben. Die Dateien werden aus der Systemver-
waltung entfernt, so dal auf sie nicht mehr zugegriffen werden
kann. Bei ED-Dateien wird der zur Ablage der Datei benotig-
te Speicherplatz (Typ EDTF) wieder frei verfiigbar, auf Massen-
speichern wird der entsprechende Platz frei. In der pathlist-list
werden vereinbarte Working-Directories mit beriicksichtigt.

RM /ED/quelle, /ED/test, /FO/mist
RM /ED/SI

oder mit Working-Directory /ED/xyz:
RM mein 16scht /ED/xyz/mein

Durch Angabe einer vollstdndigen Pathlist konnen Files aufler-
halb eines vereinbarten Working-Directories geloscht werden.

vereinbartes Working-Directory: /ED/xyz
RM /ED/nutzl/abc 16scht angegebenen File

Die ausfiihrende Shell iibergibt die Kommandos an den jeweils
zustidndigen File-Handler, nachdem tiberpriift wurde, ob das an-
gegebene Geriit tiberhaupt in 16schbare Files untergliedert ist
(siehe SD, DD-Befehl). Ist letzteres nicht erfiillt, so wird die An-
weisung mitsamt dem Rest der Kommandozeile zuriickgewiesen.
Wenn moglich erfolgt die Meldung von genaueren Fehlern durch
den File-Handler iiber dessen evtl. vorhandene ,, Report-Error¢-
Funktion.

Statt des Kommandos RM kann mit gleicher Wirkung auch ERASE
eingegeben werden.

198 3.7 Beschreibung der Bedienbefehle

’R MDI R‘ Remove Directory

SYNTAX: RMDIR pathlist-list

Beschreibung: Die mit dem Befehl MKDIR eingerichteten Directorys kénnen mit
dem Befehl RMDIR wieder entfernt werden. Falls das Directory
noch ein Directory oder File enthéilt, erscheint die Fehlermeldung

. directory active.

In diesem Fall sind zunéchst die in der Hierarchie weiter unten
stehenden Directories und Files zu entfernen.

pathlist-list: Es sind alle Geréte zuléssig, bei denen das entsprechende Bit im
Device-Wort (RMDIR erlaubt, siche SD-Befehl) gesetzt ist. Die
einzelnen Pfadlisten werden durch Kommata oder Leerzeichen
getrennt.

pathlist: Die pathlist hat die {iibliche Syntax, insbesondere sind Be-
schrankungen des verwendeten Filehandlers zu beachten. Siehe
dazu auch den Befehl MKDIR auf Seite 175.

Beispiele: Mit dem Befehl MKDIR wurde das Directory
/FO/USER1/PROJEKT1
vereinbart. Es besteht die Moglichkeit mit
RMDIR /FO/USER1/PROJEKT1
das Directory PROJEKT1 zu entfernen. Mit dem Befehl
RMDIR /FO/USER1

148t sich danach auch das Directory USER1 entfernen.

3.7 Beschreibung der Bedienbefehle 199

RTOS-filesystem definition ’R TOSFILE S‘

SYNTAX:

Beschreibung:

Beispiele:

Hinweis:

Hinweis:

RTOSFILES device, device,

Das mit device bezeichnete Gerit — typischerweise eine Floppy
oder Winchester — wird unter die Verwaltung des RTOS—UH-
Filemanagers gestellt. Wurde z. B. bisher die Floppy /F0/ als
Fremddiskette, z. B. von einem MS—DOS-Rechner stammend,
behandelt, so wird nach Absetzen des Befehles RTOSFILES /F0/
jetzt wieder eine RTOS—UH-Diskette im Laufwerk FO erwartet.

Eine Atari— oder MS—DOS—Diskette mit File PAPER.TXT soll
auf eine RTOS—UH-Diskette kopiert werden, ungeachtet der
evtl. spiteren Nachbehandlung wegen anderer Sonderzeichen
und Zeilenendekennung. Hinterher wird nur noch mit RTOS—
UH-Disketten gearbeitet.

MSFILES /F1/ F1 unter MS—-DOS—Verwaltung
RTOSFILES /F0/ FO unter RTOS—UH-Verwaltung
COPY /F1/PAPER.TXT>/F0/ Kopieren
RTOSFILES /F1/ Beide wieder unter RTOS—UH-Verwaltung

Wenn noch Files auf dem Gerét gedffnet sind, so wird der Be-
fehl nach Meldung ... directory active ... zuriickgewiesen.
Man kann aber das ,, Vergessen“ des nicht mehr benétigten File-
systems genau wie beim CF (Change Floppy)-Befehl erzwingen.
Dies erfolgt durch eine spezielle Pseudo—Pathlist:

SYNC /FO/ (siehe SYNC, zum Retten)
MSFILES /FO/FORGET (Vergifi alte Floppy)

Welches Filesystem auf der Floppy gerade giiltig ist, kann man
jederzeit iiber den Befehl FILES (z. B. FILES /F0/) erfragen,
da bei dessen Ausgabe die Verwaltungsstruktur mit erscheint —
auch dann wenn kein File geoffnet ist.

Wenn nicht fiir alle Laufwerke einer Warteschlange der gleiche
Filemanager zustindig ist (wie oben im Bsp.), so legt die Be-
treuungstask im Speicher eine Transfertabelle fiir die Zuordnung
Laufwerk<->Filemanager an, die iiber das S—-Kommando sicht-
bar ist, auch wenn kein File offen ist. Die Tabelle verschwindet
wieder, sobald der zustédndige Filemanager eine Verbindung her-
stellt und danach alle Verbindungen auf ihn selbst zeigen. Im
obigen Bsp. ist der Block hinterher noch existent, weil das letz-
te RTOSFILES vom MS—DOS-Filemanager ausgefithrt wird. Mit

200

3.7 Beschreibung der Bedienbefehle

RTOSFILES /F1,/F1 als letztem Befehl i. 0. Bsp. spart man folg-
lich einige Bytes Speicher ein.

Mit welcher Fileverwaltung Thr System startet, ist implemen-
tierungsabhéngig. Das Kommando hat mit den modernen Fi-
lehandlern seine frithere Bedeutung verloren: nach Inspektion des
Bootsektors schalten die neueren Filehandler erforderlichenfalls
automatisch auf den jeweils anderen um. Will man jedoch eine
Festplatte oder Diskette fiir RTOS—UH formatieren, so sorgt
dieser Befehl, abgesetzt vor dem FORM-Befehl, fiir das gewiinsch-
te Ergebnis.

3.7 Beschreibung der Bedienbefehle 201

Storage

SYNTAX:

S [-A[0]I-c[0]I-E[0]I-F[0]I-M[0]I-T[0]1]([-0]

Beschreibung: Es wird die Speicherbelegung des gesamten Systems aufgelistet.

Parameter:

adrl/ adr2:

type:

Damit ist es jederzeit moglich, sich einen Uberblick iiber die Sy-
stemauslastung und Belegung der einzelnen Speicherbereiche an-
zusehen. Aufeinanderfolgende gleiche ED-Blocke werden zusam-
mengefafit und bei adr2 mit einem + gekennzeichnet, um mehr
Ubersichtlichkeit zu gewiihrleisten.

Durch die Angabe von verschiedenen Parametern kann die
Speicherbelegung selektiv angezeigt werden, um z. B. bei grofle-
ren Mehrnutzersystem einen kurzen Uberblick zu bekommen.

A Kein Zusammenfassen von gleichen aufeinanderfolgenden
ED-Blocken

C Nur Anzeige von CWSP—Segmenten
E Nur Anzeige von EDTF-Segmenten
F Nur Anzeige von FREE-Segmenten
M Nur Anzeige von MDLE- und PMDL—Segmenten
T Nur Anzeige von TASK— und ATSK—Segmenten

O mit einem angehéngten 0 wird die Usernummer beriick-
sichtigt, d. h. dal nur die ,eigenen“ Sektionen angezeigt
werden.

Die einzelnen Ausgabezeilen haben folgendes Format:
adrl - adr2 type RESIDENT taskname filename
8—stellige hexadezimale Adresse

Siehe Tabelle auf der nichsten Seite.

202 3.7 Beschreibung der Bedienbefehle

MARK | Am Anfang und am Ende des von RTOS—UH verwalteten Be-
reiches steht je eine Speichersektion dieses Typs.

FREE | Diese Speichersektion ist nicht belegt.

TASK | Es handelt sich um den Code-Korper (oder Scheinkérper bei
Tasks im ROM) einer Task mit dem nachfolgend angegebenen
Namen.

ATSK | Eshandelt sich um eine Auto—Start—Task, die sofort beim System-
start lauffihig ist.

TWSP | Task-Workspace der angegebenen Task.

CWSP | Communication—-Element im Besitz der angegebenen Task. Falls
vorhanden, wird der File-Name des Elementes ausgegeben.

PWSP | Prozedur—Workspace der angegebenen Task.

MDLE | Es handelt sich um den Kopf eines Modules mit dem nachfolgend
angegebenen Namen. Dieser Name kann z. B. der bei PEARL-
Programmen mogliche Modulname sein.

EDTF | Dieses Segment ist als Editor—Textfile mit dem nachfolgend ange-
gebenen Namen im Speicher abgelegt.

PMDL | Das Segment ist ein PEARL-Modul, das mit den Optionen
CODE=$... ,VAR=$... des Compilers iibersetzt wurde. Das Mo-
dul ist nur zur Bearbeitung mit Hilfe des PROM-Befehls geeignet.

SMDL | Das Segment ist ein PEARL-Modul, das in der Sonderform
SHELLMODULE iibersetzt wurde und mindestens einen in PEARL
codierten Bedienbefehl enthélt.

7777 Die Sektion ist nicht identifizierbar. Entweder liegt eine mehrfach
Blockierung einer Task vor oder das Betriebssystem ist durch eine
illegale Operation eines Nutzers praktisch unmittelbar vor dem
Zusammenbruch. Sie sollten — soweit moglich — Thre Dateien
retten und einen RESET durchfiihren.

Tabelle 3.7: Kurznamen der Speichersektionen.

3.7 Beschreibung der Bedienbefehle 203

Set Device—Parameters

SYNTAX:

Beschreibung:

device:

SD device [+ hezadd--expression] wvalue

Die Parametrierung der durch device bezeichneten Datenstati-
on wird durch das (die) Byte(s) in value ersetzt. Bereits in der
Warteschlange (von PEARL-Programmen, sonst nur in aktueller
Bearbeitung) des Geriites stehende Ein— oder Ausgaben werden
dadurch nicht mehr veréndert. Die Wirkung erfolgt nur durch
Information gewisser Softwarepakete iiber den DVDSC—Trap.

Ein dem System bekannter Stationsname. Dabei wird nur eine
LDN generiert; /A1/ a8t sich also z. B. nicht anders als /B1/ oder
/C1/ parametrieren.

hexadd—expression: kann wie beim SM—Befehl benutzt werden, um z. B. das erste

value:

1.Byte:

Byte unverandert zu lassen etc.

Zur Zeit 2 Bytes mit funktionellen Bits. In der folgenden Tabelle
ist in Klammern exemplarisch vermerkt, welche Systemfunktio-
nen das entsprechende Bit beriicksichtigen.

$80 Die Station ist ,riickspulbar® z. B. ED, Fz, Hz.

$40 Die Station mufl vor der ersten Benutzung explizit mit
,open“ und nach der letzten mit ,,close* angesprochen wer-
den, etwa FO/F1.

$20 Jedem endenden CR soll ein LF angefiigt werden, etwa
A1(=B1, C1).

$10 Die Station ist ein dialogfahiges Datenterminal, etwa A1,
A2.

$08 Das Echo soll explizit unterdriickt werden, nur bei den Az,
Bz, Cz sinnvoll.

$04 Die Station erlaubt das Loschen bezeichneter Files, nur bei
Fz/Hz oder ED sinnvoll.

$02 Die Station erlaubt die Ausgabe von Daten.
$01 Die Station erlaubt die Eingabe von Daten.

204

3.7 Beschreibung der Bedienbefehle

2. Byte:

Beispiele:

Hinweis:

$80 Die Station akzeptiert ein explizites DIR oder FILES—
Kommando, nur Fz/Hz und ED.

$40 Die Station akzeptiert ein explizites FORM-Kommando, z. B.
Fz, Hz.

$20 Das CF—Kommando ist zugelassen.

$10 RMDIR, MKDIR moglich.

$08 SYNC, SEEK, SAVEP, TOUCH moglich.
$04 Error-Report kann angefordert werden.

$02 Editor ED: Das angeschlossene Terminal macht keinen au-
tomatischen Wrap am Zeilenende.

$01 Editor ED: Der Cursor soll iiber ESC-Sequenzen gesteuert
werden (VT-52).

SD /A2/ OB

A2 ist fiir Ein—/Ausgabe zugelassen, es wird kein Echo gemacht.
Diese Einstellung ist z. B. fiir eine Rechnerverbindung sinnvoll.

SD /A2/ 33

A2 ist ein dialogfiahiges Geriit, das jedem CR ein LF anhéngt und
fiir Ein—/Ausgabe zugelassen ist. Einstellung fiir ein Terminal.

SD /PP/ 02

Umparametrierung des Printer—Ports fiir einen Drucker, der
selbst ein LF nach jedem CRr generiert oder Ausgabe einer MS—
DOS-Datei, in der jede Zeile mit CR/LF endet.

SD /A1/+1 01

Anpassung des Editors an ein VT-52 Terminal (Cursorsteuerung
iiber ESC—Sequenzen).

Im Umfeld dieses elementaren Bedienbefehles sind Skripte ge-
brauchlich, die einem die miihselige Kodierung des Bitmusters
abnehmen.

3.7 Beschreibung der Bedienbefehle 205

Time—Sharing fiir Task’s ’S HAR E‘

Syntax:

Beschreibung:

Beispiele:

WICHTIG:

SHARE [PRIO integer3]

Der Befehl SHARE dient dazu, ein gleichzeitiges Abarbeiten von
gleich priorisierten Tasks zu ermoglichen.

Sind z. B. zwei Compiler vom Nutzer gestartet worden, so werden
diese normalerweise nacheinander bearbeitet, da sie die gleiche
Prioritdt haben. Damit sie gleichzeitig bearbeitet werden, wird
SHARE mit der PRIO Taskprio - 1 aufgerufen. Nachdem dieses
erfolgt ist, wird die Prozessorkapazitéit auf beide Compiler auf-
geteilt.

Ab dem erstmaligen Aufruf bleibt fiir die angegebene Task—
Prioritat die Time-Sharing-Funktion aktiv, bis die SHARE/zz-
Task entladen oder terminiert wird. Auch ein Abort unterbricht
nicht das Time—Sharing.

P zzzz > yyyy /* lauft mit Prio 20 */
P zzzz > uwwuu /* lduft mit Prio 20 */
SHARE /* jetzt werden beide bearb.x*/

Der Aufruf von SHARE richtet einen Sohnproze3 SHARE/zz ein,
der das eigentliche Scheduling ausfiihrt, indem jedem Prozef die-
ser Prioritédt der Prozessor fiir ca. 50 msec zugeteilt wird. Haben
Sie in Threm System noch Tasks auf hoheren Prioritéten laufen,
so entziehen diese natiirlich den Prozessor. Sind die hoher priori-
sierten Tasks zyklisch eingeplant, kann der Eindruck entstehen,
das Timesharing funktioniert nicht, weil eine héher priorisierte
Task immer dann lduft, wenn eine bestimmte Task im Timesha-
ring an der Reihe ist.

Der Aufruf von SHARE mufl mit einer um 1 hoheren Prioritéit er-
folgen, als der Level, der beeinflufit werden soll, damit die Share—
Task sofort aktiv wird.

Um z. B. die Prioritétsstufe 30 zu beeinflussen mufl
SHARE PRIO 29 eingegeben werden.

Standard Prioritdt fiir SHARE-Task ist 20 (also ein implizites
PRIO 19 beim Aufruf).

Um verschiedene Prioritéits—Level im Time-Sharing Betrieb zu
nutzen, konnen beliebig viele SHARE-Kommandos abgesetzt wer-
den.

206

3.7 Beschreibung der Bedienbefehle

SHELL Install Shell

Syntax:

SHELL [PRIO integer3]| [SZ hexnum6)| [path] [positparal

Beschreibung: Der Befehl SHELL dient dazu, eine skriptgesteuerte Shell ein-

Beispiel:

zurichten und diese an die Stelle der bisherigen priméren Shell
zu setzen. Mit path wird normalerweise das mitgelieferte Skript
adressiert, mit dem man sich eine Unix-dhnliche Shell erzeugen
kann. (siehe Seite 74)

Beim Aufruf dieses Skriptes iiber den Befehl SHELL gelten aufler
beim Sohnprozefinamen die gleichen Aufrufparameter wie beim
Aufruf iiber EX. Als Name erhilt der Sohnprozef3 ,, #BSHxz", wobei
zz die Usernummer des Aufrufers ist. Zusétzlich wird der Sohn-
prozef} als sekundére Shell in das Userenvironment eingetragen
und damit beim Anschlag der Taste ,CTRL A“ des Users fort-
gesetzt. Die primére Shell ist dann nur noch iiber die ,,BREAK“-
Taste erreichbar. Das SHELL-Skript sollte in einer Endlosschleife
Befehle einlesen, ausfithren und sich dann fiir den néchsten An-
schlag der Taste ,,CTRL A“ suspendieren. Damit kann man sich
eine Shell mit eigenem Environment und geringerer Prioritét ein-
richten. Die sekundére Shell kann mit dem EXIT-Befehl beendet
werden. Nach einem Warmstart lduft das SHELL-Skript neu an
und bleibt als sekundére Shell aktiv. Pro User ist nur eine se-
kundére Shell einrichtbar, der SHELL-Befehl darf nicht gestapelt
abgesetzt werden.

SHELL /HO/XD/SHELL;

3.7 Beschreibung der Bedienbefehle 207

Show state of specified Task SHOW / SH

SYNTAX: SHOW taskname, taskname, . ..
SH taskname, taskname, ... (Kurzform)

Beschreibung: Es wird eine Zustandszeile fiir jede der angegebenen Tasks ausge-
geben. Der Aufbau dieser Zustandszeile entspricht genau denen
beim L-Kommando. Wenn einzelne Tasks der Liste nicht vor-
handen sind, so erfolgt die Meldung ,,... not loaded®.

Beispiele: SHOW abcd ASMB12
SH PCOM45

208

3.7 Beschreibung der Bedienbefehle

SYNTAX:
Beschreibung:

adr

value:

Hinweis:

Set Memory

SM adr value value ...

Es kann der Inhalt einer oder mehrerer Speicherzellen veréndert
werden. Ist value eine n—stellige Hexadezimalzahl, so werden
(n+1)//2 Bytes beginnend bei adr abgelegt, wobei der Abla-
gezeiger fiir den néchsten Wert wvalue anschliefend um diesen
Betrag weiterriickt.

1...8-stellige Hexadezimalzahl, mit der die Adresse der Speicher-
zelle angegeben wird. Es konnen auch mehrere Hexadezimalzah-
len angegeben werden, die durch ein +/- Zeichen verbunden sein
miissen und vom System addiert/subtrahiert werden.

1...8-stellige Hexadezimalzahl, mit der der neue Inhalt der Spei-
cherzelle angegeben wird.

Der Prozessor greift im Usermode auf den Speicher zu. Damit
sind je nach aktueller Hardware nicht alle Adressen erreichbar.
Man erkennt dies an der Shellreaktion ,,... bus error®. Aus
diesem Grund existiert noch eine erweiterte Form als SMX-Befehl,
der typischerweise transient ausgefithrt wird. Mit dem SMX sind
dann folgende Zusatzparameter (unmittelbar hinter dem Befehl,
vor der Adresse) moglich:

-Sx Es wird festgelegt, dal der Zugriff im Supervisor—-Mode des
Prozessors ausgefiithrt wird.

-x Zugriff im User—-Mode durchfiihren.
-xB Bytezugriff mittels Befehl MOVE.B.
-xW Wortzugriff mittels Befehl MOVE.W.
-xL Langwortzugriff mittels Befehl MOVE.L.
-xM Zugriff mittels Befehl MOVEP.W.
-xP Zugriff iiber POT-Trap — fiir Pbus Ausgabe.

VORSICHT!

Diese Anweisung darf nur mit grofiter Sorgfalt benutzt wer-
den, da der ausfithrende Shellprozefl nicht priift, ob evtl. lebens-
wichtige Daten oder Zeiger des Systems zerstort werden. Diese
Zerstorungen konnen zunichst verborgen bleiben und sich erst
spater bemerkbar machen.

3.7 Beschreibung der Bedienbefehle 209

Beispiele:

SM 14EAF 02 AFFE12CD 3 4

Ab der Adresse $14EAF wird $02AFFE12CD0304 abgelegt.
SM 1000 (keine Operation)

SM 6000+10 4

Auf Adresse $6010 wird das Byte $04 abgelegt.

SMX -SB 400 45

Auf Adresse $400 wird mit einem Supervisor Byte—Zugriff das
Byte $45 abgelegt.

SMX -W 3000 5 6
Ab Adresse $3000 wird mit Wortzugriffen $00050006 abgelegt.
SMX-L 80000 1 2 30

Ab Adresse $80000 wird mit Langwortzugriffen
$000000010000000200000030 abgelegt.

210

3.7 Beschreibung der Bedienbefehle

SUSPEND/SU Suspend Task

SYNTAX:

Beschreibung;:

Beispiele:

SUSPEND taskname, taskname, . ..
SU taskname taskname ... (Kurzform)

Die angegebenen Tasks werden in den Zustand ,,blockiert®, war-
tend auf CONTINUE, gebracht.

Die ausfiihrende Shell priift, ob die angegebenen Tasks vorhan-
den sind, ggf. erfolgt die Meldung ,,... not loaded®. Eine wei-
tere Analyse des aktuellen Taskzustandes findet nicht statt, d. h.
die Tasks werden im aktuellen Zustand eingefroren. Wartete die
angesprochene Task z. B. auf die Zuteilung einer Semaphore, so
hat sie anschlieffend eine Doppelblockierung. Ihr Zustand wird
dann vom L bzw. SHOW Kommando mit 7777 gezeigt.

SUSPEND ABCD TEST

SU init

3.7 Beschreibung der Bedienbefehle 211

Synchronize

SYNTAX:

Beschreibung:

Beispiele:

Hinweis:

Achtung:

File-System

SYNC Floppy-/Winch-devicelist

Verwaltungsdaten im Speicher und Inhalt auf den bezeichneten
Geréten werden aktuell abgeglichen, so dafl bei einem Netzausfall
die Daten gesichert sind. Die Zustédnde der Files werden dabei
nicht verdndert, die Files also auch nicht geschlossen.

Solange auf einem Massenspeicher (Diskette, Festplatte) noch
geofnete Files existieren, ist nicht gesichert, dafl die zuletzt ge-
schriebenen Daten auch wirklich bereits auf dem Medium abge-
legt wurden. Die Filehandler sparen auf diese Weise erhebliche
Zeit fiir die Kopfpositionierung. Dieser Befehl erzwingt das Hin-
ausschreiben aller Daten, die bisher nur im Speicher des Rechners
(,,Disc-cache“) angelegt oder verdndert wurden.

Der Befehl darf gegeben werden, wann immer man das fiir sinn-
voll hilt. Eventuell passiert auf den Befehl hin iiberhaupt nichts,
etwa wenn man nur von dem Gerét gelesen hat.

SYNC /HO/ /H1/ /H2/ /FO/

Hier werden alle ggf. offenen Files auf den Winchester— und Flop-
pylaufwerken synchronisiert, d. h. fiir diesen Zeitpunkt besteht
Ubereinstimmung zwischen der File- Verwaltung im Speicher und
dem Inhalt auf dem Medium.

Der Befehl eignet sich auch, um eine Diskette in grofier Eile ent-
nehmen zu koénnen. Dabei wird nach dem SYNC die Verwaltungs-
information gel6scht, und man kann danach die Floppy heraus-
nehmen.

SYNC /FO0/;CF /FO/FORGET;CLOCK;

Der anschliefende Clock—Befehl dient nur dazu, um den Ab-
schlufl der Aktion erkennbar zu machen.

Sie konnen mittels eines DEFINE-Befehles einen SYNC zyklisch
einplanen, um im Falle eines Rechnerabsturzes oder Stromaus-
falls die Gefdahrdung ihrer Daten auf der Festplatte zu verringern:

DEFINE.asyn PRIO 100--SYNC /HO/ /H1/;ALL 30 SEC asyn

Alle 30 Sec werden die Directories auf den Winchesterlaufwerken
auf den aktuellen Stand gebracht. Mit der Angabe der niedrigen

212 3.7 Beschreibung der Bedienbefehle

Prioritdt wird erreicht, daf3 ein evtl. laufender Datenstrom in
Richtung Platte nicht gestort wird.

3.7 Beschreibung der Bedienbefehle 213

Terminate Task TERMINATE/T

SYNTAX:

Beschreibung;:

Beispiele:

TERMINATE taskname taskname ...
T taskname, taskname ... (Kurzform)

Die angegebenen Tasks werden beendet. Der von ihnen be-
legte Prozedur—Workspace wird an das System zuriickgegeben.
Communication—Elemente, die nicht in einer Ausgabeschlange
oder in Bearbeitung einer Inputtask sind, werden ebenfalls sofort
an das System zuriickgegeben. Die automatische Riickgabe aller
anderen Communication-Elemente nach Abschlufl der Ein— oder
Ausgabe wird vorbereitet. Ist die Task nicht vom Typ RESIDENT,
so wird auch der von ihr belegte Task—Workspace an das System
zuriickgegeben.

Semaphore, die von der Task belegt wurden, bleiben wie bei der
PEARL-Anweisung TERMINATE unberiihrt und kénnen somit an-
dere Tasks dauerhaft blockieren.

Die ausfiithrende Shell priift nicht, ob die angegebene Task exi-
stiert oder ihr Laufzustand eine Terminierung ermoglicht, also
sie nicht im Zustand DORM ist. Eine Fehlermeldung wird ggf.
vom Betriebssystemkern erzeugt. Meldung: ... not loaded
(terminate)“.

TERMINATE TEST INIT
T RUN

214 3.7 Beschreibung der Bedienbefehle

'T O UC H| Touch a File

SYNTAX: TOUCH pathlist-list (Form A)
TOUCH timepara datepara pathlist-list (Form B)
TOUCH datepara timepara pathlist-list (Form B)
TOUCH -R pathlist-list (Form C)

Beschreibung: Mit diesem Befehl kann man den (scheinbaren) Erstellungszeit-
punkt von selektierten Files aktualisieren, willkiirlich setzen oder
sich ausgeben lassen.

Form A: Die in der pathlist—list bezeichneten Files erhalten das aktuelle
Datum und die aktuelle Zeit aus dem Betriebssystem als neues
“Erstellungsdatum®. Inhaltliche Anderungen an den Files wer-
den nicht vorgenommen.

Form B: Die in der pathlist-list bezeichneten Files erhalten als neues ,,Er-
stellungsdatum* die mit timepara und datepara angegebenen
Werte. Die Syntax dieser Parameter entspricht derjenigen bei
CLOCKSET und DATESET. Bei der Uhrzeit diirfen die Sekunden feh-
len, da sie ohnehin nicht im Filesystem abgelegt werden konnen.
Fehlt einer der beiden Parameter, so wird er durch den aktuel-
len Wert aus dem Betriebssystem ersetzt. Will man z. B. nur die
Uhrzeit verdndern, muf} neben der neuen Uhrzeit das alte Datum
explizit angegeben werden.

Form C: Es wird fiir jeden File der pathlist-list Datum und Uhrzeit der
letzten Anderung bzw. die letzten mit TOUCH abgelegten Daten
ausgegeben.

Hinweis: Die Bedeutung des Befehles in der ,Form A“ liegt bei den so-

genannten ,, Make“-Skripten: durch einen ,, Touch“ kann man die
erneute Einbeziehung des Files in Ubersetzerldufe erzwingen.

Die ,Form B“ kann fiir Archivierungszwecke interessant sein,
wenn auf Grund irgendwelcher Kopierwege das Erstellungsda-
tum nicht mehr mit Protokollangaben iibereinstimmt. Auch 148t
sich damit natiirlich ein ,jewig neuer“ File simulieren, wenn man
den Zeitpunkt in die Zukunft verlagert.

In der ,,Form C* schlieflich ist der Befehl eine grofie Hilfe, wenn
man schnell priifen moéchte, ob ein bestimmtes Duplikat erneu-
ert werden muf}, weil es inzwischen veraltet ist. Innerhalb von
Shellskripten ist diese Form des Befehles noch in anderem Zu-
! — sammenhang interessant: es ist die schnellste Moglichkeit, um

3.7 Beschreibung der Bedienbefehle 215

Beispiel:

festzustellen, ob es einen bestimmten File iiberhaupt gibt. Der
File wird ndmlich nicht gedffnet oder sonstwie in Status oder
Inhalt verdndert. Im Gegensatz dazu wird bei einem versuchs-
weisen ,,REWIND“ der erste Datenblock eingelesen, und der File
bleibt geoffnet.

Bei der Anwendung des Befehles in der ,,Form C* {iber das Netz
wird im Fehlerfall, wenn der File im fernen Rechner nicht exi-
stiert oder der Zugriff nicht erlaubt ist, Datum und Uhrzeit des
eigenen Rechners eingesetzt. Man kann daher iiber das Netz
mit TOUCH die Existenz des Files und die Zugriffsberechtigung
nicht sicher feststellen. Der Grund dafiir liegt darin, daf} dltere
Netzsoftware den zugehorigen I/0O-Befehl nicht beherrschte und
nur durch diese Strategie der COPY-Befehl (er benutzt intern den
TOUCH-I/O-Befehl) auch mit solchen Zielrechnern méglich ist.

TOUCH /HO/TEX/DOCU2.TEX

TOUCH 12-01-1994 13:45:00 /FO/testfile /FO/backup
touch 12:00 /ed/test3 (Datum von heute einsetzen)
TOUCH -R /ED/GRAFF5 (hier antwortet die Shell)

216

3.7 Beschreibung der Bedienbefehle

’T RAC E‘ Switch Task to Trace Mode

SYNTAX:

Beschreibung:

Form A:

Form B:

TRACE taskname adr (Form A)
TRACE taskname L linenr (Form B)
TRACE taskname L linenr, linenr (Form B)

Die angegebene Task wird in den Hardware—Trace-Mode
iiberfithrt (Form A) bzw. die Programmzeileniiberwachung wird
eingeschaltet (Form B). Sobald die durch adr (Form A) angege-
bene Adresse, bzw. eine der max. zwei angebbaren Zeilennum-
mern (Form B) iiberlaufen wird, wird die Task durch das Be-
triebssystem suspendiert und die Meldung

taskname: adr BREAKPOINT (Form A) oder
taskname:L=14inenr BREAKPOINT SUSPENDED (Form B)

ausgegeben. Das Erreichen des Haltepunktes 16scht diesen nicht.
Nach einer CONTINUE-Anweisung kann also der gleiche Halte-
punkt erneut angelaufen werden.

Der Befehl d&ndert nichts am Taskzustand einer Task, d. h. auch
inaktive oder eingeplante Tasks diirfen angesprochen werden.

War die Task bereits im Trace—Mode, so werden alle alten
Haltepunkte geloscht. Eine vollsténdige Aufhebung der Pro-
grammzihler— (Form A) oder Zeileniiberwachung ist nur mit Hil-
fe des NOTRACE-Kommandos moglich. Auch nach einem Warm-
start des Systems sind bei allen Tasks die Trace-Modi geldscht.

Die Task lduft im TRACE—Mode wie in ,, Zeitlupe® ab. Jeder Ma-
schinenbefehl 16st eine Trace—Exception aus, in der der Adref3-
vergleich erfolgt.

Instruktionen nach TRAPs koénnen nicht als Haltepunkte er-
kannt werden.

Das Diese Variante eignet sich fiir PEARL-Programme und
Shellskripte. Ein PEARL-Programm muf zumindest in der Zei-
le, bei der die Task anhalten soll, mit der Markierungsoption
/*+Mx/ ohne den Compiler-Mode NOLSTOP {iibersetzt sein.

Die Task wird suspendiert, sobald die erste in der angegebenen
Zeile (bzw. einer der beiden, falls zwei angegeben waren) be-
ginnende Anweisung erreicht wird. Die Anweisung wird jedoch
noch nicht ausgefithrt, sondern als erste nach der CONTINUE-
Anweisung ausgefiihrt.

3.7 Beschreibung der Bedienbefehle 217

adr:

linenr:

Beispiele:

Hinweise:

Die Laufgeschwindigkeit der Task wird durch das Zu- oder Ab-
schalten des Line—Trace-Modus praktisch nicht geéindert. Aller-
dings ist das Compilat an sich bereits durch Benutzung der +M-
Option um ca. 5 bis 500% verlangsamt.

1...8-stellige Hexadezimalzahl, mit der die Adresse des Break-
points angegeben wird.

1...5-stellige Dezimalzahl, die die Programmzeilennummer des
Haltepunktes bezeichnet. Hohere Zeilennummern als 34575
konnen nicht mit Erfolg adressiert werden, da die interne, zu
fritheren Systemversionen abwértskompatible Codierung der Zei-
lennummer durch den Compiler dies nicht zulésst. Beide Halte-
punkte sind vollig gleichwertig. Wird nur einer angegeben, so
existiert ein ggf. frither eingegebener zweiter nicht mehr.

TRACE TEST 2346

Die Task TEST wird in den Hardware—Trace iiberfithrt und soll
bei Adresse $2346 suspendiert werden.

TRACE ABCD L 55 76

Die Hochsprachtask ABCD soll beim Erreichen der Zeilen 55 oder
76 suspendiert werden.

Mit dem Hardware—Tracer kénnen durchaus auch Hochsprach—
Codierte Tasks iiberwacht werden, wenn folgendes beachtet wird:

e Virtuelle Befehle konnen nicht erkannt werden.

e Der erste Befehl nach einem virtuellen Befehl kann nicht
als Haltepunkt dienen.

e Der To—Virtual-Befehl kann benutzt werden.

Werden Adressen oder Zeilennummern in Prozeduren angewéhlt,
so beeinflufit die TRACE-Anweisung natiirlich die anderen Tasks
nicht, die diesen Haltepunkt tiberlaufen.

Es ist moglich — bei unabhéngig compilierten Modulen —, dafl
Programmzeilennummern mehrfach vorhanden sind. In diesem
Fall — den man moglichst mit Hilfe der SETLINE-Option des
Compilers vermeiden sollte — ist nach Erreichen des Breakpoints
zusiétzlich der PC (oder ersatzweise A6) zu inspizieren, um fest-
zustellen, welche der gleichnumerierten Zeilen getroffen wurde.
Géngige und bewihrte Praxis ist hier, mit Hilfe von SETLINE die

218

3.7 Beschreibung der Bedienbefehle

Tausenderstelle der Startzeilennummer als Modulidentifikator zu
verwenden.

Mit der +M-Option iibersetzte Programme konnen nur durch
Neucompilation ohne diese Option wieder auf maximale Lauf-
geschwindigkeit und minimalen Code gebracht werden.

Im Gegensatz zu anderen Konstruktionen wird der Code einer
Task oder Prozedur durch die Anwendung der TRACE-Anweisung
im Speicher nicht verdndert.

3.7 Beschreibung der Bedienbefehle 219

Trigger Interupt ’T RIGGE R‘

SYNTAX:

TRIGGER EV hexznum8

Beschreibung: Séamtliche Interrupts, die durch das Bitmuster von hexnum8 mit

hexnums:

Beispiele:

Hinweis:

einer ,,1“ selektiert werden, passieren die durch ENABLE/DISABLE
eingestellte Interruptmaske des Systems. Ist dort keiner der
durch hexnumé8 ausgewéhlten Interrupts freigegeben, so ist die
Anweisung ohne Wirkung. Das System unterscheidet nicht, ob
ein Interrupt durch TRIGGER oder durch die Hardware ausgeltst
wurde. Diese Anweisung eignet sich also hervorragend zum Aus-
testen eines interruptgesteuerten Programms.

1...8-stellige Hexadezimalzahl, die das 32 Bit Ereignismuster be-
schreibt. Bei weniger als 8 Stellen werden links Nullen ergénzt.

Vorgeschichte: WHEN EV 3 C TEST; ENABLE EV 7; WHEN EV 6
XYZ;

TRIGGER EV 1 die Task TEST wird fortgesetzt.
TRIGGER EV 4 die Task XYZ wird aktiviert.
TRIGGER EV 2 TEST wird fortgesetzt, XYZ aktiviert.

TRIGGER EV FFFFFFFF alle ,enabled“ Interrupts werden gefeu-
ert.

Die TRIGGER-Anweisung entspricht der gleichnamigen PEARL-
Anweisung.

220 3.7 Beschreibung der Bedienbefehle

Type a File

SYNATX: TYPE device-file-spec

Beschreibung: Es wird der durch die device-file-spec angegebene File auf dem
USER-Terminal ausgelistet. Das USER—Terminal ist immer die
Schnittstelle, von der der Befehl aufgerufen wurde.

Beispiele: TYPE /HO/mein/mist

Es wird der File mist von der Festplatte /JHO/ im Subdirectory
mein auf dem Terminal ausgegeben.

Bemerkung: Mittels 0-Kommando kann die Ausgabe auch umgelenkt werden.
In Wirklichkeit ist das Kommando ein ,,COPY“-Befehl, nur mit
anderen Default-1/O-Parametern. Mit den Parametern SI, CO,
SC kann der Befehl alle Moglichkeiten von COPY nutzen. Siehe
dazu Seite 115, mit der Beschreibung von COPY.

3.7 Beschreibung der Bedienbefehle 221

Unload Tasks or Modules ’U NLOA D‘
SYNTAX: UNLOAD [-A] taskname modulmname ...modulname*
Beschreibung: Es werden die in der Liste angegebenen Namen in der System-

Parameter:

taskname:

verwaltung der Tasks und Module gesucht. Existiert ein Name
nicht, so wird die Meldung ,,. .. not loaded* abgesetzt und das
Kommando mit dem n#chsten Element fortgesetzt. Wurde eine
Task oder ein Modul von einem anderen Nutzer geladen oder
zuletzt aktiviert, wird der Befehl nicht ausgefiihrt!

Soll ein Programmpaket, das von einem anderen Terminal (ande-
rer User) geladen wurde, entladen werden, so ist der Parameter
-A anzugeben. Eine Uberpriifung auf gleiche User findet dann
nicht mehr statt, so dafl auch Tasks anderer User entladen wer-
den koénnen. Ebenso sollte verfahren werden, wenn ein Programm
von mehreren Usern gemeinsam genutzt wird.

Die Task wird ausgeplant, gepufferte Aktivierungen werden
geloscht und anschliefend wird, falls erforderlich, die Task termi-
niert. Dann verschwindet sie endgiiltig aus der Verwaltung von

RTOS-UH.

modulname: Folgt dem Modulnamen kein *, so wird nur die dem Modulnamen

Beispiele:

Hinweise:

zugeordnete Speichersektion entfernt. Vorsicht bei PEARL-
Modulen!! Dies kann zum Zusammenbruch des Systems fiihren,
falls anschliefend noch Tasks auf Modulvariablen oder Daten-
stationen in dieser Sektion zugreifen.

Folgt dem Modulnamen ein *, so werden sowohl die Modulsekti-
on als auch sdmtliche (!) in unmittelbarer Speicherfolge liegende
Tasks entfernt. Dieser Fall ist hauptséchlich fiir das groBziigige
Aufrdumen im System gedacht und verlangt eine gewisse Vor-
sicht, da man vorher feststellen muf}, an welcher Stelle die er-
ste Nichttasksektion in der Kette steht. Eine logische Zugehorig-
keit der mitentladenen Folgetasks zu dem Modulnamen kann die
Shell nicht tiberpriifen! Allerdings kann nur durch das ungliick-
liche Zuladen von assemblerkodierten reinen Tasksektionen hier
in der Praxis Ungemach entstehen.

UNLOAD TEST KALAx BAUER

Systemtasks konnen weder versehentlich noch absichtlich beein-
fluft werden. Bereits in der Ausgabeschlange stehende Com-
munication—Elemente einer Task verbleiben dort und werden

222 3.7 Beschreibung der Bedienbefehle

weiter bearbeitet, allerdings ist der Task—ID gel6scht, so daf als
Besitzer (RT0S) beim S—Befehl ausgegeben wird. Hingende Ein-
gaben miissen abgeschlossen sein, damit das ,,CE“ frei wird.

3.7 Beschreibung der Bedienbefehle 223

Wait for following statements WAIT

SYNTAX:

WAIT

Beschreibung: Der Shellprozef setzt sein individuelles , Waitflag®. Alle fol-

Beispiel:

!

!

—

genden Befehle bis zum Ende der Anweisungszeile werden nun
sequentiell abgearbeitet, solange sie den Fehlerstatus ,o0.k.“
zuriickgeben. Das Kommando zwingt den ausfithrenden Shell-
prozefl bei Befehlen, die Sohnprozesse generieren (z. B. P, COPY,
AS), in einen Wartezustand (,,SEMA®) bis zum reguléren oder ir-
reguliren Ende des Sohnprozesses. Zum Unterschied zwischen
WAIT und ,,--“ (Doppelminus) siehe Seite 66.

WAIT; P /ed/test lo liste; load;

Erst wenn der Compiler fertig ist und keinen Fehler festgestellt
hat kommt es zur Ausfithrung des ,,1oad“-Befehles.

Gibt der Sohn, auf den der Shellprozefl wartet, den Fehlerstatus
»fehler* zuriick, so meldet die Shell sich mit ,,.... operation
failed® {iber Stderr und unterldfit die Ausfithrung der rest-
lichen Anweisungen in der Zeile. Auch wenn der Sohn durch
,TERMINATE® von irgendwoher gewaltsam beendet wurde, gibt
dieser ebenfalls den Status ,fehler an die Shell zuriick, und die
Shell ist ebenfalls wieder entblockiert. Gleiches gilt im Falle se-
kundérer Shellprozesse fiir beliebige Vater-Sohn-Ketten: die gan-
ze Kette wird riickwérts freigegeben.

Auch wenn die Shell scheinbar auf eine Semaphore (,,SEMA“) war-
tet, so gibt es dennoch nirgendwo eine entsprechende Speicherzel-
le: Der Laufzustand des Sohnes selbst ist die blockierende Grofle.
Nach System-Abort und auch nach dem , Notruf* der Shell iiber
die BREAK-Taste ist daher auch der Systemzustand wieder ganz
normal.

Auf die Beendigung freier Tasks, die nicht erst durch ein nach-
folgendes Kommando entstehen, kann mit diesem Befehl nicht
gewartet werden. Zwar benutzt WAIT intern den WFEX-Trap, wen-
det ihn aus Sicherheitsgriinden jedoch nur eingeschrankt an.

224

3.7 Beschreibung der Bedienbefehle

WHEN When event activate or continue given Task
SYNTAX: WHEN EV hexznum8 ACTIVATE taskname [PRIO integer3]

Beschreibung:

hexnums:

Beispiele:

WHEN EV hexznum8 CONTINUE taskname
WHEN EV heznum8 taskname [PRIO integer3]
WHEN EV hexznum8 C taskname

Bereits bestehende Einplanungen fiir eine Aktivierung (bei . ..
ACTIVATE) bzw. zur Fortsetzung (bei ... CONTINUE) werden
geloscht und die angegebene Einplanung fiir den mit hexnum8
bezeichneten Prozefiinterrupt wird eingetragen. Wird bei ...
ACTIVATE keine Prioritét angegeben, so wird die taskeigene Prio-
ritdt eingesetzt. Die aktuelle Prioritdt einer gerade laufenden
Task wird dadurch jedoch nicht veréndert, sondern erst, wenn
die Einplanung zur Aktivierung fiihrt.

1...8-stellige Hexadezimalzahl, die das 32 Bit Ereignismuster
beschreibt. Die Aktivierung bzw. Fortsetzung erfolgt, wenn
das Bitmuster eines Interruptereignisses (bzw. einer TRIGGER-
Anweisung) mindestens ein gesetztes Bit gemeinsam mit dem
durch heznum8 angegebenen Ereignismuster besitzt (d. h. wenn
die ,,UND“~Verkniipfung nicht 00000000 ergibt. Bei weniger als
8 Stellen werden links Nullen ergéinzt.

WHEN EV 2 XYZ PRIO 20
WHEN EV FFFFFFFF CONTINUE ABCD

ABCD wird bei einem beliebigen Prozefinterrupt, sofern er ,ena-
bled* ist, fortgesetzt.

3.7 Beschreibung der Bedienbefehle 225

Who has shell access WH O
Syntax: WHO
Beschreibung: Es werden alle Prozesse mit ihrem aktuellen Laufzustand und ih-

Beispiel:

! —

rer User-ID aufgelistet, die dem System als primére Shellprozesse
bekannt sind. Sekundére Shellprozesse kann man mit diesem Be-
fehl nicht erkennen. Wenn sich ein oder mehrere Nutzer iiber ein
Netz eingelogged haben, so erscheinen die entsprechenden tem-
poriren priméren Shellprozesse ebenfalls in der Liste. Das Aus-
gabeformat entspricht genau dem Zeilenformat beim L-Befehl,
der auf Seite 153 beschrieben ist.

WHO;

Wenn der primére Prozefl mit Hilfe des optionalen SHELL-Befeh-
les abgehéngt wurde, tibernimmt ein sekundéarer Shellprozef} sei-
ne Funktion. Weil der urspriingliche (primére) Shellprozefi wei-
terhin existiert, erscheint er auch noch in der ausgegebenen Liste.
Er kann ja auch durch BREAK noch immer gerufen werden. In der
Extrazeile mit dem Vorspann ,You:“ erscheint in solchen Féllen
jedoch nicht der primére Prozefl, der zu dem Terminal gehort.

In der ,,You:“-Zeile wird in jedem Fall der gerade tatsdchlich
aktive Prozefl ausgegeben. Hier kann darum ausnahmsweise auch
ein sekundérer Shellprozefl beschrieben werden.

226 3.7 Beschreibung der Bedienbefehle

(Leere Seite vor neuem Kapitel)

Kapitel 4: Der Editor RT0S-WORD

4.1 Einleitung

Der Editor RT0S-WORD erméglicht ein komfortables Editieren von beliebig
grofien und einer sehr hohen Anzahl von Texten. Jeder zu bearbeitende Text
muf allerdings komplett im RAM gehalten werden, wobei eine Fragmentierung
des Textes erlaubt ist (macht RTOS-UH bei Bedarf automatisch). Liegen die
zu bearbeitenden Texte auf einer Floppy bzw. Harddisk oder auf einem iiber
ein Netzwerk angeschlossenen Rechner, legt RTOS-WORD eine Textkopie auf
dem Device /ED des eigenen Rechners ab. Dadurch ist ein Verlassen ohne Ab-
speichern moglich. Liegt das File direkt auf /ED, arbeitet RT0s-WORD direkt
auf der Datei und erspart RTOS-UH die Kopie im eigenen RAM. In diesem
Fall ist zwangslaufig ein Verlassen nur mit Abspeichern mdoglich.

Die maximal erlaubte Spaltenzahl des zu editierenden Textes betréigt 231 (au-
tomatische Quelltextanpassung durch Umknicken beim Einlesen), die Zeilen-
zahl ist nur durch den Speicherplatz begrenzt. Allerdings kénnen nur die ersten
65500 Zeilen verindert werden. Der Text darf alle Textzeichen enthalten, aller-
dings werden nicht darstellbare Zeichen durch ein ,@“ im Fenster dargestellt.
Die Standardgrofle des Fensters betrégt 80 Spalten mal 25 Zeilen.

Jedem Text ordnet RTOS-WORD einen Zeilenpuffer zu, mit dem sehr schnell
gearbeitet werden kann. Weiterhin gibt es einen gemeinsamen Blockpuffer aller
Texte, der als Zwischenspeicher fiir verschiedene Blockoperationen und dem
Austausch von Blocken zwischen den Texten dient.

Eine Besonderheit ist die Fernsteuerung. Uber das Device /VO liBt sich der
Editor fernsteuern, d. h. beliebige Befehlskombinationen behandelt der Editor
wie Nutzereingaben. Eine Ausfiihrung von Batch-Dateien ist ebenfalls moglich.

Der Editoraufruf WE beinhaltet eine Umschaltung auf ein eigenes Editorfen-
ster, falls ein Window-Manager (WiM) im System vorhanden ist. In diesem
Fall (Window-Modus) arbeitet der Editor mausunterstiitzt (Pull-Down-Meniis,
Cursorpositionierung, diverse Parametereinstellungen). Jeder Text erhélt sein
eigenes in der Grofle einstellbares Fenster, weiterhin gibt es ein Gruppenfenster,
das eine Ubersicht aller gleichzeitig bearbeiteten Texte gibt und auch der Um-
schaltung zwischen den Texten dient. Der Nutzer hat dann auch eine weitere
Entscheidungsfreiheit bei der Bearbeitung mehrerer Texte. Er kann wahlweise

227

228 4.2 Erste Schritte

mehrere Editoren iiber WE aufrufen (verschiedene Editor-Tasks, kein gemeinsa-
mer Blockpuffer, kein gemeinsames Gruppenfenster) oder mehrere Texte mit
einer Editor-Task bearbeiten.

4.2 Erste Schritte
4.2.1 Offnen einer Datei

Bereits beim Aufruf kann der Benutzer dem Editor einige Parameter iibergeben.
An dieser Stelle sollen erst einmal die Aufrufformen beschrieben werden, die
maximal den Dateinamen als Ubergabeparameter enthalten:

WE [device/][subdirectories/]filename (Form 1)
WE SC [device/] [subdirectories/]filename (Form 2)
WE (Form 3)

Ist ein WiM im System vorhanden, kann ein eigenes Editorfenster durch die
folgenden Aufrufe unterdriickt werden!.

WD [device/] [subdirectories/]filename (
WD SC [device/] [subdirectories/]filename (
WD (Form 3
WORD [device/][subdirectories/]filename (
WORD SC [device/][subdirectories/]filename (
WORD (

Die folgenden Hinweise sollen diese drei Formen néher erldutern:

e WE unterscheidet sich von den beiden anderen Befehlen dadurch, daf}
RT0S-WORD ein eigenes Fenster fiir jeden Text 6ffnet, wenn ein WiM
im System vorhanden ist (Vorsicht, falls Sie sich an einem Rechner ein-
geloggt haben !!l). Das eigene Textfenster 148t sich gemaf Abschnitt 4.4
unterdriicken.

e Fehlt in Form 1 oder Form 2 die Deviceangabe, setzt die Shell das
Working-Directory und ein ,,/“ vor den Ubergabeparameter.

e In der Form 1 sind die Dateinamen SI; LO, SC, AD, SZ und PRIO
(auch kleingeschrieben) ohne Device oder Subdirectory verboten, da die-
se Schliisselworte zur Spezifikation weiterer Ubergabeparameter dienen
(Fehlermeldung: ,wrong command“). Als Dateinamen sind sie erlaubt,
wenn ein Device und/oder mindestens ein Subdirectory angegeben ist.

e Alle weiteren Ubergabeparameter sind in Abschnitt 4.4 erléutert.

1Sobald RTOS-UH die Information bereitstellt, ob RT0s-WORD auf einem Terminal oder
auf einer Terminalemulation eines WiMs lduft, verhalten sich die Bedienbefehle WD, WORD
genauso wie WE

4.2 Erste Schritte 229

e Das Device, auf dem die Datei liegt, mufl riickspulbar sein. Ist das
nicht der Fall, erscheint die Fehlermeldung ,Sorry, can’t work on
this device. Bye, Bye!“

e In der Form 3 bearbeitet RT0s-WORD das File /ED/SI, falls die aufru-
fende Shell die User-ID ,,1“ besitzt, sonst /ED/SIz, wobei x die User-ID
darstellt.

Im Normalfall startet der Editor bei Beachtung der o. a. Hinweise ohne weitere
Fehlermeldungen. Sieht sich RT0s-WORD gezwungen, weitere Fehlermeldungen
auszugeben, finden Sie eine Erklarung ab Seite 272.

Ist die Datei vorhanden, 6ffnet RTOS-WORD diese, sonst erscheint in etwa
folgendes Bild:

RTOS-UH W O R D

Version 2.2-e
(c) 1988-1996 IRT, Hannover

Help with “XH

[N] edit a new File
[X] exit before opening

Sie miissen nun wihlen, ob Sie eine Programm-Datei editieren oder zum Be-
triebssystem zuriickkehren wollen. Entscheiden Sie sich fiir eine Bearbeitung
einer Datei, 6ffnet RTOS-WORD diese und schreibt in die erste Zeile ,*File
was opened by RTOS-WORD.“

Sollte wider Erwarten statt dem [N] ein ONA erscheinen, ist bei dem Terminal
oder dem Fenster der falsche ASCII-Satz eingestellt. Dieses stort RT0s-WORD
nicht weiter, die eckigen Klammern werden nur anders angezeigt.

Wird eine bereits vorhandene Datei editiert, sind Zeichen geméf Tabelle 4.1 in
der Datei erlaubt.

$20 ... $FF | Normale ASCII-Zeichen

$0D Carriage return (CR): Zeilenende fiir RTOS-UH
$0A (nur hinter CR): Zeilenende fiir MS-DOS/MS-Windows
$04 Dateiende (EOT: End of Text) fir RTOS-UH

$1A Dateiende fiir MS-DOS/MS-WINDOWS

$09 Tabulator: Wird beim Offnen durch 3 Blanks ersetzt

Tabelle 4.1: Erlaubte Textzeichen fiir den Editor RTos-WORD

230 4.2 Erste Schritte

4.2.2 Statuszeile, Tabulatorleiste und Fensteraufbau

Hat RTOS-WORD eine Datei gedffnet, ist ab Bildschirmzeile 3 der Textanfang?
dargestellt. In Bildschirmzeile 1 befindet sich die Statuszeile, iiber dem Text
eine Tabulatorleiste. In den ersten sieben Spalten der Textzeilen steht im Nor-
malfall eine nicht zur Datei gehorende Zeilennummer. Ihre Bedeutung ist hinter
den Hinweisen zur Tabelle 4.2 erklart.

Die Statuszeile "soll an Hand des Befehles WE /HO/TEST erklart werden. Sie
sieht nach dem Offnen der Datei in etwa wie folgt aus:

line 1 col 1 ins H+ a+ C w- m- /HO/TEST

Die einzelnen Elemente sind in Tabelle 4.2 erklart. Dort sind ggf. Verweise
angegeben. Die Tabelle enthélt auch die nicht angezeigten Modi.

Hinweise zu Tabelle 4.2:

e Lautet der Defaultstatus einmal nicht ins H+ a+ w- m-, ist ein Konfigu-
rationsmodul geladen. Die Erzeugung und Parametrierung eines solchen
Modules ist im Abschnitt 4.8 ab Seite 264 erldutert.

e RTOS-WORD erkennt automatisch, ob die Datei MS-DOS/MS-Windows
kompatibel ist. Solange der Nutzer keine Anderung erzwingt, wird der
Status beibehalten.

e UNIX-kompatible Dateien werden nicht unterstiitzt.

e Funktioniert die inverse, bei einigen Terminals auch halbhelle, Schrift
nicht, muf} ein Konfigurationsmodul erstellt werden (siehe Abschnitt 4.8,
Seite 264).

Im Normalfall (kein Konfigurationsmodul) sind neben den Textzeilen sieben
Spalten fiir die ,logische Zeilennummer® reserviert. Solange Sie keine Zei-
len hinzufiigen oder entfernen, stimmt die physikalische Zeilennummer immer
mit der logischen iiberein. Die logische Zeilennummer ist beim Beheben von
Ubersetzerfehlern sehr wichtig, da das Einfiigen von Zeilen die Zuordnung von
Text zu logischer Zeilennummer nicht dndert. Dazu ein Beispiel: Driicken Sie
, XR“3, um den Cursor an den Anfang des Textes zu positionieren, und an-
schliefend ,,"M*, um eine Zeile einzufiigen. Die logische Zeile 1 bleibt dem
Text zugeordnet, die physikalische Zeilennummer &ndert sich. Dadurch kénnen
Sie Zeilen beliebig hinzufiigen und entfernen und trotzdem durch den Befehl
Llogische Zeilennummer anspringen® immer die vom Ubersetzer angezeigten
Fehlerzeile anspringen (Solange Sie die Zeile nicht entfernt haben).

2 Ausnahme: Sie benutzen das Hilfesystem (siehe Seite 250).
3Das Zeichen ,,"“ vor einem anderen bedeutet, da$ Sie gleichzeitig die Control-Taste, auch
CTRL- und STRG-Taste genannt, und die angegebene Taste driicken sollen.

4.2 Erste Schritte 231

’ Status \ Anmerkung \ Bedeutung ‘

line 1 Hline* invers | Cursor steht in physikalischer Textzeile 1

col 1 »col“ invers | Cursor steht in physikalischer Textspalte 1

ins invers Datei wird im ,,Einsetzmodus“ bearbeitet (siehe
Seite 234). Gegenstiick von rep.

rep invers Datei wird im ,,Uberschreibmodus“ bearbeitet
(siehe Seite 235). Gegenstiick von ins.

H+ / H- »,H~+¢ invers | Blockbefehle sind ein-/ ausgeschaltet (siehe Sei-
te 247).

a+ / a- »a+* invers | automatisches Einriicken ist ein-/ausgeschaltet
(siche Seite 233).

L invers Zeilenende ist CrR /LF¥ . (MS-DOS/-Windows
kompatible Datei) Gegenstiick von C.

C invers Zeilenende ist CR . Gegenstiick von L.

wt [w- LW+ invers | Wortumbruch/kein Wortumbruch am rechten
Rand (siehe Seite 234).

m+ / m- ,m+*“ invers | Klingelsignal ,rechter Rand erreicht* ein-/aus-
schalten (siehe Seite 233).

* Benutzer hat Dateiinhalt nach dem Offnen bzw.

dem letzten Abspeichern gedndert. Ist der Stern
nicht sichtbar, wurde Datei nicht gedndert.
/HO/TEST | Beispiel Name der editierten Datei einschliefilich Devi-
ce und Subdirectories. Kann RT0s-WORD den
kompletten Pfad nicht darstellen, wird ein Teil
aus dem Pfad herausgeschnitten und durch ,...*
ersetzt.

Tabelle 4.2: Statuszeilenelemente des Editors RTos-WORD

Ist eine Zeile langer als der Bildschirm, so wird in der letzten Spalte der Zeile
ein invers dargestelltes ,,+“ gezeigt, um Thnen zu zeigen, dafl diese Zeile iiber
den Bildschirm herausragt.

Unter dem Textfenster wird ggf. der Zeilenpuffer eingeblendet.

Wenn Sie ein Menii aufrufen - z. B. mit ,,”X“ - so wird der entsprechende
Buchstabe in der linken oberen Ecke angezeigt. Wird der zweite Buchstabe sehr
schnell nach dem ersten eingegebenen (z. B. Funktionstaste), so unterbleibt die
Ausgabe.

Als letztes soll die Tabulatorleiste erkléirt werden. Sie sieht wie folgt aus:
R R R lmmm .. —mmm——eee - ... -R

“

(...) deutet an, daf} einige ,,-“ weggelassen wurden. Es bedeuten:

232 4.3 Bearbeitung von Texten

Zeichen | Erklarung

L Linker Rand (nicht verénderbar)

- nicht gesetzter Tabulator (veréinderbar: sieche Seite 249)
! gesetzter Tabulator (verdnderbar: siehe Seite 249).

R Rechter Rand (verédnderbar: siehe Seite 249)

Die Veranderung der Tabulator-Leiste bzw. die Benutzung der Tabulator-Taste
ist in Unterabschnitt 4.3.8 beschrieben.

4.2.3 Fenster-Elemente im Window-Modus

Im Window-Modus sind alle wichtigen Kommandos tiber Pull-Down-Meniis
ausfithrbar. Weiterhin kénnen Sie verschiedene Befehle mit der Maustaste ab-
setzen. Folgende Regionen innerhalb eines Fensters unterscheidet RT0S-WORD
bei der Benutzung der linken Maustaste:

e Den Text (Cursorpositionierung, Verlassen des Zeilenpuffers).

e Die Statuszeile (Anderung der Betriebsmodi, Zeilen und Spalteninde-
rung, Textwechsel, Dateinamensénderung (mit rechter Taste)).

e Die Tabulatorleiste (Setzen und Léschen von Tabulatoren sowie Verdnde-
rung des rechten Randes).

e Die Spalten links des Textes (Anspringen von Zeilen).

e Die beiden Zeilen unterhalb des Textes (Editieren des Zeilenpuffers, Cur-
sorpositionierung innerhalb des Puffers).

Die Verwaltung des Schlielfeldes sowie die Rollbalken einschliefllich der Pfeile
iibernimmt RTOS-WORD.

An dieser Stelle alle Befehle und Mausklicks zu erkldren, wiirde eine doppelte
Erlduterung vieler Befehle bedeuten. Probieren Sie einfach aus, was Sie mit der
Maus erreichen kénnen.

4.3 Bearbeitung von Texten

4.3.1 Beschreibung der Bedienbefehle

Die Bedienbefehle sind in der Befehlsbeschreibung mittels der folgenden Maske
erklart:

Nr. | Kurzbeschreibung Taste

Ausfiihrliche Beschreibung

4.3 Bearbeitung von Texten 233

Die Titelzeile beginnt mit der sogenannten Befehlsnummer (Nr.). Sie dient zum
schnelleren Auffinden bei Verweisen, da i. a. auf die Befehlsnummer und nicht
auf die Seite verwiesen wird. Alle Befehle mit einer ausfiihrlichen Erklérung
sind durchnumeriert. Ist bei einem Befehl keine Nummer vergeben worden, ist
er an einer anderen Stelle ausfiihrlich erklért. Der Befehlsnummer folgt die
Kurzerklarung des Befehls und anschlieBend die Tastenkombination, die den
Befehl auslost. Sind mehrere angegeben, kann die in der Erkldrung beschriebe-
ne Wirkung mit allen Kombinationen erreicht werden. Ein ,,"“ vor einer Taste
bedeutet, daf Sie die CTRL-Taste und die darauf folgende gleichzeitig driicken
sollen. Ein Esc bedeutet, dal Sie die Esc-Taste und die darauf folgende hin-
tereinander driicken miissen. Bei angeschlagenen Buchstaben ist es egal, ob Sie
Grof3- oder Kleinschreibung verwenden.

Bei einigen Befehlen sind drei Tastenkombinationen angegeben, von der die
mittlere ,,...“ lautet. Lesen Sie in diesem Fall die ausfiihrliche Erkldrung zu
diesem Befehl.

4.3.2 Statusinderungen des Editors

~ ~

1 | Einsetzmodus ein-/ausschalten _ -

Mit diesem Befehl kiénnen Sie zwischen dem Einsetz- und dem Uber-
schreibmodus wechseln, wobei ,,"-“ nur im Window-Modus erlaubt ist.
Die Unterschiede zwischen den beiden Modi sind in den Tabellen 4.3
und 4.4 erklart.

Im Window-Modus kénnen Sie statt Verwendung der Hot-Keys in das
Anzeigefeld in der Statuszeile klicken (inverses ,,inv* bzw. ,rep“), um
vom Einsetz- in den Uberschreibmodus und umgekehrt zu wechseln.

2 | Randauslésung ein-/ausschalten "OX

Bei eingeschalteter Randauslosung (inverses ,m+“ in der Statuszeile)
wird beim Erreichen des rechten Randes die Klingel Thres Terminals
ausgelost, das Zeilenendesignal entfillt allerdings, wenn der Editor im
Window-Modus ausgefiihrt wird. Mit diesem Befehl kénnen bei einge-
schalteter Auslosung diese ausschalten (,m-* in der Statuszeile) und
umgekehrt.

Durch einen Mausklick in das entsprechende Anzeigefeld der Status-
zeile konnen Sie im Window-Modus ebenfalls den Zustand wechseln.

3 | Einriicken ein-/ausschalten “OU

Bei eingeschaltetem Einsetzmodus und eingeschaltetem Einriickmo-
dus (inverse ,ins“ und ,a+“ in der Statuszeile) wird beim Driicken
von CR der Cursor unter das erste Nicht-Leerzeichen der vorherigen

234

4.3 Bearbeitung von Texten

Finsetzmodus

Text

Ein eingegebenes Zeichen wird in den Text eingefiigt, solange die
zuldssige Zeilenldnge nicht iiberschritten wird.

Cr

Beim Anschlagen des CR wird die Zeile an der aktuellen Cursorposi-
tion beendet. Der eventuelle Rest der Zeile wird in die neu eingefiigte
néchste Zeile kopiert. Ist automatisches Einriicken aktiviert, werden
am Anfang der neuen Zeile so viele Leerzeichen eingefiigt, wie in der
alten vor dem ersten Nicht-Leerzeichen auch standen.

TAB

Beim Anschlagen der TAB-Taste werden ab der Cursorposition so
viele Leerzeichen eingefiigt, bis ein Tabulator erreicht wird. Steht
rechts des Cursors kein Tabulator, wird am rechten Rand — ;R in
der Tabulatorleiste — ein CR, in der neu eingerichteten Zeile bis zum
Erreichen des ersten Tabulators Leerzeichen eingefiigt. Ist iberhaupt
kein Tabulator gesetzt, werden Leerzeichen bis zum rechten Rand
und anschlieffend ein CR eingefiigt.

Bs

Steht der Cursor in der ersten Spalte und wird die Bs-Taste ange-
schlagen, wird das CR aus der vorherigen entfernt und diese beiden
Zeilen unter Beachtung der zuldssigen Zeilenldnge vereint. Die logi-
sche Zeilennummer wird aus der Verwaltung entfernt.

DEL

Steht der Cursor beim Driicken der DEL-Taste in der letzten Spalte,
wird das CR entfernt und diese Zeile mit der néichsten Zeile unter
Beachtung der zulédssigen Zeilenldnge vereint. Die evtl. vorhandene
logische Zeilennummer der néchsten Zeile wird aus der Verwaltung
entfernt.

Tabelle 4.3: Der Einsetzmodus von RT0os-WORD

Spalte gesetzt. Mit diesem Befehl wechseln Sie zwischen ein- und aus-
geschaltetem ,,a-“ Einriicken.

Durch einen Mausklick in das entsprechende Anzeigefeld der Status-
zeile konnen Sie im Window-Modus ebenfalls den Zustand wechseln.

Wortumbruch ein-/ausschalten "OW

Bei eingeschaltetem Wortumbruch (inverses ,w+“ in der Statuszeile)
wird beim Eingeben eines Leerzeichens hinter diesem die Zeile been-
det, falls es sich hinter dem rechten Rand (,R* in der Tabulatorleiste)
befindet. Mit diesem Befehl kénnen Sie bei eingeschaltetem Umbruch
diesen ausschalten (,w-“ in der Statuszeile) und umgekehrt.

Durch einen Mausklick in das entsprechende Anzeigefeld der Status-
zeile konnen Sie im Window-Modus ebenfalls zwischen den beiden
Zusténden hin- und herwechseln.

Hinweis: Es ist geplant, in einer der néchsten Versionen den Umbruch

4.3 Bearbeitung von Texten 235

Uberschreibmodus

Text | Ein eingegebenes Zeichen iiberschreibt das unter dem Cursor stehen-
de, solange das Zeilenende nicht erreicht ist. Steht der Cursor auf der
Zeilenendemarkierung, wird das Zeichen vor dieser eingefiigt.

Cr | Beim Anschlagen des CR wird der Cursor auf Spalte 1 der néchsten
physikalischen Zeile positioniert. Es wird keine Zeile eingefiigt.

TAB | Beim Anschlagen der TAB-Taste wird der Cursor auf den ersten Ta-
bulator rechts der Cursorpostition gesetzt. Steht rechts der aktuellen
Position kein Tabulator, wird der Cursor eine Zeile tiefer auf die er-
ste Spalte mit gesetztem Tabulator positioniert. Ist kein Tabulator
gesetzt, wird der Cursor in die erste Spalte der niichsten Zeile posi-
tioniert.

Bs Steht der Cursor in der ersten Spalte und wird die Bs-Taste ange-
schlagen, wird der Cursor hinter das letzte Zeichen der vorherigen
Zeile gesetzt.

DEL | Steht der Cursor beim Driicken der DEL-Taste in der letzten Spalte,
wird der Tastenanschlag ignoriert.

Tabelle 4.4: Der Uberschreibmodus von RT0S-WORD

vor dem Wort durchzufithren. Verlassen Sie sich nicht darauf, dafl
Rr0s-WORD den Umbruch hinter das Wort setzt.

4.3.3 Grundlegende Bearbeitung einer Datei

Dieser Abschnitt befaf3t sich mit dem Einfiigen und Léschen von Text sowie der
Cursorbewegung. Zusammen mit Abschnitt 4.3.5 beschreibt er die elementaren
Editierfunktionen.

Der Cursor kann am einfachsten mit den Cursortasten iiber den Text bewegt
werden. RT0OS-WORD 1483t es nicht zu, dafl der Cursor aus dem Schirm heraus-
scrollt. Im Zweifelsfall wird der bearbeitete Text geblattert. Zur Beschleunigung
der téiglichen Arbeit gibt es spezielle Tastenkombinationen (und im Window-
Mode Meniioptionen), mit denen der Cursor positioniert werden kann.

Tabulator anlaufen Tab

Der Cursor wird auf den néchsten Tabulator gesetzt. Das genaue Ver-
halten ist wegen der Unterschiede im Einsetz- und Uberschreibmodus
in den Tabellen 4.3 und 4.4 ab Seite 234 erklért.

5 | Zeichen 16schen Del Esc+— | EscW

Loscht das Zeichen der aktuellen Cusor-Position. Steht der Cursor am
Zeilenende und ist der Einsetzmodus eingeschaltet, so wird das Zei-

236

4.3 Bearbeitung von Texten

lenende gel6scht und die beiden Zeilen werden unter Beriicksichtigung
der zuldssigen Zeilenldnge vereinigt.

Leerzeile einfiigen EscL | Esc| | EscE

Dieser Befehl setzt vor die Zeile, in der der Cursor steht, eine Leerzeile
ein und positioniert den Cursor auf Spalte 1 (also das Zeilenende)
dieser Leerzeile.

Leerzeichen einfiigen EscQ | Esc—

Dieser Befehl fiigt unter dem Cursor ein Leerzeichen unabhéngig vom
Uberschreib- oder Einfiigemodus ein.

Sonderzeichen eingeben "PA "PW

Nach der Eingabe von ,,"P* kénnen Sie ein Sonderzeichen in den Text
eingeben. Um das Zeichen einzugeben, konnen Sie entweder Tabelle
4.11 verwenden, um die Zuordnung zwischen Buchstaben und Sonder-
zeichen zu erhalten oder Sie addieren auf den ASCII-Wert ihres Zei-
chens $40 und geben den zu diesem Wert korrespondierenden Buchsta-
ben ein. Zulédssig sind die Buchstaben ,A“ bis , W* mit Ausnahme des
»M*. Beispiele: Mit ,,"PD* kénnen Sie also ein EOT eingeben. Steht
es in der ersten Spalte, konnen Sie hier das neue Dateiende (mit al-
len Konsequenzen) setzen. Mit ,,"PL¢ (Form-Feed) konnen Sie einen
Drucker dazu bewegen, hier einen Seitenvorschub zu forcieren.

Cursor nach links "H — EscD

Der Cursor wird um ein Zeichen nach links bewegt. Steht der Cursor
am Anfang einer Zeile, so wird er an das Ende der vorherigen Zeile
positioniert.

10

Cursor nach rechts "L — EscC

Der Cursor riickt um ein Zeichen nach rechts. Steht er am Ende einer
Zeile, springt er an den Anfang der néchsten Zeile.

11

Cursor nach unten “J "V ! EscB

Der Cursor springt um eine Zeile nach unten. Wenn méglich, bleibt er
in derselben Spalte. Ist die néchste Zeile kiirzer, so springt der Cursor
an das Ende der Zeile.

12

Cursor nach oben "K T EscA

4.3 Bearbeitung von Texten 237

Der Cursor springt um eine Zeile nach oben. Wenn moglich, bleibt er
in derselben Spalte, ansonsten springt er an das Ende der Zeile.

13 | Cursor Wort links A
Der Cursor wird an den Anfang des Wortes gesetzt, auf dem er steht.
Die Positionierung erfolgt iiber die Suche des ersten Wortendes links
vom Cursor, verbunden mit einer Positionierung hinter dem Wortende.
Das Wortende ist in Befehl 23 erklért.

14 | Cursor Wort rechts “F

Der Cursor wird auf den néchsten Wortanfang gesetzt. Die Positionie-
rung erfolgt {iber die Suche des ersten Wortendes rechts vom Cursor,
verbunden mit einer Positionierung hinter dem Wortende. Das Wor-
tende ist in Befehl 23 erklart.

Die folgenden 4 Befehle dienen der Positionierung des Cursors an die Rénder
der gerade aufgebliitterten Seite. Die Buchstaben S, D, X und E bilden eine
Art Kreuz auf IThrer Tastatur. An diesem konnen Sie sich orientieren, wenn Sie
den Cursor positonieren wollen.

15 | Cursor an Zeilenanfang XS
Der Cursor wird an den Anfang der Zeile positioniert.

16 | Cursor an Zeilenende “"XD
Der Cursor wird hinter das letzte eingegebene Zeichen der Zeile gesetzt.

17 | Cursor an oberen Bildschirmrand "XE
Bewegt den Cursor in die zweite Bildschirmzeile. Der Text wird nicht
gebléttert. Die Spaltenposition wird, wenn moglich, beibehalten.

18 | Cursor an unteren Bildschirmrand "XX
Positioniert den Cursor in die vorletzte Bildschirmzeile. Der Text wird
nicht geblittert. Die Spaltenposition wird, wenn moglich, beibehalten.

19 | Cursor an den Dateianfang "XR
Der Textanfang wird aufgebliattert und der Cursor an den linken Rand
der ersten physikalischen Zeile gesetzt.

20 | Cursor an das Dateiende "XC

238

4.3 Bearbeitung von Texten

Das Textende wird aufgeblittert und der Cursor auf das Dateiende
gesetzt.

21

Zeile umbrechen (Hartes Cr) "N

Es wird an der aktuellen Cursorposition ein Zeilenende eingefiigt. Der
eventuelle Zeilenrest wird unter Beriicksichtigung der Einriickoption
in die neu eingefiigte néchste Zeile kopiert. Der Cursor behélt seine
relative Position zum Zeilenrest: Nach Anschlagen der Taste ,,Cursor
rechts“ steht der Cursor auf dem ersten Zeichen des Zeilenrests.

22

Zeichen links vom Cursor 16schen "G Bs

Es wird das Zeichen links vom Cursor geloscht. Steht der Cursor in
Spalte 1 und ist der Einsetzmodus eingeschaltet, so wird das Zeilen-
ende der vorherigen Zeile geloscht und die beiden Zeilen werden unter
Beriicksichtigung der zuldssigen Zeilenldnge vereinigt. Dieser Befehl
hat die gleiche Wirkung wie die Bs-Taste.

23

Wort ab Cursor bis Wortende 16schen T

Dieser Befehl 16scht ab der Cursorposition den Rest des Wortes und
alle folgenden Leerzeichen. Steht der Cursor am Zeilenende, wird im
Einsetzmodus das Zeilenende geltscht, die Zeilen unter Beriicksichti-
gung der zuléissigen Zeilenléinge vereinigt und alle Leerzeichen, die links
des ersten ,,Nicht-Leerzeichens“, liegen, geloscht. Ein Wortende ist in
RT0S-WORD durch eins der folgenden Zeichen definiert: ,, , ; . : !
?7=-x+/(C)’{}\<>Cr.

24

Zeile, in der Cursor steht, 16schen Y Esc?

Es wird die gesamte Zeile, in der der Cursor steht, geloscht. War eine
logische Zeilennummer fiir diese Zeile vergeben, wird diese aus der
Verwaltung entfernt und ist nicht mehr mit ,EscZ“ (siche Nr. 33)
erreichbar. Alle nachfolgenden Zeilen riicken um eine Zeile nach oben.
Die Cursorposition innerhalb des Bildschirms bleibt, soweit moglich,
erhalten.

25

Zeile ab Cursor bis Zeilenende 16schen XY

Loscht ab der Cursorposition bis zum Zeilenende alle Zeichen. Die Zei-
lenendemarkierung wird nicht geléscht, auch wenn der Cursor auf ihr
steht.

26

Zeile links vom Cursor 16schen “XZ

4.3 Bearbeitung von Texten 239

Loscht links vom Cursor bis zur Spalte 1 alle Zeichen. Steht der Cursor
in Spalte 1, hat dieser Befehl keinerlei Wirkung.

Block 16schen "EY

Befehl ist unter Nummer 55 erklért.

27

Loschen riickgingig machen “U

Haben Sie eine Loschoperation irrtiimlich ausgefiihrt, kénnen Sie mit
sofort danach gedriicktem ,,"U“ dieses riickgéingig machen. Eine Aus-
nahme bildet der Befehl ,,Block 16schen“: Die ,,Undo“-Funktion ist hier
» EM¢“ (siehe Befehl 57). Wichtig ist, da} Sie ,,"U“ sofort eingeben,
sonst kann RTOS-WORD Thren Wunsch nicht erfiillen und gibt statt
dessen eine Fehlermeldung aus. Lediglich der Aufruf eines Submeniis
und Abbruch mit einem Leerzeichen erlaubt weiterhin das ,,Undo“.

28

Letzte geloschte Zeile einfiigen "XU

4.3.4

Haben Sie eine gesamte Zeile z. B. mit ,,"Y* geltscht, setzt dieser
Befehl die geloschte Zeile vor die, in der z. Zt. der Cursor steht. Dieser
wird in die erste Spalte der eingesetzten Zeile positioniert.

Befehle zum Blittern

Cursor auf Marke positionieren "X0-9

Befehl ist im Unterabschnitt 4.3.9 als Nr. 70 erklért.

29

Cursor zum Blockanfang bewegen "XB

Bewegt den Cursor auf den mit ,,"EB*“ markierten Blockanfang. Der
Text wird, falls n6tig, so gebléttert, dal der Cursor sichtbar bleibt. Die
Blockbefehle diirfen ausgeschaltet sein. Der Block darf ungiiltig sein
(Blockende vor Blockanfang oder gar nicht definiert).

30

Cursor zum Blockende bewegen "XK

Bewegt den Cursor auf das mit ,,”" EK*“ markierte Blockende. Der Text
wird, falls notig, so geblattert, daBl der Cursor sichtbar bleibt. Die
Blockbefehle diirfen ausgeschaltet sein. Der Block darf ungiiltig sein
(Blockanfang hinter Blockende oder gar nicht definiert).

240

4.3 Bearbeitung von Texten

31

Cursor auf Start von Suchen/Ersetzen "XV

Der Cursor wird an die Stelle gesetzt, wo das letzte ,,Suchen und/oder
Ersetzen* gestartet wurde. Der Text wird, falls notig, geblattert, so
daf} der Cursor sichtbar bleibt.

32

Cursor auf physikalische Zeile EscY

Der Cursor wird, falls moglich, auf die von Ihnen eingegebene Zeile
positioniert. Der Versuch scheitert, wenn die Zeilennummer zu grofl
ist. Der Text wird, falls n6tig, so geblattert, dal der Cursor sichtbar
bleibt.

Durch einen Mausklick in die Zeilenanzeige der Statuszeile konnen Sie
diesen Befehl ebenfalls ausfiihren.

33

Cursor auf logische Zeile EscZ

Der Cursor wird, falls moéglich, auf die von Ihnen eingegebene Zeile
positioniert. Der Versuch scheitert, wenn die Zeilennummer zu grofl
ist oder Sie die Zeile entfernt haben. Der Text wird, falls nétig, so
geblittert, dafl der Cursor sichtbar bleibt.

Diesen Befehl kénnen Sie auch durch einen Mausklick im Bereich der
Zeilennumerierung des Textfensters ausfithren.

34

Cursor auf physikalische Spalte setzen EscG

Der Cursor wird, falls moglich, auf die von Thnen eingegebene Text-
spalte positioniert. Ist die von Ihnen eingegebene Zahl zu grof};, wird
der Cursor an das Zeilenende gesetzt. Der Text wird, falls nétig, seit-
lich so geblédttert, dafl der Cursor sichtbar bleibt.

Im Window-Modus kénnen Sie statt Verwendung des Hot-Keys in das
Spaltenanzeigefeld der Statuszeile klicken.

Mit den beiden néchsten Befehlen kann der Text ,,feinpositioniert® werden.

35

Text abwirts scrollen ~Z

Scrollt den Bildschirm um eine Zeile nach oben. Die oberste Bild-
schirmzeile verschwindet und eine neue Zeile wird am unteren Bild-
schirmrand sichtbar. Der Cursor bleibt, sofern moglich, auf derselben
Stelle im Text stehen, wird also auch um eine Zeile aufwirts bewegt.
Steht er in der zweiten Bildschirmzeile, wird er nicht gescrollt.

Im Window-Modus kénnen Sie statt Verwendung des Hot-Keys den
unteren Rollpfeil anklicken.

4.3 Bearbeitung von Texten 241

36

Text aufwirts scrollen "W

Scrollt den Bildschirm um eine Zeile nach unten. Die unterste Bild-
schirmzeile verschwindet und eine neue Zeile wird am oberen Bild-
schirmrand sichtbar. Der Cursor bleibt, sofern moglich, auf derselben
Stelle im Text stehen, wird also auch um eine Zeile abwérts bewegt.
Steht er auf der vorletzten Zeile, wird er nicht gescrollt.

Im Window-Modus koénnen Sie statt Verwendung des Hot-Keys den
oberen Rollpfeil anklicken.

37

Folgende Textseite aufblittern “C

Der Text wird eine Bildschirmseite weitergebliattert. Nach dem
Blattern wird die sich an die z. Zt. unterste Zeile anschlieende Zeile
die oberste sein. Der Cursor bleibt, falls moglich, in derselben Bild-
schirmzeile und -spalte.

Im Window-Modus kénnen Sie in den unteren Rollbalken klicken, um
eine Seite vorwérts zu blattern.

38

Textseite zuriickblattern "R

Der Text wird eine Bildschirmseite zuriickgebldattert. Nach dem
Bléttern wird die vor der z. Zt. obersten Zeile liegende Zeile die unter-
ste sein. Der Cursor bleibt, falls moglich, in derselben Bildschirmzeile
und -spalte.

Im Window-Modus kénnen Sie in den oberen Rollbalken klicken, um
eine Seite riickwérts zu blattern.

39

Halbe Seite vorwirtsbliattern EscF

4.3.5

Der Text wird um eine halbe Seite in Richtung Dateiende weiter-
gebldttert. Der Cursor bleibt, falls moglich, in derselben Bildschirm-
zeile und -spalte.

Dateibefehle

Bei einigen Dateibefehlen erhalten Sie von RT0s-WORD eine Eingabeaufforde-
rung. Den von Thnen eingegebenen String kénnen Sie mit den in Tabelle 4.5
angegebenen Tasten editieren.

Betrachten wir folgendes Beispiel: Sie wollen als zweites zu bearbeitendes Do-
kument ,,/HO/TEX/WF.TEX“ 6ffnen. Nach der Eingabe von ,,"EO* (siehe Be-
fehl 42) fordert Sie RTOS-WORD zur Eingabe des Dateinamens auf. Driicken
Sie ,,"Y“, um den vorgeschlagenen Pfad zu léschen, und geben Sie anschlie-
fend ,,/HO/TEX/WF.TEX* ein. Nun stellen Sie fest, da§ das File tatséchlich

242

4.3 Bearbeitung von Texten

Zeichen | Bedeutung

Bs 16scht das letzte Zeichen.

"D restauriert das letzte Zeichen
Y 16scht die gesamte Eingabe

‘R restauriert die gesamte Eingabe
U bricht das Kommando ab

Tabelle 4.5: Korrektur von Dateinamen bei RT0os-WORD

»WE. TEX* heifit. Sie konnen die Eingabe korrigieren, indem Sie fiinfmal die
Bs-Taste driicken — der Cursor steht dann hinter dem , W* —, anschlieend
ein ,E“ und dann ,,"R“. Nun miiffiten Sie den korrekten Pfad vor sich sehen
konnen. Driicken Sie nun ,,"U“, um das ganze abzubrechen.

40

Editor unterbrechen "EU

Im Terminalmodus suspendiert sich der Editor und gibt die Shell frei,
damit Sie nach einem ,,"A“ wie gewohnt Befehle an RTOS-UH ab-
setzen konnen. Den Tasknamen kénnen Sie der Meldung ,, taskname
suspended waiting“ entnehmen. Durch ein Fortsetzen der Task mit
,,C taskname® konnen sie mit dem Editieren fortfahren.

Im Window-Modus wird das aktuelle Fenster iconisiert?. Hier kénnen
sie weiterarbeiten, indem Sie ein Textfenster des Editors 6ffnen.

41

Speichern und Verlassen "EX | EscX

RT0Ss-WORD speichert die Datei, falls Sie nach dem letzten Offnen
bzw. Sichern geéndert wurde. Anschliefend entfernt er sie aus der Edi-
torverwaltung. Bearbeitet die Editor-Subtask keine weitere Datei, ter-
miniert und entlidt sie sich. Anderenfalls wird auf die folgende Datei
umgeschaltet.

Speichern bedeutet beim Bearbeiten einer Datei, die nicht als /ED-
Datei geoffnet wurde, dafl die auf der Datenstation /ED abgelegte Ar-
beitskopie mit allen erfolgten Anderungen zuriickgeschrieben wird.
Wurde die Datei neu angelegt (*File was opened by RTOS-WORD.)
und nicht gedndert, wird sie geloscht.

Wenn beim Zuriickschreiben der Datei ein Schreibfehler auftritt, z. B.
das Zieldevice eine schreibgeschiitzte Diskette ist, bricht RTos-WORD
den Speichervorgang ab. Die temporire Arbeitsdatei im RAM Ihres
Rechners wird nicht geloscht. Den Namen dieser Datei teilt Thnen
RT0S-WORD bei der Fehlermeldung mit. Mit dieser Datei kbnnen Sie
nun machen, was Sie wollen: Erneut editieren, 16schen, kopieren ...

4In einer spiteren Version werden alle Texte iconisiert

4.3 Bearbeitung von Texten 243

42

Weitere Datel 6ffnen “"EO

Geben Sie nach der Eingabeaufforderung den Dateinamen an. Ist die
Datei nicht vorhanden, kann sie neu angelegt werden. Danach kénnen
Sie diese Datei bearbeiten. Im Window-Modus wird fiir den Text ein ei-
genes Fenster eingerichtet. Achtung: Bei Dateien, die im Netzwerk oder
auf einem Massenspeicher liegen, kann die gleiche Datei mehrmals edi-
tiert werden. Solange nur eine der Arbeitskopien geéindert wird, kann
dieses manchmal von Vorteil sein. RT0s-WORD kann beim Speichern
allerdings nur die Anderungen aus einer Arbeitskopie iibernehmen!
Némlich die der zuletzt mit Befehl Nr. 41 verlassenen Arbeitkopie.
Vorsicht: Ein zweifaches Offnen einer /ED-Datei kann die Datei sofort
und endgiiltig zerstoren!!

43

Arbeitstext wechseln “"EN

RT0S-WORD schaltet auf den folgenden Text um. Im Window-Modus
bekommt das entsprechende Fenster den Input-Focus. War es iconi-
siert, wird das Fenster geoffnet.

44

Verlassen mit Namensinderung "EZ

Mit ,,"EZ* konnen Sie das Originalfile mit Originalnamen unveréndert
lassen und Thren bearbeiteten Text unter anderen Namen abspeichern.
Eine Namenséinderung (unter Beibehaltung des Originalfiles mit Ori-
ginalnamen) ist bei /ED-Dateien nur moglich, wenn Pfad und Name
mit ,,"EL® (siehe Befehl 48) erzeugt wurde.

Weiterhin besteht die Moglichkeit, Dateien vom Rros-UH-Format ins
MS-DOS-Format und umgekehrt zu konvertieren (siehe auch Tabelle
4.1).

Sie konnen die Datei auch an eine schon bestehende anhidngen. Dabei
darf am Dateiende, an die Sie Thren Text anhédngen wollen, kein EOT
stehen, da bei RTOS-UH die Dateiendekennung EOT zur Datei gehort
und RTOS-WORD den Text hinter die Endekennung héngt! Sie ahnen
es schon: Nach dem ersten Kopieren oder Editieren ist der angehéngte
Text verschwunden. Tip: Entfernen 148t sich das EOT durch Editieren
des Files und Entfernen des ,,@“ am Dateiende.

Weiterhin haben Sie die Option, alle Leerzeichen, denen in einer Zeile
nur noch weitere Leerzeichen und das CR folgen, aus Threm Text zu
entfernen.

Alle optionalen Parameter sind in Tabelle 4.6 erldutert. Sie sind in be-
liebiger Reihenfolge nach einem ,-*“ an den Dateinamen anzuhéngen.

Beispiel: Ein Verlassen einer Datei mit ,,/H0/SYS/TEST -adl“ héngt
Thren Text an die Datei ,,/HO/SYS/TEST* an. Alle Leerzeichen am

244

4.3 Bearbeitung von Texten

Parameter | Bedeutung

c
1
a

d

Abspeichern im Rros-UH-Format
Abspeichern im MS-DOS-Format
An eine bestehende Datei anhéngen
Endende Leerzeichen 16schen

Tabelle 4.6: Parameter von RT0OS-WORD beim Verlassen einer Datei

Zeilenende werden entfernt. Die Datei ist MS-DOS kompatibel (siehe
auch Anmerkung zu Befehl 58).

45

Verlassen ohne Speichern "EQ

RT0s-WORD entfernt den Text aus seiner Verwaltung, ohne ihn ab-
zuspeichern. In der Datei steht der Originaltext bzw. der zuletzt mit
, ES*“ abgespeicherte Text. Dieses ist bei /ED-Dateien nur moglich,
wenn Pfad und Name mit ,,"EL* (siehe Befehl 48) erzeugt wurde. Sie
kénnen den Text nur nach einer Sicherheitsabfrage (,This File will
not be saved! (y/n)“) und Anschlagen des ,Y* verlassen. Wur-
de die Datei neu angelegt (,*File was openened by RTOS-WORD.“),
wird die Datei gel6scht.

46

Speichern und weiterarbeiten "ES

Dieser Befehl speichert Thren Text und 16scht alle Marken und die
Anderungskennung ,*“ in der Statuszeile, falls der Text nach dem
Offnen bzw. letzten Speichern gedindert wurde. Nach dem Speichern
konnen Sie mit dem Editieren fortfahren. Wahrend des Speichervor-
ganges erscheint die Meldung ,Please wait: Saving!“ Der Befehl
kann benutzt werden, um bei einer lingeren Editor-Sitzung die Datei
zu sichern, ohne RT0s-WORD verlassen zu miissen. Im Window-Modus
koénnen Sie Quelltexte bequem compilieren/assemblieren, ohne RTOS-
WORD zu verlassen! Dieser Befehl ist bei /ED-Dateien nur moglich,
wenn Pfad und Name mit ,,"EL“ (siehe Befehl 48) erzeugt wurde.

47

Automatisches Sichern “"ED

RT0s-WORD kann Texte automatisch nach einem von Thnen vorgege-
benen Zeitintervall zyklisch sichern. Geben Sie das Sicherungsintervall
in Minuten nach der Eingabeaufforderung ein. Die Sicherung erfolgt
entsprechend dem Befehl ,,"ES“ (Nr. 46). Zum Beenden des automa-
tischen Sicherns miissen sie diesen Befehl mit dem Zeitintervall ,,0¢
Minuten verwenden.

4.3 Bearbeitung von Texten 245

48 | Neuer Dateiname “"EL

Sie kénnen Device und kompletten Pfad inklusive der optionalen Para-
meter des Befehles ,"EZ*“ (Nr. 44), die beim Speichern beriicksichtigt
werden, eingeben. Eine automatisch erzeugte Sicherung (siehe ,,"ED,
Befehl Nr. 47) iibernimmt ebenfalls den neuen Dateinamen und die
Parameter. Der Parameter ,a“ bewirkt allerdings bei jedem Speichern
ein Anhéngen an das File.

Durch einen Mausklick mit der rechten Maustaste in den in der Sta-
tuszeile angezeigten Dateinamen koénnen Sie diesen Befehl ebenfalls
ausfithren.

49 | Datei 16schen "EJ

Die angegebene Datei wird, falls im Dateisystem vorhanden, geléscht.
Es findet keine Uberpriifung des eingegebenen Dateinamens statt, so
dafl auch Dateien mit Sonderzeichen, die {iber die RTos-UH-Shell nicht
eingegeben werden konnen, geloscht werden.

4.3.6 Blockbefehle

Ein Block ist durch eine Anfangs- und Endmarke definiert, wobei die Anfangs-
vor der Endemarke liegen muf}. Die Linge ist nicht begrenzt. Alle Blockopera-
tionen werden iiber den Blockpuffer ausgefiihrt. Er enthélt immer den zuletzt
bearbeiteten Block. (Sehr vorteilhaft beim irrtiimlichen Loschen eines Blockes!)

Die Grofle des Blockpuffers pafit Rros-WoRD wihrend des Editierens auto-
matisch an. Kann ein Block nicht bearbeitet werden, weil der noch verbliebene
freie Speicherplatz nicht ausreicht, miissen Sie entweder den freien Speicher-
platz erhohen oder den Block in mehrere kleine aufteilen.

Bei der gleichzeitigen Bearbeitung mehrerer Dateien kénnen Blécke zwischen
den Dateien ausgetauscht werden (siehe Befehle Nr. 56 und 57).

50 | Blockanfang markieren "EB

Der Blockanfang wird auf die aktuelle Cursorposition verlegt. Waren
die Blockbefehle ausgeschaltet, werden sie wieder zugelassen und die
Statuszeile angepaft.

51 | Blockende markieren "EK

Das Blockende wird auf die aktuelle Cursorposition verlegt. Waren
die Blockbefehle ausgeschaltet, werden sie wieder zugelassen und die
Statuszeile angepaflt.

246

4.3 Bearbeitung von Texten

52

Block kopieren "EC

Der Block wird im Blockpuffer abgelegt und anschliefend aus dem
Blockpuffer an die aktuelle Cursorposition kopiert.

53

Block verschieben "EV

Der Block wird zuerst im Blockpuffer abgelegt, danach aus der Da-
tei entfernt und anschlieBend aus dem Blockpuffer an der aktuellen
Cursorposition wieder eingefiigt.

54

Block einriicken “El

Mit diesem Befehl kann die Einriicktiefe der einzelnen Zeilen des
Blockes verandert werden. Geben Sie nach Absetzen des Befehles die
Anzahl der Spalten ein, um die die Zeilen des Blockes zu verschie-
ben sind. Bei einer positiven Zahl wird der Block nach rechts gescho-
ben (eingeriickt), mit einer negativen kénnen Sie den Block nach links
schieben (Es werden aber nur Leerzeichen entfernt: Steht z.B. in der
5. Spalte Text, fithrt eine Verschiebung um ,,-10“ nur zum Loschen der
vier Leerzeichen). In einem Schritt kénnen Sie maximal eine Verschie-
bung um 50 Zeichen vornehmen.

55

Block aus Text entfernen "EY

Der Block wird zuerst im Blockpuffer abgelegt, anschliefend aus der
Datei entfernt. Ein irrtiimliches Loschen 148t sich mit ,,"EM*“ (Nr. 57)
riickgéingig machen. Achten Sie auf die Cursorposition.

56

Block in Puffer kopieren "EG

Der Block wird im Blockpuffer abgelegt und kann zu einem spéteren
Zeitpunkt, der aber noch innerhalb der Editorsitzung liegen muf}, aus
dem Blockpuffer an eine beliebige Stelle kopiert werden.

57

Block aus Blockpuffer kopieren "EM

Der Blockpuffer wird an die aktuelle Cursorposition kopiert.

58

Block in Datei schreiben "EW

Der Block wird im Blockpuffer abgelegt und — je nach Parametrierung
— anschlieflend in eine Datei geschrieben oder an eine Datei angehéngt.
Steht das Zieldevice in der Stellung ,,Nach endendem CR ein Line-Feed
anfiigen“, beendet RT0S-WORD jede Zeile zusétzlich mit einem Line-
Feed. Der gerade bearbeitete Text bleibt unveréndert. Nach Absetzen

4.3 Bearbeitung von Texten 247

des Befehles miissen Sie die Zieldatei angeben, danach, noch in der
gleichen Eingabezeile, eventuelle Parameter:

e -C“ speichert Block im Rros-UH-Format. Steht Zieldevice im
,Line-Feed“ Modus, wird ,,-C* ignoriert.

e -L“ speichert Block im MS-DOS-Format.
e _-A“ hiangt Block an Datei an.
e Die Kombinationen ,-CA“ und ,-LA“ sind erlaubt.

59

Block aus Datei lesen "ER

Geben Sie nach Absetzen des Befehles den Dateinamen ein. Der Da-
teiinhalt wird an die Cursorpositon kopiert. Die Quelldatei kann belie-
biger Herkunft sein, muf} also nicht mit ,,"EW* erzeugt worden sein.
Die Blockmarkierungen und der Blockpuffer sind nach dem Einlesen
geloscht. Waren die Blockbefehle ausgeschaltet, sind sie nun wieder
zugelassen.

60

Blockbefehle ein-/ausschalten "EH

Waren die Blockbefehle nicht zugelassen, sind sie nun wieder erlaubt.
Ein evtl. vorhandener Block wird invertiert angezeigt. Im anderen
Fall werden sie ausgeschaltet und ein evtl. vorhandener Block in Nor-
maltext dargestellt. Alle Blockbefehle, die sich nicht implizit selbst
einschalten (alle aufler ,"EB*, | "EK*“, ,,"ER*) werden kommentarlos
ignoriert.

4.3.7 Befehle fiir den Zeilenpuffer

Der Zeilenpuffer erlaubt ein schnelles Kopieren und Verschieben einzelner Zei-
len. Eine Suchfunktion ist ebenfalls implementiert. Da der Puffer seitlich nicht
gescrollt wird, ist die Anzahl editierbarer Zeichen auf die dargestellte Spalten-
zahl beschrankt, auch wenn die Zeile selbst ldnger ist. Das Editieren erfolgt
immer im Uberschreibmodus.

61

Zeilenrest in Zeilenpuffer kopieren EscO

Ab der aktuellen Cursorposition wird der Zeilenrest linksbiindig in
den Zeilenpuffer kopiert. Steht der Cursor im Zeilenpuffer, fithrt dieser
Befehl zu einer Fehlermeldung.

248 4.3 Bearbeitung von Texten

62 | Zeilenpuffer in Text einfiigen Escl

Uber der Zeile mit dem Cursor wird eine Leerzeile eingefiigt und der
Zeilenpuffer in diese kopiert. Steht der Cursor im Zeilenpuffer, fiihrt
dieser Befehl zu einer Fehlermeldung.

63 | Nach Pufferinhalt suchen EscS

Steht der Cursor im Text, wird ab der Cursorposition nach dem Inhalt
des Zeilenpuffers gesucht. Steht der Cursor im Zeilenpuffer, wird ab
der Stelle gesucht, auf der der Cusor vor dem Befehl , Zeilenpuffer
editieren® (Nr. 64) stand.

64 | Zeilenpuffer editieren EscK

Dieser Befehl positioniert den Cursor in Spalte 1 des Zeilenpuffers,
der ggf. neu dargestellt wird (falls er unsichtbar war). AnschlieBend
konnen Sie den Zeilenpuffer im Uberschreibmodus editieren. Die er-
laubten Befehle sind in der hinter diesem Befehl folgenden Tabelle
zusammengefaft.

Um den Puffer zu verlassen, kénnen Sie ,,1“ (setzt Cursor an Position
vor dem Editieren), ,,"XR* (19), ,,"XC* (20), ,Esc S“ (63), ,Esc Y*
(32) und ,,Esc Z“ (33) verwenden. ,,"C* (37) und ,,"R* (38) blittern
zwar den Text vor/zuriick, der Cursor bleibt allerdings im Zeilenpuf-
fer.

Durch einen Mausklick in den Bereich unterhalb des Textes konnen
Sie diesen Befehl ebenfalls ausfithren. Bearbeiten Sie den Zeilenpuffer
schon, bewirkt der Klick eine Anderung der Cursorspalte.

[Bef. [Nr. [Bel. | Nr.] Bef. | Nr. [Bel. | Nr |
— 9 — 10 "A 13 “F 14
“XS 15 “XD 16 "G 22 DEL 5
Y 24 XY 25 "XZ 26 Esc «— | 5
Esc — | 7 Esc 7| 24 EscG | 34

4.3.8 Tabulatorbefehle

Beim Offnen einer Datei expandiert RTos-WORD jeweils ein Tabulatorzeichen
durch drei Leerzeichen. Beim Driicken der Tabulatortaste werden im Einsetz-
modus Leerzeichen eingefiigt. Beim Speichern eines Textes werden beim Offnen
expandierte Tabulatoren nicht zuriickverwandelt. Die Wirkung der Tabulator-
taste ist, getrennt nach Einsetz- und Uberschreibmodus, in den Tabellen 4.3
und 4.4 erklart.

4.3 Bearbeitung von Texten 249

Eine Besonderheit besteht bei der Bearbeitung von /ED-Dateien: Die Tabu-
latorleiste wird beim erneuten Editieren nicht neu aufgebaut. Die Leiste, die
beim Verlassen giiltig war, finden Sie wieder vor.

65 | Tabulator anlaufen “1
Dieser Befehl ist mit dem Driick"en der Tabulatortaste identisch. Diese
ist, getrennt nach Einsetz- und Uberschreibmodus, in den Tabellen 4.3
und 4.4 erklért.

66 | Tabulator setzen ~01

Geben Sie nach der Eingabeaufforderung die Spalte zwischen linkem
und rechtem Rand an, in der der Tabulator gesetzt werden soll. Der
gesetzte Tabulator wird durch ein ,, ! “ in der Tabulatorleiste angezeigt.
In der dem Befehl folgenden Tabelle sind die zuléssigen Sonderzeichen
erldutert.

Durch einen Mausklick in die Tabulatorleiste kénnen Sie im Window-
Modus ebenfalls einen Tabulator setzen, wenn in der ausgewéhlten

Spalte noch kein Tabulator gesetzt ist.

Zeichen | Bedeutung

Esc Der Tabulator wird in die aktuelle Cursorspalte gesetzt
A Neue Tabulatorleiste fiir Assembler-Quelltexte
P Neue Tabulatorleiste fiir PEARL- und C-Quelltexte
67 | Tabulator 16schen "ON

Geben Sie nach der Eingabeaufforderung die Spalte zwischen linkem
und rechtem Rand an, in der der Tabulator geléscht werden soll. Der

geloschte Tabulator wird durch ein ,,-“ in der Tabulatorleiste ange-
zeigt. In der nachfolgenden Tabelle sind die zuléssigen Sonderzeichen
aufgefiihrt.

Durch einen Mausklick in die Tabulatorleiste kénnen Sie im Window-
Modus ebenfalls einen Tabulator 16schen, wenn in der angeklickten
Spalte ein Tabulator gesetzt ist.

Zeichen | Bedeutung

Esc Der Tabulator der aktuellen Cursorspalte wird geloscht

A

Alle Tabulatoren werden gelscht

68

Rechten Rand setzen “"OR

Geben Sie nach der Eingabeaufforderung eine Spalte zwischen 2 und
einschliellich 231 an, die der neue rechte Rand werden soll. Wird der

250 4.3 Bearbeitung von Texten

neue rechte Rand kleiner als der linke, werden alle Tabulatoren rechts
davon gel6scht und bleiben es auch beim néchsten Vegréflern des rech-
ten Randes. Beim Driicken der Esc-Taste wird die aktuelle Cursorpo-
sition geloscht.

Im Window-Modus kénnen Sie einfach das ,R“ in der Tabulatorleiste
anklicken, um den rechten Rand zu verdndern.

4.3.9 Marken

Die 10 Marken dienen dem schnellen Anspringen von Textstellen. Der Nutzer
kann sie frei im Text mit ,,"Ez*(Befehl Nr. 69) setzen, wobei z eine Ziffer ist.
Nach dem Verlassen des Textes sind alle Marken geléscht und miissen beim
erneuten Aufrufen der Datei auch neu gesetzt werden.

69 | Marke setzen “"EO - “"E9

An der aktuellen Cursorposition wird eine Marke gesetzt. Steht der
Cursor direkt hinter einer Marke und wird das Kommando ,,"Ex* er-
neut aufgerufen, wird die Marke versteckt, d. h. sie ist nicht mehr
sichtbar, kann aber immer noch angesprungen werden. Beispiel: ,,"E3
"E3“ setzt und versteckt die Marke 3 links neben der aktuellen Cur-
sorposition.

70 | Cursor auf Marke setzen “X0 - “X9

Der Cursor wird auf die entsprechende mit ,,"E0-9* (siehe Nr. 69) defi-
nierte Marke gesetzt. Der Text wird, falls so nétig, gebléttert, daf3 der
Cursor sichtbar bleibt. Die Marke wird nach dem Anspringen sichtbar.
Beispiele:

e "X5“ setzt den Cursor auf die mit ,,"E5“ gesetzte Marke. Die
Marke wird durch die Zeichen ,,<5>“ links neben dem Cursor dar-
gestellt.

o . "X5 "E5“ setzt den Cursor auf die zuvor mit einem ,,"E5“ ge-
setzte Marke. Die Marke wird nicht angezeigt.

4.3.10 Das Hilfesystem

Rr0s-WORD stellt Thnen ein kontext-sensitives Hilfesystem zur Verfiigung.
Wenn Sie die Hilfestufe 2 gewihlt haben und das Fenster mindestens elf Textzei-
len enthélt, wird im oberen Teil des Fensters ein Hilfemenii eingeblendet, das
wichtige Kommandos anzeigt. Wenn Sie ein Untermenii anwéhlen und nicht
mehr genau wissen, wie das Kommando hiefl, warten Sie einen kurzen Mo-
ment, dann blendet RT0S-WORD die Untermeniibefehle ein. Nun kénnen Sie

4.3 Bearbeitung von Texten 251

das gewiinschte Kommando heraussuchen und ausfithren. Wenn Sie ein Kom-
mando ziigig eintippen, wird das Hilfemenii fiir das Untermenti aus Zeiterspar-
nisgriinden nicht eingeblendet.

71 | Hilfemenii ein/aus "XH

Geben Sie nach der Eingabeaufforderung eine ,,0“ ein, um das Hilfesy-
stem zu beenden bzw. ausgeschaltet zu lassen. Bei Eingabe einer ,,2%
wird bzw. bleibt das Hilfesystem eingeschaltet.

4.3.11 Befehle zum Aufridumen

72 | Bildschirm restaurieren EscV

Der Bildschirm wird komplett neu aufgebaut. Dieses Kommando soll-
te benutzt werden, wenn nicht klar ist, ob der Bildschirm noch den
aktuellen Ausschnitt des Textes zeigt. Diese Situtation kann z. B. auf-
treten, wenn eine andere Task Meldungen auf Ihren Bildschirm (im
Window-Modus: in Ihr Fenster) ausgibt.

73 | Datei komprimieren EscH

Die Datei wird verdichtet, d. h. mit einer minimalen Anzahl von /ED-
Blocken abgelegt, um Speicher an RTOS-UH zuriickzugeben. Der
Cursor wird auf den Dateianfang gesetzt. Die Operation kann nach
lingerem Arbeiten wieder etwas Platz im Rechner schaffen.

‘ 74 ‘ Blockpuffer 16schen ‘ "ET ‘
Der Blockpuffer wird geloscht und der reservierte Platz RTOS-UH
zuriickgegeben.

75 | Neue logische Zeilennummern EscN

Die logischen Zeilennummern werden neu vergeben. Nach dieser Ope-
ration stimmen die physikalischen wieder mit den logischen Nummern
iiberein.

4.3.12 Zusiatzliche Befehle im Window-Modus

In diesem Unterabschnitt sind alle Fensterbefehle aufgefiihrt. Sie sind nur im
Window-Mode erlaubt und fiihren im Terminalmode zu einer Fehlermeldung.
Mit verschiedenen Befehlen dieses Abschnittes konnen Sie die Farben von
RT0s-WORD &dndern. Die Farben sind folgenden Zahlenwerten zugeordnet:

2

2 4.3 Bearbeitung von Texten
Zahl | Farbe Zahl | Farbe Zahl | Farbe Zahl | Farbe
0 | schwarz 1| rot 2 | griin 3 | braun
4 | marine 5 | lila 6 | tiirkis 7 | grau
8 | anthrazit 9 | hellrot 10 | hellgriin 11 | gelb
12 | blau 13 | pink 14 | hellblau 15 | weiss

Tabelle 4.7: Farbzuordnungstabelle von RTOS-WORD

76

Farbe der Statuszeile dndern "BI

Mit diesem Befehl kénnen Sie die Vorder- und Hintergrundfarbe der
Statuszeile &ndern. Geben Sie nach der Eingabeaufforderung die zu
der gewiinschten Vordergrundfarbe korrespondierende Zahl an und
bestétigen Sie mit CR. Danach konnen Sie die Hintergrundfarbe
auswéhlen. Sind beide Farben identisch, ignoriert RT0OS-WORD die
Eingabe. Haben Sie keine Zahl angegeben und nur CR gedriickt, ent-
spricht dieses der ,,0“ bzw. schwarz. Die ausgewéhlten Farben wirken
sich auf alle Textfenster aus, die Sie mit dieser Subtask bearbeiten.
Aus Geschwindigkeitsgriinden wird die Anderung in anderen Fenstern
erst sichtbar, wenn Text neu aufgebaut werden mufl oder Sie dieses
mit ,EscV* (Nr. 72), im jeweiligen Fenster ausgefiihrt, erzwingen.

77

Farbe des markierten Blockes dndern "BM

Dieser Befehl dndert Vorder- und Hintergrundfarbe eines markierten
Blockes. Die Eingabe ist mit ,"BI* (Nr. 76) identisch.

78

Textfarbe dndern BT

Mit diesem Befehl kénnen Sie die Vorder- und Hintergrundfarbe des
Textes dndern. Die Eingabe ist mit ,,"BI* (Nr. 76) identisch.

79

Farbe der Kommandozeile dndern "BK

Dieser Befehl dndert Vorder- und Hintergrundfarbe der Kommando-
zeile. Die Eingabe ist mit ,,"BI* (Nr. 76) identisch.

80

Textfensterbreite dndern “BS

Wollen Sie die dargestellte Textbreite dndern, kénnen Sie neben der
Maus diesen Befehl verwenden. Geben Sie nach der Eingabeaufforde-
rung die Spaltenzahl des gesamten Fensters ein. Sind links die logischen
Zeilennummern dargestellt, verringert sich die dargestellte Textbreite
um acht Spalten. Die minimale Spaltenzahl ist z. Zt. auf 17 begrenzt.
Ist Thr Wert kleiner, wird die Spaltenzahl auf 17 gesetzt. Die Maximal-

4.3 Bearbeitung von Texten 253

breite ist nach dem ersten Offnen eines Textes 96 Spalten. Kann Ihre
Grafikkarte eine hohere Spaltenzahl darstellen, 143t sich die maximale
Textfensterbreite durch Aufziehen des Textfensters erhohen.

81

Textfensterhohe dndern "BZ

Mit diesem Befehl konnen Sie die dargestellte Texthohe dndern. Ge-
ben Sie nach der Eingabeaufforderung die Zeilenzahl des dargestellten
Textes an. Die minimale Zeilenzahl ist auf drei begrenzt. Ist Thr Wert
kleiner, wird die Zeilenzahl auf drei gesetzt. Die Maximalzeilenzahl ist
nach dem ersten Offnen eines Textes 27. Kann Thre Grafikkarte eine
hohere Zeilenzahl darstellen, konnen Sie die maximale Textfensterhche
durch Aufziehen des Textfensters erhohen.

82

Dateiauswahlfenster anzeigen "BL

Dieser Befehl ist mit einem Klick in den Dateinamen identisch. Es wird
ein Fenster erzeugt, das die Namen aller bearbeiteten Texte einschlief3-
lich der Anderungskennung , *“ anzeigt.

Mit diesem konnen Sie zu einem anderen Text wechseln. Die Selektion
erfolgt durch einen Mausklick in den Textnamen, durch Anschlagen
der dem Text vorangestellten Ziffer oder durch ein CR , welches den
markierten Text auswéhlt. Die Markierung wecheslt durch die Cursor-
tasten T und |. Nach der Dateiauswahl, durch einen Mausklick in das
Schlieifeld oder ein ESc verschwindet das Fenster.

War der selektierte Text iconisiert, wird das Fenster geoffnet.

83

Dateiiibersichtsfenster anzeigen "BW

Das Dateiiibersichtsfenster hat fast dieselbe Wirkung wie das Datei-
auswahlfenster (siehe ,,"BL“, Nr. 82). Allerdings bleibt das Fenster
nach der Selektion erhalten, so daf} es fiir weitere Textwechsel ver-
wendet werden kann. Dieses ist sehr vorteilhaft, wenn man gleichzeitig
mehrere Texte editiert und alle momentan nicht bearbeiteten iconi-
siert. Mit Hilfe dieser Box konnen Sie sofort den Richtigen auswéhlen.
Um das Dateiiibersichtsfenster aus der Fensterverwaltung zu entfer-
nen, miissen Sie das Schliefifeld anklicken.

84

Position des nichsten Textfensters "BA

Wollen Sie vor dem Offnen eines weiteren Textes (siehe ,,"EO*, Nr.
42) Fensterposition und -grofie festlegen, konnen Sie diesen Befehl ver-
wenden. Geben Sie zuerst die Fensterposition in der Reihenfolge Spal-
te/Zeile an und bestétigen Sie jeweils mit CR. Die linke obere Ecke
ist mit Spalte 0, Zeile 0 zu erreichen. AnschlieBend miissen Sie Fen-

254 4.3 Bearbeitung von Texten

sterbreite und -hohe eingeben und jeweils bestétigen. Dieser Befehl ist
vor allem fiir die Fernsteuerung gedacht, um das néchste zu 6ffnende
Fenster an der gewiinschten Stelle mit der richtigen Grofle zu 6ffnen.

4.3.13 Suchen und Ersetzen

RT0OS-WORD erlaubt ein komfortables ,,Suchen“ sowie ,,Suchen und Ersetzen“.
Die einzugebenden Strings und Suchoptionen kénnen Sie mit den Befehlen
gemifl Tabelle 4.5 editieren. Beim Suchstring sind die folgenden ,,Wildcards*
erlaubt:

Zeichen | Bedeutung

"A Deckt sich mit jedem Zeichen

“T Deckt sich mit jedem Zeichen, das weder
Buchstabe noch Ziffer ist

“Ox Deckt sich mit jedem Zeichen aufler ,,z“

Weiterhin gibt es die folgenden Suchoptionen:

Zeichen | Bedeutung

Es wird ab der Cursorposition riickwérts gesucht

Beginnt am Dateianfang, beim Ersetzen: ,, Alles®
Unterdriickt beim Ersetzen die Frage nach einem Austausch
Ignoriert im Suchstring Gro- und Kleinschreibung
Gleichheit wird nur bei ganzen Worten gefunden

Suchen: Es wird das za-te Auftreten gesucht

Ersetzen: Es werden zz Ersetzungen durchgefiihrt

BECzZQu

Sowohl bei der Eingabe als auch wiihrend der Suche kénnen Sie ein Abbruch
mittels ,,"U“ erzwingen.

85 | Text suchen “XF

Geben Sie nach der Eingabeaufforderung den zu suchenden Text (max.
30 Zeichen) ein. Ein Abschluf mit Esc beginnt die Suche sofort
(néchstes Auftreten ab Cursorposition vorwérts), ein Abschlufi mit
CR ermdglicht die Eingabe von Optionen geméif obiger Tabelle.

86 | Text suchen und ersetzen XA

Geben Sie nach der Eingabeaufforderung den zu suchenden Text (max.
30 Zeichen) ein und bestétigen Sie diesen mit Esc oder CRr. Nach der
néichsten Eingabeaufforderung kénnen Sie den Text, der den Suchtext
ersetzen soll, eingeben (bis 30 Zeichen). Ein Abschlufi mit ESC beginnt
das Suchen und Ersetzen sofort (néchstes Auftreten ab Cursorposition

4.3 Bearbeitung von Texten 255

vorwirts mit Abfrage), ein Abschlufl mit CR erméglicht die Eingabe
der Optionen geméfl obiger Tabelle. Achten Sie darauf, dafl die An-
gabe der Option ,g“ alle Zahlenangaben iibersteuert, also beliebig oft
gesucht /ersetzt wird.

87 | Suchen und ggf. Ersetzen wiederholen

Das letzte Such- oder Austauschkommando wird wiederholt.

88 | Ersetzungstext einfiigen “XI

Der Text, der bei ,,"XA* (Nr. 86) den Suchtext ersetzen soll, wird an
der aktuellen Cursorposition eingefiigt.

4.3.14 Ausfithren von Batchdateien

Sie kénnen Kommandos fiir RT0os-WORD auch aus einer sogenannten ,, Batch-
datei“ einlesen lassen. Dies ist kann niitzlich sein, wenn Sie z. B. die gleichen
Anderungen in mehreren Dateien durchfithren wollen. Sie konnen die Arbeit
dann von einem Batchprozefl durchfiihren lassen und sich eine kreative Pause
gonnen.

Soll RT0S-WORD gleich mit der Abarbeitung einer Batchdatei beginnen,
miissen sie einen weiteren Aufrufparameter verwenden (siche Abschnitt 4.4).
Rr0s-WORD liest diese Datei, in der RT0os-WORD-Kommandos stehen miissen,
als ob Sie alle Eingaben iiber die Tastatur machen wiirden. Die Ausgaben wer-
den ganz normal exekutiert. Sie konnen also den Fortgang der Arbeiten am
Bildschirm beobachten. RT0s-WORD beendet den Automatikbetrieb beim Da-
teiende. Zum vorzeitigen Abbrechen des Automatikbetriebes miissen Sie ,,"U*
eingeben. Ein ,,"EX* bzw. ,EscX* in der Batchdatei beendet den Automatik-
betrieb nur, wenn lediglich ein Text bearbeitet wird! Bei mehreren Texten wird
mit der nédchsten Datei weiter gearbeitet.

Um eine solche Batchdatei zu erhalten, kénnen Sie entweder den Protokoll-
Mode (,,"EE“, Nr. 89) benutzen oder ein kleines Programm schreiben, daf so
eine Datei erzeugt. Wéhrend des Editierens konnen Sie die Batchdateien mit
» EA® (Nr. 90) abarbeiten.

89 | Eingabeprotokoll ein-/ausschalten "EE

Ist das Mitprotokollieren ausgeschaltet, konnen Sie nach der Eingabe-
aufforderung den Dateinamen der Protokolldatei angeben. In ihr wer-
den alle Tastenanschlédge mitprotokolliert, bis der Editor sich selbst
terminiert (siehe ,EscX“, Nr. 41) oder erneut ,,"EE“ angeschlagen

256 4.4 Ubergabeparameter des Bedienbefehles

wird: War vor der Ausfithrung dieses Befehles der Protokollmodus ein-
geschaltet, wird er beendet.

90 | Batchdatei exekutieren “"EA

Nach der Eingabe des Dateinamens liest RTOS-WORD seine Einga-
ben aus dieser Datei so, als ob Sie sie iiber die Tastatur eingege-
ben hétten. Sie kénnen am Bildschirm beoabachten, was passiert. Hat
Rr0os-WORD das Dateiende erreicht, beendet der Editor den ,,Batch-
dateimodus®. Einen vorzeitigen Abbruch kénnen Sie mit ,,"U* erzwin-
gen.

91 | Makro zyklisch ausfiihren “XQ

Geben Sie nach der Eingabeaufforderung ein Makro aus maximal 30
Zeichen ein, welches zyklisch abgearbeitet werden soll. Bestétigen Sie
dieses mit CR und geben Sie anschliefend eine Ziffer ein. Diese wird
mit 0,5 sec multipliziert, um die Zykluszeit zu erhalten, wobei die ,,0“
eine Abarbeitung ohne Pause erméglicht. Wihrend der Abarbeitung
konnen Sie die Zykluszeit durch Anschlagen einer Zifferntaste variie-
ren. Ein Abbruch ist mit ,,"U* moglich. Ein Makro wird allerdings
immer zu Ende ausgefiihrt.

4.4 Ubergabeparameter des Bedienbefehles

In Abschnitt 4.2.1 haben Sie die Méglichkeit kennengelernt, beim Aufruf des
Editors gleich einen Dateinamen zu iibergeben. RT0s-WORD verfiigt noch iiber
andere Parameter, die mit angegeben werden kénnen. Die genaue Syntax lautet:

WE[[u]. taskname] [LPRIO, prio] [LAD, cursorzeile][[LSC]textname]
[ULOubatchdateinamel [SI Device mit Terminal]

Die einzelnen Ubergabeparameter haben folgende Bedeutung:

o . .taskname” legt den Namen der Editortask fest. RT0S-WORD benutzt
im Window-Modus die ersten 6 Bytes von taskname fiir die Fensteradres-
sierung. Achten Sie also darauf, dafl weder zwei Editortasks mit gleichem
Namen noch zwei Tasks existieren, bei denen die ersten 6 Buchstaben
identisch sind.

e prio“ gibt die Prioritdt des Editors vor. Sie darf zwischen 1 und 9999
liegen.

e textname® ist die Datei, die Sie bearbeiten wollen. Beachten Sie bitte
auch die Anmerkungen in Abschnitt 4.2.1.

4.5 Die Fernsteuerung 257

e , batchdateiname” ist eine Batchdatei, die sofort nach dem Offnen exeku-
tiert wird.

e cursorzeile” gibt die Zeile an, auf der der Cursor nach dem Aufruf steht.
Die Zeile 1 hat eine Sonderbedeutung: Auch beim Aufruf mit WE wird
kein eigenes Window fiir den Editor eingerichtet.

e Weiterhin kénnen Sie das Device ,, Device mit Terminal“ vorgeben, an
dem RTOS-WORD den Nutzer erwartet. Bei dem Device mufl das Bit
,dialogfahiges Datenterminal gesetzt sein.“

4.5 Die Fernsteuerung

Soll RTos-WORD innerhalb eines grofieren Programmpaketes benutzt werden,
kann das Programmpaket den Editor aufrufen und auch fernsteuern. Dadurch
sind alle RTOS-WORD-Befehle auch von anderen Programmen nutzbar. Bei-
spielsweise konnen beliebige Stellen im Text angelaufen, markiert und auch
entfernt werden. Auch die Beendigung der Editortask ist moglich.

Eine Fernsteuerung ist iiber eine Ausgabe an die Datenstation /V0 moglich.
Die Pipe, in die der Text hineinzuschreiben ist, lautet ,,/V0/ taskname®, wobei
taskname der Name der Editortask ist. Beispiel: Haben Sie den Bedienbefehl
,WE.FERNSTEUER /HO/TEST“ ausgefiihrt, bearbeiten Sie den Text ,,/H0/TEST*
und kénnen diesen iiber die Pipe ,,/VO/FERNSTEUER® ferngesteuert editieren.

Da RTOS-UH eine direkte Taskadressierung — in Assembler mittels des Traps
MSGSND, in PEARL demnéchst auch in Hochsprache — erlaubt, wurde diese
Dateniibertragung ebenfalls implementiert, zumal diese Ansteuerung elegan-
ter und schneller als der Umweg iiber /VO ist.

Die Ausfiithrung von Befehlen ist von Hochsprachen aus nicht so einfach, da die
,Control-* und ,,Escape-Sequenzen“ nur umstindlich auszugeben sind. Daher
gilt bei der Fernsteuerung folgende vereinfachte Regelung: Geben Sie das Zei-
chen ,,"“ und den Buchstaben, der normalerweise gleichzeitig mit der Control-
Taste anzuschlagen ist, einfach hintereinander aus. RT0S-WORD fafit die bei-
den Zeichen zusammen. Sie kénnen natiirlich auch den richtigen Wert ausgeben
(z. B. den ASCII-Wert ,,$05“ fiir ,"E“). Die Escape-Taste konnen Sie iiber die
Zeichen ,,"[“ nachbilden.

Damit wéhrend der Fernsteuerung kein Datensalat ensteht, wenn Nutzer und
fernbedienendes Programm gleichzeitig RT0S-WORD fiittern, arbeitet RTOS-
WORD bei Eingaben aus /VI und der Tastatur prinzipiell immer einen Befehl zu
Ende ab, bevor er nachsieht, ob sich auf einem anderen Kanal etwas getan hat.
Bei der Direktadressierung ist ein Communication-Element eine Ausfithrungs-
einheit.

258 4.5 Die Fernsteuerung

Es gibt hierbei eine Ausnahme: Hat der Nutzer den Eindruck, dafl die Fern-
steuerung wegen einer unsinnigen Sequenz héngt, kann er diese mit ,,"U* ab-
brechen.

An Hand des folgenden Beipieles soll die Fernsteuerung verdeutlicht werden.
Die Zeile 1000 soll markiert werden und in der Zeile 1000 die 30. Spalte ange-
laufen werden. Die Editortask habe wie oben den Namen ,, FERNSTEUER".

Zuerst ein Shellskript:

0 /VO/FERNSTEUER; ECHO \27°Z1000’;: Identisch mit ~[Z1000

0 /VO/FERNSTEUER; ECHO-N "EB~J"EK;: Zeile 1000 markieren.

0 /VO/FERNSTEUER; ECHO "“K"BC30; : Zurueck auf Zeile 1000 und
: Spalte 30 anlaufen.

EXIT(0);

Das gleiche leistet auch das folgende PEARL-Programm:

MODULE;
SYSTEM;
PIPE: /VO/FERNSTEUER;
PROBLEM;
SPC PIPE DATION OUT ALPHIC;
DCL ESC INV CHAR INIT(’’\1B\’’);
AA: TASK;
PUT ESC,’Z1000° TO PIPE BY A,A,SKIP;
PUT ’"“EB"J"EK’ TO PIPE BY A;
PUT ’"K"BC30’ TO PIPE BY A,SKIP;
END;
MODEND ;

4.6 Alphabetisches Verzeichnis der Kommandos 259

4.6 Alphabetisches Verzeichnis der Kommandos

’ Befehl ‘ Nr. ‘ Kurzerklarung ‘

TaB 65 | Cursor auf niichste Tabulatorspalte (siehe Tab. 4.3 und 4.4)
DEL 5 | Zeichen unter dem Cursor léschen (siehe Tab. 4.3 und 4.4)
"A 13 | Cursor ein Wort nach links

“C 37 | néchste Bildschirmseite

“F 14 | Cursor ein Wort nach rechts

"G 22 | identisch mit Backspace

"H 9 | Cursor ein Zeichen nach links

1 65 | identisch mit Tabulatortaste (siche Tab. 4.3 und 4.4)

°J 11 | Cursor eine Zeile tiefer

K 12 | Cursor eine Zeile nach oben

"L 10 | Cursor ein Zeichen nach rechts

"M identisch mit der Returntaste (CR) (siehe Tab. 4.3 und 4.4)
"N 21 | Zeilenumbruch (,harter Return)

“Q Xon schicken (siehe Seite 268)

"R 38 | vorherige Bildschirmseite

S Xoff schicken (siehe Seite 268)

°T 23 | bis Wortende 16schen

“U 27 | Loschen riickgéingig machen/Befehl abbrechen

Y% 11 | Cursor Zeile tiefer

"W 36 | Text Zeile nach oben scrollen

Y 24 | Zeile 16schen

"7 35 | Text Zeile nach unten scrollen

" 1 | Insertmodus ein/aus

o 87 | Suchen / Suchen und ersetzen wiederholen

Tabelle 4.8: RT0s-WORD-Kommandos mit einem Buchstaben

260 4.6 Alphabetisches Verzeichnis der Kommandos

Die Befehle des "B-Submeniis sind hinter denen des "~ X-Submeniis aufgefiihrt.

’ Befehl \ Nr. \ Kurzerklarung ‘
“E. Menii beenden
"EO 69 | Marke 0 setzen
"E1l 69 | Marke 1 setzen

"E9 69 | Marke 9 setzen

"EA 90 | Batch Datei abarbeiten

"EB 50 | Blockanfang markieren

"EC 52 | Block kopieren

"ED 47 | automatisches Sichern

"EE 89 | Eingabeprotokoll ein/ausschalten
"EG 56 | Block in Blockpuffer kopieren
"EH 60 | Blockbefehle ein/aus

"EI 54 | Block seitlich scrollen

"EJ 49 | Datei 1oschen

"EK 51 | Blockende markieren

"EL 48 | Textnamen éndern

"EM 57 | Blockpuffer einfiigen

"EN 43 | Text wechseln

"EO 42 | weitere Datei 6ffnen

"EQ 45 | Text ohne Abspeichern verlassen
"ER 59 | Datei einlesen

"ES 46 | Speichern des Textes

"ET 74 | Blockpuffer 16schen

"EU 40 | Editor suspendieren

"EV 53 | Block verschieben

"EW 58 | Block in Datei schreiben

"EX 41 | Text speichern und verlassen
"EY 55 | Block loschen
"EZ 44 | Text unter neuem Namen speichern und verlassen

Tabelle 4.9: Rros-WoORD-Kommandos im ,, E“-Submenii

4.6 Alphabetisches Verzeichnis der Kommandos 261

’ Befehl \ Nr. \ Kurzerklarung

"Oy Menii beenden

"0l 66 | Tabulator setzen

"ON 67 | Tabulator l6schen

"OR 68 | rechten Rand verédndern

"OuU 3 | automatisches Einriicken ein/aus
"OW 4 | Wortumbruch ein/aus

“OX 2 | Klingel ein/aus

Tabelle 4.10: RT0s-WORD-Kommandos im ,,O“-Submenii

Befehl \ Nr. | Kurzerkldarung

“P Menii beenden

"PA 8 | Som ($01) einfiigen
"PB 8 | Stx (%02) — -
“PC 8 | ETx (%03) -
"PD 8 | Eor (%04) -
"PE 8 | ENqg ($05) -4
“PF 8 | Ack (%06) -
PG 8 | BEL ($07) — -
"PH 8 | Bs ($08) -
“PI 8 | HT ($09) -
“PJ 8 | Lr ($0A) -
"PK 8 | Vr (30B) -
"PL 8 | FF (30C) -
"PN 8 | S0 (30E) — -
“PO 8 | S1 ($0F) -
"PP 8 | DLE ($10) -
“PQ 8 | Dcl ($11) -
“PR 8 | Dc2 ($12) -
“PS 8 | Dc3 ($13) -
“PT 8 | Dcd ($14) -
"PU 8 | Nak ($15) -
PV 8 | SyN ($16) — -
“PW 8 | ETB ($17) -

Tabelle 4.11: Rr0s-WORD-Kommandos im ,,P“-Submenii

262

4.6 Alphabetisches Verzeichnis der Kommandos

’ Befehl \ Nr. \ Kurzerklarung
"Xy Menii beenden
“X0 70 | Cursor auf Marke 0 setzen
“X1 70 | Cursor auf Marke 1 setzen
"X9 70 | Cursor auf Marke 9 setzen
XA 86 | Text suchen und ersetzen
"XB 29 | Cursor auf Blockanfang
“XC 20 | Cursor zum Dateiende
XD 16 | Cursor zum Zeilenende
"XE 17 | Cursor zum oberen Bildschirmrand
“XF 85 | Text suchen
"XH 71 | Hilfestufe wihlen
“XI 88 | Replace-Text einfiigen
XK 30 | Cursor auf Blockende
“XQ 91 | Kommando wiederholen
"XR 19 | Cursor zum Textanfang
“XS 15 | Cursor zum Zeilenanfang
"XU 28 | letzte geloschte Zeile einfiigen
"XV 31 | Cursor an Position vor ,,Suchen/Ersetzen®
XX 18 | Cursor zum unteren Bildschirmrand
XY 25 | ab Cursorposition bis Zeilenende 16schen
"X7Z 26 | ab Cursorposition bis Zeilenanfang 16schen

Tabelle 4.12: Rr0os-WoRrD-Kommandos im ,, X“-Submenii

’ Befehl \ Nr. \ Kurzerklarung
"B Menii beenden
"BA 84 | Position des nichsten Textfensters
"BI 76 | Farbe der Statuszeile &ndern
"BK 79 | Farbe der Kommandozeile &ndern
"BL 82 | Dateiauswahlfenster erzeugen
"BM 77 | Farbe markierter Blocke éndern
"BS 80 | Textfensterbreite dndern
"BT 78 | Textfarbe &ndern
"BW 83 | Dateiiibersichtsfenster erzeugen
"BZ 81 | Zeilenanzahl des Textfensters dndern

Tabelle 4.13: Rr0os-WoORD-Kommandos im ,,B“-Submenii

4.6 Alphabetisches Verzeichnis der Kommandos

263

’ Befehl \ Nr. \ Kurzerklarung
Esc Menii beenden
Esc T 24 | Zeile 16schen
Esc | 6 | Leerzeile einfiigen
Esc — | 7 | Leerzeichen einfiigen
Esc « 5 Zeichen unter Cursor 16schen
Esc A | 12 | Cursor aufwirts
Esc B 11 | Cursor abwiérts
Esc C 10 | Cursor ein Zeichen rechts
Esc D 9 | Cursor ein Zeichen links
Esc E 6 | Leerzeile einfiigen
Esc F 39 | halbe Seite vorwarts blattern
Esc G | 34 | physikalische Spalte anlaufen
Esc H | 73 | Text komprimieren
Esc 1 62 | Pufferzeile einfiigen
Esc K | 64 | Pufferzeile editieren
Esc L 6 | Leerzeile einfiigen
Esc M | 24 | Zeile 16schen
Esc N | 75 | neue logische Zeilennummern
Esc O | 61 | Zeilenrest in Zeilenpuffer kopieren
Esc P 5 Zeichen unter Cursor 16schen
Esc Q 7 | Leerzeichen einfiigen
Esc R | 24 | Zeile 16schen
Esc S 63 | ab Cursor nach Inhalt des Puffers suchen
Esc T | 66 | Tabulator an Cursorposition setzen
Esc U | 67 | Tabulator an Cursorposition l6schen
Esc V | 72 | Bildschirm neu aufbauen
Esc X | 41 | Text speichern und verlassen
EscY | 32 | physikalische Zeilennummer anlaufen
Esc Z 33 | logische Zeilennummer anlaufen

Tabelle 4.14: Rr0s-WORD-Kommandos im ,, Esc“-Submenii

264 4.8 Das Konfigurationsmodul

4.7 Standardméflig unterstiitzte Terminals

RT0s-WORD unterstiitzt die Terminaltypen Televideo und VT52/100/220/
320. Die Ansteuerung dieser Terminals soll in diesem Unterabschnitt beschrie-
ben werden. Arbeiten Sie an einem Terminal, kénnen Sie eine Anpassung mit
Hilfe von Unterabschnitt 4.8 vornehmen. Uber den RrTo0s-UH-Bedienbefehl
,»3D“ kénnen Sie RT0s-WORD ihren Terminaltyp mitteilen:

e . SD,,/TYA 3300 fiir ein Televideo-Terminal
e . SD_,/TYA,3301¢ fiir ein VT52-Terminal

e ,SD_,/TYA.,3302 fiir ein Terminal der Typen VT100/220/320, das im
7 Bit Mode betrieben wird.

RT0S-WORD bendtigt fiir seine Arbeit die Steuersequenzen gemifl der nach-
folgenden Tabelle:

| Funktion | Televideo | VT52 | VT100/220/320 |
Bildschirm 16schen 1B2A 1B481B4A | 1B5B324A
Cursor positionieren | 1B3Drrcc | 1B59rrcc | 1BSBRR3BC(C66
inverse Darstellung 1B29 1B70 1B5B376D
normale Darstellung | 1B28 1B71 1B5B306D
Zeilenende 16schen 1B54 1B4B 1B5B304B

rr/cc steht fiir die Zeilen- und Spaltennummer in Binér-Darstellung mit einem
Offset von $20. Die linke obere Ecke wird mit z. B. bei einem Televideo-Terminal
mit ,,1B3D2020“ adressiert. RR und CC sind die Zeilennummern in ASCII-
Darstellung mit einem Offset von 1. Bei einer zweistelligen Spaltenzahl ist also
die Steuersequenz um 1 Byte grofier als bei einer einstelligen. Bei einem VT100
Terminal beispielsweise wird die linke obere Ecke mit ,,1B5B313B3166* erreicht,
mit ,1B5B31313B333266“ erreichen Sie die Position ,,11. Zeile/32. Spalte.“

Sollte Thr Terminal mit den obigen Squenzen nicht zurecht kommen, miissen
Sie eine eigene Anpassung geméfl Unterabschnitt 4.8 durchfiihren.

4.8 Das Konfigurationsmodul

Dieses Modul hat zwei vollig voneinander unabhéngige Funktionen: Einerseits
konnen Sie eine Terminalansteuerung konfigurieren, die RTOS-WORD nicht
standardméfig unterstiitzt. Andererseits konnen Sie fiir den Window-Modus
die Startgrofie und -position des ersten Fensters vorgeben sowie die Standard-
farben fiir Text, Blocke, Kommando- und Statuszeile vorgeben. In beiden Modi
sind einige Defaultparameter veréinderbar.

4.8 Das Konfigurationsmodul 265

4.8.1 Die Anpassung an Ihr Terminal

RT0S-WORD bendtigt die Funktionen ,, Bildschirm I6schen, ,,Cursor positio-
nieren“, normale Zeichendarstellung®, ,inverse Zeichendarstellung® und ,ab
Cursor bis Zeilenende 16schen.“ Die Sequenz zur Cursorpositionierung darf ma-
ximal 12 Byte lang sein, alle anderen Sequenzen haben die Maximalléinge acht.
Die Sequenzen fiir IThr Terminal finden Sie im dazugehorigen Handbuch.

Die Cursorpositionierung benttigt die anzusteuernde Zeile und Spalte. Daher
ist in die Befehlssequenz fiir die Positionierung mit Hilfe eines Codes einzubau-
en, wie Thr Terminal die Zeilen- und Spaltendarstellung erwartet: $80 steht als
Platzhalter fiir die binéire Zeilenposition. Der auf die $80 folgende Wert ist der
Offset zu Zeile 0 und wird nicht ausgegeben, sondern auf den Wert der aktu-
ellen Zeile addiert. Ebenso steht die $81 als Platzhalter fiir die aktuelle binére
Spalte. Auch hier wird der folgende Wert addiert. Die Ansteuersequenz lautet
also im Televideo-Modus 1B3D 8001 8101. Die Platzhalter fiir die Zeilen- und
Spaltenposition in ASCII-Darstellung lauten $83 und $82. Der darauf folgende
Wert ist wieder der Offset. Bei einem VT320-Terminal lautet die Befehlsse-
quenz zur Cursoransteuerung ,,1B5B 8301 3B82 0166*.

Als weitere Parameter im Terminalmode stehen im Konfigurationsmodul die
Bildschirmzeilenzahl. Auflerdem kénnen Sie vorgeben, ob RTOS-WORD im
Einsetz- oder im Uberschreibmodus und im ein- bzw. ausgeschalteten Einriick-
modus anlduft. Sie konnen aulerdem die Anzeige der logischen Zeilennummer
unterdriicken. Im Beispielmodul in Unterabschnitt 4.8.2 finden Sie die Erldute-
rungen zur Konfigurierung.

4.8.2 Beispielmodul

Das folgende Listing stellt ein Beispiel fiir ein Konfigurationsmodul dar.

A o e e e e e e e e e e e *
* Muster-Konfigurationsmodul fuer WORD *
* Universalmodul mit allen moeglichen Parametern *
Rt sttt *

DC 0,0,0,0,$0010 Modul-Kopf *

DC.L NAME-$ Zeiger auf den Namen *

DC 0 Name ist relativ angegeben *
NAME DC.B ’WORD_para’,$FF Name des Moduls (alle User) x*
*NAME DC.B ’WORD_parl’,$FF Name des Moduls (USER1) *
* Parameter Kommentar *
A o e e e e e e e e e e e e e e *

* Sektion ’TERMINAL’ *

266 4.8 Das Konfigurationsmodul

e it *
CLEAR DC $1B2A,0,0,0 Bildschirm loeschen *
POS DC $1B3D, $8020,$8120 Positionieren *
DC 0,0,0 *
INVERS DC $1B29,$0000,0,0 Schrift invers *
NORMAL DC $1B28,$0000,0,0 Schrift normal *
DELEND DC $1B54,0,0,0 Bis Zeilenende loeschen *
* Laenge des Bildschirms-4 (min. 7, max. 21) *
SCRELI DC 15 *
* Insert- oder Replace-Modus
* Insert-Modus: $0 Replace-Modus: $FFFF
INSMOD DC $FFFF Start im Replace-Modus
* linker Rand mit Zeilennummer: O ohne: 8;<>0
LEFTMA DC 8 keine Zeilennummer
T et *
* Sektion ’MODE’ *
T i *
Diese Sektion gilt fuer WIM und TER-Modus
$0 = Standardwerte laden *
$FFFF = umgekehrter Modus (<>0) *
DC.B ’MODE’ Sektions-Kennung *
_INSMO DC $0 einfuegen (Standard) *
INDENT DC $0 einruecken (Standard) *
WRAP DC $0 kein Umbruch (Standard) *
_LEFTM DC $0 linker Rand MIT Zeilennummer x*
DS 12 reserviert
Tttt et L LS *
* Sektion ’WINDOW’ *
A *
Diese Sektion gilt nur im WIM-Modus
Farben
0,0 = Standardwerte laden
St Farben ----———--—----—-—-—--m——— *
rot EQU 1
gruen EQU 2
braun EQU 3
marine EQU 4
lila EQU b5
tuerkis EQU 6

4.8 Das Konfigurationsmodul 267

grau EQU
anthrazit EQU
hellrot EQU
hellgruen EQU 10

© 00 N

gelb EQU 11
blau EQU 12
pink EQU 13
hellblau EQU 14
weiss EQU 15
schwarz EQU 0
DC.B >WINDOW’ Sektions-Kennung *
BLOCK DC.B anthrazit,weiss Hinter-/Vordergrund Bloecke x*
TEXT DC.B grau,schwarz Hinter-/Vordergrund Text *
STATUS DC.B grau,schwarz " " Statuszeile *
COMMND DC.B grau,schwarz " " Kommandozeile *
XPOS DC 5 Startposition: 5. Spalte *
YPOS DC 1 Startposition: 1. Zeile *
XSIZE DC 80 Startgroesse: 80 Spalten *
YSIZE DC 26 Startgroesse: 26 Textzeilen x*
A *
DS 12 reserviert
END

Beachten Sie die folgenden Erlduterungen:

e Fin Konfigurationsmodul WORD_par1 wirkt nur auf User 1. Entsprechen-
des gilt fiir die anderen User. Soll es fiir mehrere User gelten, muf} es
WORD_para lauten. Sind sowohl ein userspezifisches als auch ein allge-
meingiiltiges Modul geladen, hat das userspezifische Vorrang.

e Die Terminalsektion wird nur ausgewertet, wenn die Device-Facilities der
seriellen Schnittstelle auf $3303 stehen.

e Alle anderen Sektionen werden ausgewertet, wenn das Modul zu dem
User gehort (s. o.).

e Die den einzelnen Labeln zugeordneten Byteldngen miissen auf jeden Fall
eingehalten werden.

e Mindestens eine Sektion mufl im Modul enthalten sein.

e Innerhalb einer Sektion darf die Parameterreihenfolge nicht geédndert wer-
den.

e Folgt hinter einem Komma ein weiterer Parameter, darf kein Leerzeichen
zwischen Komma und Parameter stehen.

268

4.9 Besonderheiten bei der Einbindung in das Betriebssystem RTOS-UH

e Terminalsektion: Ist Thre Ansteuersequenz kiirzer als die vorgegebene

4.9

Lénge, miissen Sie Nullbytes/Nullworter auffiillen. RT0s-WORD igno-
riert diese bei der Ansteuerung des Terminals. SCRELI gibt die Anzahl
der darzustellenden Textzeilen an. Ihr Terminal mufl mindestens 4 weite-
re Zeilen darstellen konnen. Statt INSMOD und LEFTMA sollten Sie Sektion
»MODE* benutzen.

Windowsektion: Sind Vorder- und Hintergrundfarbe gleich oder hat ei-
ne der beiden Farben einen ungiiltigen Wert, werden die Standardwerte
verwendet. Bei der Positionierung hat die linke obere Ecke des WiM den
Wert 1/1. Hat das zu 6ffnende Fenster keine Zeile oder keine Spalte, wird
die Defaultgréfie verwendet. Sind Mafle zu grof}; werden die Maximalwer-
te verwendet.

Besonderheiten bei der Einbindung in das
Betriebssystem RTOS-UH

Arbeiten Sie an einem Terminal, wird die Schnittstelle im Xon/Xoff-
Protokoll betrieben. Trotzdem kann es zu Verwirrung auf dem Bildschirm
kommen. In einem solchen Fall kénnen Sie mit ,,EscV* den Bildschirm
neu aufbauen lassen.

. Es gibt VT52-Terminals, die Schriften nicht invers darstellen kénnen. Die

in Unterabschnitt 4.7 angegebenen Sequenzen sind zwar korrekt und auch
korrekt programmiert, aber es gibt unterschiedliche VT52-Terminals. Auf
jeden Fall funktionieren alle Befehle korrekt. RTOS-WORD kann jedoch
markierte Blocke nicht anzeigen.

Haben Sie aus Versehen ,,"S* gedriickt, kann es vorkommen, daf} ihr Ter-
minal dieses sofort abfangt und die Schnittstelle blockiert. Sollte es einmal
vorkommen, daf} sich auf ihrem Terminal nichts mehr &ndert, driicken Sie
erst einmal ,," Q% zur Freigabe der Schnittstelle, bevor Sie glauben, dafl
RTOS-UH abgestiirzt ist.

RT0s-WORD verhindert in den meisten Féllen, dafl Sie mit ,,"A“, | ~B¢
und ,,”C*“ das Kommandointerface erreichen. Sehen Sie trotzdem einmal
den Eingabeprompt, kann dies zwei Ursachen haben: Das Driicken der
BREAK-Taste unterdriickt RTOS-UH absichtlich nicht, um immer noch
in das Betriebssysstem kommen zu kénnen. Arbeiten noch andere Tasks
auf ihrer Schnittstelle — besonders gemein sind die, die ab und zu auf die
Tastatur pollen —, kann es dazu kommen, dafl der Unterdriickungsmecha-
nismus ausgeschaltet wird. Wollen Sie genau danach eine Seite nach unten
blattern (,,"C* !!), haben Sie den Datensalat. Zum Beheben brauchen Sie
lediglich die Cr-Taste, gefolgt von einem ,, ESCV* zu driicken.

4.10 Statusmeldungen und Eingabeaufforderungen 269

5. Erscheinen statt der eckigen Klammern ,[“ und ,]“ deutsche Buchsta-
ben, dann steht Thr Terminal, Thre Terminalemulation oder Thr Fenster
auf deutschem Zeichensatz. Falls Sie diese Zeichenausgabe nicht stort,
brauchen Sie nichts weiter zu tun; RTOS-WORD arbeitet weiterhin ein-
wandfrei. Wollen Sie die eckigen Klammern statt der Umlaute betrachten,
miissen Sie auf einen englischen Zeichensatz umstellen.

4.10 Statusmeldungen und Eingabeaufforderungen

Verschiedene Aktionen von RT0OS-WORD, wie z. B. das Suchen von Text, dauern
etwas ldnger. Damit Sie sich nicht wundern, warum RTOS-WORD nicht mehr
auf Thre Eingaben reagiert, geben Kommandos, die linger dauern kénnen, eine
Statusmeldung aus. Diese sind im folgenden dargestellt.

Please wait: I’m searching. Es wird nach einem String gesucht. Die Mel-
dung verschwindet, wenn der String erreicht oder die Datei abgearbeitet
ist.

Please wait: I’m packing. Diese Meldung erscheint beim Verlassen incl.
Abspeichern des bearbeiteten Textes. Nach dem Verdichten der /ED-Datei
bzw. Zuriickschreiben der Arbeitskopie auf das Original hat RTOS-WORD
diesen Text aus seiner Verwaltung entfernt.

Please wait: I’m saving. Die Datei wird gesichert. Nach dem Sichern
konnen Sie mit der Bearbeitung fortfahren.

Please wait: I’m loading. RTOS-WORD legt die lokale Arbeitskopie an.
Mit dem Aufblédttern des Textes verschwindet diese Meldung.

taskname suspended waiting Im Terminal-Mode haben Sie den Editor mit
, EU“ unterbrochen. Fahren Sie mit der Arbeit fort, indem Sie von der
Shell aus ,,C taskname“ eingeben.

0. K., never mind! Sie wollten einen noch nicht vorhandenen Text editieren.
Bevor Sie jedoch damit begonnen haben, haben Sie sich anders entschie-
den.

Die folgende Auflistung enthélt alle Eingabeaufforderungen. Sie miissen alle
Eingabeaufforderungen, die nicht mit ,,(y/n)“ enden, mit CR quittieren, es sei
denn, bei der Erkliarung steht etwas anderes. Die Eingabeaufforderungen, die
direkt nach einer Befehlseingabe erscheinen, enthalten einen Verweis auf den
Befehl, der die Meldung ausgibt.

Set Tab at position: Sie wollen einen neuen Tabulator einfiigen
(,"OI, Nr. 66).

270 4.10 Statusmeldungen und Eingabeaufforderungen

Del Tab at position: Sie wollen einen Tabulator 16schen (, ON*, Nr. 67).

Set right margin at: Sie mo6chten den rechten Rand neu setzen
(,,"OR¥, Nr. 68).

Enter steps (-)= left: Sie koénnen einen Block ein-/ausriicken
(,"EI“, Nr. 54).

Destroy old file? (y/n) Sie wollen einen Block herausschreiben (,"EW*,
Nr. 58) und die von Thnen angegebene Datei ist vorhanden. Wenn Sie
mit ,y*“ antworten, wird sie iiberschrieben, sonst wird die Aktion abge-
brochen. Diese Meldung erscheint auch, wenn Sie einen Block an einen
Drucker schicken.

Enter search string: Sie wollen einen Text suchen oder suchen und ersetzen
(,"XF*“, Nr. 85 bzw. ,"XA“, Nr. 86). Geben Sie bitte den Suchtext ein.
Fine Bestétigung ist auch mit Esc moglich.

Enter replace string: Erscheint nach beim Suchen und Ersetzen (,,"XA“,
Nr. 86). Geben Sie bitte den Text ein, der den gesuchten ersetzen soll.
Eine Bestétigung ist auch mit Esc moglich.

Enter file name: Sie wollen etwas aus einer Datei lesen oder in Datei schrei-
ben. Geben Sie bitte den Namen dieser Datei an.

Options ? Sie konnen nun die Such- bzw. Such-und-Ersetz-Optionen einge-
ben. Die Ausfiihrung kann auch mit EscC forciert werden.

Exchange 7 (y/n) RTOS-WORD hat beim ,,Suchen und Ersetzen“ den Such-
text gefunden und fragt Sie nun, ob er ihn ersetzen soll. ,y* ersetzt den
Text.

Enter repeat command: Sie wollen ein Makro zyklisch ausfiihren (,,"XQ%, Nr.
91). Sie konnen eine Folge von Kommandos eingeben, die dann immer
wieder abgearbeitet wird.

Repeat rate (0-9): Bei der zyklischen Ausfiihrung eines Makros gibt die von
Ihnen angeschlagene Ziffer die Zykluszeit in 0,5 sec an. Die Zahl darf nicht
mit CR bestétigt werden.

Help level (0 oder 2): Die Hilfestufe (, "XH*“, Nr. 71) wird festgelegt. ,,0¢
schaltet aus, ,,2“ schaltet ein. Die Zahl darf nicht mit CR bestétigt wer-
den.

This file will not be saved! (y/n) Sicherheitsabfrage, wenn Sie eine
gednderte Datei ohne Abspeichern verlassen wollen (,,"EQ“, Nr. 45) .
Antworten Sie mit ,,y“, so wird die Datei tatsichlich nicht gespeichert.

4.10 Statusmeldungen und Eingabeaufforderungen 271

No chance! You still want exit? (y/n) Sie haben RTOS-WORD beim
Aufruf eine /ED-Datei iibergeben oder mit ,,"EO* (Nr. 42) geofinet. Diese
Datei kénnen Sie weder umbenennen (,,"EL*, Nr. 48) noch ohne Veréinde-
rung verlassen (,,"EQ®, Nr. 45). Auch ein Verlassen mit neuem Namen
(,"EZ“, Nr. 44) ist nicht méglich.

Zoneselect-Enter Line: Nach einem ,EscZ* (Nr. 33) konnen Sie die logi-
sche Zeilennummer eingeben, die Sie anlaufen wollen.

Enter save Time (Min): Erscheint nach dem Befehl , Automatisches Si-
chern®“ (,"ED“, Nr. 47). Geben Sie den Abstand in Minuten an, nach
dem jeweils automatisch gesichert werden soll.

Set cursor to column: Nach dem Driicken von ,EScG* (Nr. 34) kénnen Sie
nun die Spalte angeben, auf die der Cursor positioniert werden soll.

Next open pos&size; X: Diese Meldung leitet die Koordinateneingabe und
Fenstergrofle fiir das niichste zu 6ffnende Fenster (,"BA“, Nr. 84) ein.
Hier ist die Spaltenposition des nichsten Fensters gefragt.

Y: Geben Sie bitte die Zeilennnummer ein, in der das néchste Fenster geoffnet
werden soll.

width: Diese Meldung erwartet die Anzahl von Spalten, die das néchste zu
Offnende Fenster haben soll.

height: Hier konnen Sie die Zeilenzahl angeben, die das néchste zu 6ffnende
Fenster haben soll.

status line colors: foreground: Hier ist nach der Vordergrundfarbe der
Statuszeile (,,"BI*, Nr. 76) gefragt. Die Zuordnung zwischen Farbe und
Zahl finden Sie in Tabelle 4.7.

Command line colors: foreground: Geben Sie bitte die Vordergrundfarbe
der Kommandozeile (,,"BK*, Nr. 79) entsprechend Tabelle 4.7 ein.

Normal text colors: foreground: Sie wollen Textfarbe &ndern (,,"BT*“, Nr.
78). Geben Sie bitte die Buchstabenfarbe entsprechend Tabelle 4.7 ein.

Selected text colors: foreground: Diese Meldung erwartet die Vorder-
grundfarbe markierter Blocke (, "BM*, Nr. 77) entsprechend Tabelle 4.7.

background: Sie wollen die Farbe der Kommando- oder der Statuszeile, des
normalen oder des markierten Textes &ndern. Geben Sie die Hintergrund-
farbe iiber eine Zahl gemifl Tabelle 4.7 ein.

Enter window columns: Diese Meldung erscheint bei einer Anderung der Fen-
sterspaltenzahl (,,"BS“, Nr. 80). Geben Sie die neue Spaltenzahl ein.

272 4.11 Fehlermeldungen

Enter window lines: Sie wollen die Fensterhohe verdndern (,,"BZ“, Nr. 81).
Geben Sie bitte die neue Hohe in der Anzahl von Textzeilen ein, die Sie
gleichzeitig sehen wollen.

4.11 Fehlermeldungen

Neben den hier aufgefiihrten Fehlermeldungen verwendet RT0OS-WORD fiir eini-
ge Bedienbefehle, die auf Dateien arbeiten, den Report-Error-Mechanismus von
Rr0s-UH. Bei einem Fehler produziert RT0S-WORD nicht eine Standardfeh-
lermeldung, sondern fragt die Betreuungstask nach deren Fehlertext und gibt
diesen aus. Diese Meldungen kénnen Sie daran erkennen, daf sie mit einem #
und dem Namen der Betreuungstask beginnen.

Alle Fehlermeldungen, die mit (CR) enden, miissen von Thnen mit einem CR
quittiert werden.

No Workspace. Try later Ihr Rechner hat nicht geniigend freien Speicher.
Um mit RT0S-WORD arbeiten zu kénnen, miissen Sie freien Speicher
durch Entladen oder Terminieren von Tasks oder Entfernen von Files der
Datenstation /ED schaffen.

*x**COMMAND-ERROR (CR): Sie haben eine unzulissige Taste oder Tastenkom-
bination gedriickt.

Command not avail.(CR) Sie haben im Terminal-Modus einen Befehl aufge-
rufen, der nur im Window-Modus erlaubt ist.

*x**NO MEM:SUSPENDED RTOS-WORD benétigt noch eine ED-Speichersektion,
und RTOS-UH hat nicht mehr geniigend freien Speicherplatz. Die Edi-
tortask hat sich selbst suspendiert. Zum Fortsetzen sollten Sie mindestens
4 KByte Speicher freigeben. AnschlieBend kénnen Sie die Task mit dem
Bedienbefehl ,C taskname® fortsetzen.

Sorry. Can’t find. (CR) Diese Meldung erscheint, wenn eine Textsuche
fehlschlug.

BAD POINTER/BREAKDOWN. Interne Zeigerstrukturen sind zusammengebrochen.
Die Editortask hat sich terminiert. Die /ED-Datei sollte allerdings noch
vorhanden sein. Sie kénnen sie noch umkopieren, die Anderungen der
letzten auf dem Terminal sichtbaren Textseite sind aber verloren. Dieser
Fehler sollte eigentlich nicht vorkommen, laf3t sich jedoch immer provozie-
ren, wenn der Nutzer iiber Befehle an die Datenstation /ED das Arbeitsfile
manipuliert.

Not implem. yet (CR) Sie haben eine Tastenkombination gewihlt, die fiir
eine spatere Verwendung vorgesehen ist.

4.11 Fehlermeldungen 273

Block def. wrong (CR) FEine Ausfiihrung des von Thnen gewiinschten Block-
befehles ist nicht moglich, da entweder die Blockende- vor der Block-
anfangmarke steht oder eine der beiden Marken nicht gesetzt ist.

Not enough memory (CR) Bei einer Blockoperation kann RTOS-WORD man-
gels freiem Speicher keinen Plockpuffer einrichten.

Unable to open! (CR) RTOS-WORD sieht sich nicht in der Lage, die ge-
wiinschte Datei zu 6ffnen. Meist ist ein simpler Tippfehler schuld.

Unknown device! (CR) Das von Ihnen angegebene Device existiert auf diesem
Rechner nicht.

Read error! (CR) Die Datei konnte zwar getffnet werden, aber der Filema-
nager, der das Device betreut, konnte die Datei nicht bis zum Dateiende
lesen.

Write error! (CR) Der Schreibvorgang wurde zwar korrekt begonnen, mufite
jedoch vorzeitig beendet werden (z. B. Diskette voll).

Line too long! (CR) Mit Ihrer Operation wiirde die Zeile zu lang, deshalb
wird sie nicht ausgefiihrt. Direkt nach dem Laden besagt diese Meldung,
daf die Datei zu lange Zeilen hatte, die RT0s-WORD zwangsumgebrochen
hat.

*x*Aborted command (CR) Sie haben einen Kommando mit ,,”U“ abgebrochen.
RT0S-WORD bestitigt den Abbruch und bittet Sie diese Bestatigung zu
quittieren.

Unable to open file. Bye, Bye! RTOS-WORD kann mit diese Datei nicht
Offnen. Kann z. B. auftreten, wenn ein Ordner des Pfades nicht existiert
oder der Dateiname der Betreuungstask des Devices zu lang ist. Diese
Meldung erscheint nur im Terminalmode.

Sorry, can’t work on this device. Bye, Bye! Die von RTOS-WORD zu
lesende Textdatei steht auf einem nicht riickspulbaren Device. Da das
Lesen solcher Dateien problematisch fiir Rros-WORD werden kann, wird
dieser Versuch abgebrochen.

WRONG LDN (MODE) Sie wollen RTOS-WORD von einem Device bedienen, wel-
ches nicht die Datenstationseigenschaft ,,dialogfahiges Datenterminal“ be-
sitzt. RTOS-WORD bricht ab und terminiert sich.

Can’t read input file. Bye, Bye! Die Eingabedatei ist zwar vorhanden,
kann aber nicht korrekt gelesen werden. RT0os-WORD bricht ab und ter-
miniert sich.

274 4.11 Fehlermeldungen

Can’t write output file. Bye, Bye! Ihr Rechner hat zuwenig freien Spei-
cher. Die temporéire /ED-Datei kann nicht angelegt werden.

Write-error on filename! Please take /ED/name Beim Verlassen der Da-
tei kann RTOS-WORD die lokale Kopie nicht zuriickschreiben. Sie kon-
nen /ED/name — name bezeichnet die lokale Arbeitskopie — mit Hilfe des
Bedienbefehles ,,CP* kopieren.

Read-error on filename! Please take /ED/name Beim Verlassen der Da-
tei kann RTOS-WORD die lokale Kopie nicht zuriickschreiben. Sie kénnen
/ED/name mit Hilfe des Bedienbefehles ,,CP“ kopieren.

Can’t delete file (CR) Die angegebene Datei konnte nicht geloscht werden.

4.12 Technische Daten

275

4.12 Technische Daten

Code:

Datenbereich:

Betriebsmodi:

Unterstiitzte Terminals:

Fenstergrofle:

Anzahl editierbarer Texte:

Textmaximalgrofle:

Erlaubte Zeichen:
Farben:

Ansteuerung:

ca. 44 Kbyte; Hilfesystem: ca. 3 KByte
Code ist wiedereintrittsfest. Dadurch
kénnen mehrere Editoren gleichzeitig laufen.
4 KByte + 12 KByte fiir jedes File
Platz fiir Blockpuffer je nach
Grofle des Blockes
Bei Nicht-/ED-Dateien Platz fiir
lokale Textkopie
Window-Modus:
Eigenes grofieneinstellbares Fenster
fiir jeden Text
(Window-Manager notwendig)
Terminal-Modus:
Konsolenfenster als Arbeitsfenster
(Bei Terminals und Terminalemulationen)
Televideo; VT52/100/220/330
Andere Typen iiber Konfigurationsmodul
Terminal-Modus:
Standard 80 Spalten / 24 Zeilen
Andere Groflen iiber Konfigurationsmodul
Window-Modus:
Maximalgroe durch Grafikauflssung
bestimmt
Terminal-Modus:
nur durch Speicherplatz begrenzt
Window-Modus:
100 Texte pro Editortask
nur durch Speicherplatz begrenzt
die ersten 65500 Zeilen sind editierbar,
Textspalten auf 231 begrenzt
ASCII-Werte von $20. .. $FF,
fast alle Sonderzeichen
16 Farben fiir Text und Block sowie
Kommando- und Statuszeile
Uber Terminal oder Pipes
Ausfithrung von Batchdateien moglich

276 4.12 Technische Daten

(Leere Seite vor neuem Kapitel)

Kapitel 5: Programmieren in PEARL

5.1 Die PEARL-Compiler-Familie

5.1.1 Compilertypen und Zielprozessoren

Die Kompilation von PEARL90-Programmen kann auf jedem RTOS-UH-
Rechner, aber auch auf Fremdsystemen erfolgen. Fiir die handelsiiblichen PCs
gibt es das sog. C-VCP-Paket, das den Original RTOS/PEARL-Compiler (es ist
wirklich Bit fiir Bit der gleiche binédre Code!) auf solchen Rechnern als Cross-
Compiler nutzbar macht. Fiir einige Unix-Systeme gibt es ein entsprechend
angepasstes C-VCP-Paket, fiir das die gleiche absolute Kompatibilitdt gilt. Mit
dem Paket sind auch Linker und Assembler auf Fremdsystemen einsetzbar.

Insgesamt existieren zur Zeit aufler den Demo-Versionen anscheinend 6 ver-
schiedene PEARL90-Compiler. Alle Varianten decken exakt den gleichen
PEARL-Sprachumfang ab und haben die gleiche Revisionsnummer, weil sie in
Wirklichkeit aus dem gleichen Quellfile {ibersetzt wurden. Die Varianten sind:

» MINTI“: Diese Variante kann nur Code fiir den Prozessortyp MC68000
generieren. Die so erzeugten (Code-) S-Rekords sind auf allen
68K-RTOS—UH-Zielsystemen ablauffihig. Es wird aber nicht
immer der jeweilige Prozessortyp optimal ausgenutzt. Als Gleit-
kommaformat wird das RTOS—UH eigene Format verwendet.

»MAXI“: Dies ist der eigentliche professionelle Standardcompiler. Mit
ihm kann wahlweise Code fiir die Zielprozessoren MC68000,
MC68020, MC68040 und MC68020+MC68881 erzeugt werden.

Als Defaulteinstellung dient der Prozessortyp des Rechners, auf
dem der Compiler 1duft, der Entwicklungsrechner. Diese Einstel-
lung erfolgt automatisch beim Aufruf des Ubersetzers. Der 68040
allerdings wird bei dieser Defaulteinstellung behandelt, als sei er
ein Gespann, bestehend aus 680204-68882. Von diesem Spezial-
fall abgesehen, wird immer optimal auf das Entwicklungssystem
abgestimmter Code erzeugt. Wenn man sicher ist, dafl man die
68040-Welt mit den S-Rekords nie verlassen wird oder man harte
Echtzeitbedingungen einhalten muf, so sollte man mit der unten

277

278

5.1 Die PEARL-Compiler-Familie

, PowerPC*:

beschriebenen Methode den Prozessortyp explizit auf ,,P=68040
einstellen. Gleiches gilt fiir den Typ 68060.

Dieser Compiler kodiert fiir den Prozessor PowerPC. Auch er
ist vom Sprachumfang her vollig identisch zu den anderen Va-
rianten. Er 148t sich sowohl auf Hardware-Float als auch auf
Software-Float einstellen.

,CROSS68“: In Wirklichkeit ist es der Maxi-Compiler, Tatséchlich ist er im

Binércode Bit fiir Bit mit ihm identisch. Mit Hilfe des C-VCP
lduft er jedoch auf allen moglichen Fremdsystemen. Er defaul-
tiert als Prozessortyp, den er aus dem Gastsystem natiirlich nicht
ermitteln kann, stets MC68000.

»,CROSSPPC*“: In Wirklichkeit ist es der PowerPC-Compiler, fiir ihn gilt

,QUICK*:

das tiber den ,,CROSS68* gesagte sinngemifl. Er defaultiert auf
Software-Float.

Auch dies ist der 68K-Maxi-Compiler. Er setzt den Defaulttyp
an Hand des Entwicklungsrechners wie dieser. Weil der Com-
piler mit einem speziellen Ubersetzer behandelt wurde, liuft er
jedoch mit sehr viel hoherer Arbeitsleistung, mindestens doppelt,
meist sogar dreimal so schnell wie der Standard-Maxi. Aufgeru-
fen wird er mit ,,QP“. Sein einziger Nachteil ist, daf} er fiir seine
Arbeit deutlich mehr Speicher verbraucht, ndmlich ca. 200 kByte
statt ca. 50 kByte zur Ablage seines Codes. Wenn man Pro-
gramme auf der Winston-68k-RTOS-Emulation entwickeln will
und h#ufig kompilieren muf}, so kann man diesen Compiler ein-
mal laden und dann zeitsparend als residente Shellerweiterung
benutzen.

Eine Quick-Version fiir den PowerPC existiert noch nicht.

5.1 Die PEARL-Compiler-Familie 279

Meist ist das Zielsystem nicht identisch mit dem Entwicklungssystem, insbeson-
dere wenn einer der beiden CROSS-Compiler z. B. unter MS-DOS/Windows
oder Unix benutzt wird. Dann kann — aufler beim ,,Mini“ — die Zielprozessor-
Defaulteinstellung durch eine Prozessorzuweisung in der ersten PEARL--
Programmzeile iibersteuert werden. Diese Ubersteuerung kann mit Hilfe der
eingebauten benamten Konstanten P_68K oder P_PPC und dem Preprozessor-
befehl #IFDEF P_68K (bzw. #IFDEF P_PPC) vom verwendeten Zielprozessorsy-
stem abhéingig gemacht werden. Dazu stehen mit P= ... folgende Steueran-
weisungen zur Verfiigung:

P=68000; » MINI*~kompatibler Mode, der erzeugte Code ist voll kompati-
bel zum , MINI“-Ubersetzer.

Floatdarstellung: RTOS—UH-Format
Befehlsumfang: MC68000 + virtuelle Codes

P=68020; nutzt Befehle des MC68020, daher ist der Code nicht kompatibel
zum , MINI“ und kann nur in Zielsystemen mit MC68020 und
dariiber exekutiert werden.

Floatdarstellung: RTOS—UH-Format
Befehlsumfang: MC68020 + virtuelle Codes

P=68040; nutzt Befehle, die speziell nur im 68040-System implementiert
sind. Die Angabe fiihrt dazu, daf§ die mathematischen Funktio-
nen, die der 68040 nicht ,on chip® hat (sin, tan etc.), durch
echtzeitkonforme, besonders schnelle und jederzeit unterbrech-
bare Unterprogramme realisiert werden. Dies ist eine wichtige

! — Spezialitiit unseres 68040-RTOS/PEARL. Man beachte, daf oh-
ne diese Angabe auch in unserem System die in anderen Syste-
men iibliche, zwar von Motorola vorgeschlagene, aber schlechte
Losung mit F-line Emulation benutzt wird und so das Echtzeit-
verhalten ganz erheblich (Rechnung im SupervisorprozeB!!) ver-
schlechtert wird. Es ist noch in der Diskussion, ob spéter nicht
auch die automatische Anpassung diese 68040-Option generieren
soll.

Floatdarstellung: IEEE-Format

Befehlsumfang: MC68020 + MC68881 + virtuelle Codes + Son-
derfunktionen.

P=68040(n) ; Wie oben, jedoch werden nun n (3...8) Floatingpoint-Register als

280

5.1 Die PEARL-Compiler-Familie

P=68060;

Kontext gerettet. Man braucht diese Option, wenn eigene As-
semblerprogramme hoher numerierte Register FPz benutzen. Die
Kontextswitchzeit wird im Gegensatz zum 68020+68881 beim
68040 normalerweise nicht relevant verschlechtert, wenn man zur
Sicherheit immer P=68040(8) ; einsetzt.

vermeidet einige Befehle, die auf dem Prozessor 68060 nicht
vorhanden sind und emuliert werden miissen, ansonsten wie
P=68040. Die Modes 68040 und 68060 erzeugen Programme, die
auf beiden Prozessoren auch iiber Kreuz lauffihig sind. Lediglich
kleinere Optimalitédtseinbuflen kénnen eintreten.

Floatdarstellung: IEEE-Format

Befehlsumfang: MC68020 + MC68881 + virtuelle Codes + Son-
derfunktionen.

P=68060(n) ; Wie oben, jedoch werden nun n (3...8) Floatingpoint-Register als

P=68881;

Kontext gerettet.

nutzt Befehle des MC68020 und des MC68881/2 (FPU), daher
ist der {ibersetzte Code nur auf Systemen mit dieser Hardwa-
re einsetzbar. Auf Prozessoren des Typs 68040 und 68060 sind
die Programme lauffihig, jedoch nur {iber die im Echtzeitbe-
reich ungiinstige und teilweise erheblich langsamere Trapemula-
tion des Motorola-Ansatzes.

Floatdarstellung: IEEE-Format

Befehlsumfang: MC68020 + MC68881 + virtuelle Codes
Zusétzliche MC68881 typische Einbaufunktionen

P=68881(n) ; ermdglicht eine Angabe der beim Taskwechsel zu rettenden FPU-

P=MPC604 ;

Register. Diese Angabe bezieht sich auf alle in dem Modul be-
findlichen Tasks, gilt also modulweit (1 < n < 8). Defaultwert
fiir n ist 1, es wird also das FPU-Register 0 gerettet.

ist die Standardeinstellung fiir die Prozessoren 603/604 ohne Be-
nutzung der Gleitkommaeinheit.

Floatdarstellung: RTOS—UH-Format

P=MPC604+FPU(n) ; ist die Einstellung fiir die Prozessoren 603/604 bei Benut-

zung der Gleitkommaeinheit. Mit Angabe der Zahl n wird die

5.1 Die PEARL-Compiler-Familie 281

P=MPC405;

Hinweis:

Anzahl der zu verwendenden Gleitkommaregister vorgegeben,
maximal moéglich sind 32. Ist n Null, so wird die Gleitkommaein-
heit nicht benutzt. Eine hohe Zahl erfreut zwar — je nach Pro-
blem — unter Umstédnden den Compiler, verschlechtert jedoch die
Echtzeit-Performance des Systemes, da der zu rettende Kontext
bei der Taskumschaltung ziemlich groivolumig werden kann. Der
Compiler erhoht die angegebene Zahl bei Bedarf auf seine Min-
destzahl (typ. 4 Register).

Floatdarstellung: IEEE-Format (Wenn n > 0 ist)

ist die Standardeinstellung fiir die PowerPC-Prozessoren IBM
405. Es wird Code generiert, der den sog. lwarx/stwarx flaw
(CPU-Fehler) umgeht. Werden 405-Prozessoren mit normalen
PowerPC-Compilern beschickt, ist mit sehr schwerwiegenden
Fehlern beim Handling mit Semaphoren und Bolts zu rechnen!
Der Code ist etwas weniger effizient aber korrekt auf normalen
PowerPCs lauffihig.

Linken Sie auf gar keinen Fall Module mit unterschiedlichen
P= ...-Steueranweisungen zusammen! Schwer zu findende Fehl-
funktionen durch unterschiedliche Floatformate und/oder unter-
schiedliche Benutzung des Gleitkommarechenwerkes sind sonst
moglich. Auch Laufzeitparameterfehler beim Prozeduraufruf im
Test-Mode konnen dadurch entstehen.

5.1.2 Sprachliche Besonderheiten des UH-PEARL

Die Implementierung richtet sich nach dem ,PEARL90 Sprachreport®, der bei
der Fachgruppe 4.4.2 (Echtzeitprogrammierung, PEARL) der Gesellschaft fiir
Informatik verfiigbar ist. Aus diesem Report wird die neue DIN-Norm 66253
hervorgehen. Allerdings ist die zur Zeit freigegebene Version des PEARL-
Compilers noch nicht vollstédndig mit dieser DIN-Norm 66253 kompatibel. Hi-
storisch bedingt gibt es auch noch Erweiterungen, die iiber die DIN-Norm und
den Sprachreport hinausgehen. Sie wurden wegen der Portabilitdt auf Basis des
CALL-Konstruktes realisiert (jedoch ohne den zeitaufwendigen Maschinencode),
damit RTOS-UH-PEARL-Programme auch auf anderen PEARL-Systemen

verwendbar gemacht werden konnen.

282 5.1 Die PEARL-Compiler-Familie

BEZEICHNER: Es sind — wie allgemein iiblich — Ziffern, Kleinbuchstaben
und Grofibuchstaben erlaubt. Bezeichner diirfen jedoch nicht mit einer Ziffer
beginnen. Zwischen Grofi— und Kleinbuchstaben wird semantisch unterschie-
den. Die Bezeichner diirfen maximal aus 24 Zeichen zusammengesetzt werden.
Das Zeichen Underscore (,,- “) darf ebenfalls innerhalb von Bezeichnern be-
nutzt werden.

SCHLUSSELWORTE: Alle Schliisselworte miissen in Grofibuchstaben ge-
schrieben werden (PEARL-Norm).

5.1.2.1 Datentypen im RTOS/PEARL

Typ Linge typ. Konstante/INIT
FIXED(1...15) 2 Bytes | 21527 —500 100(15)
FIXED(16...31) | 4 Bytes | 471(31) 0(31) ~2(31)
FLOAT(1...23) 4 Bytes | 1.23456E-05 0.245
FLOAT(23...55) | 8 Bytes | 3.1414567893617(55)
CHAR(1...255) | n Bytes | ’Abcdefgh-XYZ’ *a’

BIT(1...16) 2 Bytes | '01000100'B 'AFFE'B4
BIT(17...32) 4 Bytes | "AFFE1234'B4
DUR/(ATION) 4 Bytes | 2 HRS 5 MIN 0.4 SEC
CLOCK 4 Bytes | 13:45:2.004

dur, clock "Atom’ ist 1 msec!
SEMA 2 Bytes | PRESET(2)
BOLT 2 Bytes | Initial immer ,FREE*
STRUCT ? Bytes | INIT komponentenweise
REF typ 4 Bytes | INIT(Identifier)

Tabelle 5.1: Datentypen in RTOS—-UH/PEARL

Bei den Verbunddaten (STRUCT) kénnen Komponentennamen frei gewéhlt wer-
den. Der Ubersetzer verarbeitet jedoch nur max. 1023 gleichzeitig ,,lebende®
Verbundtypen: Verbundtypen, die bei Verlassen eines Blockes (Prozedur, Task,
Begin/End-Block) ungiiltig wurden, belasten diese Bilanz nicht weiter. Ge-
meint ist ja auch nicht die Anzahl der Datenobjekte sondern die Anzahl der
Datentypen. Diese 1023-er Grenze ist daher in der Praxis kaum je relevant.

Mit Hilfe der LENGTH-Anweisung kann die Defaultlinge der Objekte FIXED,
FLOAT, CHAR und BIT eingestellt werden. Ohne LENGTH-Statement gilt:

5.1 Die PEARL-Compiler-Familie

283

FIXED =
FLOAT =
CHAR
BIT

FIXED(15)
FLOAT(23)
CHAR(1)
BIT(1)

Defaultlingen der PEARL-Objekte

284 5.1 Die PEARL-Compiler-Familie

Achtung: Das LENGTH-statement wirkt auch auf die FIXED und FLOAT Kon-
stanten ohne nachgestellte Lénge!

Beispiel:

LENGTH FLOAT(55); ! Defaultlaenge longfloat
DCL X FLOAT; ! Objekt ist longfloat

X=3.141567890123; ! Konstante ist doppelt genau

5.1 Die PEARL-Compiler-Familie

285

Eine Ubersicht iiber den Implementationsstand

Objekt Abweichung
— SIGNALE Noch nicht implementiert
- ARRAYS Keine Total-E/A
- ARRAYS Keine Slices
— DATION Keine Stationsfelder,
keine Untergliederung (CYCLIC ...),
DCL nur in PROC/TASK
- BIT/CHAR Keine Slices
- BIT CAT fiir BIT nicht implem.
- PROCS Keine lokale Def. innerhalb PROCs/TASKs
- REF_CHAR Nicht implementiert
- BY TYPE Nicht implementiert
+ Arrays Volle 32 Bit adress., Totalzuweisung
+ BIT/CHAR Beliebige Expr./ im Selektor zy.CHAR/(expr)
+ PROC(EDURE) Der Selbstaufruf (Rekursion) ist erlaubt
+ Multi-module Mehrere Systemteile konnen gebunden werden
+ E/A-Anweisung Ausdr./Functions mit eigener E/A moglich
+ Hilf/Test An/abschaltbare Hilfsfunktionen
+ TYPE Definition auch fiir Grunddatentypen und Arrays
erlaubt
+ Einbaufunktionen Fiir Basisgrafik, Ein—/Ausgabe
+ ST(dation) Statusabfrage Datenstation
+ SEMASET expr. Dynamische SEMA-Reinitialisier

Tabelle 5.2: DIN/PEARL90-Abweichungen

286 5.2 Preprozessor-Anweisungen

Wichtiger Hinweis:

Eine Totalzuweisung von Verbunddaten (Strukturen) ist nur
moglich, wenn sie vom gleichen benamten Typ sind. Gleiche
Verbunddatentypen also stets mit gleichem TYPE deklarieren,
bzw. spezifizieren! Als Prozedurwert ist daher logischerweise nur
,»geTYPEter“ Mode sinnvoll!

5.2 Preprozessor-Anweisungen

In den Ubersetzer ist ein kleiner Pseudo-preprozessor eingebaut, der nicht wirk-
lich einen extra Durchlauf erfordert, sondern begleitend zur Compilation in
diese eingreifen kann.

Preprozessorbefehle miissen stets am Anfang einer Zeile stehen, allerdings
diirfen sie eingeriickt werden. (Wovon man bei geschachtelten #IF s auch Ge-
brauch machen sollte!)

Die Preprozessorbefehle lauten:

#DEFINE ... Definiere eine benamte Konstante

#INCLUDE ... File einbetten

#IF ... Compiliere Folgetext wenn Bedingung nicht Null ergibt
#IFDEF ... Compiliere Folgetext wenn Objekt existiert

#IFUDEF ... Compiliere Folgetext wenn Objekt nicht existiert
#ELSE; Alternativer Zweig zum #IF

#FIN; Beendet Wirkung letztes #IF. .

Die Preprozessorbefehle werden im folgenden einzeln erlautert.

5.2 Preprozessor-Anweisungen 287

5.2.1 Die Preprozessoranweisung DEFINE

Mit Hilfe dieses Preprozessorbefehles kénnen benamte Konstanten mit Namen
identifier definiert werden:

#DEFINE identifier = xcompconstexpression;

Die Wirkung entspricht compilerintern einer syntaktisch erweiterten Form der
Anweisung

DCL identifier INV FIXED INIT(zconstexpression);

Dabei steht zcompconstexpression fiir eine erweiterte Form von xconstexpres-
ston — wie unten erldutert. Ob eine Konstante vom Typ FIXED(15) oder
FIXED(31) angelegt wird, entscheidet der Preprozessor an Hand des Zahlen-
wertes.

Die mit #DEFINE definierten Objekte diirfen innerhalb des PEARL-Textes
iiberall dort benutzt werden, wo auch die Verwendung der mit DCL eingefiihr-
ten benamten Konstanten erlaubt ist — zum Beispiel bei Feldgrenzenfestlegun-
gen, in CASE- Konstrukten — und natiirlich in den Preprozessor-#IFs. .

Innerhalb des Ausdruckes zconstezpression sind die 3 (keine Division!) Ganz-
zahlgrundrechenarten mit Klammerung erlaubt. Als Objekte sind dabei andere
vorher definierte benamte Konstanten oder Zahlen zugelassen.

Der Ausdruck zcompconstexpression wird auf Basis von zconstexpression auf
4 alternative Arten gebildet (gezeigt an der benamten Konstante Test):

#DEFINE Test = zconstexpression oder
#DEFINE Test = xconstexpression > xconstexrpression oder
#DEFINE Test = xconsterpression == xconsterpression oder

#DEFINE Test xconstexpression \= zconsterpression

Die Vergleichsoperationen (grofler, gleich, ungleich) sind nur auf der obersten
Ausdrucksebene zugelassen und erzeugen Ganzzahlwerte, ndmlich 1 wenn die
Bedingung erfiillt ist und 0 wenn die Bedingung nicht erfiillt ist.

! — Steht ein #DEFINE innerhalb einer Task oder Prozedur, so ist
die Giiltigkeit des damit eingefiithrten Objektes genau wie bei ei-
nem lokalen DCL auf den Prozedur- und Taskblock beschrinkt,
in dem es definiert wird. Im Gegensatz zum DCL darf #DEFINE
allerdings auch noch spét zwischen Prozeduren und Tasks ge-

288 5.2 Preprozessor-Anweisungen

setzt werden und wirkt dann dauerhaft fiir den Rest des Mo-
dules. Ratsam ist eine solche Verwendung jedoch allenfalls zum
Nachdefaultieren mit Hilfe eines vorgelagerten #IFUDEF.

Beispiele: #DEFINE rownumber = 400;
#DEFINE columns = rownumber*6;
#DEFINE arraysize = rownumber*columns;
#DEFINE largecase = arraysize > 32767;

5.2.2 Die INCLUDE-Anweisung

Bei diesem Preprozessorbefehl schaltet der Compiler voriibergehend seinen In-
put auf einen anderen File um. Im Ubersetzerprotokoll macht der Compiler
bei der Zeilennummer erkennbar, ob und im wievielten Level der Inclusion die
protokollierte Quelltextzeile gefunden wurde.

Der Substitutionsmechanismus umfafit stets komplette Zeilen. Das INCLUDE-
Statement sollte darum allein in einer Zeile stehen. Wie bei allen Prepro-
zessorbefehlen darf ihm lediglich ein Leerfeld vorausgehen, sonst moniert der
Ubersetzer einen Syntax-Fehler. Alle Zeilen des Textes im zu includenden File
werden vom Compiler an Stelle der INCLUDE-Zeile bearbeitet. Das Statement
hat folgende Syntax:

#INCLUDE filepathlist,

An der Stelle von filepathlist steht ein String, der von dem Betriebssystem,
auf dem der Compiler gerade lduft, akzeptiert wird und einen File mit dem
einzuschiebenden Text bezeichnet.

Wir nehmen einmal an, da} wir einen zu includenden File mit dem Namen
/HO/SPCs/Projektl.P haben, der folgende 2 Zeilen enthalte:

SPC Einw() STRUCT(/Name CHAR(20),Alter FIXED/) GLOBAL;
SPC Haus() STRUCT(/Strasse CHAR(30),No FIXED/) GLOBAL;

5.2 Preprozessor-Anweisungen 289

Das zu iibersetzende Programm laute wie folgt:

MODULE Test;

PROBLEM;

DCL ...

#INCLUDE /HO/SPCs/Projektl.P;
DCL ...

MODEND;

Wir nehmen an dafl beim Compilieren des Hauptfiles das Protokoll eingeschal-
tet war, dieses sieht wie folgt aus:

MODULE Test

PROBLEM;

DCL

SPC Einw() STRUCT(/Name CHAR(20),Alter FIXED/) GLOBAL;
SPC Haus() STRUCT(/Strasse CHAR(30),No FIXED/) GLOBAL;
#INCLUDE /HO/SPCs/Projektl.P;

DCL ...

o
GNP WND =

Im obigen Beispiel wurde der zu “includende® File mit einer vollen RTOS-
Pathlist bezeichnet. Wenn man unter RTOS—UH oder MS-DOS entwickelt, ist
allerdings auch eine ,,relative* Fileangabe moglich: Bezugspunkt ist die Position
in der File-Hierarchie, in der der File, der das #INCLUDE enthélt, selbst steht.
Eine relative Angabe liegt vor, wenn der String hinter #INCLUDE nicht mit dem
Zeichen ,,/“ beginnt.

Angenommener Bedienbefehl: P /HO/TEXQ/ANALYS LO ...

Dann fiihrt ein #INCLUDE DRAW innerhalb des Files ,,ANALYS® zur Inclusion des
Files, der unter /HO/TEXQ/DRAW steht.

290 5.2 Preprozessor-Anweisungen

Man kann sich im Filebaum sowohl in Richtung auf die Wurzel als auch hin
zu den Bléttern bewegen. Mit #INCLUDE ../SS1/QU1 adressiert man bei obi-
gem Beispiel den File, der unter /H0/SS1/QU1 steht. Relative File-Inclusion
ermoglicht den Transport des Systemes in andere Ordner oder auf andere Me-
dien, ohne Anderung der Quelltexte. Auch eine Compilation des zusammenge-
setzten Textkonglomerates iiber das Netz ist damit ohne Eingriff in die Quell-
files moglich.

Wenn der Include-Text selbst wieder ein #INCLUDE enthiilt, so beginnt die Zei-
lennummerierung erneut bei 1, allerdings steht dann der Buchstabe ,b“ am
Zeilenanfang. Wir kénnen also am Startbuchstaben erkennen, in der wievielten
Ebene der Include-Staffelung wir uns befinden.

Enthélt das #INCLUDE im included Text eine relative Fileangabe, so wird re-
lativ auf den File, in dem dieses #INCLUDE steht, nach obigem Muster Bezug
genommen.

ODb der included Text protokolliert wird oder nicht, hingt davon ob, wie der
Compilerstatus bei Ausfithrung des #INCLUDE war. Wenn im included Text mit
/*+L */ oder /*-L*/ der Status geéindert wird, so hat das nur fiir die Zeilen
des eingeschobenen Textes und als Startstatus fiir weitere Inludes im included
Text Wirksamkeit. Der Compiler rettet seinen Protokollstatus beim #INCLUDE
und restauriert ihn danach wieder.

! — Maximal kénnen bis zu 8 Rekursionslevel bei der Tiefenstaffe-
lung des #INCLUDEs bearbeitet werden. Natiirlich darf eine solche
INCLUDE-Kette nicht in sich selbst zuriickfiihren.

5.2.3 Bedingte Kompilation: die Preprozessoranweisung IF

Mit dieser Anweisung kann der Compilerlauf in Abhéngigkeit von Ausdriicken
mit benamten Konstanten bestimmte Teile des Quelltextes ignorieren. Wenn
die Bedingung wahr ist (was beim #IF-Argument einem Ganzzahlwert ungleich
Null entspricht), so wird der folgende Text ganz normal iibersetzt. Ein eventuell
folgendes #ELSE unterdriickt dann den anschlieBenden Text bis zum #FIN. Ist
die Bedingung unwahr (d.h. das #IF-Argument ergibt einen Ganzzahlwert von
0), so wird entsprechend umgekehrt verfahren.

5.2 Preprozessor-Anweisungen 291

Es gibt 3 verschiedene #IF:

#IF xcompconstexrpression;
#IFDEF identifier;
#IFUDEF identifier,

Die Bedeutung von zcompconezpression wurde bereits auf Seite 287 genauer
erldutert. Es handelt sich entweder um einen Ganzzahlausdruck oder um einen
der 3 zuléissigen Elementarvergleiche (>, == oder \=).

Beim #IFDEF ist die Bedingung erfiillt, wenn das Objekt mit Namen identifier
dem Compiler bekannt ist, beim #IFUDEF genau dann, wenn es dem Compiler
nicht bekannt ist.

Wenn der Ubersetzer ein Protokoll anfertigt, so wird bei einem #IF mit nicht
erfiillter Bedingung hinter dem #IF-statement Text zur Information erginzt,
wie man an folgendem Beispielprotokollauszug sieht:

123 #DEFINE Test = 3;
124 #IF Test > 5; [Condition is false]

Der Text in eckigen Klammern wurde vom Compiler generiert und unter-
driickt gleichzeitig ein ggf. noch in der Zeile stehendes, aber nun totes PEARL-
Statement.

! — Im Gegensatz zum #INCLUDE darf bei diesen Anweisungen hin-
ter dem Preprozessorbefehl PEARL-Text stehen, der je nach Be-
dingung beachtet oder ignoriert wird. Natiirlich diirfen dies keine
Preprozessorbefehle sein, weil diese immer am Anfang einer Zeile
stehen miissen.

292 5.2 Preprozessor-Anweisungen

Beispiele: #IFUDEF Arraysize;
#IFDEF defaultsize;
#DEFINE Arraysize=defaultsize;
#ELSE ;
#DEFINE Arraysize = 1000; ! Not-Default
#FIN;
#FIN; DCL Array(Arraysize) FIXED;

Mit einem kleinen Trick kann auch die Einhaltung bestimmter
logischer Bedingungen oder von Leistungsbeschrankungen iiber-
wacht werden:

#IF Datalen > Frame; ! Test limit, skip if illegal
xxx Wrong configuration: Datalen > Frame *xx ; ;
#ELSE; ! Compile normally

#FIN;

MODEND;

Hier provoziert ein kiinstlich erzeugter Ubersetzungsfehler die Ausgabe einer
(PEARL-syntaktisch falschen) Hinweiszeile. Innerhalb der Zeile darf es kein
Semikolon geben, am Ende mufl mindestens eines (besser 2) stehen, damit der
Compiler neu aufsetzen kann.

5.2.4 Bedingte Compilation: Schaltbarer Kommentar

Ein einfacheres Mittel als die umrahmende Verwendung von #IF und #FIN ist

durch den ,schaltbaren Kommentar® (switched comment) gegeben. Die syn-

taktische Konstruktion dazu ist ein normaler Zeilenkommentar, der wie iiblich

durch das Zeichen ,,!“ eingeleitet wird. Allerdings kann durch den nachfolgen-
'“

den Text die Wirkung des Zeichens ,,!“ in Abhéngigkeit von Voreinstellungen
aufgehoben werden:

1:TS1 PUT x,y TO A1l; ist Kommentar, wenn TS1 nicht definiert ist,
ist Kommentar, wenn TS1 < 1 definiert ist,
PUT wird {ibersetzt, wenn TS1 > 0 definiert ist.

Man beachte, dass das Symbol hinter dem Doppelpunkt nur in der Liste der
benamten 16-Bit Konstanten gesucht wird, dazu also bitte auf die Grofle der
definierten Konstanten achten. Wenn der Compiler die benamte Konstante er-
kannt hat, so ersetzt er in der erzeugten Ausgabeliste das Zeichen ,:“ durch
das Zeichen ,-“ (= hinter ! steht Kommentar, Konstante < 1) oder das Zeichen
»+* (= das ! ist wirkungslos, Anweisung dahinter ist giiltig weil Konstante >
0). Diese Option ist ab den Compilerversionen 16.4 (Oktober 2003) implemen-
tiert. Von <eren oder fremden Compilern werden die Anweisungen stets nur
als Kommentar interpretiert.

5.3 Globale Sondereinstellungen des Compilers 293

5.3 Globale Sondereinstellungen des Compilers

5.3.1 SETLINE, MAXERR und MODE

Im Quelltextbereich vor dem ,,MODULE®-Statement ist die modulglobale Verein-
barung bestimmter Betriebsmodi des Ubersetzers moglich. Zwei davon betreffen
die Programmgrofie und den ROM-Mode. Sie werden auf Seite 295 gesondert

beschrieben.
MAXERR=10;

SETLINE=1000;

SETLINE=1,453;

Bei Eintritt des 11.ten vom Compiler entdeckten Feh-
lers wird der Compilerlauf abgebrochen, mit der Meldung
MAXERR-limit. Mit MAXERR=0 erfolgt beim ersten Fehler
der Abbruch, usw.

Die aktuelle Zeile des Compilerprotokolles erhilt die
Nummer 1000. Auch der Linemarker fiir die Fehlerdiagno-
se verwendet die so manipulierte Zeilenzéhlung. Gedacht
war diese Option, um Fehler einfacher bestimmten Mo-
dulen zuordnen zu koénnen. Beachten Sie bitte, dafl der
Linemarker auf Zeilennummern unterhalb von ca. 32000
beschrankt ist. Mit der 2003 eingefithrten Modul-ID gibt
es nun eine bessere Moglichkeit, das fehlerverursachende
Modul durch einen erweiterten SETLINE-Befehl ausfindig
zu machen:

Die Zeilennummerierung startet bei 1 und das Modul
erhiilt die Nummer 453. Der Compiler erzeugt nun bei
eingeschalteter Marker-Option (siehe Seite 299) zusétzli-
chen Code beim Beginn einer Prozedur und nach einem
Prozeduraufruf, der die aktuelle Modul-ID auf eine Zelle
im Task-Workspace schreibt. Diese sogenannte Modul-ID
wird beim DL-Shellbefehl sowie im Fehlerfall ausgegeben.
Allerdings muss dazu auf dem ausfithrenden System die
zugehorige Systemoption eingeschaltet sein - aus Griinden
der Kompatibilitdt zu alten Systemen ist das leider not-
wendig. Die Codeverldangerung ist meist nur sehr gering
und tritt hinter den Vorteil zuriick. Bitte verwenden Sie
keine Modul-IDs, die oberhalb von 29999 liegen! Diese
Nummern sind fiir bestimmte kommerzielle Softwarepa-
kete reserviert.

294

5.3 Globale Sondereinstellungen des Compilers

MODE=FULLCC;

MODE=NOLSTOP;

MODE=PAD;
MODE=NOPAD;

Full character compare: Beim Vergleich von CHAR-Strings
werden andere Hyperprozessorbefehle benutzt, die bei
Langenungleichheit der Strings den kiirzeren mit Blanks
verlangern und den Vergleich iiber die gesamte Lénge
ausfithren.

No line stop: An den Stellen des Programmes, die mit
eingeschaltetem Line-Marker (siehe Seite 298) iibersetzt
werden, generiert der Compiler in diesem Mode nicht
den {iiblichen Trap, sondern eine ganz erheblich schnellere
»MOVE-Konstruktion“. Der zu zahlende Preis ist etwas
lingerer Code und der Verzicht auf den Zeilenstop beim
Tracen des Programmes. Bei Fehlermeldungen erhélt man
aber nach wie vor die letzte iiberlaufene Zeile angezeigt.
Auch das DL-Kommando funktioniert noch wie gewohnt.
Gedacht ist diese Option fiir ausgetestete Programme, die
in dieser Form an Kunden ausgeliefert werden koénnen.
Ohne Geschwindigkeitsnachteile erhélt man so im Falle
einer Fehlfunktion eine wertvolle Information vom An-
wender.

(No) Padding: Die neuen Compiler (ab 15.4-E) legen
FLOAT- und STRUCT- objekte auf durch 4 teilbaren Adres-
sen ab, da dies meistens hohere Geschwindigkeiten ergibt.
Im ,Padding“-Mode werden zusétzlich auch die relativen
Ablagen innerhalb von Strukturen bei Floats und Structs
auf durch 4 teilbare Werte erhoht. (Padding = Auffiillen
mit blinden Bytes). Das Ausschalten des Modes ist nur
zum Overruling nach Includes nétig, denn ohne Anga-
be ist der Padding-Mode nicht aktiv. Achtung: RISC-
Prozessoren sollten moglichst im padding-mode laufen,
denn sie verlieren wegen unklarer Zeigerinhalte sonst sehr
viel Effizienz — auch wenn gar keine Strukturen benutzt
werden! Denken Sie beim binéren Schreiben und Lesen
von Strukturen sowie beim Linken von Modulen daran,
dal die Padding-Modes durchgéngig gleichartig gesetzt
sein miissen.

5.3 Globale Sondereinstellungen des Compilers 295

5.3.2 Modulgréfie, ROM-Code

MODULGROSSE: Der einphasige Compiler kann den fiir den RTOS-UH-
Lader erforderlichen Kopfeintrag der Modulgréfe nur mit Hilfe des Program-
mierers schaffen. Dazu wird vor der MODULE-Anweisung ein spezielles Size—
Statement plaziert:

1. 8=$6500; MODULE test; ... (Form 1)
2. SC=$6500; MODULE test; ... (Form 2)

Die Hexzahl hinter S wird als Kopfeintrag dem Lader {ibergeben und erméoglicht
ihm spéiter die bedarfsgerechte Platzsuche. In der Form 2) wird der Speicher-
platz vor dem Ladevorgang geloscht (auf $0000 gesetzt). Damit sind alle Varia-
blen mit einem definierten Wert initialisiert (wohlgemerkt: nur direkt nach dem
Laden, nicht vor jedem Start des geladenen Programms!). Besonders sinnvoll
ist der Einsatz dieser Option bei der Erzeugung ROM—fihigen Codes mit dem
PROM-Befehl (s. u.), da sonst u. U. Zufallsdaten platzraubend im EPROM
deponiert werden.

Wird der S—Parameter nicht angegeben, so wird ein Ersatzwert von $2000
eingesetzt.

Der Compiler priift bei der Modulbilanz die Einhaltung der durch S=$. .. vor-
gegebenen Obergrenze. Wird sie iiberschritten, so wird ein SIZE-LIMIT-ERROR
ausgegeben, das Programm kann spéter nur mit zusétzlichem SZ-Parameter
beim LOAD-Befehl geladen werden (Sonst Fehlermeldung: >>LOAD/zy: wrong
address loader input). Die Modulgrofie ist praktisch nach oben nicht be-
grenzt, da der Compiler automatisch auf Langadressierung umschaltet. Aller-
dings gibt es bei der Léange des Innencodes von REPEAT-Blocken, IF/THEN/ELSE-
und CASE-Konstrukten eine Begrenzung auf 32 kB, die an dieser Stelle jedoch
normalerweise nicht erreicht wird. Die Klippe kann durch eine verniinftige Mo-
dularisierung umschifft werden.

SchluBibilanz: Der PEARL-Compiler gibt am Ende der Ubersetzung eine
Bilanz iiber die Lange des erzeugten VARiablen— und CODE-Teils aus. Falls bei
Verwendung der CODE/VAR-Option der generierte Code frei verschieblich ist,
wird zusétzlich die Information SHIFTABLE ausgegeben. Dies bedeutet, dafl der
CODE-Teil nicht unbedingt an der bei der Ubersetzung angegebenen Adresse
im EPROM abgelegt werden muf}, es ist dann jede beliebige Ablageadresse
im EPROM erlaubt. Die SHIFTABLE-Eigenschaft eines Modules geht durch das
Setzen von Marken, Aufrufe von weit entfernten oder weiter hinten stehenden
Prozeduren sowie durch globale Definitionen/Beziige verloren.

296 5.3 Globale Sondereinstellungen des Compilers

ROM-CODE: Der Compiler erlaubt die RTOS—UH-kompatible Erzeugung
ROM-fiihigen Codes mit Trennung zwischen (Modul-) Variablen— und Code—
Bereich. Der Compiler erkennt diese Betriebsart an der Angabe zusétzlicher
Code— und Variablen—Adressen, die allerdings vom Linker (nicht jedoch vom
PROM-Befehl) iiberschrieben werden kénnen:

S=$size,CODE=$epromadresse, VAR=$ramadresse; oder:
SC=$size,CODE=$epromadresse,VAR=$ramadresse;

Die Hexzahl epromadresse gibt die Startadresse des Codes im EPROM an, die
Hexzahl hinter VAR die Adresse, mit der beginnend die Modulvariablen im RAM
abgelegt werden sollen. Beim EPROM- und RAM-Layout orientiert man sich
an den Code— und Variablen—Léngenangaben des Compilers.

Der mit dieser Option erzeugte Code ist nicht im RAM ablauffahig; er kann
jedoch vom Linker ggf. mit anderen Modulen zusammen zu EPROM-tauglichen
S-Records konvertiert werden. Wie in der Anfangszeit von RTOS—UH ist es
aber auch weiterhin moglich, nach Laden solcher S-Records mit Hilfe des PROM—
Befehls aus ihnen Eprommer—geeignete S-Records zu machen.

5.3.3 Codegenerierung unterdriicken

Die Codegenerierung kann nur global unterdriickt werden. Dies geschieht bei
der Aktivierung des Compilers durch CO NO (siehe dazu Seite 180). Eine wesent-
liche Zeitersparnis ist damit normalerweise zwar nicht verbunden, man erspart
sich aber die Bereitstellung einer CO-Datei, wenn man zunéchst nur an der
syntaktischen Priifung seines Programmes interessiert ist.

5.4 Lokale Hilfs— und Testmodi des Compilers 297

5.4 Lokale Hilfs— und Testmodi des Compilers

Neben den rein , global®“ einstellbaren Modes gibt es mit Hilfe besonders aufge-
bauter Kommentarzeilen Moéglichkeiten fiir ,,lokale“ Einstellungen. Der einzige
global und lokal einstellbare Mode ist die Ubersetzung mit bzw. ohne Uber-
setzungsprotokoll. Dagegen kann die einmal global an- bzw. abgeschaltete Co-
degenerierung nicht mehr lokal beeinflufit werden. Typische rein lokale Modes
sind etwa die Markiereroption, die Testoption sowie die Maschinenkodeproto-
kollierung (s. u.). Einige der Modes nehmen nach Ende eines #INCLUDE-Files
wieder ihren alten Zustand vor der Inklusion ein.

Als steuernde Kommentare kommen nur die mit /* */ umrahmten Se-
quenzen in Frage. Der Zeilenkommentar (mit ! erdffnet) ist dafiir nicht geeig-
net. Findet der Compiler einen Kommentar, der mit /*+ oder /*- beginnt,
den er aber nicht als Steuerkommentar versteht, so wird in der Compilerbi-
lanz eine Warnung erzeugt. Diese Warnung enthélt die letzte Zeilennummer, in
der ein solcher unversténdlicher Steuerkommentar gefunden wurde. Man soll-
te also z.B. zum Ungiiltigmachen des Protokollswitches (s.u.) aus /*+L nicht
/*+ L sondern /* +L machen.

5.4.1 TUbersetzungsprotokoll ein—/ausschalten

Es wird (siehe Seite 180) global durch LO NO aus— bzw. mit LO /device/file
oder fehlender LO-Parameter eingeschaltet. Fiir die lokale Steuerung ist eine
Kommentaranweisung

/*+L ... beliebiger Text */; zum Einschalten, bzw.
/*-L ... beliebiger Text */; zum Abschalten vorgesehen.

Unabhiingig davon, ob das Ubersetzungsprotokoll eingeschaltet ist oder nicht,
werden Programmfehler in jedem Fall in das LO-Medium ausgegeben. Auch die
fehlerhafte(n) Zeilen erscheinen mitsamt dem Fehlerzeiger. Wird diese Option
innerhalb eines #INCLUDE-Files benutzt, so gilt sie nur fiir den eingebundenen
Text, bzw. weitere unterlagerte Inklusionen. Nach Ende des Files wird der alte
Mode wieder eingestellt.

5.4.2 Codeprotokollierung ein—/ausschalten

Urpsriinglich fiir die Uberpriifung der korrekten Compilerfunktion gedacht,
dann aber im System belassen, existiert eine Option zur Auflistung des ge-
nerierten Maschinen— bzw. Hyperproccodes. Sie wird mit

/*+P ... beliebiger Text */; eingeschaltet und mit
/*-P ... beliebiger Text */; wieder ausgeschaltet.

298 5.4 Lokale Hilfs— und Testmodi des Compilers

In das Ubersetzungsprotokoll eingebettet, erscheint bei dieser Option fiir jeden
generierten Befehl eine Zeile. Dabei wird der auf den Modulanfang relativierte
Programmzihler, der Befehlmnemo sowie die Liste der Operanden (unter Ver-
wendung der PEARL-Namen!) ausgegeben. Der generierte Code gehort jeweils
zur néchsten protokollierten PEARL-Programmzeile, wird also quasi mit die-
ser abgeschlossen. Die Hyperprocbefehle sind im Teil fiir Systemprogrammierer
weiter hinten erldutert, die 68000— bzw. PowerPC-Maschinenbefehle erscheinen
mit modifizierten Mnemos, etwa ADDX statt ADD.L (X=xtend 32 bit), kénnen
in der Regel aber leicht identifiziert werden. Die entsprechende Liste befindet
sich auf Seite 599 im Abschnitt 8.7. Mit ,,>>“ versehene Operationen sind sog.
,Loader-messages®, die i. a. nicht interessieren diirften. Dieser Mode nimmt
mit dem Ende eines #INCLUDE-Files wieder seinen alten Zustand ein.

5.4.3 Markierungsoption ein—/ausschalten

Der UH-Compiler erméglicht mit Hilfe dieser Option die statische und dynami-
sche Einbettung von PEARL-Zeilennummern und ggf. Modul-IDs (siehe Seite
293) in das generierte Maschinenprogramm. Damit wird z. B. der Zeilenstop auf
Hochsprachebene (siehe TRACE, Seite 216) erméglicht, aber auch die Ausgabe
der letzten exekutierten PEARL—Zeile — bei erweitertem SETLINE-befehl auch
der Modul-ID — im Falle von Laufzeitfehlern vorbereitet. Die Kommentare

/*x+M ... beliebiger Text */; dienen zum Ein- sowie mit
/*-M ... beliebiger Text */; zum Abschalten der Option.

5.4 Lokale Hilfs— und Testmodi des Compilers 299

Zeilen, die nur ein Fragment einer mehrzeiligen Anweisung enthalten, kénnen
nicht markiert werden. Der Compiler setzt vor den Code der ersten PEARL-
Anweisung jeder Zeile, die im Bereich eingeschalteter Option liegt, einen Spe-
zialbefehl. Dieser besteht aus einem TRAP oder Hyperprocbefehl mit nachfol-
gender Zeilennummer, die mit Hex—Digits dezimal zu lesen ist. Aufgabe dieses
Befehles ist, die Zeilennummer in eine spezielle Zelle der Task zu schreiben und
dabei zu priifen, ob fiir die Zeile ein Zeilenstop vorliegt. Wenn es der Platz
erlaubt, sollte moglichst die komplette zu priifende Task mit eingeschalteter
Option iibersetzt werden, da sonst leicht Fehlinterpretationen iiber den Fehler-
ort moglich sind. Da die Zeilennummernkodierung aus Kompatibilitatsgriinden
zu élteren (,PEARLS0“) Systemen etwas eigenwillig erfolgen muf}, konnen Zei-
lennummern gréfler als 34575 nur modulo 30000 kodiert werden, d.h. die Zeile
34566 erscheint als 4566 usw. Es ist besser, die Modul-ID (siehe Seite 293)
zu verwenden, statt — wie frither iiblich — mit groflen vorab vergebenen Zeilen-
nummernblécken zu arbeiten. Die Geschwindigkeitsverluste durch diese Option
sind im Allgemeinen nur bei wenigen Prozent zu vermuten, kénnen jedoch in
Sonderfiillen untragbar hoch werden. Die +M-Option ermoglicht mit Hilfe des
DL-Befehles (S. 131) jederzeit Schnappschiisse der aktuellen Zeilennummer lau-
fender Tasks.

Hinweis:

Wenn der Compiler mit MODE=NOLSTOP arbeitet, so tritt durch die +M-Option ei-
ne erheblich geringere Verlangsamung als im Normalfall ein. Allerdings ist dann
das oben erwiithnte Zeilentrace (Zeilenstop) nicht moglich. Diese Art der einge-
schréankten Zeilenmarkierung hat den Vorteil, daf§ sie in vielen Féllen dauerhaft
im Programm belassen werden kann. Auch spéiter kénnen dann Betriebsfehler
noch gut analysiert werden.

5.4.4 Seitenvorschub im Protokoll erzeugen

Mit Hilfe dieser Option kann im Programmprotokoll des Compilers auf einem
Drucker ein Seitenvorschub erzeugt werden. Damit kénnen Programmdoku-
mente iibersichtlicher gestaltet werden.

/*+N ... beliebiger Text */ Seitenvorschub

Nur mit dem Zeichen + vor dem N erfolgt die gewiinschte Aktion. Steht die
Kommentarzeile als einzelne Zeile zwischen (und nicht innerhalb) von PEARL-
Anweisungen, dann wird sie im Protokoll normalerweise oben auf der neuen
Seite gedruckt.

300 5.4 Lokale Hilfs— und Testmodi des Compilers

5.4.5 Index—, Selektor— und Parametertest aktivieren

Mit Hilfe dieser T-Option generiert der Compiler einen modifizierten Code,
der zur Laufzeit die Einhaltung von Zugriffsgrenzen und die Korrektheit von
Prozedurparameterlisten iiberpriift. Nach Ende eines #INCLUDE-Files kehrt bei
dieser Option der alte Zustand vor der Inklusion zuriick.

/*+T ... beliebiger Text */; Testmode einschalten.
/*-T ... beliebiger Text */; Testmode ausschalten.

Feldindex— und Characterselektor priifen:

Bei mehrdimensionalen Feldern wird nicht jeder einzelne Index, sondern nur der
effektive 32 Bit lange eindimensionale Resultatindex iiberpriift. Damit kann die
Zerstorung von Code oder Daten ausserhalb des Feldes bzw. der Zeichenket-
te mit Sicherheit unterbunden werden. Charakterselektoren werden ebenfalls
iiberpriift, nicht jedoch Selektoren in Bitstrings. (Die Uberschreitung von Bits-
elektorgrenzen erzeugt falsche Ergebnisse, richtet aber keinen Schaden an).

Bei Verletzung der durch das originére DCL fixierten Grenzen wird eine System-
meldung abgesetzt, die entweder die letzte registrierte Zeilennummer oder —
falls nicht vorhanden — die Speicherstelle des Zugriffscodes enthélt. Die Mel-
dung enthilt einen Hinweis, ob der Index bzw. Characterselektor zu grof§ oder
zu klein ist (,Overflow* bzw. ,Underflow*). Die Task wird angehalten, kann
aber mit CONTINUE fortgesetzt werden; der Zugriff erfolgt dann ersatzweise auf
das erste Element des Feldes bzw. der Zeichenkette.

5.4 Lokale Hilfs— und Testmodi des Compilers 301

Prozeduraufrufparameter priifen:

Bei allen Prozeduraufrufen iiberpriift der Compiler schon zur Compilezeit, ob
jeder einzelne Parameter mit der ihm bekannten Definition oder Spezifikati-
on vertraglich ist. Nun ist aber immer noch moglich, dafl der Programmierer
eine falsche Spezifikation externer Prozeduren kodiert hat. Ist der Testmode
eingeschaltet, so erfolgt ein zusédtzlicher Test zur Laufzeit, indem bei jedem
Funktions- und Prozeduraufruf der Parameterpriifeinstieg der Zielprozedur an-
gesprungen wird. Wenn die Zielprozedur vom PEARL-Compiler erzeugt wur-
de, oder korrekt in Assemblersprache abgefafit wurde, so erfolgt dabei jetzt ein
sogenannter ,,Signaturcheck“: Die Definition jeder Prozedur wird nach einem
Algorithmus in eine 32 Bit lange ,,Signatur® umgerechnet, die mit sehr grofier
Wahrscheinlichkeit bei anderen Definitionen anders ausfillt. Stimmt die an der
Aufrufstelle fiir die Prozedur (bzw. des Zeigers auf eine Prozedur) giiltige Signa-

tur (aus z.B. SPC GLOBAL) nicht mit der am Zielort aus der tatséchlichen
Definition der Prozedur errechneten Signatur {iberein, so erfolgt eine Laufzeit-
fehlermeldung ,,. .. wrong parameterlist*.

Die Ursache fiir den Fehler ist fast immer die oben erwéihnte falsche Spezifi-
kation der externen und spéter angelinkten Prozedur oder eine falsch besetzte
REF-Variable (Prozedurzeiger). Eine weitere mogliche Ursache kann sein, daf
auf Aufrufer- und Prozedurseite unterschiedliche Gleitkommaformate benutzt
werden.

Wichtiger Hinweis:

Wenn eine Task nach einem Parameterfehler vom System
angehalten wurde, so sollte sie auf gar keinen Fall fortge-
setzt werden. Das System kann anders als bei einem Index-
fehler hier keine Notreparatur durchfiihren. Wurden zum
Beispiel zu kleine Strukturen angeboten o.4., so droht bei
Fortsetzung der Task eine Zerstérung wichtiger Speicher-
zellen. Der Effekt solcher Verédnderungen kann dann erst
sehr viel spéter auftreten.

Eine Parameteriiberpriifung bei C-kodierten Unterpro-
grammen ist mangels entsprechender Vorrichtungen in den
C-Compilern nicht méglich.

302 5.4 Lokale Hilfs— und Testmodi des Compilers

5.4.6 EPROM-Prozedur erzeugen

Es kénnen Prozeduren global gemacht werden, um dann im EPROM oder auf
der Boot—Diskette als bestédndiger Teil des Systemes mit abgelegt zu werden.
Der Lader kann diese Prozeduren dann finden, wenn die Referenz nicht schon
vorher durch seine Inputdateien befriedigt wurde.

xyz:PROC /*+Gx/ (.....); ! erzeugt l4er Scheibe
! Siehe dazu auch Scheibenkonzept Kapitel 9 Seite 625

Der Kommentar +G muf3 hinter dem Schliisselwort PROC bzw. PROCEDURE kom-
men, nur dann wird er beriicksichtigt und bewirkt die Erzeugung einer 17-er
Scheibe fiir das Symbol xyz des obigen Beispiels.

Wichtiger Hinweis:

Die Prozedur wird durch die Angabe der +G—-Option nicht
im PEARL-Sinne global gemacht, dies muf}, wie in PEARL
vorgeschrieben, mit dem Schliisselwort GLOBAL erfolgen.

Es kann mit dieser Option eine ganze Bibliothek von Prozeduren erzeugt wer-
den, die dann im EPROM oder Boot—-Bereich abgelegt werden kénnen, damit
sie global zur Verfiigung stehen. Allerdings werden nachtréglich ins verwaltete
RAM geladene Module nur bei Benutzung von LOADX beriicksichtigt.

5.4.7 Prozedurparameterstrukturanalyse unterdriicken

Im Normalmode wird bei jedem Prozeduraufruf bei der Ubergabe von Daten-
strukturen (STRUCT[. . .]) an Prozeduren schon zur Compilezeit iiberpriift, ob
die aktuelle Struktur aus der gleichen Typdefinition wie der Formalparame-
ter hervorgegangen ist. Im alten PEARLS80 wurde nur zur Laufzeit und nur
die Grofe (in Bytes) der Formal- mit der Aktual-Struktur verglichen (max
32kB im alten System). Um die Ubertragung alter PEARLS0-Programme zu
erleichtern, kann die Compilezeitpriifung, ob Aktualstrukturen als Parameter
zugelassen sind, auf diesen Stand reduziert werden. Gegeniiber der Verwendung
von VOID--Pointern hat man dann immer noch den Vorteil, dafl garantiert die
Objektgrofle genau paflt.

/*=-S ... beliebiger Text */; Reduzierte Priifung.
/*+S ... beliebiger Text */; Wieder volle Priifung.

! — Dieser Mode kehrt nach einem #INCLUDE nicht in den alten
Zustand zuriick.

5.4 Lokale Hilfs— und Testmodi des Compilers 303

xy:PROC(A STRUCT[a FLOAT(23),b FIXED(15)]);
DCL X STRUCT[x FLOAT(23), y CHAR(2)];

/*-S Abschalten des pingeligen Tests */
CALL xy(X);

Im Normalmode wiirde der Compiler diesen Aufruf zuriickweisen, jetzt akzep-
tiert er ihn, weil die Objekte in der Grofle passen.

5.4.8 Prozedurarbeitsspeicher reservieren

In unserem PEARL-System gibt es bekanntlich keinen ,,Stack®* und damit im
Gegensatz zu archaischen C—Systemen auch keinen Stackiiberlauf. Wenn Pro-
zeduren aufgerufen werden, so bietet der Compiler ihnen zunéchst den aktuell
noch freien Platz des Aufrufers an. Reicht dieser nicht aus, so holt die Rou-
tine sich bedarfsgerecht Speicher iiber den entsprechenden RTOS-Trap. Beim
Verlassen der Routine wird dieser wieder zuriickgegeben. Jede Task erhilt vom
Compiler standardméBig etwa 1 kByte zusédtzlichen Speicher im sog. A5-Space,
der fiir von dieser Task ausgehende Prozeduraufrufe vorgesehen ist. Durch
vor dem Prozeduraufruf angelegte und wieder verlassene BEGIN- ...END- oder
REPEAT- Blocke kann der fiir Prozeduren verfiigbare Speicherbereich im Auf-
rufmoment allerdings beliebig grofler als 1 kB sein.

Mit der hier beschriebenen R-Option kann der Wert fiir die zusétzliche Re-
servierung von 1 kB auf jeden beliebigen Wert verindert werden. Damit kann
man bei Kleinstanwendungen Platz sparen oder aber beim Aufruf von Proze-
duren mit méchtigen lokalen Datenbereichen den Aufruf des Speicherhol-Traps
verhindern, was zu einer hoheren Ablaufgeschwindigkeit fiihrt. Eine kleine Mi-
nimalreserve von etwa 40 Bytes kann man jedoch nicht unterdriicken, auch
nicht durch Setzen von R=0.

/*+R=hezazahl mnach Luecke bel. Text */;
/*-R=hezazahl nach Luecke bel. Text */; gleiche Wirkung.

304 5.4 Lokale Hilfs— und Testmodi des Compilers

hexazahlist dabei eine max. 8-stellige Hexadezimalzahl mit oder ohne fithrendes
$-Zeichen am Anfang. Sie mufl ohne Zwischenraum direkt hinter /*+R= oder
/*+R stehen und mit einem Blank abgeschlossen werden.

Da es sich um Kommentar handelt, werden syntaktische Fehler nicht angezeigt,
die Wirkung unterbleibt also u.U. ohne Warnung. Der eingestellte Wert gilt bis
zum Ende des Modules fiir alle Tasks. Er kann jedoch am Anfang jeder Task
(nach oder in der Definitionszeile) neu gesetzt werden. Der Compiler wertet
den aktuell eingestellten Wert bei der Bearbeitung des zum Ende der Task
gehdrenden END aus.

Beispiel: /*+R=$5000 20 kByte vorhalten */
/*+R6000 Gleiche Wirkung */
/*+R$5000 ”? */

5.4.9 Konstantenpool leeren

Der Compiler verwaltet normalerweise autonom seinen Konstantenpool derart,
dass es nicht zu oft zu eingestreuten Konstantenblocken kommt, iiber die der
Programmecode mit Sprungbefehlen hinweg kommen muss. Trotzdem kann es
in extremen Situationen — eine Formel erstreckt sich iiber hunderte von Zeilen
- dazu kommen, dass Konstanten nicht mehr als PC-relative 16-Bit Adressen
erreichbar sind und der Lader / Linker das Programm nicht montieren kann.
Das Problem besteht nur beim 68K-Prozessor. Durch die eingeschobene Zeile

Beispiel: /*+F Flush constants */

gewinnt man durch das erzwungene Leeren des Konstantenpools — im giinstig-
sten Fall — maximal einige wenige KB, um die dann die nachfolgende Anweisung
im 68k-Code ldnger sein kann.

5.4.10 Default-PRIO setzen

Wenn bei der Definition von PEARL-Tasks keine Prioritdt angegeben wird, so
setzt der Compiler den Wert auf den Defaultwert von 48. Dieser Defaultwert
kann jedoch verdndert werden durch folgenden Kommentartext:

Beispiel: /*+D=1000 Set def. PRIO to decimal 1000 (low) */

5.5 Umgang mit Datenstationen in PEARL 305

Alle folgenden Task-Deklarationen ohne Prioritdtsangabe verwenden nun den
neuen Defaultwert. Natiirlich kann eine weitere Zeile spiter den Wert wie-
der anders besetzen. Das Gleichheitszeichen ist optional. Ist die Angabe durch
syntaktische Fehler fiir den Compiler unversténdlich, so behandelt er sie oh-
ne Fehlermeldung wie einen Kommentar. Es wird aber in der Compilerbilanz
eine entsprechende Warnung ausgegeben. Der zulidssige PRIO-Bereich ist 1 ...
32767.

Wichtig: In Shellmodulen kann dieser Mechanismus vor der Definition einer
Shell-Proc benutzt werden, um die Defaultprioritdt des Shellprozesses vorzu-
geben.

5.5 Umgang mit Datenstationen in PEARL
5.5.1 Festlegungen im Systemteil

Die heutigen PEARL-Compiler kénnen alle moglichen Datenstationen des Ziel-
systemes an Hand der im Zielsystem giiltigen Bezeichner im Systemteil einbin-
den. Erreicht wird dieses dadurch, dafl der Lader alle dem Compiler unbe-
kannten Gerétebezeichner an Hand der Liste innerhalb des Zielsystemes in die
richtigen LDN/DRIVE-Gespanne umsetzt. Wenn der Lader nicht fiindig wurde, so
reagiert er mit einer Fehlermeldung. Im Gegensatz zu den fritheren Compilern
sind nun nur noch wenige Bezeichner dem Ubersetzer bekannt.

Auch wenn die Compiler immer noch die dltere Syntax mit Doppelpunkt oder
Punkt als Separator zwischen Gerédtebezeichner und Pathlist beherrschen, so
sollte man bei Neuprogrammierung nur noch die Form mit ,,/“ als Separator
verwenden. Nur diese Syntax wird hier beschrieben. Allgemein gilt:

XYZ: /device/ pathlist (TFU=int,NE ,MB=$hexno, AI=$hexno) ->; oder
XYZ: /device/ pathlist(TFU=int,NE ,MB=$hexno,AI=$hexno) <-; oder
XYZ: /device/ pathlist(TFU=int,NE ,MB=$hexno,AI=8hexno) <->;

Hinweis:
Benutzen Sie moglichst keine Zusatzparameter MB oder AT bei Da-

tions, die mit <-> in beiden Richtungen betrieben werden

In solchen Fillen kann es Konflikte bei der Bedeutung der Mode-Bits geben.
Abhilfe ist moglich durch eine Aufteilung auf zwei richtungsgebundene DATIONs.

306 5.5 Umgang mit Datenstationen in PEARL

XYZ Logischer Name im Programm
device entweder compilerbekannter Name (s. u. z. B. A1, PP, ED)
oder Gerdtename aus dem Zielsystem oder LD/ ldn. drive/

mit
ldn Warteschlangennummer im Betriebssystem RTOS—UH.
drive Laufwerksnummer (Untergliederung) des Geriites. Wenn

diese Angabe samt Punkt fehlt, ist drive=0.
pathlist ~ Alphanum. string mit Separatoren ,,/“, dient eventuell nur

als Platzhalter fiir OPEN ... BY IDF(...), dann lang ge-
nug vorsehen!!
TFU Grofle des Communication—Elements, TFU=1 kann fiir Dia-

loggerite sinnvoll sein (Terminal), belastet aber das Be-
triebssystem mit groem Overhead. Wenn TFU fehlt, so wird
der Wert von 128 angesetzt.

NE No Error-Message-Flag. Der Programmierer wird mit
der Funktion ST die Fehleriiberwachung in eigener Regie
durchfiihren. Fehlt NE, so werden Fehlermeldungen ausge-
geben.

MB=$ Es werden die Mode—Bits des Communication—FElements ge-
setzt! Bei AT muf} dann das linke Byte null sein, sonst gibt es
eine Fehlermeldung. Hexno. ist 2 stellig (keine TIMEOUT
Angabe).

AT=$ Zusatzinformation $zxzz fir E/A-Treiber laut beson-
derer Beschreibung. Fehlt AI=, so wird ein Wert von
Null angenommen. Das linke Byte toggelt beim Laden
(exklusiv—oder) die korrespondierenden MODE-Bits des
Communikation—Elements, das rechte ist zur Angabe ei-
nes Timeouts. Hexno. 2 (ohne TIMEOUT) oder 4 stellig
(inklusive TIMEOUT-Angabe).

Die Klammer (TFU ... AI=) darf wie einzelne Parameter fehlen, die Reihen-
folge der Parameter mufi aber eingehalten werden. Es muf} eigentlich keine
Station iiber LD/ . ./ definiert werden. Wie oben erwéhnt, kann der Lader dem
Compiler unbekannte Symbole spater aus den Tabellen im Zielsystem selbst in
ldn/ drive umwandeln. Am Ende des Compilerlistings bei der Schlu8bilanz gibt
der Compiler alle sogenannten , Extra—Devices“ aus. Diese miissen natiirlich
im Zielsystem vorhanden sein.

5.5 Umgang mit Datenstationen in PEARL 307

Folgende Geritebezeichner sind dem PEARL—Compiler vorab bekannt und
miissen darum in allen Zielsystemen auf der gleichen LDN/DRIVE liegen:

Geriitename | Bedeutung Ldn | Drive
Al Console 0 0
A2 Serielles Port 2 0
ALDV Actual load device ? ?
Lader setzt Ldn/Drive
Bl Console buffered 0 2
B2 Serielles Port buffered 2 2
C1 Console scanned 0 6
C2 Serielles Port scanned 2 6
ED ED-Filesystem 0 0
NIL Schwarzes Loch 15 0
PP Printer Parallelport 10 0
TY.. Aktuelles Terminal, s.u. ? ?
VI Virtual Input 8 0
VO Virtual Output 7 0
XC Remote command 9 0

Tabelle 5.3: Compilerbekannte Geriitebezeichner in PEARL

Die Datenstationen mit Namen /TY, /TYA, ... etc. werden ebenfalls zur La-
dezeit durch das aktuelle Terminal des Nutzers ersetzt, wobei allerding nur LDN
und DRIVE iibernommen werden, nicht eine evtl. vorhandene Pathlist.

Es ist zuldssig, Usernamen gleich Systemnamen zu setzen, z. B. geniigt . .. ;A1;
statt etwa ...;Al:/A1<->;

5.5.2 Beschreibung AI und MB-Parameter

Mit dem AI- oder MB-Parameter besteht die Moglichkeit, die Ein—/Ausgabe
umzuparametrieren. Dabei ist zu beachten, dafl zwischem dem Verhalten des
Laufzeitsystems und des Device—Treibers Unterschiede bestehen kénnen! Das
Verhalten des Laufzeitsystems ist ab Seite 313 beschrieben, die Beschreibung
der Device-Treiber beginnt auf Seite 389. Um zu verdeutlichen, was gemeint ist,
folgendes Beispiel: Es soll eine CHAR—Variable eingelesen werden. Die Eingabe
soll mit einem LF beendet werden, es wird ein entsprechendes CE generiert.
Der Device—Treiber erkennt ein LF, fiir ihn ist der Auftrag erledigt, er gibt
das CE an das Laufzeitsystem zuriick. Fiir das Laufzeitsystem ist die Eingabe
erst bei der entsprechenden Anzahl Zeichen oder einem CR beendet, es schickt
das CE wieder zum Device-Treiber, wo erneut auf eine Eingabe gewartet wird.
Zusammenfassend kann festgehalten werden, dafl das Laufzeitsystem i. a. nur
ein CR als vorzeitiges Eingabeende erkennt.

308 5.5 Umgang mit Datenstationen in PEARL

Um die Ein-/Ausgabekanéle getrennt zu beeinflussen, ist es sinnvoll, jeweils
getrennte DATIONs zu vereinbaren. Die Vorbesetzung des CE-Mode Bytes ist
abhéngig von dem Deviceparameter (siche SD-Befehl 1.Byte).

Output Input

fiir ein Device mit Echo : $40 $BS8
fiir ein Device ohne Echo : $40 $BA
Merke: Mit AI werden die selektierten Bits getoggelt, mit MB dagegen

direkt gesetzt. MB beeinfluflt nur das Mode-byte, wihrend mit AT
im rechten Byte Time-out-parameter beeinflufit werden kénnen.

Fiir Ausgaben (->) erzeugt der Compiler ein CE, in dem im oberen Mode—
Byte nur das Bit fiir die Output—Direction gesetzt ist. Es gelten also keinerlei
Ende-Bedingungen, der Transfer wird iiber die tatsédchliche Lénge gesteuert.
Die Ausgabe wird ohne ,WAIT* durchgefiihrt, d. h. das Programm wartet nicht
auf das Ende der Ausgabe, sondern lduft weiter. Folgende Veréinderungen dieser
Standardeinstellung sind denkbar:

AT=$8000 Das Wait—Bit wird gesetzt. Das Programm wartet auf das En-

MB=$80 de einer Ausgabe, bevor es fortgesetzt wird. Der erfolgreiche
Abschlufl der Ausgabe kann mit der ST-Funktion {iberpriift
werden.

AT=$4000 Diese Umstellung auf Eingaberichtung ist unsinnig und kann

MB=$40 vom System nicht richtig umgesetzt werden

AI=$2000 Die Ausgabe wird vorzeitig abgebrochen, wenn im Ausgabetext

MB=$20 ein CR ($13) entdeckt wird.

AI=$1000 Die Ausgabe wird vorzeitig abgebrochen, wenn im Ausgabetext

MB=$10 ein LF ($10) entdeckt wird.

AI=$0800 Die Ausgabe wird vorzeitig abgebrochen, wenn im Ausgabetext

MB=$08 ein EOT ($04) entdeckt wird.

AT=$0400 Bei seriellen Schnittstellen: Es wird verhindert, dafl mit Ctrl

MB=$04 A, Ctrl Boder Ctrl C das Bedieninterface ,,aufgeweckt” wird.

Wenn iiber eine serielle Schnittstelle Ein— und Ausgaben
durchgefiihrt werden, wobei in den Eingabestrings “A/B/C vor-
kommen kann, so muf} dieses Bit auch bei der Ausgabe gesetzt
werden.

Bei Floppy/Winch: Der Autoclose des Filemanagers wird un-
terdriickt, d. h. die Datei wird nicht mit dem Lesen des letzten
Bytes geschlossen.

5.5 Umgang mit Datenstationen in PEARL 309

AT=$0200
MB=$02

AT=$0100
MB=$01

Fiir die Ausgabe ohne Bedeutung, aber — s. 0. — wenn die
Eingabe ohne Echo lduft, mufl das Bit auch bei der Ausgabe
gesetzt sein.

Die Ausgabe wird binédr durchgefiihrt, d. h. es werden alle Zei-
chen (von $00 bis $FF) iibertragen. Es wird nicht mehr auf
Xon/Xos s reagiert, nur der Hardware-Handshake (RTS/CTS)
bleibt erhalten, falls die Hardware dazu in der Lage ist.

Fiir die Eingabe (<-) wird ein CE mit dem Standardmodebyte $B8 oder $BA
erzeugt. Damit wird auf das Ende der Eingabe gewartet ($80); die Eingabe wird
mit einem CR ($20), einem LF($10) oder einem EoT ($08) vorzeitig beendet.
Bei Geriten, deren Eigenschaft, die explizite Unterdriickung des Echos zul&fit,
wird zusétzlich $02 aufgeordert, ansonsten sind die rechten 3 Bit zunéchst nicht
gesetzt, konnen aber (s.u.) aktiviert werden.

AT=$8000
MB=$80

AT=$4000
MB=$40
AT=$2000
MB=$18
AT=$1000
MB=$28
AT=$0800
MB=$30
AT=$0400
MB=$x4

Das Programm wiirde nicht auf das Ende der Eingabe warten.
Wird vom System unterdriickt, da ein Programm i. a. auf eine
Eingabe reagiert!

Wird vom System abgefangen. Ein AT wirkt nun wie ein MB.
Die Eingabe wird nicht mehr mit einem CRr ($13) beendet.
Die Eingabe wird nicht mehr mit einem LF ($10) beendet.
Die Eingabe wird nicht mehr mit einem EOT ($04) beendet.

Serielle Schnittstelle: Mit einem “A, "B oder "C wird der Kom-
mandoprozessor nicht mehr aufgeweckt. Diese Zeichen werden
wie normale Zeichen behandelt. War bei der letzten Eingabe
eines Programms dieses Bit gesetzt, ist der Kommandoprozes-
sor auch weiterhin gesperrt! Sie kommen jetzt als User nur mit
einem BREAK wieder in das System.

Floppy/Winch: Der Autoclose des Filemanagers wird nicht
durchgefiihrt.

310

5.5 Umgang mit Datenstationen in PEARL

AT=$0200
MB=$02

AT=$0100
MB=$01

Beispiel:

Timeout:

AI=$xx80

Beispiel:

Je nach Parametrierung der Schnittstelle wird das Echo ein
oder ausgeschaltet, bzw. bei Verwendung von MB definitv aus-
geschaltet. Vorsicht beim Filemanager: die Bits haben dort an-
dere Bedeutungen! Wenn nicht sicher ist, welche Schnittstel-
lenparameter beim Start des Programms gelten, sollte zuerst
ein SD-Befehl iiber den /XC/ bzw. mit Hilfe der EXEC-Funktion
abgesetzt werden.

Es wird auf bindren Transfer umgeschaltet, d. h. es werden
auch Zeichen mit gesetztem 8 Bit an das Programm wei-
tergeleitet. Sollen alle Zeichen weitergeleitet werden, miissen
auch die Ende-Bedingungen aus— und die Kommandounter-
driickumg eingeschaltet werden! Dann ist die Eingabe erst
beendet, wenn genau die erwartete Anzahl Zeichen (iiber
TFU=. .. einstellbar) eingelesen wurde. Es wird kein Software—
Handshake (X, /Xosr) mehr durchgefithrt. RTS/CTS wer-
den weiterhin unterstiitzt. Wenn die ,,Gegenseite“ nicht auf
RTS/CTS reagiert, mufl dafiir gesorgt werden, dafi der Ein-
gangspuffer (i. a. 31 oder 255 Zeichen) nicht iiberlduft, sonst
gehen Zeichen verloren! Vorsicht beim Filesystem: Das Bit hat
dort besondere Bedeutungen.

Die Schnittstelle ist auf $3300 gesetzt (siehe DD-Befehl). Es sol-
len bindre Daten tiber diese Schnittstelle empfangen werden.
Fiir den AI-Parameter ist dann AI=$3F00 oder MB=$87 (lies:
keine besondere Ende-Bedingung / kein Echo / kein Komman-
doprozessor / bindrer Transfer) einzusetzen.

Mit dem hinteren Byte des AI-Paramters kann ein Timeout fiir
den Transfer iiber eine serielle oder parallele Schnittstelle ge-
setzt werden. Der Timeout gilt fiir ein ganzes Communication—
Element, d. h. der Transfer muf} in der angegebenen Zeit kom-
plett durchgefiihrt sein. Die ST-Funktion gibt Aufschluf3 {iber
das Auftreten eines Timeouts.

Das oberste Bit gibt an, dafl ein Timeout gewiinscht ist. Mit
den restlichen 7 Bit (0 bis $7F) kann die Lénge des Timeouts
eingestellt werden. Die Zeitbasis sind 512 msec. Dies ist also
die kiirzeste einstellbare Timeout Zeit. Die ldngste Zeit ist 128
* 0,512 sec entspricht 65,5 sec.

AT=$xx80 ! Timeout mit T = 512 msec
AT=$xxA5 ! Timeout mit T = 18,9 sec

5.5 Umgang mit Datenstationen in PEARL 311

Beispiel fiir die Anwendung von Datenstationen:

MODULE XYZ;
SYSTENM;
Myfile: /XO0/dies/ist/nur/ein/platzhalter;
Winchl: /LD/3.2/USR/GE/test(TFU=400)<->;
! nach Moeglichkeit immer Mnemos anstelle von ’LD’ verwenden.
Terminal: /A1/Dialog (TFU=1,AI=$3C00)<->;
Termreset:/Al1/Reset <->;
! i. a. ist ’/TYA’ besser als ’/A1’

PROBLEM;
SPC (Winchl,Myfile) DATION INQUT ALPHIC;
SPC Terminal DATION INOUT ALPHIC CONTROL(ALL);
SPC Termreset DATION INOUT ALPHIC CONTROL(ALL);

TS1:TASK;
DCL mist CHAR(20);
OPEN Myfile BY IDF(textvariable oder konstante);
/* Lies 20 Zeichen */;
GET mist FROM Terminal BY A(20);
/* im Sondermodus */;
/* normalmodus einschaltenx/
GET FROM Termreset BY SKIP;
END;

Im allgemeinen besteht keine Notwendigkeit mehr, Datenstationen iiber das
oben benutzte LD-Konstrukt anzusprechen. Einzige Ausnahme sind Fille, in
denen man EPROM-Software fiir ein fremdes Zielsystem entwickelt, weil dann
kein Lader involviert ist, der die Anschliisse herstellt. Alternativ zum LD-
Konstrukt hat man dann allerdings noch den Linker (siche Seiten 163 ff.) zur
Verfiigung, der mit seiner DEVICE-Option die fehlende Laderfunktion ersetzen
kann.

Mit dem OPEN ... BY IDF (...) wird der Inhalt der Textvariablen oder Text-
konstante als aktueller Filename fiir die DATION (hier Myfile) eingesetzt. Durch
diese Anweisung kann eine Dation fiir verschiedene Files genutzt werden, ohne
die Notwendigkeit, das PEARL-Programm zu &ndern.

Es ist zu beachten, dafl bei Benutzung von OPEN ... BY IDF (...) im Sy-
stemteil ein geniigend langer Dummy—Name fiir die Pfadliste als Platzhalter
vorgesehen wird. Je nach RTOS—UH-Implementierung sind 24, 48, 64 oder
mehr Zeichen bei der Pfadliste moglich.

312 5.5 Umgang mit Datenstationen in PEARL

Hinweis!

Eine Anweisung der Form OPEN ... BY IDF(’/HO/abcd’), also
mit einer auf der Root-Ebene beginnenden Pathlist, erlaubt in
neueren Systemen neben der Filenamensénderung auch das Neu-
bestimmen von LDN und DRIVE zur Laufzeit. Um dieses im Sy-
stemteil zu dokumentieren, wird empfohlen, bei derartigen Da-
tenstationen im Systemteil als Gerédt /NIL zu verwenden!

Bei der im Beispiel angegebene Dation (hier /A1/Dialog mit Usernamen
,Terminal®) wird mit TFU=1 auf Einzelzeicheniibertragung geschaltet. Mit
ATI=$3C werden die normalerweise eingesetzten Mode-Bit’s des Compilers ($B8)
getoggelt, sodaB bei einer Eingabe (GET ... FROM Terminal;) ein CE mit ei-
nem Mode-Byte ($86) entsteht. Es wird auf die Zeichen Cr ($0D) , LF ($04)
und EOT ($04) nicht mehr gesondert reagiert, sie werden in die Inputvariable
eingetragen. Weiterhin ist die Funktion Supress—-Command eingeschaltet, so-
dafl der Kommandointerpreter nicht mehr durch ein ($01 — $03 , Ctrl A--C)
angestoflen wird, dieses gilt solange bis entweder ein BREAK oder ein weiteres
GET/PUT auf die gleiche DATION (hier Al.Reset) mit anderem Usernamen (hier
Termreset) und anderem AI ausgefiihrt wird.

5.5.3 Besonderheiten bei der formatierten Eingabe (,, GET*) im
UH-PEARL

e Das System blockt die Eingabe in Sétze je nach der TFU
des Systemteiles, im Standard jeweils 128 Zeichen. Ein
vorzeitiges Satzende erzeugen im Standard: Cr, LF und
EoT(Mode-Byte = $B8, mit Wait). Dies kann durch das
linke Byte von AI ggf. modifiziert werden (siche dazu auch
Abschnitt 8.3.2 ,Die Modebytes“ auf Seite 562). Die AI—-
Option ist mit allergroBter Vorsicht zu benutzen. Mit jedem
GET wird an der alten Stelle — im alten Satz! — weiter-
gelesen. Wenn das unerwiinscht ist, sollte das Format mit
SKIP beginnen.

e Vorzeitige Eingabefeldbegrenzung bei E, F, B, T, D-For-
maten.

Steht in dem vereinbarten Eingabefeld (width) ein Kom-
ma, so beginnt hinter dem Komma das Eingabefeld fiir
das néchste Eingabedatum.

Bsp. GET i,j,k,1 FROM Al BY SKIP, (4)F(20);
Als Eingabe wiirde die Zeile -100,2,33,5, korrekt akzep-

5.5 Umgang mit Datenstationen in PEARL 313

tiert. Man braucht also nicht 4 mal 20 Zeichen vorzusehen.
Tut man es dennoch, so diirfen natiirlich keine Kommata

vorkommen. Auch das Zeichen CR beendet ein Eingabe-
feld.

e Vorzeitige Eingabefeldbegrenzung beim A-Format.

Sie findet iiberhaupt nur statt, wenn im Format des GET das
automatisch angepafite A-Format steht (d. h. ohne Klam-
mer mit Parametern). Beim Format A(z) wird in jedem
Fall die vorgesehene Anzahl Zeichen gelesen.

Das Eingabefeld endet beim freien A-Format vorzeitig,
wenn das Zeichen CRr eingelesen wird. Dieses wird in Space
($20) verwandelt, auch der Rest des einzulesenden String
wird mit Spaces aufgefiillt.

Bsp. DCL C CHAR(70);
GET C FROM A1 BY SKIP,A;

Wenn nun ABCDEFGHI (CR) eingegeben wird, so steht hin-
terher im String C der Text ABCDEFGHI mit 61 folgenden
Spaces. Diese Option war nicht unumstritten, sie erleich-

tert aber die schnelle Kommandoanalyse fiir Dialoge mit
PEARL-Programmen.

5.5.4 Besonderheiten bei der formatierten Ausgabe (,PUT*) im

UH-PEARL.

Es wird in Sédtzen mit Linge der TFU transferiert, im MODE-Byte
ist nur das Output-Bit (Mode-Byte = $40, ohne ,,Wait*) ge-
setzt. Durch AT kann ggf. ein Warten auf Ausgabeende erzwun-
gen werden, in diesem Falle kann auch der Erfolg der Operation
mittels der ST(...)—Funktion abgefragt werden. Bei PUT ohne
WAIT wird der Wert der ST(. . .)—Funktion nicht beeinflufit.

5.5.5 Erweitertes OPEN/CLOSE—Statement

NEW:
OLD:
ANY:

Das OPEN ... BY IDF(...)-Statement ist erweitert um die Op-
tionen [, (NEW | OLD | ANY) [,EXCLUSIVE | .

Es bedeuten:

Die Datei darf beim Aufruf noch nicht existieren.
Die Datei mufl beim Aufruf schon existieren.
Existenz der Datei wird nicht tiberpriift. Ist die Datei schon vor-

314 5.5 Umgang mit Datenstationen in PEARL

handen, so wird sie nur gedffnet; ist sie noch nicht vorhanden, so
wird sie eingerichtet.

EXCLUSIVE: Die Datei wird fiir ausschliefllichen Zugriff der aufrufenden Task
geoffnet.

Das CLOSE-Statement ist erweitert um die Optionen
[BY CAN | BY PRM].

BY PRM: normales Schliessen mit Dateierhalt.
BY CAN: Schlieflen und Loschen der Datei.

5.5.6 E/A-Formate

Formate dienen zur formatierten Ein—/Ausgabe der verschiedenen Datentypen.
Datentyp und Konvertierungsformat miissen miteinander vertréglich sein, sonst
gibt es zur Laufzeit Fehlerreaktionen. Das RTOS/PEARL Funktionsprinzip ist
dabei wie folgt zu beschreiben:

Der Ablauf des Geschehens wird von der mit dem Schliisselwort BY ange-
schlossenen Formatliste gesteuert. Diese Seite ist also der treibende Part. Je
nach dort gefundenem Format besorgt der Prozessor sich aus der Objektliste
ein Objekt. Ist die Format-Liste abgearbeitet, verbleiben aber dabei noch un-
bearbeitete Objekte in der Objektliste, so beginnt die Konvertierung bei der
letzten Blockwiederholklammer oder ganz von vorne, wenn es eine solche nicht
gibt.

Die Argumente der Formate sind, der Syntax folgend, FIXED-Ausdriicke. Bei
der Formatbeschreibung werden folgende Symbole verwendet:
s: Vorzeichen. Bei Ausgabe wird '+’ durch ’ ’ ersetzt, bei der Eingabe kann

'+ entfallen (Default—Wert).

Z: Ziffer. Z——7 meint eine beliebige, durch Argument und Format bestimmte
Anzahl von Ziffern.

[] kennzeichnet optionale Elemente.

5.5 Umgang mit Datenstationen in PEARL 315

5.5.7 Datenkonvertierungsformate

Bei der Eingabe von Daten wird ein Eingabefeld unabhéngig von einer even-
tuell groBeren Eingabefeldbreite durch ein Komma ’,” abgebrochen, allerdings
nicht bei einer Eingabe im A-Format. Bei letzterem ist das Komma ein legales
Eingabezeichen.

Das F-Format verarbeitet FIXED— und FLOAT—Zahlen. Syntax:
F (Feldbreite [, Nachkommastellen [, Skalierung | |)

Ausgabe:

Ausgabefeldaufbau: > sZ— —Z[.Z— 7]

e Es werden Feldbreite Zeichen erzeugt

Die Ausgabezeichenfolge steht rechtsbiindig im Ausgabefeld.

e Wird Nachkommastellen nicht angegeben, so entfillt auch der Dezimal-
punkt; bei FLOAT wird geROUNDet.

e Der ausgegebene Wert entspricht der auszugebenden Zahl, multipliziert

mit 105kalierung

e Unsignifikante fithrende Nullen werden durch Leerzeichen ersetzt.

Eingabe:
e Eingabefeldaufbau: ’ [[s]Z2— —Z[.[Z— -Z]]] °
e Ein leeres Eingabefeld ergibt 0.
e Die Eingabezeichenfolge kann beliebig im Eingabefeld stehen.
e Fiihrende ’ ’ werden nicht ausgewertet.
e Nachkommastellen und Skalierung defaultieren zu 0.

e Nachkommastellen wird nicht ausgewertet, sondern von der tatséchlichen
Eingabe bestimmt.

e Abgespeichert wird der Eingabewert mit um Skalierung verschobenem
Dezimalpunkt.

316 5.5 Umgang mit Datenstationen in PEARL

Das E-Format verarbeitet FIXED— und FLOAT—Zahlen. Syntax:

E (Feldbreite [, Nachkommastellen [, Signifikanz ||)
Ausgabe:

e Ausgabefeldautbau: ’ sZ— —7.7Z— —ZFsZ7’

e Es werden Feldbreite Zeichen erzeugt.

e Die Ausgabezeichenfolge steht rechtsbiindig im Ausgabefeld.

Es folgen Nachkommastellen Zeichen auf den Dezimalpunkt.

e Die Mantisse umfat Signifikanz Zeichen.

Eingabe:
e Eingabefeldaufbau: ’ [[s|[Z— —Z.Z— —Z][E[s][Z[Z]]
e Die Eingabezeichenfolge kann beliebig im Eingabefeld stehen.

e Nachkommastellen wird nicht ausgewertet.

Das A-Format verarbeitet Zeichenketten.
A [(Lénge) |
Ausgabe:

e wird Ldnge nicht angegeben, so wird die deklarierte Liange der auszuge-
benden Zeichenkette verwendet.

e Es werden Ldnge Zeichen erzeugt.
e Die auszugebende Zeichenkette beginnt linksbiindig im Ausgabefeld.

e gof. wird nach rechts mit ’ * aufgefiillt.

5.5 Umgang mit Datenstationen in PEARL 317

Eingabe:

e wird Ldnge nicht angegeben, so wird maximal die Lénge der einzulesenden
Zeichenkettenvariable verwendet. Die Eingabe von Carriagereturn (CR)
beendet die Eingabe vorzeitig.

e wird Ldnge angegeben, so werden genau Ldnge Zeichen eingelesen.

e Die Zuweisung an die einzulesende Zeichenkette erfolgt linksbiindig; ggf.
wird nach rechts mit ’ * aufgefiillt.

Das B-Format verarbeitet Bitketten.

(B[B3[B4) [(Linge)]

Die I/O ist in binérer (B), octaler (B3) oder hexadezimaler (B4) Form mdoglich.
Ausgabe:

e wird Ldnge nicht angegeben, so wird die genaue Ldinge der auszugebenden
Bitkette verwendet.

e Es werden Ldnge Zeichen erzeugt.

e Die auszugebende Bitkette wird rechtsbiindig im Ausgabefeld eingetra-
gen.

e gof. wird nach links mit 0 aufgefiillt.
Eingabe:

e wird Ldnge nicht angegeben, so wird die Ldnge der einzulesenden Bitkette
verwendet.

e Die Zuweisung an die einzulesende Bitkette erfolgt rechtsbiindig; ggf. wird
mit 0 nach links aufgefiillt.

e Linge > Ldinge der einzulesenden Bitkette wird nicht unterstiitzt.

318 5.5 Umgang mit Datenstationen in PEARL

Das T-Format bearbeitet Daten des Typs CLOCK.

T (Feldbreite [, Dezimalstellen])
Ausgabe:
e Die Ausgabe erfolgt rechtsbiindig im Ausgabefeld.
e Dezimalstellen wird modulo 3 verwendet.
Eingabe:
e Dezimalstellen wird nicht verwendet.

e Die Eingabe kann beliebig im Eingabefeld stehen, Leerzeichen bei den
Doppelpunkten sind erlaubt.

Das D-Format bearbeitet Daten des Typs DURATION.
D (Feldbreite [, Dezimalstellen |)
Ausgabe:
e Die Ausgabe erfolgt rechtbiindig in das Ausgabefeld.
o Dezimalstellen wird modulo 3 ausgewertet.
Eingabe:
e Dezimalstellen wird nicht verwendet.
e Die Eingabe kann beliebig im Eingabefeld stehen.

e HRS, MIN, SEC miissen mit mindestens einem Leerzeichen von den umge-
benden Zahlen getrennt werden.

5.5 Umgang mit Datenstationen in PEARL 319

LIST—-Format

Das LIST-Format bearbeitet Daten jeden Typs.
LIST

Normalerweise tut dieses Format genau das, was man erwartet. (Zumindest
meistens, und bei nicht zu hohen Anspriichen) Bei der Eingabe von Gleitkom-
mazahlen miissen diese allerdings einen Dezimalpunkt im Text besitzen, da
sonst durch die Defaultbesetzung ein Punkt dazwischen gequetscht wird.

LIST-Ersatzmechanismus fiir die einzelnen Datentypen:

Datentyp: Ersatzformat:
BIT(1 ... 32) B4(adapted len)
CHAR(x) A

CLOCK T(13,3)

DUR D(25,3)
FIXED(1 ... 15) F(7,0,0)
FIXED(16 ... 31) | F(11,0,0)
FLOAT(1 ... 23) | E(13,6)
FLOAT(24 ... 55) | E(23,16)

Tabelle 5.4: Ersatzformate bei LIST

5.5.8 Steuerformate

Wiederholfaktor

Umklammerte Teile der Formatliste oder einzelne Formate konnen wiederholt
werden, indem ein umklammerter Wiederholfaktor vorangestellt wird.
Syntax:

(Ganzzahlkonstante) Finzelformat oder
(Ganzzahlkonstante) (formatliste)

Beispiele:

PUT I,K TO XY BY (2)(X(5),F(7));
PUT I,K TO XY BY (2)F(12);

320 5.5 Umgang mit Datenstationen in PEARL

Das R—(Remote)-Format dient zur Abarbeitung vorher vereinbarter Formate.
Syntax:

R (Format-Label-Identifier)

In dem mit R angeschlossenen Format gilt wieder die normale Format-Syntax.
Dort sind weitere R-Formate erlaubt. Allerdings kellert das Laufzeitsystem nur
maximal 3 Rekursionsstufen. Bei Uberschreitung erfolgt eine Laufzeitfehlermel-
dung.

X [(Ganzzahl) |
Ausgabe:

e Es werden soviel Leerzeichen produziert wie die Ganzzahl angibt.
Eingabe:

e Es werden soviel Zeichen vom Eingabestrom iiberlesen und dabei ignoriert
wie die Ganzzahl angibt.

’ SKIP—Format ‘

SKIP [(Ganzzahl) |
Ausgabe:

e Es werden soviel Carriage-Returns (CR) ausgegeben wie die Ganzzahl
angibt. Wenn fiir das Gerét die Eigenschaft ,Add Linefeed to CR* ein-
gestellt ist, so erfolgt fiir jeden CR zusétzlich ein Linefeed.

Eingabe:

e Evtl. angebrochene, noch nicht zu Ende gelesene Eingabezeilen werden
iiberlesen, d. h. der Datenrest der Zeilen wird ignoriert.

5.5 Umgang mit Datenstationen in PEARL 321

| PAGE-Format |

PAGE [&Ganzzahl 2]
Ausgabe:

e Es werden soviel Seitenvorschubsteuerzeichen (30C) ausgegeben wie die
Ganzzahl angibt.

Eingabe:
e Die Wirkung entspricht dem SKIP-Format.
5.5.9 Report- und Positionierungsformate

Diese Formate erlauben die Statusabfrage bzw. Positionsabfrage oder Positi-
onsverinderung. Zur Zeit ist nur das RST-Format implementiert.

’ RST-Format ‘

RST£ Fixedvariable 2

Von dem Moment an, in dem der Prozessor dieses Format iiberlauft, werden alle
zeitlich folgenden Fehler bei der E/A-Ausfiihrung in der angegebenen Variablen
abgelegt. Es handelt sich um denselben Wertevorrat (0 = kein Fehler etc.), wie
er auch bei der ST-Funktion (siehe Seite 332) von einer Datenstation abgefragt
werden kann. Man kann auf diese Weise jeden einzelnen Konvertierungsschritt
einer formatierten E/A mit einzelnen Reportvariablen iiberwachen:

GET A,B FROM xyfile BY RST(stAconv),F(10),RST(stBconv),B4(4);

In diesem Beispiel wird das Konvertierungsprotokoll fiir das Einlesen von ,A“
in der Variablen , stAconv* und das Konvertierungsprotokoll fiir ,B“ in der
Variablen , st Bconv deponiert. Man kann also ggf. entscheiden, welche Anfrage
zu wiederholen ist.

Geradezu existenziell notwendig ist das RST-Format fiir das ,,CONVERT“--
Statement“, in das ja bekanntlich keine Datenstation sondern statt dessen eine
CHAR-Variable involviert ist. Beim CONVERT gibt es somit keinen Status einer
Datenstation, den man mit ST abfragen konnte — hier hilft das RST-Format
ganz besonders.

322 5.6 Umgang mit Feldern und Zeigern

5.6 Umgang mit Feldern und Zeigern
5.6.1 Besonderheiten bei Feldzugriffen

Wie in der Norm vorgesehen kénnen Arrays beliebig viele Dimensionen haben
und es ist bei jeder Dimension ein beliebiger Startindex vorgebbar. Der Compi-
ler rechnet grundsétzlich in einem 32 Bit Adrefraum, es gibt also dabei aufler
Speicherplatzproblemen praktisch keine Beschrénkungen hinsichtlich der Feld-
grofen. Das gleiche gilt natiirlich auch fiir Felder, die Komponenten innerhalb
einer Struktur sind.

In unserem PEARL90 diirfen die Feldindizes sowohl vom Typ FIXED(15) als
auch FIXED(31) sein. Beliebige Mischungen sind méglich, auch darf man eine
FIXED(15)-Grofe einsetzen, wenn die zugehorige Feldobergrenze auflerhalb des
16-Bit Zahlenbereiches liegt.

Der Zugriff auf Elemente mehrdimensionaler Felder erfordert im 32 Bit
Adressraum eine oder mehrere 32x32 Bit Multiplikationen, fiir die auf den
einfachen Prozessoren der 68000-Familie (68010, 68008, 68302 etc.) kein Ma-
schinenbefehl vorhanden ist. Ein zeitlich ungiinstiger Unterprogrammaufruf ist
notig und belastet diese Chips zusétzlich. Unser PEARL90-Compiler unter-
sucht daher bei allen Feldzugriffen, ob nicht vielleicht eine 16x16 Bit Multipli-
kation geniigt, deren 32 Bit Ergebnis dann den Feldzugriff ermdoglicht. Dazu
muf} der Compiler das Feld als , kleines* Feld erkennen kénnen. Leider funktio-
niert diese Untersuchung nicht, wenn Felder mit dem Mechanismus des virtuel-
len Feldes (,) bzw. (,,) etc. in Prozeduren importiert oder iiber (,) REF ..
angesprochen werden. Hier mufl der Compiler sicherheitshalber immer mit 32
Bit-Arithmetik rechnen.

Die Kurzformel kommt genau dann zum Einsatz, wenn
1. die Feldgrenzen dem Compiler bekannt sind und

2. klein genug fiir 16-bit Arithmetik sind, sowie
3. alle aktuellen Indizes vom Typ FIXED(15) sind.

Beispiel: DCL stidx INV FIXED INIT(100);
DCL enidx INV FIXED INIT(-1);

DCL ari(stidx:enidx,stidx:enidx) FIXED(31)

DCL (i,j) FIXED(15);
ar1(i,j)= ergibt 16 Bit Zugriffsrechnung.

5.6 Umgang mit Feldern und Zeigern 323

Tip:

Man kann etwas Geschwindigkeit gewinnen, wenn die definierten
unteren Feldgrenzen jeweils zu Null gewéhlt werden, wie das bei
der Programmiersprache C Standard ist. Es entfillt dann eine
Addition pro Feldzugriff. Dies gilt nur, wenn dem Compiler der
Feldaufbau bekannt ist.

5.6.2 Arbeiten mit Zeigervariablen

Zunéchst eine WARNUNG: Wer mit REF—Variablen arbeitet, begibt sich in
einen Raum, in dem unser Compiler keinen Schutz vor Unfug mehr geben kann!
Eine Zeigervariable kann wer weifl wohin zeigen — und damit kann wer weifl
was im System zerstort werden. Gleichwohl sind aber mit REFs Konstrukte
programmierbar, die ihren (gefdhrlichen) Einsatz rechtfertigen.

Bis auf den Typ REF CHAR() sind Zeiger geméfl PEARL90 Standard implemen-
tiert. Sie diirfen also nicht nur auf einfache Objekte sondern auch auf Felder,
Prozeduren, Tasks, Semaphore, Datenstationen usw. zeigen.

Musterbeispiel:

TYPE MENSCH STRUCT[Name CHAR(10), Alter FIXED,
Nachbarlinks REF MENSCH,
Nachbarrechts REF MENSCH 1;

DCL (Maier,Mueller,Schulze) MENSCH;

DCL Arbeitszeiger REF MENSCH INIT (Maier);

5.6.2.1 | Positionieren eines Zeigers

Auf der linken Seite einer Zuweisung steht dabei eine Zeigervariable. Die rechte
Seite muf3 in der Lage sein, eine Objektadresse zu erzeugen. Es darf rechts also
keine Konstante stehen. Auch Ausdriicke ergeben in der Regel keine Adresse, es
sei denn, ein Feldzugriff oder Prozeduraufruf liefert ein Ergebnis vom Typ REF
ab. Der Objekttyp mufl exakt stimmen. Das Objekt NIL ist immer passend.

Arbeitszeiger = Maier ;
Maier.Nachbarlinks = NIL ;
Maier.Nachbarrechts = Mueller;
Schulze.Nachbarrechts = NIL ;

324 5.6 Umgang mit Feldern und Zeigern

5.6.2.2 | Vergleich von Zeigern

IF Arbeitszeiger IS Maier THEN ...
IF Maier.Nachbarlinks ISNT NIL THEN ..

Im UH-PEARL muf nur einer der beiden Partner der Operatoren IS und ISNT
ein Zeiger sein. Der zweite Partner mufl aber eine Adresse liefern kénnen oder
das Element NIL sein.

5.6.2.3 | Dereferenzierung

Beim Dereferenzieren wird auf das ,,gezeigte* Objekt zugegriffen. Auf der rech-
ten Seite einer Zuweisung wird eine Zeigervariable automatisch dereferenziert,
es sei denn, sie wird direkt der linken Seite, auf der wiederum eine Zeigervaria-
ble steht, zugewiesen. Es wird jedoch nicht dereferenziert, wenn eine Zeiger-
variable als Prozedurparameter eingesetzt wird und die Prozedur als Formal-
parameter einen Zeiger (per value oder per Ident) auf diesem Platz erwartet.
Zeiger, denen ein Selektor folgt, werden in jedem Fall (auch auf der linken Seite)
zunéchst dereferenziert. Bei Strukturen kann dabei erneut ein Zeiger entstehen,
wie das folgende Beispiel zeigt.

Schulze.Nachbarrechts = Arbeitszeiger; ! Zeigerl=Zeiger2
Arbeitszeiger.Nachbarrechts.Alter = 25; ! Deref durch Selektor
Arbeitszeiger.Nachbarlinks.Nachbarlinks.Name =’Krueger’;! ’’

Das Dereferenzieren von Prozedurzeigern (s.u.) fithrt zur Ausfithrung der Pro-
zedur, auf die der Zeiger zeigt und kann einen Wert ergeben, wenn es sich um
eine Funktionsprozedur handelt. Wegen der Moglichkeit mehrstufiger Verwir-
rungen ist als Funktionsergebnis der Typ Prozedurzeiger jedoch nicht zugelas-
sen.

5.6 Umgang mit Feldern und Zeigern 325

5.6.2.4 | Verschiebung

Mit Hilfe der Einbaufunktion REFADD kann ein Zeiger, der auf ein einfaches
Datenobjekt zeigt, auf das im Speicher folgende gleichartige Objekt verschoben
werden. Diese Verschiebung geht sehr schnell (Beim 68k mit addi constant to
memory) ist aber zumindest vorldufig eine Spezialitit des UH-PEARL. Der
Verschiebewert kann vom Typ FIXED(15) oder FIXED(31) sein und bezeichnet
die Anzahl Objekte, um die geschoben wird. Er wird intern automatisch mit
der Linge des Objektes multipliziert. Eine Verschiebung von Feldzeigern (z.B.
REF (,)), Prozedurzeigern o.4. ist nicht méglich und auch nicht sinnvoll.

DCL Zeiger REF FIXED(31);

CALL REFADD(Zeiger,2); ! 2 Elemente ueberspringen

5.6.2.5 | CONT - Operator

Der Operator CONT ist nur auf der linken Seite einer Zuweisung sinnvoll und
darum auch nur dort implementiert. Ein einzelner Zeiger auf der rechten Seite
einer Zuweisung wird, wie oben erlautert, nicht dereferenziert, wenn links ein
Zeiger (ohne CONT davor!) steht.

CONT Arbeitszeiger = Mueller;

Hier wird das Objekt, auf das Arbeitszeiger zeigt, mit den Daten des Verbundes
Mueller besetzt.

5.6.2.6 | Ubergabe von Zeigern an Prozeduren

Bei Prozeduraufrufen und bei den Operatoren kénnen Zeiger auch per IDENT
iibergeben werden, d. h. der Prozedur wird nur die Adresse des Zeigers mitge-
teilt. Diese IDENT-Ubergabe von Zeigern ist nur dann sinnvoll, wenn die Pro-
zedur den Zeiger selbst (und nicht die Inhalte, auf die er zeigt) verdndern will.
Prozeduren oder Operatoren kénnen auch Zeiger als Ergebnistyp erzeugen.

Wenn eine Prozedur explizit einen Parameter vom Typ REF IDENT erwartet, so
muB als Aktualparameter auch ein Zeiger angeboten werden. Bei Ubergabe
per value geniigt dagegen ein adreflerzeugendes Objekt, also keine Konstante
und kein Ausdruck.

326 5.6 Umgang mit Feldern und Zeigern

Zeiger auf Felder enthalten einen kompletten Feldbeschreibungsblock, in dem
implizit die innere Untergliederung des Feldes enthalten ist. Je nach Anzahl
der Dimensionen n ist das eine gréfiere Anzahl von Bytes, namlich (164-n*8).
Werden solche Zeiger VOID-Zeigern zugewiesen, so wird nur die Adresse des
ersten Feldelementes transferiert.

5.6.2.7 | Zeiger auf Prozeduren

Zeiger auf Prozeduren sind streng typgebunden. Der Compiler weist einem
Prozedur-Zeiger nur dann die Einsprungadresse der Prozedur zu, wenn die zum
Zeiger gehorende Signatur exakt mit derjenigen der anzuschlieBenden Proze-
dur iibereinstimmt. Dereferenzierung eines Prozedurzeigers bedeutet, daf3 die
Prozedur, auf die er zeigt, aufgerufen wird. Je nach Prozedurtyp ist dem Zeiger
eine umklammerte Parameterliste nachzustellen. Ein einsam hingeschriebener
Prozedurzeiger wird dereferenziert, die angeschlossene Prozedur damit aufge-
rufen.

DCL PP REF PROC(FIXED); Prozedurzeiger

TUES:PROC(a FIXED); Signatur wie oben
END; Ende von TUES
PP=TUES; Zuweisung an Zeiger
PP(5); Aufruf von TUES

Selbstversténdlich tiberpriift der Compiler auch hier, ob die angebotenen Pa-
rameter geeignet sind. Dazu verwendet er die Informationen aus der Zeigerde-
finition bzw. -spezifikation.

5.6 Umgang mit Feldern und Zeigern 327

5.6.2.8 | Wichtige Tips

Initialisieren Sie neu deklarierte Zeiger stets mit einer verwertbaren Objekt-
adresse, eventuell einen Dummy dafiir anlegen. Nie langlebige Zeiger auf kurz-
lebige Objekte zeigen lassen!

In PEARL wurden absichtlich Funktionen wie MALLOC ('C’) oder NEW (’Pascal’)
nicht definiert, weil man unklare Zeitbedingungen bei der ,, Untergrundarbeit*
befiirchtete. Der Mangel 148t sich ja auch meist leicht umgehen. Legen Sie
sich dazu ein geniigend grofles Datenfeld an und kodieren Sie eine Routine, die
Zeiger zuriickgibt. Beim Schaffen eines neuen Objektes holt diese Routine dieses
aus dem Vorrat. Auf diese Weise lassen sich vernetzte Datenbanken etc. sogar
auf Massenspeichern samt Zeigern retten, wenn dafiir gesorgt wird, dafl die
Basisadresse des raumspendenden Feldes stets gleich ist (DCL auf Modulebene
und mit Festadresse laden).

/* Pufferplatz f"ur MALLOC, NEWx*/

TYPE MENSCH;

DCL ENORM(500000) MENSCH;

DCL GIBHER REF MENSCH, Nochfrei FIXED(31);

GIBHER = ENORM(1); ! Auf erstes Objekt
CALL REFADD(GIBHER,-1); ! Einen Platz zurueck
Nochfrei = 500000(31); ! Alles noch frei

MALLOC_MENSCH:PROC RETURNS(REF MENSCH) ;
CALL REFADD(GIBHER,1); ! Zeiger weiter
Nochfrei = Nochfrei - 1(31);
IF Nochfrei GE 0(31) THEN RETURN(GIBHER);
ELSE suche garbage ... RETURN(..);

oder PUT ’Leider kein Platz mehr...’

FIN;
TERMINATE; ! Abbruch

END; ! Ende von MALLOC_MENSCH

Pointer=MALLOC_MENSCH(); ! Func call, not address assignm.

328 5.6 Umgang mit Feldern und Zeigern

Die leere Parameterliste in der letzten Zeile oben ist notwendig, damit der
Compiler nicht irrtiimlich vermutet, da man die Adresse der Prozedur
MALLOC_MENSCH der Zeigervariablen Pointer zuweisen mochte, was zu einem
Typfehler fithren wiirde. Durch die leere Parameterliste wird klar bestimmt, daf3
die Prozedur zun#chst aufzurufen ist und der zur Laufzeit abgelieferte Zeiger
bei der Zuweisung zu verwenden ist.

Ein pfiffigeres Programm wiirde natiirlich im obigen Beispiel statt der ,,garbage
collection® eine Kette zuriickgegebener Plitze anlegen und kénnte so einzelne
Liicken ganz schnell wieder neu besetzen.

5.7 Einbaufunktionen 329

5.7 Einbaufunktionen
5.7.1 Mathematische Funktionen

Das System stellt wichtige, mathematische Elementarfunktionen zur Verfii-
gung. Diese werden syntaktisch wie PEARL-Funktionsprozeduren behandelt;
sie diirfen im Systemteil nicht spezifiziert werden, da der Zugang zu den Rou-
tinen sonst verschiittet ist. Die Argumente miissen vom Typ FLOAT(23) oder
FLOAT(55) sein; der Resultattyp entspricht dem Argumenttyp. Welche Funk-
tionen es gibt, ist der unten folgenden Tabelle zu entnehmen.

Neben dem Compiler bekannten Funktionen gibt es noch zwei wichtige Funk-
tionen auferhalb der PEARL-Definition: RANF und DRANF. Diese Funktionen
dienen zur Erzeugung von Zufallszahlen; sie miissen im Systemteil spezifiziert
werden. Die Beschreibung finden Sie auf Seite 344.

Im UH-PEARL sind neben den sogenannten ,,monadischen® Operatoren der
DIN—-Beschreibung dariiberhinaus die wichtigen mathematischen Funktionen
als ,, Einbaufunktionen“ realisiert, d. h. sie werden vom Compiler eingebettet,
ohne dafl zur Laufzeit Zeitverluste zur Parameteriibergabe, Speicherplatzbe-
schaffung etc. auftreten konnen. Sie sind infolge der automatischen Anpassung
an einfache oder doppelte Floatgenauigkeit auch viel bequemer zu benutzen,
als dies mit Bibliotheksroutinen moglich wére. Normalerweise ist der Code der
Einbaufunktionen als Scheibe (,mathx.y“) im RTOS—UH vorhanden. Aller-
dings kénnen auch bei Fehlen der Scheibe (z. B. in kleinen Laufsystemen) iiber
den Lader oder Linker noch die n6tigen Anschliisse hergestellt werden. Aus die-
sem Grunde sind in der Tabelle rechts auflen auch die internen Systemnamen
der Einsprungadressen angegeben.

ACOS(expression) | Arcus Cosinus #SACOS | #DACOS
ASIN(expression) | Arcus Sinus #SASIN | #DASIN
ATAN (expression) | Arcus Tangens #SATAN | #DATAN
COS(expression) Cosinus #SCOS #DCOS
EXP (expression) Exp. funktion Basis e | #SEXP #DEXP
LD(expression) Logarithmus dualis #SLD #DLD
LG(expression) Logarithmus Basis 10 | #SLG #DLG
LN(expression) Logarithmus naturalis | #SLN #DLN
PI(expression) Zahl 7 #SPI #DPI
SIN(expression) Sinus #SSIN #DSIN
SQRT (expression) | Quadratwurzel #SSQRT | #DSQRT
TAN (expression) Tangens #STAN #DTAN

Tabelle 5.5:

Mathematische Funktionen in PEARL

330 5.7 Einbaufunktionen

Alle in Tabelle 5.5 aufgefiihrten Funktionen sind dem Compiler bekannt, ihre
Spezifikation in PEARL-Modulen eriibrigt sich damit. Verwendet ein Nutzer
gleichnamige Arrayvariablen oder Funktionsnamen, ist der Zugang zu den ent-
spechenden Einbaufunktionen verschiittet, d. h. diese sind nicht mehr zugéng-
lich.

Wihrend der Compilation iiberpriift der Compiler den Mode (FLOAT!) des
in jedem Fall zu umklammernden Argumentes. Allen Funktionen miissen
FLOAT(23) oder FLOAT(55) Argumente bereitgestellt werden. Anhand der Ge-
nauigkeit des Ubergabeparameters wird festgelegt, ob die mathematische Funk-
tion mit einfacher (3. Spalte Tabelle 5.5) oder doppelter (4. Spalte Tabelle 5.5)
Float-Genauigkeit ausgefiihrt werden soll. Bei der Funktion PI dient das Ar-
gument lediglich zur Genauigkeitsfestlegung und nicht zur Rechnung.

Beispiele:

X = SIN(C a * b);

Z = LN(C 25.0(55)); Z mufl vom Typ FLOAT(55) sein!
v = ASIN(SIN(y)); Hauptwerte beachten,nicht v = y!
a =PI(1.0(23)); Ermittle 7 in einfacher Float-Genauigkeit.

Erscheint nach dem Laden des PEARL-Programmes eines oder mehrere der
oben rechts angegebenen Internsymbole (das Numerozeichen ,#* dient dazu
als Indikator) als undefiniert, so fehlt die ,Math—Scheibe“, und Sie miissen den
Einbaufunktionsfile beim Laden mit einbinden oder mit dem Linker vor dem
Laden einbauen.

Die Einbaufunktionen konnen Laufzeitfehlermeldungen erzeugen, die durch
Uberschreitung von Grenzwerten verursacht sind. Dabei ist zu unterscheiden,
ob die FPU 68881 bzw. der 68040 oder das Software-Float-Paket zum Einsatz
kommt. Die Hardware produziert ,wrong operand“ etc., withrend die Softwa-
re meist eine namentliche Bezeichnung der Einbaufunktion liefert. In beiden
Féllen ist mit Hilfe des Tasknamens bei eingeschalteter Line-tracer-option der
Fehlerort jedoch i.a. gut zu ermitteln.

Im Compiler-Mode mit eingeschalteter FPU (Gleitkommahardware) sind zu-
sétzliche Einbaufunktionen vorhanden, die urspriinglich aus dem Koprozessor
MC 68881 stammen. Bei den Prozessoren 68040,/60 und PowerPC werden diese
Sonderfunktionen durch Software nachgebildet. Alle Funktionen liefern Ergeb-
nisse des Typs FLOAT.

5.7 Einbaufunktionen

331

ATANH (expression) arcus Tangeshyperbolicus
COSH (expression) Cosinushyperbolicus
EXPM1 (expression) (e*) -1

INT (expression) runden auf néichstliegende Integer
INTRZ(expression) Fraktion abschneiden
LNP1(expression) LN(x)+1

NEG (expression) Negieren der Floatzahl
SINH (expression) Sinushyperbolicus

TANH (expression) Tangenshyperbolicus
TENTOX (expression) | 10*

TWOTOX (expression) | 2%

Tabelle 5.6: Mathematische Funktionen beim 68881-PEARL

Anmerkung: Die FPU ist auf den Mode ,,round to nearest“ voreingestellt.

Wichtige Warnung!

Bei den 68040/60-Systemen sollte bei Gebrauch der mathemati-
schen Funktionen wenn irgendméglich der Mode P=68040 oder
P=68060 im Compiler angewihlt werden. Sonst wird der kom-
patible F-Line Emulationsmode gemé&f3 Motorola-Vorschlag ge-
wiahlt, der bezogen auf RTOS—Standard aus prinzipiellen Griin-
den sehr schlechte Echtzeiteigenschaften (z. B. Berechnung des

SIN in einem Supervisorprozef}) ergibt!

5.7.2 Die Funktion ,,ST* zur Statusabfrage von Datenstationen

Durch das neue RST-Format in PEARL90 ist diese Funktion in vielen Fillen
entbehrlich geworden, zumal mit Hilfe des RST-Formates ein E/A-Vorgang ge-
nauer protokolliert werden kann. Dennoch werden die Statusinformationen hier
beschrieben, da sich das RST-Format intern auf die ST-Funktion abstiitzt. Man
beachte jedoch, dal man aus Kompatibilitdtsgriinden, wann immer neue Pro-
gramme geschrieben werden, das RST-Format bevorzugen sollte.

332 5.7 Einbaufunktionen

Aufruf: I=ST(Dationname) bzw.
CASE ST(Dationname)+1 wie skalares FIXED (15).

Beschreibung:

Der Compiler generiert einen Zugriff auf eine FIXED (15)—Zahl, die im SYSTEM-
Block der angegebenen Datenstation abgelegt ist. Diese Zahl gibt an, ob und
wenn welche Besonderheiten beim letzten PUT oder GET aufgetreten sind. Die
Zahlenwerte finden Sie in der Tabelle 5.7. Der ST-Wert wird zu Beginn jedes PUT
oder GET auf Null gesetzt. Der Wert ,,Null* bezeichnet daher den ereignislosen
Betriebsfall.

Mit Hilfe der ST-Abfrage ist es also moglich, z. B. syntaktisch falsche Eingaben
programmgesteuert zu erkennen und geeignet darauf zu reagieren, und zwar
unabhéngig davon, ob die E/A-Fehlermeldungen der Station eingeschaltet sind
oder nicht.

Die Funktion kann auch das Ergebnis der Einbaufunktionen REWIND, SEEK,
SAVEP, APPEND und SYNC iiberpriifen. Der ST-Wert wird nicht auf Null gesetzt!
Zuweisung ST=0 iiber PUT(GET) TO(FROM) xy BY LIST.

’ ST-Wert \ Bedeutung

Korrekte ereignislose Funktion.

END-OF-FILE. Daten konnten nicht gelesen werden.
Read—Error. Verschiedene Ursachen, z. B. File nicht exist.
Falsche Eingabe-Syntax, z. B. Buchstabe bei Zahleneingabe.
Exponent (Float) out of range.

FIXED-Input Zahleniiberlauf.

B-Format Eingabestring zu lang.

Timeout

Anzahl auszufithrender SKIPS negativ.

Anzahl auszufithrender X oder PAGE negativ.

Uberlauf 6ffnender Klammern im Format.

Datentyp und Format passen nicht zueinander.

Datum in der Liste, aber kein Datenformat im Format.
Uberzihlige schlieende Klammer im Format.

Dieses Gerit ist fiir diese Operation nicht geeignet.
Pathlist zu lang. Liste gekiirzt.

O[O0 | U | W N —| O

—_
o

[t
—_

—_
[\)

—_
w

[t
IS

—_
ot

Tabelle 5.7: Standardwerte der ST-Funktion bei der PEARL-E/A

5.7 Einbaufunktionen 333

Wenn im PEARL—Programm ein Objekt mit Namen ST definiert wurde, so ist
der Zugang zur Einbaufunktion verschiittet. Die Funktion darf daher (wie alle
Einbaufunktionen) nicht mit SPC spezifiziert werden!

Bei der Ubertragung eines solchen PEARL-Programmes auf andere PEARL-
Systeme kann man sich dann eine kompatible Funktion mit Hilfe dort (eventu-
ell) vorhandener Signale (ON-Blocke) selbst definieren.

Beispiel: LBL: PUT ’Geben Sie bitte x ein’ TO TERM BY SKIP,A;
GET x FROM TERM BY SKIP,F(10);
IF ST(TERM) NE O THEN GOTO LBL; FIN;

5.7.2.1 Sonstige ST-Werte

Wird das NE-Flag gesetzt, so kann mit der ST-Funktion der Status nach einer
Operation abgefragt werden. Man erhélt die Fehlernummern geméfi Tabelle
5.8.

334 5.7 Einbaufunktionen

’ ST \ Bedeutung \ /Fx \ /ED \ /VI \ JAx ‘
30 Framing Error X
31 sonst. Error serielle X
32 Parity error X
33 Data Adress Mark Error X
34 Track 000 not found X
35 Aborted Command Error X X X
36 Controller fault X
37 ID-Field not found X
38 CRC-Error in ID or Data X
39 Uncorrectable Data Error X
40 Bad Block found X
41 Drive not ready X
42 Device Write Protected X
43 Disk Changed X
44 Drive not Present X
45 No UHFM Disk X
46 Directory active X
47 Path List Error X
48 Directory in System X
49 Directory not found X
50 File not found X X X
51 Disk full Error X X
52 File System not consistent X
53 | Drive busy (RAW) X
54 File in System X X
55 Root Directory or Disk full X
56 No DOS Disk X
57 Fatal Error in Block 0 X
58 Exclusiv open(no access right) | x
594 | reserved

/VO ist wie /VI. Festplatten und Netzstationen siehe unter /Fx.

Tabelle 5.8: ST-Werte bei abgeschaltetem NE-Flag

5.7 Einbaufunktionen 335

5.7.3 Bitmapping Basis—Grafik

Es sind 3 elementare Basisroutinen integriert, die einfache Pixeloperationen un-
terstiitzen. Sie arbeiten auf dem fiir die ausfithrende Task aktuell vereinbarten
Grafikschirm, bzw. Grafikfenster.

CALL SETPIX(zpos, ypos, colour);
CALL GETPIX(zpos, ypos, colour);
CALL LINE(zlpos, ylpos, z2pos, y2pos, colour);

In Wirklichkeit handelt es sich hier nicht um Prozeduraufrufe (die Syntax mit
dem optionalen CALL ist nur wegen der PEARL-kompatibilitdt gewdhlt wor-
den), sondern um extrem schnelle Anspriinge (Nur JSR/RTS als overhead!)
der globalen Systemroutinen #SSETP/#SGETP/#SLINE wobei die FIXED(15)—
Parameter in die Register DO ... D4 geladen werden. Falls in Threm System
diese Routinen nicht vorhanden sind, kénnen sie leicht als Maschinenprogram-
me selbst geschrieben und beim Laden angelinkt werden. Dabei hat man in den
Routinen die Register DO-D7 und A0-A3 frei verfiigbar. Im Standard ruft LINE
intern die Funktion SETPIX auf, so daf} ggf. nur SETPIX und GETPIX angepaft
werden miissen.

SETPIX und GETPIX sind zueinander komplementédr, d. h. mit GETPIX wird
der dritte Parameter (mufl variabel sein!) auf den mit SETPIX oder sonstwie
erzeugten Wert gebracht.

LINE fiihrt eine Pixel-Interpolation durch, wobei Start— und Endpixel gesetzt
und durch Zwischenpixel verbunden werden.

Das Loschen von Punkten und Linien erfolgt durch Schreiben mit Anwahl der
Hintergrundfarbe.

Beispiel fiir einen Kasten:

CALL LINE(i,j,i+10,j,1);
CALL LINE(i,j,i,j+10,1);
CALL LINE(i+10,j,i+10,j+10,1);
CALL LINE(i,j+10,i+10,j+10,1);

336 5.7 Einbaufunktionen

Wenn alles in Ordnung ist, erscheint eine (wasserdichte) quadra- tische Kiste
mit der linken oberen Ecke auf Position (i, j).

Wie bei allen Einbaufunktionen, so diirfen auch hier die Objekte SETPIX,
GETPIX und LINE nirgends weder deklariert noch spezifiziert werden. Ande-
renfalls sind die Funktionen nicht mehr zugénglich.

Eine negative Farbe bedeutet, dafl das Pixel durch Invertieren des Altzustandes
erzeugt wird, nach erneutem Aufruf erscheint dort also wieder das alte Bild.

Bitte beachten:

Bedenken Sie, daf der Ablauf dieser Funktionen je nach Rechner
evtl. mit sehr hoher Geschwindigkeit ausgefiithrt wird und unter
Umstédnden nichts zu sehen ist, wenn das Objekt zu frith wie-
der geloscht wird! Mogliche Abhilfe: Operation mit dem Vertikal—
Prozeflinterrupt und WHEN ... synchronisieren, so dafl mindestens
ein Vollbild abgewartet wird.

5.7.4 Besondere E/A—-Operationen

Auch hier handelt es sich nicht um normale Unterprogrammaufrufe, sondern um
Sonderfunktionen des UH—Compilers, die aus Kompatibilitdtsgriinden zu an-
deren Systemen das CALL-Konstrukt benutzen. ST wird in jedem Fall geéindert,
bei fehlerfreier Funktion auf ,,Null“, sonst auf den entsprechenden Code gesetzt.

CALL REWIND(datZionname) ;.........coeeeeuuunenn.. Zuriickspulen eines Files.
CALL SYNC(dationname); Speicher—File-Synchronisation.
CALL SEEK(dationname,longfized); Aufsuchen des x.Byte im File.
CALL SAVEP(dationname, longfized); Position des Files retten.
CALL APPEND(dationname); Anhang an den File vorbereiten.
REWIND: Der angegebene File wird zuriickgespult. War er nicht vorhan-

den, so wird er neu eingerichtet. Ist das Gerat nicht riickspulbar,
so erfolgt Meldung und ST = 14.

SYNC: Der angegebene File sowie alle anderen Files dieses Laufwerkes
(Drive) wird mit dem Inhalt auf dem Medium so abgeglichen, daf
z. B. danach alle Daten im Falle des Netzausfalles gerettet sind.
Der Positionszeiger des Files, der Offnungszustand etc. bleibt
unverdndert. Moglicherweise erfolgt iiberhaupt keine Aktion weil
Memory und Medium (Floppy/Winch) bereits iibereinstimmen.
Im Fehlerfalle: Meldung und ST = 14.

5.7 Einbaufunktionen 337

SEEK:

SAVEP:

APPEND:

Beispiel:

Der File wird auf die Position gebracht, die durch den Parameter-
wert vom Typ FIXED(31) bezeichnet wurde. Dies kann eventuell
sogar hinter die aktuelle Schreibschlufmarke geschehen, wenn
der File von fritherer Schreibaktivitdt noch grofler angelegt ist
als er zur Zeit benutzt wird!

Die aktuelle Position (das wievielte Byte des Files das néchste zu
schreibende sein wird) wird in der FIXED (31)—Variablen abgelegt
und steht dann fiir einen spéteren SEEK zur Verfiigung.

Das Paar SEEK/SAVEP ermoglicht den Aufbau verketteter Daten
auf den Massenspeichermedien mit schnellem Zugriff, weil immer
nur der Block der jeweils betroffenen Stelle wirklich eingelesen
wird. Meiden Sie moglichst die Ndhe des File-Endes, da manche
Filehandler nach dem Einlesen des letzten Bytes einen Auto-
Close fiir den File durchfithren und damit das Laufzeitsystem
so auf die (nach SEEK) falsche Fihrte locken! Am besten unter-
driickt man die Autoclose-Operation durch MB=$04, niheres auf
Seite 308.

Verldngern des Files. Beim Aufruf dieser Funktion wird an das
Fileende positioniert, danach kann mit PUT, WRITE der File
erweiternd geschrieben werden. Zur Zeit im UH- und DOS-
Filemanager implementiert. Im Fehlerfall: ST = 14.

Wie bei allen Einbaufunktionen, so diirfen auch hier die schein-
baren Prozedurnamen nicht deklariert oder spezifiziert werden,
da der Ubersetzer dann die Nutzerobjekte benutzen wiirde.

CALL SAVEP(MyFile, I);

CALL SEEK(MyFile, I);

338 5.7 Einbaufunktionen

5.7.5 READ/WRITE

Prozeduren fiir den Bindr—Transfer von Daten. Aus Griinden der Kompati-
bilitit zum alten PEARL80-Compiler existiert hier neben dem PEARIL90-
Statement noch die alte prozedurale Schnittstelle. Da polymorphe Prozeduren
(solche mit variabler Parameterliste) in PEARLI0 nicht zugelassen sind, wird
der alte Aufruf durch Einbaufunktionen nachgebildet. Die im alten PEARLS0
notige Anweisung

SPC (WRITE,READ) ENTRY GLOBAL;

mufl unbedingt entfernt werden. Fiir den nun veralteten Aufruf gilt ansonsten
die bisherige Syntax:

CALL WRITE (dationame,Variablenliste);cc.cuuun... Schreiben
CALL READ (dationame,Variablenliste);cuuuuuiiiineinnnn.. Lesen

Das CALL ist, wie generell in PEARLI0, nur noch optional.

Bei neuen Programmen sind die Anweisungen zu ersetzen durch die PEARL90-
Anweisungen

WRITE Variablenliste TO dationexpression;
READ Variablenliste FROM dationexpression,

Die in der Variablenliste aufgefithrten Variablen werden in der Reihenfolge ihres
Auftretens auf die angegebene Datenstation ,,bindr“ transferiert, bzw. von ihr
gelesen. Beim Abspeichern binédrer Daten in /ED-Files ist zu beachten, da8
man diese Daten zwar nicht mit dem COPY-Befehl korrekt transportieren kann,
die interne PEARL-Welt davon jedoch unberiihrt bleibt und richtig arbeitet.

Variablenliste:
e ARRAY-Typen werden komplett iibertragen (total E/A)
e ¢s sind alle Variablen—Typen aus PEARL erlaubt
e es konnen verschiedene Typen gemischt werden

e die Lange der Liste ist nicht begrenzt

Beide Operationen arbeiten mit ,WAIT*’, d. h. auch beim WRITE wird auf das
Ende der Schreiboperation gewartet. Die Prozeduren setzen am Ende der I/0O-
Operation das Status—Byte der DATION, welches mit der Funktion ST(...)
abgefragt werden kann (sieche Abschnitt 5.7.2).

5.7 Einbaufunktionen 339

Beispiel:

MODULE TEST;
SYSTEM;
FLOPPY: /FO/MIST <->;
PROBLEM;
SPC FLOPPY DATION INOUT ALPHIC;
taskl: TASK;
DCL FELD (100,20) FIXED;

DCL ARR(3) FLOAT;
DCL R FLOAT(55) ;

wéifE FELD,ARR,R TO FLOPPY;
ﬁéAb FELD,ARR,R FROM FLOPPY;
END;‘..
MODEND;
Es ist darauf zu achten, dafl beim Lesen und Schreiben der Daten die Datenty-

penfolge der Parameterlisten iibereinstimmt, da sonst falsche Werte zugewiesen
werden.

Bei einem Zugriff auf die Floppy/Winch-Laufwerke (erkennbar am Device-
Parameter $40 im 2. Byte, siehe Seite 203) wird intern eine Blockgrofle von
maximal 32766 Byte benutzt, ansonsten wird mit dem TFU-Wert aus dem
Systemteil gearbeitet. Dieser ist ohne TFU-Angabe meist 128.

Hinweis: Die Prozeduren fithren kein REWIND durch, daher mufl vor der
Benutzung die Position im File durch ein REWIND oder SEEK
eingestellt werden. Die Integration der Positionierformate aus
PEARLI0 in eine BY-Liste ist noch in Arbeit.

! — Die Funktionen READ/WRITE besetzen das Mode Byte des CE’s
(Ein—/Ausgabeelemente) anders vor:

e READ: WAIT,BINAR,SUPRESS CMMD
e WRITE: WAIT,OUTPUT,BINAR,SUPRESS CMMD

Daher werden die Standardendekennzeichen CR, L¥, EOT nicht
beriicksichtigt.

340 5.7 Einbaufunktionen

Mit NE sind alle Fehlermeldungen abschaltbar. Bei verschiedenartigen Fehlern
werden die vom I/O-Déamonen angebotenen Meldungen prisentiert. Ist dieser
alt und zu einem solchen Report nicht in der Lage, so werden ersatzweise fol-
gende Meldungen ausgegeben:

>>...: I/0-Error_during_ READ/WRITE ST=2
>>...: Time_out_during_READ/WRITE ST=7

Bei Fehlern, die mit dem File-Ende zusammenhéngen, sind folgende Meldungen
moglich:

>>...: End_of_File(READ/WRITE) ST=1
>>...: Incomplete-transfer_READ/WRITE ST=1

Bei der letzten Meldung wurde festgestellt, dafl die vom I/O-Diémonen
tatséichlich transferierte Anzahl Bytes kleiner ist als der Auftrag verlangte.
Tritt auf, wenn wihrend des Lesens das File-Ende ereicht wurde.

5.7.6 READ/WRITE mit S-Format

Seit der P90-Compilerversion 15.9-M ist bei den READ/WRITE-Anweisungen
eine Steuerung und Kontrolle der {ibertragenen Datenlédnge moglich. Dazu wird
das S-Format der P90-Norm genutzt. Dieses Format muss nach dem Schliissel-
wort BY z.B. in der Form S(1var1) stehen. Als Argument ist nur eine beschreib-
bare FIXED (31)-PEARL-Variable zugelassen. Durch Vorbesetzen der Variablen
kann die zu schreibende/lesende Anzahl der Bytes zu kleineren Werten hin be-
grenzt werden. Nach der Operation wird in der Variablen die Anzahl tatséchlich
transferierter Bytes abgelegt. Beispiele:

DCL x(4000) CHAR(1); FeldgroBie 4000 Byte
lvar1=1000(31); Max 1000 Byte sollen gelesen werden
READ x FROM Infile BY S(lvarl); Legt die tatséichliche Lénge in lvarl ab

lvarl=1; lvar2=2; Zwei Vorbesetzungen
WRITE a,b TO Outfile BY Liste von Objekten
S(lvarl), S(lvar2); Von a max 1 Byte, von b max 2 Bytes
lvarl, lvar2 enthalten tatséchliche
Anzahl der geschriebenen Bytes.

5.7 Einbaufunktionen 341

Stehen mehrere S-Formate hinter BY, so werden diese in der Reihenfolge der
Objekte in der Ein-/Ausgabeliste zugeordnet. Uberzihlige S-Formate werden
ignoriert. In den einzelnen S-Formaten der Liste miissen logischerweise je-
weils individuelle Steuervariablen verwendet werden, wenn eine sinnvolle Ak-
tion entstehen soll. Sind weniger S-Formate als Listenobjekte vorhanden, so
werden die nicht zuzuordnenden Objekte automatisch mit dem ungesteuerten
READ/WRITE bearbeitet.

5.7.7 Die Einbaufunktion NOW

Bei Verwendung des Symboles NOW in Ausdriicken, E/A-Listen etc. wird ein
Objekt vom Typ CLOCK erzeugt, welches als Inhalt die aktuelle Uhrzeit erhélt.
Der Anschluf ist sehr schnell.

Der Bezeichner NOW darf nicht anderweitig deklariert oder spezifiziert werden,
da der Compiler sonst die Nutzervereinbarung benutzt.

Beispiel:

PUT NOW TO A1 BY SKIP,LIST;
Starttime = NOW;

Elapsedtime = NOW - Starttime;

5.7.8 Die Funktion DATE zum Einlesen des Datums

Diese Prozedur muf} spezifiziert werden:

SPC DATE ENTRY RETURNS(CHAR(10)) GLOBAL;
Der Aufruf lautet:

DCL datum CHAR(10);

datum = DATE;
Die Funktion weist der Zeichenkette datum das aktuelle Datum in der Form
dd-mm-jjjj zu. Es bedeuten

dd: Tag, 1...31
mm: Monat, 1...12
Jjgg: Jahr, 1984...2070

Ist das Datum nicht gesetzt, so wird eine nur aus Bindestrichen bestehende
Zeichenkette zuriickgegeben.

342 5.7 Einbaufunktionen

5.7.9 Die Einbaufunktion REFADD

Um die in PEARL nicht explizit vorgesehene Manipulation von Zeigervaria-
blen zu ermoglichen, wurde die Einbaufunktion REFADD geschaffen. Es han-
delt sich allerdings keinesfalls um einen wirklichen Prozeduraufruf, die CALL—
Konstruktion wurde nur aus Kompatibilitdtsgriinden gew#hlt! Der Compiler
generiert hier einen geschwindigkeitsoptimierten Maschinencode ohne JSR etc.

CALL REFADD(Pointer,Shift);

Pointer: Eine REF—Variable beliebigen Typs.
Shift: Ein FIXED(15) oder FIXED(31) Ausdruck, bzw. Konstante.

Auf die AdreBvariable Pointer wird der Wert Shift - Objektgrifie aufaddiert.
Objektgrifie ist die Anzahl Bytes, aus der der Datentyp, auf den Pointer zeigt,
besteht.

Wenn Shift eine Konstante ist, so werden die notwendigen Rechnungen schon
zur Compilezeit erledigt und lediglich ein einziger ADD. .. bzw. SUB. . .-Befehl
entsteht. Daher fiir Shift nicht leichtfertig Ausdriicke oder Variablen verwenden!

Natiirlich darf auch REFADD nicht anderweitig deklariert oder irgendwie spezi-
fiziert werden.

5.7.10 Die Funktion ASSIGN zum Andern der Datenstation

Nicht fiir Neuentwicklung!
Diese Prozedur muf} spezifiziert werden:

SPC ASSIGN ENTRY(DATION ALPHIC IDENT, CHAR(24))
GLOBAL;

Man beachte, dafl gegeniiber dem alten PEARLS0 nun das Attribut INOUT fehlt.
Dies ist erforderlich, weil anderenfalls der Compiler beim Aufruf der Prozedur
fiir nur lesefdhige oder nur schreibfihige Datenstationen einen Parameterfehler
anzeigen wiirde.

5.7 Einbaufunktionen 343

Fiir den Aufruf muf} die folgende Syntax eingehalten werden:
CALL ASSIGN (Dation,newDation);

In PEARL werden den Datenstationen logische Namen zugewiesen, dieses er-
folgt im SYSTEM—Teil mit der Anweisung;:

logName : PhysName.Ftilename <->;

Beispiel dazu: Plotter: /PP/DRUCK ->;

Mit der Anweisung OPEN logName BY IDF(newname) kann der Datenstation
ein neuer Filename zugewiesen werden, es ist erst in neueren Systemen moglich,
die Ein—/Ausgabe ohne Anderung des Quelltextes zu einer anderen Datensta-
tion zu schicken.

Hierzu wurde seinerzeit die Funktion ASSIGN eingefiihrt, sie erlaubt die Zuwei-
sung einer neuen Ein—/Ausgabe-Datenstation aus einem PEARL-Programm
heraus. Sie ist nur noch aus Kompatibilitdtsgriinden im System enthalten.
Neuere Programme sollten das erweiterte ,0PEN BY IDF“ benutzen.

Dazu betrachten wir ein Beispiel, in dem die Ausgabe der Datenstation Plotter
auf ein Floppy-File umgelenkt werden soll:

SYSTEM;
Plotter: /PP/PLOTT ->;
PROBLENM;
SPC ASSIGN ENTRY(DATION INOUT ALPHIC IDENT,
CHAR(24)) GLOBAL;
DCL newDation CHAR(24);
/* entweder : */
GET newDation FROM TERMINAL BY A,SKIP;
/* oder : */
newDation = ’FO’;
OPEN Plotter BY IDF(’/’ CAT ’newdation’);
! bei neuen Systemen
! CALL ASSIGN (Plotter,newDation);
! => fuer aeltere Systeme
/* die Ausgabe kann auf die angegebene */
/* Datenstation umgelenkt werden. */

344 5.7 Einbaufunktionen

Falls bei newDation der String TY angegeben wird, so wird als Ein—/Ausgabe—
Station das eigene Terminal (von dem das Programm gestartet wurde) benutzt.
Aufer TY ist auch TYD fiir die entsprechenden Duplex—Kaniile zugelassen. Fiir
newDation sind sédmtliche dem System bekannten Datenstationsnamen, sowie
die Bezeichner Lz (z steht fiir die LDN der DATION) und das erwihnte TY, TYD
erlaubt.

5.7.11 Die Funktionen RANF und DRANF zur Erzeugung von
Zufallszahlen

Die Funktionen miissen im Systemteil spezifiziert werden:

SPC RANF ENTRY (FIXED(31) IDENT, FIXED(31) IDENT)
RETURNS (FLOAT(23)) GLOBAL;

SPC DRANF ENTRY (FIXED(31) IDENT, FIXED(31) IDENT)
RETURNS (FLOAT(55)) GLOBAL;

Nach Deklaration der Argumente mit dem korrekten Typ lautet der Aufruf:

DCL ZufallN FLOAT;
DCL (ZufallNM1, ZufallNM2) FIXED(31);

ZufallN = RANF(ZufallNM1, ZufallNM2);

Die Funktionen berechnen die neue , Pseudo“—Zufallszahl mit dem Namen
ZufallN aus den beiden vorangegangenen Zufallszahlen geméfl folgender For-
mel:

Xn = kl . Xn—l — k‘g . Xn_g(mod231 — 1)
mit kp = 217828199 und ko = 314159269
Die erzeugten Zahlen liegen gleichverteilt im Intervall [0,1).

Hat einer der beiden Parameter (oder beide Parameter) beim Aufruf den Wert
0, so wird er (oder werden beide) vor Ausfithrung der Rechnung auf die aktuelle
Uhrzeit (in Millisekunden) gesetzt. Durch gezielte Vorbesetzung der Parameter
lassen sich reproduzierbare Folgen von ,,Pseudo“—~Zufallszahlen erzeugen.

5.7 Einbaufunktionen 345

5.7.12 Die Funktion TASKST zum Feststellen eines Taskstatus

Diese Prozedur muf} spezifiziert werden:
SPC TASKST ENTRY (CHAR(24)) RETURNS (BIT(32)) GLOBAL;
Der Aufruf lautet:

DCL Stat BIT(32);

Stat = TASKST (Taskname) ;

Die Funktion gibt den Wert ’FFFFFFFF’B4 zuriick, wenn eine Task mit dem
angegebenen Namen dem System unbekannt ist. Ist eine derartige Task im
Speicher vorhanden, so hat Stat.BIT(1) folgende Bedeutung:

’0°B : Task ist in irgendwelche Aktivititen verwickelt.
’1°B : Task ist weder eingeplant noch in irgendwelche Aktivititen verwickelt,
jedoch dem System bekannt.

Genauere Information iiber den Taskstatus sind in den Bits 17...32 enthalten.
Diese Informationen haben allerdings nur sehr eingeschrinkte Aussagekraft,
da in dem Zeitraum zwischen Funktionsaufruf und Auswertung des Funktions-
wertes durchaus Statuséinderungen moglich sind. Die Bedeutung der Bitstellen
finden Sie in Tabelle 5.9 auf Seite 346. Die Bits sind dabei in PEARL-Notation,
d. h. vom héchstwertigsten Bit (=Stat.BIT(1)) bis zum niederwertigsten Bit
(=Stat.BIT(32)) numeriert.

346 5.7 Einbaufunktionen

Bit-Nr. \ Aussage
2...16 | keine Bedeutung

17 | reserviert

18 | Waiting for I/O. Task wartet auf Ein—/Ausgabe

19 | Waiting for Activation. Sonderstatus: Task wartet auf Aktivie-
rung.
20 | Suspend. Task ist suspendiert.
21 | Waiting for CE. Task wartet auf ein CE (Kontingent erschopft
oder Speicher voll).
22 | Waiting for Workspace. Task wartet auf Zusteilung von
Workspace.
23 | Waiting for Sema. Task wartet auf Sema (vergeblicher Re-
quest).
24 | reserviert
25 | Planned for Activation. Fiir die Task liegt eine Einplanung
irgendeiner Art vor.
26 | reserviert
27 | Timed Activate. Task ist zeitlich zur Aktivierung eingeplant.
28 | Cyclic—Activate. Fiir die Task liegt eine Einplanung zur zykli-
schen Aktivierung vor.
29 | WHEN ... ACTIVATE. Task ist mit WHEN zur Aktivierung
eingeplant.
30 | Timed Continue. Task ist zeitlich zur Fortfithrung eingeplant.
31 | WHEN ... CONTINUE. Task ist mit WHEN zur Fortsetzung
eingeplant.
32 | Idle-Task. Task ist Idle-Task des Systems.

Tabelle 5.9: Taskstatus

5.7.13 Prozeduren zum Lesen und Andern der Taskprioritét

Diese Prozeduren miissen spezifiziert werden:

SPC SETPRI ENTRY(FIXED) RETURNS(FIXED) GLOBAL;
SPC GETPRI ENTRY(FIXED) RETURNS(FIXED) GLOBAL;

5.7 Einbaufunktionen 347

Der Aufruf lautet:
DCL (OWNPRIO,PRIOSET,OLDPRIO,NEWPRIO) FIXED;

OWNPRIO

= GETPRI(0); ! Default-Prioritaet lesen
OWNPRIO = GETPRI(1); ! Aktuelle Prioritaet lesen
OLDPRIO = SETPRI(NEWPRIO);

Diese Prozeduren dienen zur voriibergehenden Anderung der Prioritit. Sie sind
fiir Tasks gedacht, die mit Semaphore arbeiten, die auch von Tasks hoéher-
er Prioritdt genutzt werden. Durch das voriibergehende Erhohen der eigenen
Prioritdt ist gewéhrleistet, dafl die normalerweise niederpriorisierte Task wei-
terarbeiten kann, wihrend sie die Semaphore hilt.

GETPRI liefert mit 0 als Ubergabewert die Default-Prioritét, mit 1 als Uberga-
bewert die aktuelle Prioritdt der eigenen Task.

SETPRI #ndert die Prioritét der eigenen Task auf NEWPRIO und gibt den Wert
vor der Anderung zuriick. Hat NEWPRIO den Wert 0, erhélt die eigene Task ihre
Default-Prioritét.

Beispiel: Die niederpriore Task AAT teilt sich mit einer hochprioren einen Va-
riablensatz, der durch das Semaphor S1 geschiitzt ist:

DCL HOCHPIQO FIXED;
AAT2:TASK PRIO 10;
HOCHPRIO=GETPRI(1);
REQUEST S1;
ce ! Variablensatz bearbeiten
RELEASE S1;
END;
AAT: TASK PRIO 200;
DCL OLDPRIO FIXED;

OLDPRIO=SETPRI (HOCHPRIO) ;! Hohe Prioritaet vor Request

REQUEST S1;

e ! Variablensatz bearbeiten

RELEASE S1;

OLDPRIO=SETPRI(OLDPRIO); ! Alte Prioritaet wiederherstellen
END;

348 5.7 Einbaufunktionen

5.7.14 Die Prozeduren TOIEES und TOIEED zur
Floatzahl-Wandlung

Diese Prozeduren miissen spezifiziert werden:

SPC TOIEES ENTRY(FLOAT IDENT) GLOBAL;
SPC TOIEED ENTRY(FLOAT(55) IDENT) GLOBAL;

Der Aufruf lautet:

DCL float FLOAT;
DCL float55 FLOAT(55);

CALL TOIEES(float);
CALL TOIEED(float55);

Die Funktionen wandeln Gleitkommazahlen aus der Darstellung des RTOS—
UH-Software—Float—Formats in die IEEE-Darstellung um. Der Einsatz dieser
Funktionen ist insbesondere zur Konvertierung bindr abgespeicherter Daten bei
Systemerweiterung mit 68020,/6888z-Prozessoren sinnvoll.

5.7.15 Die Prozeduren TORTOS und TORTOD zur
Floatzahl-Wandlung

Diese Prozeduren miissen spezifiziert werden:

SPC TORTOS ENTRY(FLOAT IDENT) GLOBAL;
SPC TORTOD ENTRY(FLOAT(55) IDENT) GLOBAL;

Der Aufruf lautet:

DCL float FLOAT;
DCL floatb5 FLOAT(55);

CALL TORTOS(float);
CALL TORTOD(float55);

Die Funktionen wandeln Gleitkommazahlen aus der Darstellung des IEEE—
Formates in das RTOS—UH-Software—Float—Format um. Der Einsatz dieser
Funktionen ist insbesondere zur Konvertierung binér abgespeicherter Daten bei
Systemerweiterung mit 68020/6888z-Prozessoren sinnvoll.

5.7 Einbaufunktionen 349

5.7.16 PEARL-Unterprogramme fiir Shellfunktionen

Viele Operationen, die man als Bediener mit Hilfe der Shell ausfithren kann,
mochte man in dhnlicher Weise auch aus einem PEARL-Programm heraus zur
Verfiigung haben. Dafiir gibt es zwar die Station /XC (siehe Seite 415), jedoch ist
in vielen Fillen das Resultat nicht gut an die PEARL-Umgebung angepafit. Oft
stort es auch, dafl ein Ddmon und nicht die PEARL-Task selbst die Operation
ausfithrt. Einige Prozeduren dieses Abschnittes schaffen da Abhilfe.

350 5.7 Einbaufunktionen

’ CMD_EXW ‘ Bedienbefehl ausfithren

Nicht fiir Neuentwicklung! Ersatz durch EXEC.

Bedienkommandos konnen iiber die Datenstation /XC (siehe Seite 415) an das
Betriebssystem abgesetzt werden. Dabei erhélt das PEARL-Programm nur ein-
geschrankt eine Riickmeldung iiber Erfolg oder Miflerfolg der ausgefiihrten Ak-
tion. Mit der Prozedur CMD_EXW konnen Kommandos an das Betriebssystem
weitergegeben werden, deren erfolgreiche Ausfiihrung iiber ein Bit zuriickge-
meldet wird. Es kénnen alle Kommandos auf diese Art abgesetzt werden, auch
»PEARL-SHELLMODULE* oder transiente Kommandos, die erst geladen wer-
den miissen. Der Kommandostring hat den gleichen Aufbau wie eine Eingabe
an die Shell. Wurde das Kommando erfolgreich ausgefiihrt, so wird der Status
0B zuriickgemeldet, im Fehlerfall ist es eine ’>1°B.

Die Prozedur muf} spezifiziert werden:
SPC CMD_EXW ENTRY (CHAR(255)) RETURNS(BIT(1)) GLOBAL;
Beispiel:

DCL kommando CHAR(80);
DCL status BIT(1);

kommando = ’P LO NO’;
IF CMD_EXW(kommando) THEN
status = CMD_EXW(’UNLOAD mist*’);
status = status OR CMD_EXW(’LOAD’);
IF NOT status THEN
PUT ’fertig’ TO
FIN;
ELSE
status = CMD_EXW(’ED’);
FIN;

Diese Routine fiithrt die Kommandos im ,, WAIT“-Mode aus, siche dazu Seite
223 die Beschreibung des WAIT-Befehles.

5.7 Einbaufunktionen 351

Environmentvariable abfragen ENVGET

Mit dieser Routine ist es moglich, einzelne oder mehrere Variablen des User-
Environment aufzulésen und den erhaltenen Textstring weiterzuverwenden. So
kénnen PEARL-Programme oder PEARL-Shellmodule so kodiert werden, daf
sie sich automatisch an ihre Umgebung anpassen.

SPC ENVGET(CHAR(255)) RETURNS(CHAR(255) GLOBAL;

Die Routine erzeugt aus einem Eingabestring einen Ergebnisstring. Der Ein-
gabestring enthélt Text, in dem ein oder mehrere Environment-Variablen mit
vorangestelltem $-Zeichen vorkommen. Die Routine ersetzt diese jeweils durch
ihre textlichen Werte und gibt den Resultatstring zuriick.

Hatte man etwa irgendwann vorher
ENVSET TEXDIR=/HO/TEX; eingegeben, so wird nun bei
OPEN dation BY IDF(ENVGET(’$TEXDIR/OUT/HELPFILE’));

die Environment-Variable $TEXDIR in den entsprechenden textlichen Wert um-
gewandelt. Es wird daher der File /HO/TEX/0UT/HELPFILE geofinet.

Die Routine versucht, alle mit $ beginnenden Variablen aufzulésen. Das muf
zwangslaufig scheitern, wenn die Variable im Environment nicht definiert ist.
In diesem Fall liefert sie einen Ergebnistring zuriick, der mit dem $-Zeichen
beginnt und die erste nicht auflésbare Variable angibt.

z=ENVGET (’Trallala $michgibtsgarnicht’);
wird im Ergebnis zu
z=’$michgibtsgarnicht’; resultieren.

Im Sinne einer sicheren Programmierung sollte man das Ergebnis stets dar-
aufhin iiberpriifen, ob das erste Zeichen nicht ein $ ist. Einige wichtige
Environment-Variablen werden in normalen Systemen vom Hochlaufskript ein-
gerichtet und von der Shell aktualisiert, etwa

$WORKDIR Aktuelles Working Directory
$EXEDIR1 1. Exekution Directory
$EXEDIR2 2. Exekution Directory
$STDIN Standard Input

$STDOUT Standard Output

$STDERR Standard Error

$EDITOR Standard Texteditor

Geben Sie von der Shell kurz den Befehl ENVSET ein. Sie sehen dann, wie alle
Variablen Thres Arbeitsplatzes besetzt sind.

352 5.7 Einbaufunktionen

EXEC Bedienbefehl ausfithren

Bedienkommandos konnen iiber die Datenstation /XC (siche Seite 415) an das
Betriebssystem abgesetzt werden. Dabei erhilt das PEARL-Programm nur
eingeschrinkt eine Riickmeldung iiber Erfolg oder Miflerfolg der ausgefiihrten
Aktion. Mit der Prozedur EXEC konnen Kommandos an das Betriebssystem
weitergegeben werden, deren erfolgreiche Ausfithrung iiber ein Bit zuriickge-
meldet wird. Es kénnen alle Kommandos auf diese Art abgesetzt werden, auch
»PEARL-SHELLMODULE* oder transiente Kommandos, die erst geladen wer-
den miissen. Der Kommandostring hat den gleichen Aufbau wie eine Eingabe
an die Shell. Wurde das Kommando erfolgreich ausgefiihrt, so wird der Status
’0’B zuriickgemeldet, im Fehlerfall ist es eine ’1°B. Man beachte diese vom
sonstigen Shellkonzept abweichende Polaritét, die ihre Ursache in der Kompa-
tibilitat zur veralteten Routine CMD_EXW hat.

Die Kommandos werden nicht im ,, WAIT“-Mode ausgefiihrt. Eine Riickmel-
dung iiber die korrekte Operation eines Sohnprozesses ist nur moglich, wenn
ein expliziter WAIT-Befehl vorangestellt wird. Siehe Seite 223, Beschreibung des
WAIT-Befehles.

Die Prozedur muf} wie folgt spezifiziert werden:
SPC EXEC ENTRY (CHAR(255)) RETURNS(BIT(1)) GLOBAL;
Beispiel:

DCL kommando CHAR(80);
DCL status BIT(1);

kommando = ’WAIT; P LO NO’;
IF NOT EXEC(kommando) THEN
status = EXEC(’UNLOAD mistx*’);
status = status OR EXEC(’WAIT;LOAD’);
IF NOT status THEN
PUT ’fertig’ TO
FIN;
ELSE
status = EXEC(’WAIT;ED’);
FIN;

Wird EXEC aus einem PEARL-Shellmodul heraus aufgerufen, so wirken die
Befehle CD und CXD nur lokal und beeinflussen damit lediglich weitere Aufrufe
von EXEC.

5.7 Einbaufunktionen 353

Usernummer feststellen ’ GET_USER ‘

Mit GET_USER wird die Usernummer des aufrufenden Users zuriickgeliefert.
SPC GET_USER ENTRY RETURNS(FIXED) GLOBAL;
Beispiel:

DCL usernr FIXED;

usernr = GET_USER;

Wurde das Programm von der Schnittstelle A1 vom User 1 gestartet, so ergibt
der Aufruf von GET_USER eine 0, da die User intern ab 0 gezihlt werden. Erfolgte
der Start des Programms z. B. von Schnittstelle A3 / User 3, so liefert GET_USER
eine 2.

354 5.7 Einbaufunktionen

’ GET_TASKNAME Eigenen Tasknamen feststellen

Die Funktion GET_TASKNAME liefert den Namen der eigenen Task zuriick. Wenn
es sich um eine normale PEARL-Task handelt, ist der Name bekannt, die-
se Funktion also nicht nétig. Etwas anders ist die Situation bei PEARL-
Shellmodulen, hier wird eine Subtask generiert, bestehend aus dem Kommando
und einer 2 stelligen Hexzahl.

SPC GET_TASKNAME ENTRY RETURNS(CHAR(24)) GLOBAL;

Beispiel: Es gebe ein Shellmodul, in dem das Kommando , MORE* enthal-
ten ist. Die Prozedur, die das Kommado aufruft, soll ,,mp* heiflen.

mp : PROC ...
DCL taskname CHAR(24);

taskname = GET_TASKNAME; ! gibt ’MORE/xx’ mit xx
! zwischen 00 und FF

5.7 Einbaufunktionen 355

5.7.17 PEARL-Unterprogramme fiir Textstrings

In PEARL ist nur eine recht rudimentéire Stringbehandlung vorgesehen. Mit
den hier zur Verfiigung gestellten Stringprozeduren ist ein leistungsfahiges
Werkzeug fiir die Stringbearbeitung gegeben. Die hier vorgestellten PEARL-
Unterprogramme fiir Textstrings gehoren nicht zum RTOS—UH-Standard,
sind aber frei verfiighar und weit verbreitet. Testen Sie im zweifelsfall, ob diese
Unterprogramme nicht vielleicht doch im Lieferumfang Threr Implementierung
enthalten sind.

Alle Prozeduren bendétigen keinen eigenen ,PWSP* und arbeiten nur mit
den Registern und dem vom Aufrufer bereitgestellten Task- bzw. Procedure-
workspace. Dadurch sind sie sehr schnell und natiirlich dennoch reentrant.

Die Funktionen diirfen bei Verwendung des PEARL90-Compilers nicht spezi-
fiziert werden. Die folgenden Spezifikationen dienen daher nur zur Information
und zur Verwendung beim alten ,PEARL80“-Compiler.

SPC BEG ENTRY (CHAR(255) IDENT) RETURNS (FIXED(15)) GLOBAL;

SPC INSTR ENTRY (CHAR(255) IDENT, FIXED(15) IDENT,
FIXED(15) IDENT, CHAR(255) IDENT, FIXED(15) IDENT,
FIXED(15) IDENT)

RETURNS (FIXED(15)) GLOBAL;

SPC LEN ENTRY (CHAR(255) IDENT) RETURNS (FIXED(15)) GLOBAL;

SPC MID ENTRY (CHAR(255) IDENT,FIXED(15) IDENT,
FIXED(15) IDENT)
RETURNS (CHAR(255)) GLOBAL;

SPC KON ENTRY(CHAR(255) IDENT, FIXED(15) IDENT,
FIXED(15) IDENT, CHAR(255) IDENT, FIXED(15) IDENT,
FIXED(15) IDENT)

RETURNS (CHAR(255)) GLOBAL;

SPC INSER ENTRY(CHAR(255) IDENT, FIXED(15) IDENT,
FIXED(15) IDENT, CHAR(255) IDENT, FIXED(15) IDENT,
FIXED(15) IDENT)

RETURNS (CHAR(255)) GLOBAL;

Die iibergebenen Strings miissen nicht unbedingt eine Linge von 255 Zeichen
haben. Die Prozeduren erkennen an Hand der {ibergebenen Daten die tatséchli-

356 5.7 Einbaufunktionen

che Linge und verwenden diese als Maximalindex fiir einen Zugriff. Ein Uber-
schreiben der einem String benachbarten Variablen ist mit diesen Funktionen
nicht moglich. Die verwendeten Variablen seien wie folgt deklariert:

DCL (pos, anfl, endl, anf2, end2) FIXED;
DCL stringl CHAR(x1);
DCL string2 CHAR(x2);
DCL string3 CHAR(x3);
I mit x1, x2, x3 = [1 ... 255]

Diese Funktion ist nur noch aus Kompabilitatsgriinden im System enthalten
und fiir neue Programme nicht mehr zu verwenden.

BEG

Aufruf: pos=BEG(stringl);

pos wird die Position des ersten Zeichens innerhalb von stringl zugewiesen,
welches kein Blank ist. Falls stringl ein Leerstring ist, hat pos nach Aufruf
von BEG den Wert 0.

LEN

Aufruf: pos=LEN(stringl);

pos wird die Position des letzten Zeichens innerhalb von stringl zugewiesen,
welches kein Blank ist. Falls stringl ein Leerstring ist, hat pos nach Aufruf
von LEN den Wert 0.

5.7 Einbaufunktionen 357

Aufruf: pos=INSTR(stringl, anfl, endl, string2, anf2, end2);

INSTR dient zur Suche von Teilstrings innerhalb eines Strings.

Der zu suchende String steht in string2 ab anf2 bis end2. Der zu untersu-
chende String ist der Teilstring aus stringl, auf der Position anf1 beginnend
und der Position end1 endend. pos hat nach Aufruf von INSTR die Position des
ersten erfolgreichen Suchens. Ist der zu findende String nicht im zu untersu-
chenden enthalten, wird pos der Wert 0 zugewiesen.

’ Fehler \ Ergebnis ‘

end2-anf2 > endi-anfl | pos = -1, der Suchstring ist ldnger
als der zu analysierende

anfl < 1 stringl wird ab 1 untersucht

endl > x1 stringl wird bis x1 untersucht

endl < anfl pos = -1

anf2 < 1 string2 wird ab 1 verwendet

end2 > x2 string?2 wird bis x2 verwendet

end2 < anf2 pos = -1, es wurde ein ungiiltiger
Suchstring vorgegeben

MID

Aufruf: string2=MID(stringl,anfl,endl);

Die Prozedur MID kopiert einen Teilstring.
anfl und end1 sind Anfangs- und Endposition der zu kopierenden Zeichenkette
in stringl, der angesprochene Teilstring wird string2 zugewiesen.

’ Fehler \ Ergebnis ‘

anfl < 1 stringl wird ab Position 1 ausge-
schnitten

endl > x1 stringl wird bis x1 ausgeschnitten

endl < anfil string2 wird der Leerstring zugwie-
sen

endl-anfil+1 > x2 | Die ersten x2 Zeichen ab anf1 werden
aus stringl ausgeschnitten

358 5.7 Einbaufunktionen

KON

Aufruf: string3=KON(stringl,anfl,endl,string2,anf2,end?2);

Mit der Prozedur KON lassen sich zwei Teilstrings zu einem dritten zusam-
menfiigen.

stringl wird von anfl bis endl ausgeschnitten, der von anf2 bis end2 aus
string2 extrahierte String angefiigt und das Ergebnis string3 zugewiesen.
Umfaflt der Zielstring string3 mehr Zeichen als die beiden ausgewéhlten Teil-
strings aus stringl und string?2, wird string3 mit Leerzeichen aufgefiillt.

’ Fehler \ Ergebnis ‘
anfl < 1 stringl wird ab 1 ausgeschnitten
endl > x1 stringl wird bis x1 ausgeschnitten
endl < anfl nur der Teilstring aus string2 wird

verwendet
anf2 < 1 string2 wird ab 1 ausgeschnitten
end2 > x2 string2 wird bis x2 ausgeschnitten
end2 < anf?2 es wird nur der in stringl angespro-
chene Teilstring verwendet
endl-anfi+1l > x3 string3 ist der gewéhlte Teilstring

aus stringl, wobei von stringl ab
anf1l die ersten x3 Zeichen verwendet
werden

end2-anf2+endl-anf1+2 > x3 | ist der Teilstring aus stringl nicht
zu lang, wird dieser korrekt ausge-
schnitten und anschlieBend der Teil-
string aus string2 solange extra-
hiert, bis string3 aufgefiillt ist

5.7 Einbaufunktionen 359

Aufruf: string3=INSER(stringl,anfl,endl,string2,anf2,end2);

Diese Prozedur fiigt einen Ausschnitt von string?2 in stringl ein und weist
den neu gebildeten String der Variable string3 zu.

Der einzufiigende Teilstring aus string2 wird hierbei durch die Positionen des
ersten (anf2) und letzten Zeichens (end2) beschrieben und nach dem anf1.ten
Zeichen in stringl eingesetzt. Nach der eingeschobenen Passage wird string3
mit den ab endl noch verbleibenden Zeichen von stringl fortgesetzt. Ist die
Lénge von string3 grofler als die der selektierten Teilstrings aus stringl und
string2, wird der Zielstring mit Leerzeichen aufgefiillt. Sollte string3 weniger
Zeichen als die zusammengefiigten Teilstrings umfassen, bricht der Zielstring
nach der der Position x3 ab.

Wenn sich aus den Marken anfl und endl in stringl ein iiberschneidener
Bereich ergibt, werden die hierin enthaltenen Zeichen sowohl vor als auch nach
dem Einschub von string2 im Zielstring beriicksichtigt. Hierzu ein Beispiel:

DCL STR1 CHAR(7) INIT(’ABCDEFG’);
DCL STR2 CHAR(7) INIT(’0123456°);
DCL STR3 CHAR(30);

STR3=INSER(STR1,3,6,STR2,3,4); /* STR3 ist ’ABC23FG’ x/
STR3=INSER(SRT1,6,3,STR2,3,4); /* STR3 ist ’ABCDEF23CDEFG’ */

’ Fehler \ Ergebnis ‘
anfl < 1 string3 beginnt mit der einzufiigen-
den Passage aus string2
anfl > x1 stringl wird bis zum x1-ten Zeichen
angesprochen
endl > x1 stringl wird bis x1 beriicksichtigt
anf2 < 1 string?2 ist an Position 1 markiert

anf2 > end2 | ungiiltiger Teilstring angegeben, kein
Einschub aus string2 in string3
end2 > x2 der einzufiigende String aus string2
endet bei x2

CMPW

Aufruf: test=CMPW(stringl, anfl, endl, string2, anf2, end2);

CMPW dient zum Vergleich zweier Strings. Der erste String steht in stringl
ab anf1 bis endl. Der zweite String steht in string2, auf der Position anf2

360 5.7 Einbaufunktionen

beginnend und der Position end2 endend.

In jedem String sind die Wildcards ,** (ASCII-Wert $1E im Gegensatz zun
dem sonst iiblichen Wert $2A fiir den Stern) und ,,7¢ (ASCII-Wert $1F im
Gegensatz zu dem sonst iiblichen Wert $3F fiir das Fragezeichen) zugelassen.
Die Bourne-Shell iibergibt automatisch die ASCII-Werte der Wildcards, falls
diese nicht von Apostrophs (,,’*) oder Génsefiifichen (,,““) umrahmt sind.

Die Wildcard ,,7* steht fiir genau ein beliebiges Zeichen an der Stelle des Auf-
tretens der Wildcard. Die Wildcard ,,*x“ dagegen 148t sich wesentlich flexibler
gebrauchen: Sie steht in dem jeweiligen String fiir eine beliebige Zeichenkette
beliebiger Liange an der entsprechenden Stelle. Die Linge kann sogar 0 sein; in
diesem wire es egal, ob der ,,x“ an dieser Stelle stiinde oder nicht.

Sind beide Strings identisch, so wird test der Wert 0 zugewiesen; wenn sie
ungleich sind, der Wert 1.

’ Fehler \ Ergebnis ‘

anfl < 1 stringl wird ab 1 untersucht

endl > x1 stringl wird bis x1 untersucht

anf2 < 1 string2 wird ab 1 untersucht

end2 > x2 string2 wird bis x2 untersucht

endl < anfl | stringl wird wie ein Leerstring be-
handelt

end2 < anf2 | string2 wird wie ein Leerstring be-
handelt

5.7 Einbaufunktionen 361

5.7.18 PEARL-Unterprogramme fiir Datenstationen

Device-Mnemo erzeugen ’ DEVMNEMO ‘

DEVMNEMO liefert den zu LDN und DRIVE gehorigen Mnemo.

SPC DEVMNEMO ENTRY (/* LDN */ FIXED, /% DRIVE */ FIXED)
RETURNS (CHAR(24)) GLOBAL;

LDN enthilt eine logische Device-Nummer.

DRIVE enthilt die Untergliederungsnummer des Devices.

Sind LDN oder DRIVE dem System nicht bekannt, so gibt DEVMNEMO den
allgemeine Form /LD/z.y zuriick, wobei ,,x“ der Inhalt von LDN und ,,y“ der
Inhalt von DRV ist. Sind LDN oder DRV > 255, wird ein Leerstring zuriickgegeben.

Beispiele:

DCL DEVICE CHAR(24);

DEVICE = DEVMNEMO(1,0); ! DEVICE= ’/ED’
DEVICE = DEVMNEMO(100,129); ! DEVICE= ’/LD/100.129’ (falls
! nicht doch ein Mnemo im System)
DEVICE = DEVMNEMO(10,0); ! DEVICE= ’/PP’
DEVICE = DEVMNEMO(257,1); ! DEVICE= ’

362 5.7 Einbaufunktionen

’ GET_DEVICE ‘ Device-Mnemo erzeugen

GET_DEVICE liefert zu einer LDN und DRIVE den passenden Mnemonic zuriick.

SPC GET_DEVICE ENTRY (/* LDN */ FIXED IDENT,
/* DRIVE */ FIXED
) RETURNS(CHAR(24)) GLOBAL;

LDN muf} eine logische Device-Nummer enthalten.
DRIVE muf} die Untergliederungsnummer des Devices enthalten.

Sind LDN oder DRIVE dem System nicht bekannt, so wird ein Leerstring zuriick
geliefert und LDN ist auf -1 gesetzt.

Beispiele:

DCL (1dn,drv) FIXED;
DCL device CHAR(24);

1ldn = O; ! Schnittstelle USER 1

drv = 2; ! B-Betriebsart

device = GET_DEVICE(ldn,drv); ! device= ’/B1/’
1ldn = 10; ! Druckerschnittstelle

drv = 0; ! keine Untergliederung

device = GET_DEVICE(ldn,drv); ! device= ’/PP/’
1dn = 55; ! unbekannte LDN

drv = 2; !

device = GET_DEVICE(1ldn,drv); ! device= ’ ’,ldn=-1

5.7 Einbaufunktionen 363

Work- und Exe-Directory lesen | GET_WORK/EXEC-DIR

Nicht fiir Neuentwicklung. Ersatz durch ENVGET!

Die folgenden Funktionen gestatten das Einlesen des Working- oder Execution-
Directorys.

SPC GET_WORKDIR ENTRY RETURNS(CHAR(128)) GLOBAL;
SPC GET_EXECDIR ENRTY RETURNS(CHAR(128)) GLOBAL;

Es wird der komplette String inklusive Devicebezeichner und Pathlist zuriick-
gegeben.

Beispiel: Es sei CD = /HO/user eingestellt und CXD = /H1/cmd

DCL (wdir,edir) CHAR(128);

wdir = GET_WORKDIR; /* wdir
edir = GET_EXECDIR; /* edir

’/HO/user’ */
’/H1/cmd’ */

Soll das Directory nicht als kompletter String eingelesen werden, sondern nach
LDN, DRIVE und Pathlist getrennt, so stehen die folgenden Funktionen zur
Verfiigung:

SPC GET_WORKPATH ENTRY (/* LDN %/ FIXED IDENT,
/* DRIVE %/ FIXED IDENT
) RETURNS(CHAR(128)) GLOBAL;

SPC GET_EXECPATH ENTRY (/* LDN *x/ FIXED IDENT,
/* DRIVE %/ FIXED IDENT
) RETURNS(CHAR(128)) GLOBAL;

Beispiel: Es sei CD = /ED/user eingestellt und CXD = /FO/cmd

DCL (wdir,edir) CHAR(128);
DCL (wldn,eldn,wdrv,edrv) FIXED;

wdir = GET_WORKPATH(wldn,wdrv);

/* wdir = ’user’ , wldn = 1, wdrv = 0 %/
edir = GET_EXECPATH(eldn,edrv);
/* edir = ’cmd’ , eldn = 3, edrv = 0 */

364

5.7 Einbaufunktionen

IDF_DATION |

Parameter einer Datenstation

Mit der Prozedur IDF_DATION ist es moglich, alle Parameter einer Datenstati-
on zu erhalten oder zu manipulieren. Es mufl aber sichergestellt werden, dafl
nur konsistente Datenséitze verwendet werden, da es sonst zu unkontrollierten
Systemabstiirzen kommen kann!

SPC IDF_DATION ENTRY (/* dation */ DATION ALPHIC IDENT,

dation

name

AT

TFU
LDN

DRIVE

/* name */ CHAR(128) IDENT,
/% AL */ BIT(16) IDENT,
/* TFU */ FIXED(15) IDENT,
/* LDN */ FIXED(15) IDENT,
/* DRIVE */ FIXED(15) IDENT
) GLOBAL;

bezeichnet die Datenstation, auf deren Parametersatz zugegriffen
werden soll. Gegeniiber PEARLS0 fehlt hier das Attribut INOUT,
da der PEARL90-Compiler hier bei reinen Lese- bzw. Schreibsta-
tionen sonst einen Parameterfehler anzeigt.

gibt Pathlist+Dateinamen ohne Device an (kann auch mit OPEN
BY IDF ... gedndert werden). Beim Lesen wird bis ,maxpath
mit Blanks aufgefiillt.

enthélt die Bits des AI-Parameters aus dem SYSTEM-Teil.

gibt die Transferlinge an.

liefert die logische-Device-Nummer (Nummer der Warteschlange).
Wird fiir LDN eine negative Zahl eingesetzt, werden die Parameter
der Dation ausgelesen und kénnen zu einem spéteren Zeitpunkt
zuriick geschrieben werden.

enthélt die Untereinheit der Datenstation.

Die Prozedur IDF_DATION setzt den ST-Parameter, so daf eine Uberpriifung der
Operation erfolgen kann:

ST
ST
ST

0
2
15

kein Fehler aufgetreten
Es wurde keine giiltige Dation gefunden.
Die Pathlist incl. Dateinamen ist zu lang.

5.7 Einbaufunktionen 365

Fortsetzung IDF_DATION ‘

Beispiel:

DCL name CHAR(128);
DCL AI BIT(16);
DCL (tfu_alt,tfu,ldn,drv) FIXED;

ldn = -1; ! Datenstationsparameter lesen
CALL IDF_DATION(term,name,AI,tfu,ldn,drv);

! Die Parameter der Dation term sind ausgelesen
tfu_alt = tfu;
tfu = 1; ! nur noch Einzelzeichen lesen
CALL IDF_DATION(term,name,AI,tfu,ldn,drv);

! ab jetzt werden Einzelzeichen ueber term gelesen

CALL IDF_DATION(term,name,AI,tfu_alt,ldn,drv);
! alte Transferlaenge wiederherstellen

Die Routine ist besonders hilfreich, wenn man sich mit DCL eine Station zur
Laufzeit in einer Task oder Prozedur erzeugt hat und nun spezielle Parameter
einstellen will oder von einer anderen Station tibernehmen will.

366 5.7 Einbaufunktionen

’ SET_DATION ‘ Datenstation neu setzen

Nicht fiir Neuentwicklung!

SET_DATION analysiert einen Textstring und macht daraus einen Parametersatz
fiir eine Datenstation. Damit kann nicht nur der Dateiname, sondern auch die
LDN und das DRIVE einer Dation gedndert werden. Ist in dem Textstring kein
Gerétename vorhanden, wird das eingestellte Working Directory berticksichtigt.

Auch diese Funktion ist in der PEARL90-Welt inzwischen iiberholt, da man
sich mit der Funktion ENVGET (siehe Seite 351) das Working Directory holen
und mit OPEN BY IDF einarbeiten kann.

SPC SET_DATION ENTRY(/* dation */ DATION INOUT ALPHIC,
/* string */ CHAR(128)
) GLOBAL;

Die Prozedur SET_DATION setzt den ST-Parameter, so daf eine Uberpriifung der
Operation erfolgen kann:

ST =0 kein Fehler aufgetreten
ST = 2 Es wurde keine giiltige Dation gefunden.
ST = 15 Die Pathlist incl. Dateinamen ist zu lang.

Beispiel: Es sei ein Working-Directory = /HO/user eingestellt.
DCL string CHAR(128);
string = ’1lib/myfile’;
CALL SET_DATION(dat,string);

OPEN dat; /* jetzt kann auf /HO/user/lib/myfile */
/* zugegriffen werden. x/

5.7 Einbaufunktionen 367

368 5.8 Aufruf von C-kodierten Unterprogrammen

5.8 Aufruf von C-kodierten Unterprogrammen

In der PEARL-Welt werden mit dem GNU-C Compiler iibersetzte C-
Unterprogramme nicht anders aufgerufen als PEARL-Unterprogramme, die
mit dem PEARL-Compiler iibersetzt wurden — es gibt allerdings massive Ein-
schrankungen bei den transferierbaren Parametern. Die aufzurufende Prozedur
wird auflerdem anders spezifiziert, wobei zwangsldufig das Attribut ,,GLOBAL“
erforderlich ist.

Dariiberhinaus kénnen auch andere globale Objekte zwischen dem C-Modul
und dem PEARL-Modul ausgetauscht werden, z. B. FIXED—Variablen. Dazu
sind Werkzeuge von anderen Anbietern zu verwenden, die die Objektcode-
Dateien aus der C-Welt in S-Rekords der RTOS—UH- Welt umsetzen, z. B.
etwa OBJ2SR von esd.

Ein Aufruf von PEARL-Unterprogrammen aus der C-Welt ist dagegen nicht
moglich, weil die C-Compiler nicht das besondere Umfeld (Index-Test, Parame-
tertest zur Laufzeit, kein Stack etc.) fiir PEARL-Unterprogramme bereitstellen.

Bei der Spezifikation wird statt der Schliisselworte PROC, PROCEDURE oder
ENTRY ein um das Anhéngsel _C erweitertes Schliisselwort, also PROC_C,
PROCEDURE_C oder ENTRY_C verwendet. Der PEARL-Compiler generiert nun
das fiir diese C-Programme erforderliche (wegen des Stacks wie bei allen C-
Programmen sehr unsichere!) Umfeld zum Aufruf der C-Prozedur bei jedem

Aufruf.
Beispiel:
MODULE ... ; SYSTEM; ... ;
PROBLEM;
SPC Hilf ENTRY_C(FIXED(31) IDENT) RETURNS(FLOAT) GLOBAL;
task1:TASK;
x=Hilf (i);
END;
MODEND;

Das C-programm Hilf wird iibersetzt, in S-Records umgesetzt und kann da-
nach normal mit dem Linker eingebunden werden oder durch den Lader hin-
zugenommen werden. Ein Ladebefehl konnte hier etwa

LOAD /ED/SR+/ED/Hilfe

lauten, wenn im File /ED/Hilfe das in S-Records iibersetzte C-programm ab-
gelegt wurde.

5.8 Aufruf von C-kodierten Unterprogrammen 369

Warnung!

Vergewissern Sie sich, dafl das C-Programm mit geniigend Stack-
Speicher ausgestattet wird! Es ist — wie leider in der C-Welt
iiblich — keine Instanz da, die eine Stackiiberschreitung verhin-
dern kann. Man kann lediglich mit Hilfe eines entsprechend iiber-
dimensionierten Prozedurarbeitsspeichers der ausfithrenden Task
(/*+R-Kommentar, siche Seite 303) die Wahrscheinlichkeit fiir
einen Stackiiberlauf beliebig verringern. Eine weitere Unsicher-
heit: es ist keine Uberpriifung der Parameter zur Laufzeit moglich!
Stimmt die Spezifikation nicht mit der Definition in C iiberein, so
sind schwer erkennbare Fehlfunktionen denkbar.

Die Parameteriibergabe sollte sich auf die Typen FLOAT(23),FLOAT(55),
FIXED(31), deren Zeiger (IDENT) oder Zeiger auf Strukturen beschrénken. Bei
Strukturen ist auf ggf. unterschiedliche Padding-Modes zu achten. Padding wird
z.B. benutzt, wenn nach einer Komponente vom Typ CHAR(1) eine Komponen-
te vom Typ FLOAT(55) folgt. Je nach System werden dabei 1 oder 3 Bytes als
Fiillung eingefiigt. Eine gewisse Anpassung des PEARL-Compilers ist moglich,
siehe Seite 294.

370 5.9 Aufruf von Assembler—Unterprogrammen

5.9 Aufruf von Assembler—Unterprogrammen

In der PEARL-Welt werden Assembler-Unterprogramme nicht anders behan-
delt als solche, die mit dem PEARL—-Compiler in anderen Modulen iibersetzt
wurden. Das Objekt ist korrekt zu spezifizieren, wobei der Zusatz ,,GLOBAL“
erforderlich ist.

Dariiberhinaus kénnen auch globale Objekte im Nicht-PEARL-Modul, z. B.
FIXED—Variablen im Assemblerprogrammodul, durch das Linking des Laders
aus der PEARL-Welt adressiert werden.

Versuchen Sie stets, die Einbeziehung von Assemblerunterprogrammen auf Aus-
nahmefille zu beschrénken. In jedem Fall sollten Sie nur transferassemblierba-
ren Maschinenkode benutzen, damit eine Hardwareabhéngigkeit weitgehend
vermieden wird. Assemblerprogramme konnen in unserem System ja bekannt-
lich ohne Emulation sowohl auf dem 68k als auch auf dem PowerPC laufen.

Hinsichtlich der korrekten Codierung des Assemblerprogrammes wird auf das
Kapitel iiber den Assembler und Transferassembler verwiesen.

Beispiel:

MODULE ... ; SYSTEM; ... ;

PROBLEM;
SPC Hilf ENTRY(FIXED IDENT) RETURNS(FLOAT) GLOBAL;
taskl:TASK;
x=Hilf (i) ;
END;

MODEND;

Das Assemblerprogramm Hilf kann mit dem Linker eingebunden werden oder
durch den Lader hinzugenommen werden. Ein Ladebefehl kénnte hier etwa

LOAD /ED/SR+/ED/Hilfe

lauten, wenn im File /ED/Hilfe das {ibersetzte Assemblerprogramm abgelegt
wurde.

5.9 Aufruf von Assembler—Unterprogrammen 371

Warnung!

Vergewissern Sie sich, dafl das Assemblerprogramm wiederein-
trittsfest ist! Im Gegensatz zu den Unterprogrammen, die der
Compiler generiert, sind Assemblerprogramme keineswegs auto-
matisch fiir eine Multitaskingumgebung geeignet.

Wenn allerdings gesichert ist, dafl nur eine Task das Unterprogramm be-
nutzt, brauchen Sie sich theoretisch nicht um dessen Wiedereintrittsfestigkeit
zu kiimmern. Dennoch sei davon abgeraten: es zeigt sich immer wieder, dafl oft
uralte Unterprogramme wiederverwendet werden und man dabei leicht deren
Wiedereintrittsrestriktionen tibersieht. Die in diesem Handbuch beschriebenen
systemeigenen Assemblerunterprogramme sind wiedereintrittsfest — es sei denn,
dafl ausdriicklich etwas anderes angegeben wird.

372 5.10 Ausnahmebehandlung und Signale

5.10 Ausnahmebehandlung und Signale
5.10.1 Vorginge im Systemkern

Zunichst soll die betriebssystemseitige Bearbeitung von Ausnahmesituationen
betrachtet werden. Dabei wird von einem normalen System mit dem Standard
Error-Ddmon #ERRDM ausgegangen. Es sind 3 unterschiedliche Ausnahmesitua-
tionen zu unterscheiden:

1 Hardwareinduzierte Ausnahmen: Die Rechnerhardware wurde mit einer
nicht korrekt losbaren Aufgabe betraut. Klassisches Beispiel: Es soll von
einer nicht existenten Speicherzelle gelesen werden oder der gelesene Ma-
schinenbefehl ist illegal kodiert. Aus der Sicht der gerade laufenden Soft-
ware kommt das Ereignis unvorbereitet, wenngleich es an einen Maschi-
nenbefehl gekoppelt ist - im Gegensatz zu von der Auflenwelt getriebenen
Interrupts. Der Prozessor wird bei dieser Ausnahmesituation wie bei ei-
nem Interrupt der héchsten Prioritdt nun zu einem speziellen Stiick Code
(im Supervisormode) gefiihrt, welches den individuellen Errorcode erstellt
und darin vorgibt, ob der verursachende Prozess anzuhalten ist. Der Ver-
ursacher kann hier sowohl eine Task als auch ein Supervisorprozess (kernel
mode) sein. Supervisorprozesse diirfen aber keinesfalls angehalten werden
sondern miissen zu einem funktionserhaltenden Ende gefiihrt werden.

2 Softwareinduzierte Ausnahmen: Der Rechner funktioniert hardwareseitig
korrekt, aber es ist eine (typischerweise datenabhéngige) Fehlersituation
aufgetreten. Klassisches Beispiel: die Software soll die Wurzel aus einer
negativen Zahl bestimmen. Die Ausnahmesituation wird von der Soft-
ware durch einen Betriebssystemaufruf (ERROR-Trap) eingeleitet. Durch
die Kodierung des dem System mitgegebenen Error-Codes wird ein in-
formeller Text erstellt. Auch hier wird dem System damit mitgeteilt, ob
der laufende Prozess angehalten werden muss: Wahrend man die Wurzel
aus einer negativen Zahl ersatzweise mit Null beantworten kann (und die
Task weiterlaufen kann), ist es nicht moglich, einer Prozedur iibergebe-
ne (falsche) Zeiger (wrong parameterlist) zu reparieren. Im letzteren Fall
muss die Task angehalten werden und sollte nicht entblockiert sondern
beendet werden — eventuell durch einen Bedienerprozess oder manuell.
Der Fehler kann stets einer Task angelastet werden.

5.10 Ausnahmebehandlung und Signale 373

3 Mischformen: Es gibt in fast allen Prozessoren Maschinenbefehle, die
abhéngig vom inspizierten Datum eine Ausnahmesituation auslésen oder
auch nicht. Klassisches Beispiel: Der Indextester des PEARL-Compilers
tiberpriift im Test-Mode mithilfe des CHECK-Traps ob der errechnete li-
neare Feldindex eine Zelle innerhalb des Feldes adressiert. Liegt das Ele-
ment auBerhalb, feuert der Maschinenbefehl eine Ausnahme. (Neben-
bei: Beim PEARL-Indextester repariert das Ausnahmebehandlungspro-
gramm den Fehler und addressiert das erste Element des Feldes - Fort-
setzung moglich!). Der Fehler kann typischerweise immer einer Task an-
gelastet werden, wird daher wie eine softwaregetriggerte Ausnahme be-
handelt.

Im Nukleus ist fiir alle drei Ausnahmesituationen eine Behandlungsroutine inte-
griert. Diese kann man — fiir alle Fille, in denen der Fehler einer Task zugeord-
net werden kann — so parametrieren, dass die verursachende Task gezwungen
wird, selbst auf den Fehler zu reagieren. Dabei kann das zentrale Fehlermel-
desystem (#ERRDM = Error-Démon) ausgeschaltet werden. So arbeitet z.B. die
Shell mit einem eigenen Handler und verwendet das Fehlermeldesystem nicht.

Das Involvieren des Error-Démonen erfolgt iiber einen Ringpuffer, der in der
Shell des verantwortlichen Users angelegt ist. Bei den Ausnahmesituationen,
die nicht einer Task zugeordnet werden kénnen, erfolgt die Fehlermeldung auf
der Konsole — der Anschlusss eines eigenen Exception-Handlers ist fiir diese
Situation nicht méglich und auch nicht sinnvoll. Aber: alle Interruptprozesse
bringen zwangsweise (iiber den Malfunction-Exit) einen eigenen Handler mit.
Dies ist eine markante Eigenschaft von RTOS—UH, die die Uberlebenswahr-
scheinlichkeit erhoht.

Im folgenden Flussbild wird der Ablauf mit einer Ausnahme vom Typ 1 (Hard-
warefehler) begonnen. Die Félle 1,2 und 3 treffen sich an einem Sammelpunkt
— immer dann, wenn eine Task als Verursacher feststeht.

374

5.10 Ausnahmebehandlung und Signale

Einstieg Fall 1
Interrupts off.
Teste IID (IR-Identifier)
Fehler im Interruptprozess?

\
nein
\

Teste:
Fehler im Intertask-State?

\
nein
!

Wurde Supervisordienst fiir eine
Task unterbrochen?

\
nein
!

—ja—>

—ja—>

—ja—>

Bestimme Malfunction address.

Informiere Error-Démon, damit
Text iiber Konsole ausgegeben
wird. Exit iiber Malfunction.

Entferne ggf. DSP-Monitortool.
Informiere Error-Damon: Text
auf Konsole. Exit.

Beende den Dienst, reinige den
Systemstack.

—> Auch Einstieg Fille 2,3: Ausnahme ist an eine Task gebunden.

Ist ein validierbarer
Signal-Frame im Taskkopf
angeschlossen?

nein

Wenn ein schwerer Fehler
vorliegt: Suspendiere die
verursachende Task. Involviere
den Error-Damon. Exit.

—ja—>

Fiille den Signalframe mit dem

Errorcode und weiteren Daten.

Ersetze den Riickkehr-PC durch

die Adresse des
Exception-Handlers. Falls im
Signalframe angefordert:
Zusétzlich Error-Damon
involvieren. Exit {iber den
Exception-Handler.

5.10 Ausnahmebehandlung und Signale 375

5.10.2 Exception-Hindler in PEARL

Die Signalbehandlung ist iiber den Anschluss sogenannter ON-Blocke moglich.
Bei der Definition des Bearbeitungsmodes kann auf Wunsch der normale Error-
Déamon neben dem eigenen Handler seine Meldung machen, allerdings wird die
Task dann in keinem Fall mehr suspendiert.

Neben dem Bearbeitungsmode muss eine Variable (die RST-Struktur) angege-
ben werden, in die das Betriebssystem im Fehlerfall Daten einschreiben kann.
Dazu gehort die letzte iiberlaufene Zeilennummer, die letzte registrierte Modul-
nummer, der Errorcode, der Program Counter und ggf. der Induceparameter.

Es gibt zwei Stufen der Auslosung, die angewihlt werden kénnen.

e Nur schwere Fehler:

Der PEARL-Code im ON-Block wird nur angesprungen, wenn es sich
um eine Ausnahme mit gesetztem Suspend-Bit handelt. In diesem Fall
kann die Task nicht an der Fehlerstelle fortgesetzt werden. Es ist aber
moglich, per EXIT-Anweisung auf den Task-Grundlevel zuriickzukehren
oder Prozeduren abzubrechen. Uber die Shell per INDUCE-Befehl gefeu-
erte Ausnahmen werden wie schwere Fehler behandelt, wenn der Indu-
ceparameter negativ ist. Auch wenn der Exception Handler bei einem
leichten Fehler nicht angesprungen wird, so gibt es dennoch alle iiblichen
Eintrége in die RST-Struktur. Nach Aufruf einer Prozedur kann man also
abfragen, ob in ihr Fehler aufgetreten sind — auch wenn diese nicht zum
Abbruch gefithrt haben.

e Alle Fehler:
Jede Auslosung wird wie ein schwerer Fehler behandelt.

Sinnvollerweise wird die RST-Struktur als statisch alloziertes Objekt definiert.
Damit kann sie am einfachsten auch von Prozeduren aus erreicht werden.

376 5.10 Ausnahmebehandlung und Signale

#DEFINE X_ERRDM 1; ! Invoke #ERRDM
#DEFINE X_SEO 2; ! Invoke Exception handler Severe Errors Only
#DEFINE X_ALL 4; ! Catch all errors

MODULE EXCDEMO; ! A simple demo prog

SYSTEM; A1l;

PROBLEM;

SPC A1 DATION OUT ALPHIC;

DCL RS STRUCT(/Lino FIXED,
Mono FIXED,
Ecount FIXED,
Errcode BIT(16),
PC BIT(32),
Indpar FIXED,
Buffer (100) FIXED

Last registered line number
Last registered module number
Exception counter (all)
16-Bit error code

Program counter to exception
Induce parameter

Reserve for later extensions

/);
/* +P %/
TA:TASK;
DCL I FIXED;
ON E_(X_ALL+X_ERRDM) RST(RS); ! Catch all, invoke #ERRDM too

! Task will go here if exception handler is executed
PUT ’Exception fired at PC:’, RS.PC TO Al BY SKIP,A,B4(8);
SUSPEND;
! Do whatever may be necessary
EXIT -1; ! Step one procedure level down if not on task level
END;

!'.... Task may be here for the first time or after exception
IF RS.Ecount > O THEN
PUT ’Restarted’, RS.Ecount TO A1 BY SKIP,A,F(4);
ELSE
PUT ’Initial Start’ TO A1 BY SKIP,A;
FIN;
I=2//0; ! Diese Barriere wird nicht ueberwunden

END; ! TASK

MODEND ;

5.11 Fehlermeldungen zur Compile—Zeit 377

5.11 Fehlermeldungen zur Compile—Zeit

Obwohl die Meldungen durchweg selbsterkléirend sind, soll im Folgenden spezi-
ell dem Systemneuling eine Hilfestellung gegeben werden. Es werden die Mel-
dungen des PEARL90-Compilers mit der Version P15.4-A beschrieben. Die
dlteren Compiler erzeugen édhnliche Meldungen. Diese Beschreibung kann auch
fiir sie benutzt werden.

Zu unterscheiden sind ,lokal detektierbare® Fehler und ,bilanz—detektierbare®
Fehler.

5.11.1 Lokal detektierbare Fehler

Der Compiler bettet in das Ubersetzungsprotokoll einen Fehlerprompt * in ei-
ner nach der falschen Zeile stehenden Zusatzzeile ein, diese Zeile enthélt am
linken Rand die Kennzeichnung <ERROR>, um ein Auffinden im Listing zu er-
leichtern. Der Prompt steht in der unmittelbaren Néhe der Stelle, an der die
Abweichung endgiiltig — auch unter Ausnutzung moglicher anderer Interpre-
tationen — festgestellt werden kann. Auch bei abgeschaltetem Ubersetzerpro-
tokoll erscheint die fehlerbehaftete Zeile zusammen mit der Zusatzinformation.

In der Regel gilt eine fehlerhafte Anweisung als insgesamt nicht vorhanden.
Dadurch kénnen Folgefehler entstehen. Mit der Vereinbarung von MAXERR kann
man einen frithen Abbruch der Kompilation erzwingen.

/Syntax violation/ Es wurde keine PEARL-Produktionsregel gefunden.
Das kann z. B. durch ein falsches Zeichen, etwa in einer Kon-
stanten 3.14.2, oder falsch geschriebenes PEARL Schliisselwort
(TUSK statt TASK etc.) verursacht werden. Dabei gelten gewisse
Schliisselworte nur in der richtigen Blockumgebung als bekannt,
z. B. wird bei der Sequenz MODULE; PUT zyz TO ... das PUT
nicht akzeptiert, weil es nur auf Task/Prozedur-Ebene benutzt
werden kann.

/Data- or object-types do not match/ Bei der Verkniipfung von Da-
ten oder Zeigern wurden Objekte, die nicht verkniipfbar sind,
benutzt. Zum Beispiel wurde der DURATION-Variablen x der
Wert der FLOAT-Variablen z durch x=z; zugewiesen. Meist
steht der Fehlerprompt hier am rechten Ende der Anweisung,
weil der Compiler erst bei der Zuweisung die Zuléssigkeit nach
Auswertung der rechten Seite feststellen kann.

Es ist auch moglich, daf eine Zeigervariable oder ein adresslie-
ferndes Objekt erwartet wird und vom Compiler nun nicht vor-
gefunden wird, z. B. bei der Operation CONT, IS etc.

378 5.11 Fehlermeldungen zur Compile—Zeit

/Undefined/ Die Variable bzw. der Prozedurname etc. wurden dem Compiler
nicht durch DECLARE oder SPECIFY bekannt gemacht.

/Double-defined/ Der Identifier ist bereits im Gebrauch und kann nicht neu
verwendet werden.

/Limit/ Der Wert einer Konstanten liegt auflerhalb der zuléissigen Grenzen,
z. B. X = 45196 (15) etc.

/Number of subscripts incorrect/ Beim Zugriff auf ein Feld stimmt die
Anzahl der Indizes nicht mit denen der Felddefinition bzw. -
Spezifikation iiberein, z. B. DCL. A(2,3) FIXED; A(I,J,K) = 5.

/Dation use or direction incorrect/ Die Datenstation ist per Definiti-
on/Spezifikation oder auf Grund von Kenntnissen des Compilers
nicht in der Lage, wie im Text beabsichtigt zu funktionieren.
Beisp: SPC xyz DATION OUT ...; ...; GET ... FROM xyz.

/Excessive INIT-data/ Es wurden im INIT mehr Objekte gefunden als in der
zugehorigen Deklarationsliste. Der Compiler kann die {iberz#hli-
gen Elemente nicht zuordnen, sie werden ignoriert.

/You cannot modify invariant objects!/ Einem Objekt mit INV-Attribut
soll zur Laufzeit ein Wert zugewiesen werden. Das kann auch
durch Einsetzen als Prozedurparameter entstehen, wenn im
IDENT-Mode transferiert wird. Der Compiler weiff dann natiirlich
nicht, ob die Prozedur das Objekt im konkreten Fall wirklich
verdndert. Immerhin koénnte sie es tun.

/Blockstructure/ Block-Struktur verletzt, z. B. IF ... THEN ... END;
oder BEGIN; FIN;. Tritt haufig als Folgefehler auf.

/INIT-list too short/ Es soll eine benamte Konstante mit DCL definiert
werden, jedoch fehlt in der INIT-Liste ein zugehoriger Wert.

/Parameter(list) incorrect/ Eine Prozedur kann mit der angegebenen Pa-
rameterliste nicht aufgerufen werden. Oft steht der Marker am
rechten Ende der Anweisung und zeigt nicht auf den verursa-
chenden Parameter, weil der Fehler erst in einer spéten Phase
beim Feinabgleich von Aktual- und Formalparametern (Struk-
turinnenleben etc.) erkannt wurde.

/Parameterlist: mismatch with earlier SPECIFY / Eine Prozedur wurde
mit SPC vorab bekannt gemacht. Bei der jetzt erfolgenden Proze-
durdefinition stimmen Parameterliste oder Ergebnistyp nicht mit
der Vorabspezifikation iiberein. Der Fehler tritt bei der Ubertra-

5.11 Fehlermeldungen zur Compile—Zeit 379

gung von PEARLS0-Programmen héufig auf, weil der alte Com-
piler die Vorabspezifikation nicht wirklich benutzte.

/Missing parameterlist/ Die Benutzung der Prozedur oder des Operators
erfordert an dieser Stelle eine Parameterliste, z.B. muf} ein Zei-
ger auf eine Prozedur dereferenziert werden, es fehlt jedoch die
Parameterliste.

/You must write ’ACTIVATE..”!/ Ein Taskname oder ein Zeiger auf ei-
ne Task wurde als Instruktion hingeschrieben, wie es zwar bei
Prozeduren, nicht aber bei Tasks erlaubt ist.

/Size of object undefined for compiler/ Der Compiler benétigt fiir die
Operation die Anzahl Bytes, die fiir das Objekt erforderlich ist,
hat diese Information hier aber nicht verfiighar. Wird z.B. ein
virtuelles Feld in einem DCL .. benutzt oder die Totalzuweisung
eines solchen Feldes versucht, so erscheint diese Fehlermeldung.

/Cannot store result/ Es wurde eine Funktion aufgerufen, die einen Wert
oder einen Zeiger zuriickgibt. Durch die Art des Aufrufes kann
jedoch kein Ergebnis abgespeichert werden.

/Too many large parameters by value/ In der Praxis nie zu sehen, aber
prinzipiell moéglich. Beim Aufruf einer Prozedur oder Funktion
wurden zu viele platzverbrauchende Parameter mit knapp we-
niger als 256 Byte Grofle per value iibergeben, sodafl der dafiir
vorgesehene ,, Parameterspace* von ca. 16 kByte nicht ausreicht.
Tritt auf, wenn z.B. mehr als 63 Parameter vom Typ CHAR (255)
per value iibergeben werden. Sollte das tatséchlich einmal ein
Problem sein, so sollten Sie zunéchst versuchen, diese giganti-
sche Parameterliste zu verkiirzen. Vielleicht kénnen Sie ja auch
einige Parameter in Strukturen zusammenfassen oder per IDENT
iibergeben. Grofie Objekte (Strukturen mit Feldern darin etc.)
mit mehr als 256 Bytes belasten den Parameterspace in beiden
Ubergabemodes nur mit 4 Bytes. Gleiches gilt fiir kleinere Ob-
jekte im IDENT-Mode. Der Compiler fertigt im ,,per value* Mode
bei groflen Objekten ndmlich auf der Aufruferseite eine Kopie im
Variablenraum des Aufrufers an und {ibergibt lediglich einen 4
Byte Zeiger an die Prozedur.

/REF by IDENT: actual no REF./ Die aufgerufene Prozedur erwartet
auf einem Platz eine Zeigervariable by IDENT doch das aktuell
angebotene Objekt ist keine echte Zeigervariable. Kann es nur
eine Adresse liefern, so reicht dies fiir eine REF by value zwar
aus, nicht jedoch fiir den hier erforderlichen Zeigerbezug auf eine

380 5.11 Fehlermeldungen zur Compile—Zeit

Zeigervariable.

/Sorry! Compilerlimit exceeded/ In der Praxis nie zu sehen, aber prin-
zipiell moglich. Zuviele kleine lokale Objekte iiberlasten den
32 kByte Raum fiir sehr schnell adressierbare kleine lokale
Prozedur- oder Taskobjekte. Platz fiir ein weiteres Objekt dieser
Art ist nicht mehr vorhanden. Abhilfe durch Verlagerung von
Aufgaben auf Prozeduren, die dann ja weiteren eigenen schnel-
len lokalen Speicherraum haben. Auch die Zusammenfassung zu
Datenstrukturen kann helfen, ist aber meist weniger schnell: Lo-
kale Felder und grolere Strukturen legt der Compiler stets in
einen besonderen lokalen Adressraum, der zwar (speziell bei den
RISC-Prozessoren) nicht ganz so schnell erreichbar, dafiir aber
nur durch den vorhandenen Speicher begrenzt ist.

/Not(yet)Implemented/ Der Compiler hat ein Konstrukt zwar erkannt, die-
ses ist in der aktuellen Version aber noch nicht implementiert.
(Baustelle der PEARL90-Norm)

/Internal Compiler-Error/ Der komplexe interne Selbsttest des Compilers
hat einen Fehler entdeckt. Wir hoffen, dafl Sie diese Meldung
nicht zu sehen bekommen. Bleibt sie bei einem neu gebooteten
System bestehen, so sollten Sie uns informieren.

5.11.2 Bilanzdetektierbare Fehler

MISSING PROC/TASK Dem Compiler wurde durch SPECIFY vorgeschwin-
delt, daf die angegebenen Prozedur/Task weiter unten im Modul
noch definiert werden. Nun — zum MODEND — wird dem Compi-
ler klar, da} er nicht mehr hoffen darf.

MISSING LABELS Die angegebenen Marken wurden zwar angesprochen,
aber nicht oder nicht blockkonform definiert.

SIZE_LIMIT-ERROR Die tatsiichliche Grofle des Modules iibersteigt den

durch S=... (bzw. default) festgelegten Kopfeintrag. Das Mo-
dul kann nur mit zusétzlichem SZ—Parameter beim LOAD geladen
werden.

5.11.3 Nicht sprachbedingte Abbruchkonditionen

Maxerr: Limit exceeded. Mit dem letzten aufgetretenen Fehler wurde die
gesetzte Grenze iiberschritten. Die Kompilation wird vorzeitig
abgebrochen.

5.11 Fehlermeldungen zur Compile—Zeit 381

Local scalars >32kB In der Praxis nie zu sehen, aber prinzipiell méglich.
Der Ubersetzungslauf wurde abgebrochen, weil sich erst bei
der Codegenerierung zum letzten PEARL-Statement herausge-
stellt hat, daf§ der kleine schnelle lokale Prozedur- oder Task-
Workspace infolge weiterer intern benoétigter Hilfsobjekte nicht
ausreicht. Die Abhilfe ist die gleiche wie beim oben beschriebe-
nen ,,/Sorry! Compilerlimit exceeded/“.

INCLUDE-file ended inside statement Mitten in der aktiven Uberset-
zungsphase einer Anweisung wurde das Ende des zu ,,includen-
den® Files erreicht. Vielleicht fehlt ein Semikolon am Ende oder
die letzte Anweisung ist falsch.

Cannot open INCULE-file Der einzufiigende File ist nicht vorhanden oder
steht in einem anderen Verzeichnis.

Outp. failed Der Compiler kann nicht schreiben, typischerweise wegen einer Ir-
regularitiit beim Code-Output (Platte voll?). Beim List-Output
unterbleibt meistens diese Meldung, gelegentlich kann sie iiber
den Standard Error Kanal ausgegeben werden.

Cannot read from input-file Der Eingabefile produzierte einen Lesefehler.
Premature end of input-file File zu Ende, bevor MODEND akzeptiert wurde.

Internal Compiler-error Bitte schreiben Sie uns, wenn klar ist, dafl Ihr Sys-
tem ansonsten in Ordnung ist!!

Insufficient memory. SZ-Para? Nicht geniigend Listenplatz, moglicherweise
war der Parameter SZ beim P-Kommando zu klein. Man beachte,
daBl es beim Compiler keine eigene Limitierung der Lénge einer
Anweisung gibt. Eine Formel, die sich iiber hunderte von Zeilen
hinzieht, kann bearbeitet werden, solange geniigend Listenplatz
verfiigbar ist. Ein Aufbrechen von solchen Riesenstatements ent-
spannt logischerweise die Situation.

382 5.11 Fehlermeldungen zur Compile—Zeit

5.11.4 Warnungen

Wird nach einem 6ffnenden Kommentar ein weiterer 6ffnender Kommentar ge-
funden, bevor der erste Kommentar geschlossen wurde, gibt der Compiler eine
entsprechende Warnung aus. Sind mehrere solcher Stellen in einem Modul, wird
die letzte gefundene Zeile angegeben. Solche Warnungen sind zu beherzigen und
das Konstrukt sollte elimiert werden!

Beispiel: /** / ALT x=5; ... /*x */;

Im Beispiel wurde der erste Kommentar versehentlich nicht beendet. Ohne die
Warnung des Compilers wiirde die komplette Alternative einfach verschluckt,
und der Nutzer miifite eine sehr langwierige Fehlersuche starten.

5.11.5 Abschlufimeldungen

In der Compilerschlubilanz werden folgende Informationen ausgegeben:

TASKS:

(INT) im Modul vereinbarte Task
(EXT) extern angesprochene Task
(x*x) angesprochen, aber nicht als globale Task spezifiert.

Internal Procedures/Functions:

(FUN) im Modul vereinbarte Funktion
(PRO) im Modul vereinbarte Prozedur

Extra Devices:

Einige wenige Standardgeréte sind dem Compiler bekannt, so etwa
JED, /A1 etc. Unter dieser Rubrik werden alle Datenstationen des
Systemteiles aufgelistet, die ihm nicht bekannt sind. Man muf} spéater
beim Laden dafiir Sorge tragen, dafl diese im Zielsystem unter ge-
nau dem Gerétebezeichner vorhanden sind oder aber vor dem Laden
mit Hilfe des Linkers die notwendigen Informationen iiber LDN und
DRIVE anfiigen.

VAR(RAM) : . ..

Lange des fiir RAM {ibersetzten VARiablenbereiches

5.11 Fehlermeldungen zur Compile—Zeit 383

VAR (ROM) :

Fiir EPROM iibersetzter VARiablenbereich, mit Angabe des Adref3-
bereiches in dem beim Systemstart aus dem EPROM der VAR-
iablenbereich als Modul angelegt wird.

CODE (RAM) :

Fiir RAM iibersetzter CODE, mit Angabe des relativen Offsets in
den S-Records.

CODE(ROM) :

Fiir EPROM iibersetzter CODE, mit Angabe des absoluten Adref3-
bereiches im EPROM, auf den der Code abgelegt werden mufl (Aus-
nahme siehe Ausgabe SHIFTABLE).

$... BYTES

Gesamtlinge der erzeugten S—Records (VAR+CODE).

(FOR 68...[+68881])

Angabe des Prozessortypes, fiir den der Code iibersetzt worden ist.
.. .ERRORS

Angabe der bei der Ubersetzung ermittelten Fehler.

SIZE_LIMIT_ERROR

Falls mehr Platz fir VAR+CODE bei der Ubersetzung ermittelt wur-
de, als in der S[C]-Option angegeben wurde, wird diese Meldung
ausgegeben (zéhlt als 1 Fehler in der Bilanz).

384 5.11 Fehlermeldungen zur Compile—Zeit

Wenn der Compiler ROM-Code erzeugen soll, so gibt es eine weitere Angabe
dariiber, ob der erzeugte Code frei verschieblich ist. Dann kann er an beliebiger
Stelle im EPROM und nicht nur ab der Adresse, die bei CODE= ... angegeben
wurde, abgelegt werden. In der SchluBmeldung wird dann

SHIFTABLE
ausgegeben. Falls der Code nicht verschieblich ist, wird die Meldung
HARDWARE ADRESS

in der Schlubilanz erscheinen.

Bei der Ubersetzung von Shell-Modulen wird ebenfalls angegeben, ob die er-
zeugte Shellerweiterung spéter an feste Adressen gebunden ist oder nicht. Bei
der Schlufimeldung:

>>USABLE_ALSO_INSIDE_RTOS_KERNEL._. ..

kann das tibersetzte Modul nach einem Linkerlauf oder mit Hilfe des PROM-
Befehles in (Programmier-) gerétegeignete S-Records verwandelt werden. Der
Code kann danach auf beliebigen Stellen im EPROM oder im Boot-Memory
des Systemes plaziert werden.

Lautet dagegen die Schlufimeldung:
>>USE_ONLY_AS_LOADED RAM SHELL

so ist eine freie Ablage innerhalb des EPROM oder Boot-RAM nicht mdglich.
Mit Hilfe des PROM-Befehles werden die Ablageadressen (CODE, VAR) des Quell-
files fest eingearbeitet. Mit dem Linker an Stelle des PROM kénnen diese zwar
auch spéter noch verdndert werden, doch sind die erzeugten S-Records nur an
den exakten physikalischen Adressen in den EPROMS bzw. dem Boot-Memory
verwendbar.

5.12 Fehlermeldungen zur Laufzeit 385

5.12 Fehlermeldungen zur Laufzeit

Bei Auftreten eines der unten aufgelisteten Fehler wird die entsprechende Mel-
dung ausgegeben und die verursachende PEARL-Task lauft nach den beschrie-
benen Aktionen weiter. Einige Fehler fithren zu einer Terminierung oder Sus-
pendierung der PEARL-Task, dies ist bei den entsprechenden Meldungen ver-
merkt. Wenn das Programm mit der Markierungsoption /*+M=*/ {ibersetzt wur-
de (zumindest teilweise), so wird vor der Fehlermeldung die letzte registrierte
Hochsprachzeilennummer ausgegeben. In Programmbereichen mit abgeschalte-
ter Markeroption werden keine neuen Nummern registriert!

DV /0 Divided by zero. Es wurde versucht, durch Null zu teilen. Fiir das Re-
sultat wird die grofite mogliche Zahl eingesetzt.

END-OF-FILE Das Ende eines Files ist beim Lesen iiberschritten worden.
Der File wurde vor dem Lesen nicht auf den Anfang gesetzt
(REWIND (dation) vergessen?).

FL.OV Floating overflow. Betrag des Resultates ist grofler, als es der verwen-
dete Gleitkommadatentyp zulafit.

INPUT-SYNTAX Input—character violates format—syntax. Das Zeichen
pafBt nicht zum Eingabeformat, z. B. Buchstabe bei FIXED-
Format.

ILL) Illegal character ')’ in FORMAT — destructed machine-code. Die An-
zahl rechter Klammern stimmt nicht. Kann nur bei falscher Hy-
perprozessor—Benutzung im Assemblerprogramm oder zerstor-
tem Programmcode passieren.

IOFM I/O-FORMAT does not conform to data—type in list. Das Format
paf3t nicht zum Datentyp des Elements.

IONS I/O not set up — Destructed machine—code. I/O nicht eréffnet! Kann
nur bei zerstortem Code oder fehlerhaftem Assemblerprogramm
passieren. Terminiert die Task.

NDSF No data-spec. in FORMAT found. (PUT X TO ... BY SKIP;) Die
Formatanweisung fiir das Datum fehlt vollig.

NDUR Negative duration (AFTER ..., ALL ... etc.). Die Zeitdauer ist ne-
gativ.

NIEX Negative input—exponent for FIXED number. Der Exponent fiir die
Eingabe einer FIXED—Zahl ist negativ.

NIM-DO Not implem. hyperproc—instruction. Opcode in register DO oder
r0. Die V-Number in DO ist nicht implementiert. Die geladenen

386 5.12 Fehlermeldungen zur Laufzeit

S-Records stammen wahrscheinlich von einem neuen Compiler,
fiir dessen Code das veraltete Laufsystem nicht mehr ausreicht.
Bitte ggf. Systemupdate besorgen.

OBIN Overflow B-formatted input. Die Binérziffernfolge ist linger als das
angegebene Format.

OEXI Overflow exponent on (numeric) input. Der Exponent ist zu grofi oder
zu klein.

OPNDIF Open by IDF ... Syntax or length error. Die Zeichenkette beim
IDF ist fehlerhaft.

PNUM Tritt nur noch beim veralteten PEARL80 Compiler auf: Parameter—
numbers on caller—/proc—side not equal. Die Anzahl der Para-
meter auf der Aufruferseite stimmt nicht mit Anzahl der Pro-
zedurseite iiberein. Terminiert die PEARL-Task. In PEARL90
wird der Test zur Compilezeit gemacht.

PTYP Tritt nur noch beim veralteten PEARL80 Compiler auf: Parameter—
types on caller—/proc—side: no match. Der Parametertyp stimmt
nicht iiberein. Terminiert die Task. In PEARL90 wird der Test
zur Compilezeit gemacht.

PXFR Tritt nur noch beim veralteten PEARL90 Compiler auf: Parameter
yxfer® illegal. (IDENT—proc + INV—call) Der Aufruf stimmt nicht.
Terminiert die PEARL-Task. In PEARL90 wird der Test zur
Compilezeit gemacht.

X/PAG— X or PAGE —count negative. (A=--3 ... X(A),PAGE(4), ...). Die
Anzahl Blanks oder PAGE ist negativ.

PATHLT: TOO LONG In der angegebenen Pathlist wurde ein zu lan-
ger Bezeichner gefunden, d.h. der im Systemteil angelegte Platz
reicht nicht aus.

READ Can’t read from inputfile. (GET + file empty etc.). Es kann nicht vom
Eingabefile gelesen werden.

RND/EN ROUND/ENTIER overflow. Result > FIXED(15). Das Resultat einer
Rundung pafit nicht in eine FIXED(15) Zahl.

SKP— SKIP—count is negative. (A=--3; ... SKIP(A),...). Die Anzahl
SKIPs ist negativ.

SUSP: TASK NOT FOUND Extern zu suspendierende Task wurde nicht
gefunden. Tritt bei einem Fremd—Suspend auf.

5.12 Fehlermeldungen zur Laufzeit 387

TIME-OUT Time out error. Nur bei bestimmten I/O-Treibern: Die Zeit-
iiberwachung hat angesprochen, Gerdt antwortet nicht.

XIOV FIXED—number input—overflow. Die einzulesende Zahl paf3t nicht in die
FIXED—Variable.

(OVF Left bracket or ,R“-FORMAT nesting overflow. Zuviele 6ffnende Klam-
mern beim Format.

5.12.1 Fehlermeldungen der implementierten mathematischen
Einbaufunktionen

Die folgenden Fehlermeldungen werden von den mathematischen Einbaufunk-
tionen zur Laufzeit eines Programmes generiert. Die Task, die den Fehler ver-
ursacht, lduft weiter. Es wird versucht, ein moglichst sinnvolles Resultat der
entsprechenden Operation zu liefern.

ASIN/ACOS OVERFLOW Das Argument eines ASIN oder ACOS ist groBer
1.0. Als Ergebnis der Operation wird das Argument zuriickge-
liefert.

EXP OVERFLOW Das Ergebnis der Funktion e” wird zu grof}. Als Ergebnis
wird die groBtmogliche Zahl zuriickgkeliefert.

LOG OVERFLOW Das Argument der LOG-Funktion ist < 0. Als Ergebnis
wird die grofite mogliche negative Zahl zuriickgeliefert.

DSC OVERFLOW Das Argument einer SIN- oder COS—Berechnung ist
grofer als 223, Es wird eine 0 als Ergebnis zuriickgeliefert.

SQR OVERFLOW Das Argument einer Quadratwurzel ist negativ. Es wird
die positive Wurzel berechnet.

TAN OVERFLOW Das Argument einer TAN-Berechnung ist groBer als 223.
Das Ergebnis ist eine 0.

Wird ein 68881/68882 Coprozessor zur schnelleren Rechnung eingesetzt,
konnen folgende Fehlermeldungen auftreten:

ZERO-DIV FPU-68881 Es wurde versucht, durch 0 zu teilen.

WRONG OPERAND FPU-68881 Der Operand ist z. B. zu grof§/klein,
keine Zahl o. &.

OVERFLOW FPU-68881 Das Ergebnis der Operation ist zu grofS.
! — Bei einem FPU-Fehler wird die ,,schuldige* Task suspendiert!!!

Die Meldungen gelten fiir den PowerPC ganz analog.

388 5.12 Fehlermeldungen zur Laufzeit

(Leere Seite vor neuem Kapitel)

Kapitel 6: Datenstationen

6.1 Datenstationen Az, Bz, Cz, UL

Bei diesen Stationen handelt es sich entweder um emulierte Terminals oder
um serielle Schnittstellen (RS 232, RS 458 etc.). Fiir /Az, /Bz, /Cz gilt —
bei gleichem z — stets eine gemeinsame LDN, die Buchstaben A, B, C werden
also lediglich in eine Untergliederungsnummer (=Betriebsart) umgewandelt.
Die Datenstation /UL kennzeichnet eine Sonderbetriebsart der Station mit z=2.

Da fiir beide Ubertragungsrichtungen nur eine Warteschlange zur
Verfiigung steht, ist ein echter Vollduplexbetrieb mit diesen Sta-
tionen nicht méglich (siehe /Da-Station). Solange also etwa eine
Eingabe héngt“, tritt in der Warteschlange Stillstand ein. Um
wenigstens die Operation ,,mal sehen, ob was da ist“ fiir die Ein-
gabe machen zu konnen, wurde die Betriebsart C geschaffen.

Ausgabe

Es gibt zwischen /Az, /Bz, /Cz und /UL keinen funktionellen Unterschied. Die
Ausgabe kann vom Empféinger jederzeit mit Hilfe eines ausgesendeten X,
(Ctrl 8) angehalten werden. Mit Hilfe des X, (Ctrl Q) wird dann die Wie-
deraufnahme der Sendung angefordert (X,,,/X,ss—Protokoll). Auch emulierte
Terminals, etwa beim Apple Performa oder innherhalb von Textfenstern des
Window-Managers, konnen auf diese Weise angehalten werden.

In den meisten Systemen kann iiber besondere Bedienbefehle die Baudrate
verdndert werden.

Zusitzlich zum Softwareprotokoll (X, /Xof¢), das bei binérer Betriebsart der
Schnittstelle abgeschaltet ist, wird ein Hardwareprotoll mit RTS/CTS un-
terstiitzt. Diese beiden Leitungen sind zu briicken, wenn kein Hardwarepro-
tokoll erwiinscht ist.

389

390 6.1 Datenstationen Ax, Bx, Cx, UL

Die zugehorige 1/O—Task ,,merkt sich“, ob sie als letzte Anforde-
rung iiber A oder iiber B/C angesprochen wurde. Dies steuert ihr
Verhalten hinsichtlich des unten beschriebenen Eingabekanales.

Eingabe ohne Initiative der I/0O—-Task

1. Die Station war zuletzt als /Az—Station in Benutzung.

Die unaufgefordert empfangenen Daten werden in einen implementie-
rungsabhéingigen Eingabepuffer (Ringpuffer) geschrieben. Es wird keine
Reaktion zum Sender ausgesendet.

2. Die Station war zuletzt als /Bz oder /Cz in Benutzung.

Auch hier werden die unaufgefordert empfangenen Daten in den begrenz-
ten Ringpuffer (> 31 Zeichen) genommen, allerdings wird nun ab dem
Moment, in dem der Ringpuffer zur Halfte gefiillt ist, fiir jedes Zeichen,
das auf den Puffer geht, ein X,y zum Sender zuriickgesendet, um die-
sen zu stoppen. Auflerdem wird der Sender auch iiber die Hardware—
Handshake Leitung aufgefordert, seine unerwiinschte Datensendung zu
unterbrechen.

Eingabe mit Initiative der I/O—Task

1. Expliziter Lesebefehl fiir die Station /Az.

Die evtl. im Eingaberingpuffer befindlichen Daten werden eliminiert (Puf-
fer wird geloscht) und sind damit verloren. Wurde ein X, s, ausgeschickt,
so wird jetzt wieder ein X,, geschickt bzw. iiber die Handshake Leitung
wird der ,gegnerische” Sender wieder freigegeben. Die I/O-Task hingt
sich jetzt auf (SUSP), bis die angefordete Anzahl von Daten eingetroffen
ist. Beim Lesen mehrerer Sétze und stidndig laufendem Eingabestrom ge-
hen bei dieser Betriebsart in den DORM-Phasen der I/O-Task zwangsldufig
Daten verloren, denn es wird kein Protokoll erzeugt. Die /Az sind als Ein-
gabestationen praktisch nur fiir die Terminaleingabe des Bedieninterface
geeignet, weil es dort gerade erwiinscht ist, dafl evtl. in der inaktiven Pha-
se angeschlagene Zeichen (Affe, der auf die Tasten hdmmerte...) keine
Auswirkungen haben.

6.1 Datenstationen Ax, Bx, Cx, UL 391

2. Expliziter Lesebefehl fiir die Station /Bz, /UL.

Die im Eingaberingpuffer befindlichen Zeichen werden iibertragen. Falls
diese bereits die Anforderung erfiillen konnten, so ist die Operation —
gef. mit aufgehobenem Rest im Eingaberingpuffer — beendet.

Beim Lesen von der Station /UL, entsprechend der Station /B2, wer-
den empfangene LF’s nicht iibernommen. Diese Option ist hauptséchlich
zum Laden von S—Records von einem Host—Rechner geeignet (/UL = Up—
Load), kann aber auch immer dann eingesetzt werden, wenn vom Host
zusétzliche LF’s generiert werden (,, Aufblihen® des CR zur Kombination
CRr/LF). Reichen die im Puffer befindlichen Daten nicht aus, so geht die
I/O-Task in den Zustand SUSP bis zu dem Zeitpunkt, zu dem die erforder-
liche Anzahl Daten erreicht wird. Beim Lesen mehrerer Sétze und einem
fortlaufenden Eingabestrom kommt es hier nicht zu einem Datenverlust,
da die Betriebsart B das X,,, /X, bzw. RTS/CTS Protokoll benutzt und
damit auch in den DORM—Phasen der I/O-Task keine Daten verloren gehen
(sofern der Sender rechtzeitig mit Senden aufhort!!).

3. Expliziter Lesebefehl fiir die Station /Cz.

Wenn keine Daten im Eingaberingpuffer stehen, so wird dem Auftrag-
geber nur das Zeichen NUL ($00) mit der Satzlinge 1 (RECLEN = 1)
tibermittelt, und der Auftrag wird als erledigt behandelt.

Stehen im Eingaberingpuffer weniger Zeichen als angefordert, so werden
diese iibertragen, und die erreichte Satzlinge wird dem Auftraggeber mit-
geteilt. Der Auftrag gilt danach als erledigt.

Stehen im Eingaberingpuffer ausreichend Zeichen, so wird — unter Erhalt
eines evtl. Restes — der Auftrag daraus erledigt.

Eine Steuerung des Senders erfolgt auch auf dem C-Port mit dem Soft-
wareprotokoll iiber X, sy und X,, bzw. mit den Hardwaresignalen RT'S
und CTS. In diesem Punkt gibt es keinen Unterschied zur Betriebsart B.

Die Betriebsart C ist also gedacht, um ohne Risiko des Aufhingens das
Eingabeport abzufragen, ob denn ,,Daten da sind“. Beim Lesen aus Hoch-
sprachprogrammen iiber C mufl der Programmierer selbst auf die NUL
abpriifen — dann waren noch keine Daten eingetroffen. Danach kann ru-
hig ein kleines P#uschen (AFTER z SEC RESUME) eingelegt werden, um
den Rechner nicht nur mit der Abfrage der Datenstation zu beschéfti-
gen! Besser ist aber der Verzicht auf die C-Station und Benutzung der

392 6.1 Datenstationen Ax, Bx, Cx, UL

Time—Out Funktion.

Die C-Station kann genutzt werden, um den Eingaberingpuffer definiert
zu leeren und trotzdem keine Zeichen zu verlieren. Es wird ein GET vom
C—Port mit einer TFU von 128 gemacht.

Das Bedienkommando COPY (s. Seite 115) ist auf das NUL—Zeichen und
die Satzlédnge 1 abgerichtet: Nach Einlesen des NUL-Zeichens legt sich
COPY fiir 8 Millisekunden ,aufs Ohr“, um danach die Abfrage zu wieder-
holen.

Mit COPY.W /C1/>/B2/; COPY.R /C2/>/B1/

kann man seinen Rechner in so etwas wie ein Terminal fiir den angeschlos-
senen Host verwandeln. Mit Ctrl A wird dann bei Bedarf die Verbindung
zum RTOS—UH wiederhergestellt.

Auch das Lesen vom /Cz kann zum Aufhéingen fithren, ndmlich dann,
wenn die Schlange durch eine liegengebliebene Ausgabe oder durch eine
Eingabe der Betriebsart A bzw. B , verstopft“ ist.

Time—Out

Fiir die seriellen Schnittstellen steht eine Time—-Out Funktion zur Verfiigung.
Das Time-Out bezieht sich immer auf ein komplettes Auftragselement (CE).
Das Zeitraster fiir ein Time-Out kann in 512 msec Schritten eingestellt werden.
Die maximale Anzahl Schritte ist 127, so daf§ das lingste mogliche Time—Out
auf 65,024 sec gesetzt werden kann.

Wenn das Time-Out eintritt, wird die Fehlermeldung TIME-OUT (mit NE unter-
driickbar) ausgegeben und ST=7 gesetzt. Das betroffene CE wird vom Treiber
an den Aufrufer zuriickgegeben oder — bei gesetztem Verschrottungsbit (z. B.
Ausgabe ohne Wait) — in freien Speicher verwandelt. Die evt. bei einer Ein-
gabe schon gelesenen Daten sollten nicht mehr verwendet werden. Das Setzen
des Time-Outs in PEARL wird im Systemteil des erledigt. Der Assembler—
Programmierer muf3 die Anzahl Schritte im linken Byte des DRIVE-Wortes ein-
tragen (sieche CE-Beschreibung ab Seite 559).

Bedieninterface

Stationsname ist /Az, /Bz, /Cz, z. B. /A1, /C2, /B2. Ein eventuell angegebe-
ner Pfadname wird voll in die Verwaltung iibernommen (S-Befehl), hat aber

6.1 Datenstationen Ax, Bx, Cx, UL 393

keinerlei Funktion.

Beispiel: 0 /B2; DM 1000 2000
P >/B2; COPY /B3>/B1

PEARL—-Programm

Systemname ist /Az, /Bz, /Cz z. B. /A1; /C2; /B2;. Eine eventuell nachge-
stellte pathlist wird voll in die Verwaltung iibernommen (S-Befehl), hat aber
keine funktionelle Bedeutung.

Beispiel: SYSTEM; Output:/B3— >;
Inputdevice:/B2< —;
Al; /* Kurzform username=systemnamex*/;

PROBLEM;
SPC A1 DATION INOUT ALPHIC;

SPC Inputdevice DATION IN ALPHIC;
SPC Output DATION OUT ALPHIC CONTROL(ALL);

GET ... FROM Inputdevice BY ...
PUT ... TO Output BY ...

Weitere Einzelheiten sind beim Sprachumfang des PEARL-Compilers zu fin-
den.

394 6.2 Datenstation BU

6.2 Datenstation BU

Die Datenstation /BU 1488t den direkten Zugriff auf Prozefperipherie iiber all-
gemeine Peripherieadressen oder iiber den Unterbus (P-bus, nicht bei allen
Systemen implementiert) zu. Zu dieser Station existiert keine Betreuungstask,
da iiber die Peripherieadressen bzw. den Unterbus nur ungepuffert und un-
quittiert ein-/ausgegeben werden kann. Das Betriebssystem ist an dem Trans-
port nicht beteiligt. Die /BU-Stationen kénnen also nicht vom Bedieninterface
angesprochen werden (Ausnahme: DM-P fiir P-bus). In Systemen, die Mehr-
rechnerbetrieb zulassen (z. B. VMEDbus), kénnen Synchronissationsmafinahmen
unterstiitzt werden, die wie globale Semaphore wirken.

PEARL-Programm

Der Systemname ist BU(hezadr8, Zugriffscode), alternativ (bei 68000-er
Rechnern, die nur 6-Byte-Adressen verarbeiten kénnen) BU(khez8), wobei der
Zugriffscode zweistellig vor der Peripherieadresse angegeben werden muf}. Die
Datenstation gilt als vom Typ BASIC. Die Ubertragungsrichtung mufl angege-
ben werden. Das Bitmuster hezadr8 mufl in Kodierung und Adresse der aktuell
angeschlossenen Hardware entsprechen.

Um moglichst viele unterschiedliche Peripheriekarten verwenden zu konnen,
wurden folgende Zugriffsmoglichkeiten geschaffen:

In der Anweisung

VENTIL: BU(y,z) — >;

bedeuten: y = Adresse des Peripheriebausteins in hezS.
z = Kodierung der Zugriffsart, einstellig dezimal.

Folgende Kodierungen sind zugelassen:

6.2 Datenstation BU 395

CODE | Ubertragung wird abgelegt auf
0 P-Bus, WORD oder LSB
1 8 bit, MSB (MOVE.B) y
2 16 bit, MSB (MOVE.W) |y, y+1
3 32 bit, MSB (MOVEL.L) v, y+1, y+2, y+3
4 16 bit, MSB (MOVEP.W) | y, y+2
5 32 bit, MSB (MOVEP.L) |y, y+2, y+4, y+6
6 8 bit, LSB (MOVE.B) y
7 P-Bus, WORD oder MSB
8 GLOBAL SEMA (TAS)

Alle einfachen Datentypen sind zugelassen (Ausnahme: Kodierung $08). Bei
Float—Variablen wird normalisiert bzw. denormalisiert. CHAR-Variablen werden
linksbiindig beschrieben und ggf. mit Leerzeichen aufgefiillt.

Bei Kodierung $08 ist eine BIT(1)—Variable zu verwenden. Die TAKE-
Anweisung benutzt den Assembler—Befehl TAS und liefert den Wert ’>1°B1,
wenn der Pseudo-Request erfolglos war (dann stand bereits eine ’1° an der
getesteten Speicherstelle) oder ’0°B1, wenn der Pseudo-Request erfolgreich
war (dann stand bisher eine >0’ an der Speicherstelle, die vom TAS-Befehl mit
einer ’1’ iiberschrieben worden ist). Die Kodierungen $04 und $05 sind fiir
einige Bausteine aus 8-Bit—Prozessor—Familien erforderlich.

Beispiel 1: Zugriff iiber Peripherieadressen

SYSTEM;
FUEHLR: BU(0240FFFC) <-;
/* MC 68000: Adr=$40FFFC, Zugriffscode=2 */;
PROBLEM;
SPC FUEHLR DATION IN BASIC;
R: TASK;
DCL TEMP BIT(16);
TAKE TEMP FROM FUEHLR;

396 6.2 Datenstation BU

Beispiel 2: Zugriff iiber den Unterbus

SYSTENM;
VENTIL: BU(42) ->;
PROBLEM;
SPC VENTIL DATION OUT BASIC;

T: TASK;
SEND ’008F’B4 TO VENTIL;

Beispiel 3: Globale Pseudo-Semaphore

SYSTEM;
S1: BU(FFOF0006,8) <->;
/* MC 68020, Adr=$FFOF0006, Zugriffscode=8 */
PROBLEM;
SPC S1 DATION INOUT BASIC;
INIT: TASK;
SEND ’01°B1 TO S1;
X: TASK;
DCL FLAG BIT(1);
FOR I TO MAX WHILE FLAG REPEAT;
TAKE FLAG FROM S1;
END;

. (geschuetzter Bereich)
SEND °0°B1 TO S1; (Peudo-Release)

Warnung!

Da sich die Peripherieadressen nicht von Speicheradressen un-
terscheiden, konnen durch falsche AdreSangaben in der /BU-
Anweisung auch Zugriffe auf den von RTOS—UH benutzten
Speicherbereich erfolgen. Mit SEND auf diesen Bereich ist das Uber-
schreiben von System— und Anwendersoftware méoglich.

6.3 FEigene BU-Datenstation 397

6.3 Eigene BU-Datenstation

Sind die vom Compiler zur Verfiigung gestellten /BU-Datenstationen einmal
nicht ausreichend, z. B. weil ein Zugriff im Supervisormode notwendig ist, so
kann eine eigene Datenstation generiert werden. Man hat dazu im Prinzip alle
Register mit Ausnahme von A4, A5, A6 und A7 zur freien Verfiigung. Beim
PowerPC diirfen die Register r12, r13, r14 und rl5 nicht verindert werden.
Das Register DO (r0 beim PowerPC) dient zum Datentransfer. Der Stack hat
nur noch Platz fiir einen weiteren BSR-Level.

Bei den RISC-Prozessoren (PowerPC) legt der Compiler zur Geschwindigkeits-
steigerung die Riickkehradresse zunéchst nicht auf den Stack sondern in das
Link-Register. Daher ist als Riicksprungbefehl nicht RTS sondern XRTS zu ver-
wenden, der vom 68K-Assembler wie ein RTS iibersetzt wird. Bei den RISC-
Transferassemblern jedoch wird aus dem XRTS ein sehr schneller Sprung mit
dem Link-Register als Zeiger. Das Link-Register wird leider schnell zerstort,
sowohl durch PC-relative Operationen des Transferassemblers als auch durch
Systemtraps und Unterprogrammaufrufe. Mit dem XSL-Befehl (Xtended Save
Link) kann sichergestellt werden, dafl die Riickkehradresse anschliefend in je-
dem Fall auf dem Stack steht: die Riickkehr kann dann mit dem normalen RTS
korrekt erfolgen. (Da bei den 68K-Prozessoren die Riickkehradresse immer auf
dem Stack steht, wird der XSL vom 68K-Assembler ignoriert.)

Bei der PEARL-Verwendung einer benutzerdefinierten BU-Station wird deren
Beschreibung im SYSTEM-Teil weggelassen, die Station wird lediglich im Pro-
blemteil GLOBAL spezifiziert. Mit Hilfe eines kleinen Maschinenprogrammes in
Transferassemblersprache kann der Zugriffscode realisiert werden. Im folgen-
den sind die Code—Sequenzen angegeben, die der Compiler bei den Standard
BU-Stationen generiert:

PEARL-System Definition: stal: BU(adri,1);
(Transfer-) Assembler Realisierung:

>stal BRA.S IN Einsprung fiir Einlesen
ASR.W =8,D0 rechtsschieben um ein Byte
_MOVE.B DO,adrl Zugriff auf Peripherie unter adr
XRTS Riicksprung (by stack or linkreg)
IN CLR.L DO 16schen
MOVE.B adr1,DO Wert einlesen
_ASL.W =8,DO in high-Byte schieben
XRTS Riicksprung (by stack or linkreg)

398

6.3 FEigene BU-Datenstation

PEARL-System Definition: sta2:

BU(adr2,2);

(Transfer-) Assembler Realisierung:

>sta?2 BRA.S 1IN
_MOVE DO, adr2

XRTS

IN CLR.L DO
_MOVE adr1,DO
XRTS

PEARL-System Definition: sta3:

Einsprung fiir Einlesen

Zugriff auf Peripherie unter adr
Riicksprung (by stack or linkreg)
16schen

Wert einlesen, no condition code
Riicksprung (by stack or linkreg)

BU(adr3,3);

(Transfer-) Assembler Realisierung:

>sta3d BRA.S IN

SWAP DO
_MOVE.L DO,adr3
XRTS

IN _MOVE.L adr3,DO
_SWAP DO
RTS

PEARL-System Definition: sta4:

Einsprung fiir Einlesen

Wort tauschen

Zugriff auf Peripherie unter adr
Riicksprung (by stack or linkreg)
Wert einlesen

Wort tauschen

Riicksprung (by stack or linkreg)

BU(adr4,4) ;

Assembler Realisierung (nur 68K-Prozessoren, wegen MOVEP):

>sta4d BRA.S IN

LEA adr4, A0
MOVEP.W DO,0(A0)
RTS

IN LEA adr4, A0
CLR.L DO
MOVEP.W 0(A0),DO
RTS

Einsprung fiir Einlesen
Adresse laden

Zugriff auf Peripherie
Riicksprung

Adresse laden

16schen

Wert einlesen
Riicksprung

6.3 Eigene BU-Datenstation

399

PEARL-System Definition: stab: BU(adr5,5);

Assembler Realisierung (nur 68K-Prozessoren, wegen MOVEP):

>stab BRA.S IN
LEA adr5,A0
SWAP DO
MOVEP.L DO,0(A0)
RTS

IN LEA adr5,A0
MOVEP.L 0(A0),DO
SWAP DO
RTS

Einsprung fiir Einlesen
Adresse laden

Wort tauschen

Zugriff auf Peripherie
Riicksprung

Adresse laden

Wert einlesen

Wort tauschen
Riicksprung

PEARL-System Definition: sta6: BU(adr6,6) ;

(Transfer-) Assembler Realisierung:

>stab BRA.S IN
_MOVE.B DO,adr6
XRTS

IN CLR.L DO
_MOVE.B adr1,DO
XRTS

Einsprung fiir Einlesen

Zugriff auf Peripherie unter adr
Riicksprung (by stack or linkreg)
16schen

Wert einlesen

Riicksprung (by stack or linkreg)

PEARL-System Definition: sta7: BU(adr7,8);

Assembler Realisierung (nur bei 68K-Prozessoren):

>sta7 BRA.S IN
LSR.W =8,D0
ANDI.B =$0080,DO
MOVE.B DO,adr7
RTS

IN TAS adr7
SNE DO
ANDI.B =$80,D0
LSL.W =8,D0
RTS

Einsprung fiir Einlesen
rechtsschieben um ein Byte
maskieren

Zugriff auf Peripherie
Riicksprung

testen und ggf. setzen
Ergebnis iibertragen
maskieren

in high-Byte schieben
Riicksprung

400 6.3 Eigene BU-Datenstation

Beispiel: Es soll ein Wort—Zugriff auf die Adresse $FE0000 im Supervisor—
Mode des Prozessors stattfinden. Dies entspricht der Zugriffsart 2.
Die Datenstation soll den logischen Namen DIGO bekommen. Wir
codieren die Station in Transferassemblersprache wie folgt:

OFF 0OPD $4EAF Trap-Definition
DPC 0PD $4E4A3
DC.L 0,0 Modul-Kopf
DC $0010 Type = Module
DC.B ’Dation’ Name = Dation
>DIG0 BRA.S 1IN Einsprung fiir Lesen
XSL save return link
OFF In Supervisor
MOVE DO,$FE0000 Daten schreiben
DPC Dispatcher Start
RTS Riicksprung
IN XSL save return link
OFF In Supervisor
_MOVE $FE0000,DO0 Daten lesen
DPC Dispatcher Start
RTS Riicksprung
END Ende

Der XSL-Befehl ist bei den 68K-Prozessoren ein Leerbefehl, d.h. es wird nichts
generiert. Bei den RISC-Prozessoren sichert er die Riickkehr-adresse auf den
Stack. Dies ist notwendig, weil in der obigen Sequenz Systemtraps aufgerufen
werden, die bei den RISC-Prozessoren das Linkregister zerstoren.

In einem PEARL—Programm konnte die neue Datenstation jetzt wie folgt be-
nutzt werden:

PROBLEM;
SPC DIGO DATION INOUT BASIC GLOBAL;

TAKE wert FROM DIGO;

Das iibersetzte PEARL-Modul mufl nun nur noch mit dem assemblierten (bzw.
transferassemblierten) obigen Maschinenprogramm gelinkt werden.

6.3 Eigene BU-Datenstation 401

Hinweis:

Die Kodierung von Supervisormodesequenzen ist ein sicherheits-
relevanter Bereich und sollte nur im Notfall und mit &uflerster
Vorsicht erfolgen! So darf keinesfalls der DPC vergessen werden,
da sonst eine Riicksprungadresse vom System—Stack des Prozes-
sors geholt wird, die aber nicht dort, sondern auf dem Userstack
abgelegt wurde. U. u. kann es zu einem Systemabsturz kommen.
Die Zeit zwischem dem OFF und dem DPC sollte nicht lénger als
wenige usec betragen, da sonst die Echtzeiteigenschaft des ganzen
Systemes merkbar leidet. U.a. konnten Einplanungen verschlafen
werden, auch der Verlust hochfrequenter Interrupts wére sonst
moglich!

402 6.4 Datenstation Dx

6.4 Datenstation Dz

Die Datenstation /Dz ist im System eingerichtet, um mit den Schnittstel-
len einen Voll-Duplex—Betrieb fahren zu konnen. Sie stellen einen zusétzli-
chen Ausgabekanal fiir die seriellen Schnittstellen dar. Bisher wurde mit einer
nicht erfiillten Eingabeanforderung die Warteschlange der seriellen Schnittstelle
blockiert, und es konnten keine Ausgaben auf die Schnittstelle gemacht wer-
den, solange die Eingabe nicht erfiillt wurde. Da fiir die Datenstation /Dz eine
getrennte Warteschlange genutzt wird, kann ihre Ausgabe jederzeit bearbeitet
werden.

Die /Dz Datenstationen sind nur fiir die Ausgabe vorgesehen, eine Eingabe
wird mit einer Fehlermeldung (WRONG I/0) quittiert.

Bedieninterface:

Stationsname ist /Dz z. B. /D1, /D2. Eine dem Systemnamen zugefiigte Pathlist
wird in die Verwaltung iibernommen (S—Befehl), hat aber keine funktionelle
Bedeutung.

Beispiel: COPY /HO/bla>/D2

PEARL-Programm:

Der Systemname entspricht dem des Bedieninterfaces.

Beispiel: SYSTEM;
TYdup: /D1 ->; TY:/Al;
PROBLEM;
SPC TYdup DATION OUT ALPHIC;
SPC TY DATION INOUT ALPHIC;

ALARM: TASK;

PUT ’Alarm’ TO TYdup;
END;
INPUT: TASK;

DCL in CHAR(1);
GET in FROM TY BY SKIP,A;
END;

6.4 Datenstation Dx 403

In diesem Beispiel wird die Funktion der Datenstation /Dz verdeutlicht. Trotz
nicht erfiillter Eingabeanforderung der Task INPUT, kann die Task ALARM ihre
Alarmmeldung auf die Schnittstelle ausgeben.

404 6.5 Datenstationen ED/EDB

6.5 Datenstationen ED/EDB

Zu dieser Station gehort die Betreuungstask #EDFMN. Damit konnen — solange
geniigend Speicher vorhanden ist — beliebig viele benannte Textdateien dhnlich
wie auf einem Massenspeicher verwaltet werden. Die Betreuungstask #EDFMN
kennt keine Wartephasen, da ja kein physikalisches Gerédt in dem Transport
verwickelt ist.

Der Text wird im Speicher in untereinander vernetzten Blocken (EDTF) ab-
gelegt. Es wird, soweit moglich, eine Verdichtung durch eine Sonderform des
»Run-length-Encoding“ durchgefiihrt und eine Zeilennumerierung mitgefiihrt.
Bei bindren Daten ist die Verkiirzung allerdings meist eher bescheiden. Die
Station /EDB unterscheidet sich heute nicht mehr wirklich von /ED, lediglich
die ,Laufwerksnummer* ist ,1“ statt ,,0“.

Man beachte, dafl man bindre Daten nicht mit dem Bedienbefehl COPY zwischen
Platte/Floppy und /ED oder /EDB kopieren kann. Dieser Befehl bereitet den File
fiir den Editor auf und stoppt das Kopieren beim ersten EOT-Zeichen. Dagegen
ist die Ablage von bindren Daten aus PEARL- oder Assemblerprogrammen
heraus moglich.

Der in den /ED-Dateien abgelegte Text kann durch Einloggen in den bildschirm-
orientierten Texteditor (siehe ED-Kommando) veréndert werden — natiirlich
nicht, wenn er binédre Daten enthélt.

Erlaubte Operationen sind:

DIR, ERASE, FILES,FIND, READ, REWIND, RM, SAVEP, SEEK, TOUCH, WRITE.

Bedieninterface:

Name der Station ist /ED oder /EDB. Die Angabe eines Filenamen (bis zur im-
plementierungsabhéngigen maximalen Lange, meist 64 oder mehr Zeichen) ist
notwendig, da andernfalls der Ersatzname ,,—“ eingesetzt wird. Nur bei FILES
oder DIR kann auf einen Filenamen verzichtet werden.

Beispiel: ERASE /ED/Test /ED/Kopie
REWIND /ED/Data
TOUCH -R /ED/Test
COPY ... > /ED/Program

6.5 Datenstationen ED/EDB 405

PEARL—-Programm:

Systemname ist /ED oder /EDB, wenn man die bindre Benutzung damit do-
kumentieren mochte. Wird kein Filename zugefiigt, so wird der Filename ,,-*
eingesetzt.

Beispiel 1: Station /ED normale ASCII-Zeichen
MODULE M;
SYSTEM;
POOL: /ED/SAVE ->;
PROBLEM;
SPC POOL DATION OUT ALPHIC;
AA: TASK;
OPEN POOL;
CALL REWIND (POOL);
PUT x,x**2 TO POOL BY (2)E(20,10);
CLOSE POOL;

END;
MODEND ;

406 6.5 Datenstationen ED/EDB

Beispiel 2: Station /EDB binére Daten
MODULE M;
SYSTEM;
DATA: /EDB/BIN ->;
PROBLEM;
SPC DATA DATION OUT ALPHIC CONTROL(ALL);
SPC WRITE ENTRY GLOBAL;

AB: TASK;
DCL SSS(1000) FLOAT;

OPEN DATA;

CALL REWIND(DATA);

/* Daten binaer speichern */
CALL WRITE (DATA,SSS);

CLOSE DATA;
END;
MODEND ;

Hinweise

Wird nach einer REWIND-Operation erneut in den File geschrieben, so wird
die Linge des Files bis auf den Stand des Schreibzeigers gekiirzt, ggf. frither
eingeschriebene Daten (Text) gehen somit verloren.

Dies gilt jedoch nicht, wenn der File mit SEEK vorher positioniert wurde. In
diesem Fall ersetzt der /ED-Handler die Zeichen genauso, wie es ein Handler
fiir die Platte tut.

Falls bei einer Schreiboperation kein Platz fiir die Anforderung eines weiteren
Blockes mehr zur Verfiigung steht, so wird eine Fehlermeldung und der Re-
turncode RECLEN=0 (wichtig fiir Assemblerprogrammierer) abgesetzt. Die zu
schreibenden Daten gehen dabei verloren.

Die Datenstationen /ED und /EDB verfiigen iiber einen ,,auto-close“-Mechanis-
mus. D. h. nach jedem Filezugriff, auer bei einer ,, Exclusiv-Offnung®, wird die
angesprochene Datei selbststindig geschlossen, so dafl praktisch keine getffne-
ten Dateien zuriickbleiben kénnen.

6.6 Datenstationen Fx/Hx 407

6.6 Datenstationen Fx/Hz

Der Fileaufbau ist hierarchisch, es besteht aber kein Zwang zur Benutzung einer
solchen Baumstruktur. Insbesondere kénnen uralte Disketten des nichthierar-
chischen Filehandlers immer noch einwandfrei gelesen werden.

Die Platte kann scheinbar in verschiedene Laufwerke aufgeteilt sein (Partitio-
nierung). Zu diesen scheinbaren Laufwerken gehéren dann auch eigene Directo-
ries. Grundsétzlich gibt es keinen Unterschied beim Umgang zwischen Disketten
und Festplatten.

Studieren Sie bitte die Kommandos FORM, FILES, FREE, CF (evtl. auch fiir Fest-
platte), SYNC, REWIND, RM/ERASE, MKDIR, RMDIR, RETURN, MSFILES, RTOSFILES
und DIR.

Warnung

Wichtig ist, dal nicht versehentlich Files geoffnet zuriickbleiben
oder bei geoffneten Files die Diskette gewechselt wird, weil das
den Verlust der gesamten Daten nach sich ziehen kann!!! Dies wird
u. U. erst spédter nach auflen sichtbar.

Unsere Floppy- und Plattenhandler erlauben einen wahlfreien Zugriff von
PEARL-Programmen aus mit Hilfe der Einbaufunktionen SEEK und SAVEP.

Wird bei einer Datei bis zum Dateiende gelesen, schliefit der Filemanager diese
Datei automatisch. Wird danach noch ein CLOSE versucht, ist die Datei schon
geschlossen, und es gibt eine Fehlermeldung. Wenn das automatische Schlielen
der Datei stort, da in jedem Fall noch eine CLOSE-Operation durchgefiihrt wer-
den soll, kann es unterdriickt werden: Im SYSTEM-Teil des PEARL-Programms
muf} mit Hilfe des AI/MB-Parameters das Suppress—-Command-Bit (= $0400)
gesetzt werden.

Mit dem Kommando MSFILES kann auf eine DOS—kompatible Dateiverwaltung
umgeschaltet werden. Am Zugriff auf die Diskette oder Festplatte dndert sich
nach auflen nichts, Sie konnen also weiterhin DIR /FO eingeben, obwohl im
entsprechenden Laufwerk eine DOS-Diskette steckt. Der DOS-kompatible Fi-
lemanager unterstiitzt alle Features des RTOS—UH-Filemanagers. Zum For-
matieren von DOS-Disketten ist das Format C5 (9 Sektoren je 512 Bytes)
einzugeben.

Sollen zwischen RTOS—UH und DOS Dateien kopiert werden, so ist zu be-
achten, da unter RTOS—UH ein Record mit CR, unter DOS hingegen mit

408 6.6 Datenstationen Fx/Hx

CRr/LF endet.

Bedieninterface:

Stationsname ist /Fz (z=0, 1, ...) fiir die Disketten und /He (2=0, 1, ...) fir
die Festplatte.

Beispiele: LOAD /HO/usr/games/kalaha
SYNC /F1; CF /F1/FORGET; (bei eiligem Aufbruch)

PEARL-Programm:

Der PEARL—Compiler iibergibt diese Geréte als Extra-Devices an den Lader
bzw. Linker.

Beispiel: SYSTEM;
Wfilel:/HO/platzhalter12345<->;
PROBLEM;
SPC Wfilel DATION INOUT ALPHIC;

OPEN Wfilel BY IDF(’mueller/daten’);
CALL REWIND(Wfilel);

PUT x,y TO Wfilel;

CALL SAVEP(Wfilel,Pos);

6.7 Stationszugriff iiber ,LD* 409

6.7 Stationszugriff iiber ,,LD*

Wenn eine Station keinen mnemotechnischen Namen besitzt, so kann sie iiber
das Bedieninterface durch Angabe ihrer Warteschlangennummer (LDN) adres-
siert werden. Es kann ebenso wie beim PEARL—-Compiler sowohl LDN als auch
das DRIVE eingegeben werden.

Beispiel: COPY /ED/test > LD/5.3/abc/xyz

PEARL-Programm:

Die Station wird iiber das Schliisselwort LD angesprochen. Dahinter erfolgt,
durch / abgetrennt, die Angabe von Warteschlangen— und Drivenumber. Ein
Beispiel:

SYSTEM;

Flop2:LD/5.2/xxxxxxxxxx<->; /*LDN=5 ,DRIVE=2%/
PROBLEM;

SPC Flop2 DATION INOUT ALPHIC CONTROL(ALL);

PUT datal,data2 TO Flop2 BY (2) LIST;

Natiirlich konnen iiber diesen Weg Warteschlangennummern angegeben wer-
den, zu denen gar keine Betreuungstasks existieren (systemintern ist dann kein
,» Task—Identifier* TID in der LDN--TID Tabelle eingetragen). In solchen Féllen
meldet sich das System beim verantwortlichen User mit

>> taskname: WRONG LDN (XIO)

und es findet keine Operation statt.

410 6.8 Datenstation NIL

6.8 Datenstation NIL

Die Datenstation /NIL ist die ideale Datensenke und Datenquelle. Sie kann
behilflich sein bei einem funktionellen Test eines PEARL-Programmes, um
den Ablauf eines Programmes zu testen.

Alle Eingaben von der Datenstation /NIL werden mit einem CR (ASCII
$0D) beanwortet. Somit koénnen alle Eingabeanforderungen eines PEARL-
Programmes erfiillt werden, da ein CR von allen Eingabeformaten akzeptiert
wird. Alle Ausgaben auf die Datenstation /NIL werden verschrottet, so daf sie
eine ideale Datensenke darstellt.

Soll zum Beispiel der Datenstrom von /B2 verschrottet werde, so gebe man ein:
COPY /B2>/NIL

Will man einen unendlichen Strom von Carriage-Returns auf die Schnittstelle
/B2 senden, so gelingt das mit

COPY /NIL>/B2
PEARL-Programm

Systemname ist /NIL. Eine dem Systemnamen zugefiigte Pathlist wird in die
Verwaltung iibernommen (S—Befehl), hat aber keine funktionelle Bedeutung.

6.8 Datenstation NIL 411

Beispiel: SYSTEM;
dummy: /NIL<->;
PROBLEM;

SPC dummy DATION INOUT ALPHIC CONTROL(ALL);

ALARM: TASK;
PUT ’Alarm’ TO dummy;
END;
INPUT: TASK;
DCL in CHAR(1);
GET in FROM dummy BY SKIP,A;
END;

In diesem Beispiel wird die Funktion der Datenstation /NIL verdeutlicht. Bei-
de Task laufen bis zu ihrem END durch, da die Datenstation /NIL die Ein—

/Ausgaben der Tasks befriedigt.

412 6.9 Parallel-Port

6.9 Parallel-Port

Die parallele Druckerschnittstelle des Rechners wird angesprochen, und die
Daten werden im Handshakemode interruptgesteuert iibertragen. Die Drucker-
bereitschaft kann gepriift werden, wenn ein PUT mit WAIT generiert wird. In
diesem Fall erhélt man eine Fehlermeldung oder kann iiber ST den Status abfra-
gen. Andernfalls, wenn also kein Gerét angeschlossen oder dieses nicht bereit ist,
bleibt die Betreuungstask #PPORT so lange hingen, bis ein Data—Acknowledge
empfangen wird.

Bedieninterface:

Name der Station fiir den normalen Texttransfer ist /PP. Ein evtl. angegebe-
ner Filename bleibt ohne Wirkung. Das Gerét ist dem System nur als Aus-
gabeeinheit bekannt. Mit Hilfe des SD-Befehles kann das Auto—Linefeed den
Erfordernissen entsprechend parametriert werden.

Zur Ubertragun bindrer Daten, etwa zur Ausgabe von Grafikbildern, ist in
vielen Systemen noch der Stationsname /PN installiert. Hier unterbleibt eine

Verdnderung des Datenstromes durch Anfiigen von Line—feeds etc.

Beispiel: COPY /ED/Test>/PP/

PEARL-Programm:
Der Systemname ist /PP. Dazu ein Beispiel:

SYSTENM;
PRINT: /PP ->;

PROBLEM;
SPC Print DATION OUT ALPHIC CONTROL(ALL);

PUT message TO Print BY ...;

6.10 Datenstationen VI, VO 413

6.10 Datenstationen VI, VO

Die Stationen /VI (Virtual Input) und /V0 (Virtual Output) besitzen je-
weils eigene prioritdtengeordnete Warteschlangen, aber nur eine Betreuungs-
task #VDATN, die deren Betreuung iibernimmt. Alle Ausgabe-Communication—
Elements (CE), die nach /VO geschrieben werden, sowie alle Eingabe-CE’s, die
von /VI gelesen werden, werden in eine betreuungstask—eigene Warteschlange
iibernommen. Die Ubertragung der Daten von den /V0-CE’s in die /VI-CE’s
erfolgt, sobald auf beiden Seiten CE’s vorhanden sind. Die Stationen arbeiten
nach dem FIFO—(First In/First Out) Prinzip, d. h. die zuerst erfolgte Ausgabe
an eine /V0-Datei wird als erste Eingabe von der gleichen /VI-Datei gelesen.

/VI und /V0 bilden ein Instrument zur synchronisierten Task-Kommunikation.
Erzeuger kénnen ihre Daten zu einem beliebigen Zeitpunkt in die Datenstation
/V0 schreiben und ohne Unterbrechung weiterarbeiten; auch eine Terminierung
des Erzeugers fiihrt nicht zum Datenverlust. Verbraucher konnen jederzeit Da-
ten von /VI anfordern, werden aber bei gesetztem Waitbit (das ist die Regel)
bis zur Erfiillung der Eingabeanforderung angehalten.

Z. B. kénnen Compiler und Lader iiber /VI und /VO verbunden werden, um
das Compilat nicht als (speicher— oder floppy—) residente Datei abzulegen.

Bedieninterface:

Die Stationen heiflen /VI und /V0, der Dateiname kann einen Path enthalten.
Es konnen beliebig viele Dateinamen gleichzeitig verwendet werden. Dazu 2
Beispiele:

LOAD /VI/Loader; PEARL ...>/V0/Loader
RM /V0O/Mist (wenn /VO/Mist iiberfliissig ist)

PEARL-Programm:

Systemnamen sind /VI (nur Eingabe) und /V0 (nur Ausgabe). Wird kein Fi-
lename angegeben, so wird der am weitesten rechts stehende Nutzername ver-
wendet; wird kein Nutzername angegeben, so wird der Filename ,,—“ eingesetzt.

414 6.10 Datenstationen VI, VO

Ein Beispielprogramm:

SYSTEM;
PRODUCE: /VO/mypipe ->;
CONSUME: /VI/mypipe <-;
PROBLEM;
SPC PRODUCE DATION OUT ALPHIC CONTROL(ALL);
SPC CONSUME DATION IN ALPHIC CONTROL(ALL);

T1: TASK;

éﬁf ... TO PRODUCE BY ...;
END;-'
T2: TASK;

ééf ... FROM CONSUME BY ...;

END;

6.11 Datenstation XC 415

6.11 Datenstation XC

Zu dieser Station gehort die Task #XCMMD, die die Betreuung der Ausgabe-
schlange (prioritétsgeordnet) iibernimmt. Mit dem an dieser Station eintreffen-
den Text wird das Bedieninterface beschickt, die Kommandos werden also auf
der Prioritéitsebene der Task #XCMMD ausgefiihrt, sofern nicht Subtasks gebildet
werden. Die an der Station eintreffenden Sétze sollten jeweils mit CR oder LF
abgeschlossen werden. Leere Sétze haben keine Wirkung.

Bedieninterface:
Name der Station ist /XC. Ein hinzugefiigter Filename wird zwar in die Verwal-
tung iibernommen und erscheint beim S—-Befehl des Bedieninterfaces, er nimmt

aber auf den Ablauf keinen Einflu8.

Beispiel: COPY ...>/XC/

PEARL-Programm:
Systemname ist /XC. Wird kein Filename zugefiigt, so wird der Filename ,,-“
eingesetzt. Wie beim Bedieninterface hat der Filename jedoch keine Wirkung

auf den Ablauf. Ein Beispiel:

SYSTENM;
BEDIEN: XC;

PROBLEM;
SPC BEDIEN DATION OUT ALPHIC CONTROL(ALL);
TT: TASK;
PUT ’UNLOAD TEST’ TO BEDIEN BY A,SKIP;
Zum Thema ,,ausfithren von Bedienbefehlen“ siehe auch die Anmerkungen zur

Shellsprachanweisung EXEC auf Seite 90 oder die Erlauterungen zum PEARL-
Unterprogramm CMD_EXW im Abschnitt 5.7.16 auf Seite 350.

416 6.12 ProzeBinterrupts

6.12 Prozeflinterrupts

RTOS—-UH verwaltet maximal 32 Prozessinterrupts, die eine hohe zeitliche
Auflésung ermdoglichen, da die Interruptroutine typischerweise in weniger als
100pus durchlaufen werden kann. Fiir einige Implementierungen von RTOS—
UH gibt es fest zugeordnete Leitungen zu einzelnen Bits des Interruptbitmu-
sters. Diese Zuordnungen entnehme man den Hardwareunterlagen.

Ein Interrupt wird in RTOS—UH nur wirksam, wenn sein zugehoriges Bit in

der ,ENABLE“—Maske des Systemes gesetzt ist. Bei einem Kaltstart von RTOS—
UH werden zunéchst alle Prozessinterrupts abgeschaltet.

Bedieninterface:

Siehe Anweisungen ENABLE, DISABLE, TRIGGER und WHEN.

PEARL—Programm:

Systemname ist EV(heznum8) . Das Bitmuster heznums gibt an, auf welche Bits
reagiert werden soll. Ein Beispiel:

SYSTEM;
Limit: EV(00000006) ;

PROBLEM;
SPC Limit INTERRUPT;
TS: TASK;
WHEN Limit ACTIVATE XYZ;

Sowohl das Interruptbit 00000002 als auch das Bit 00000004 fiithren jetzt zur
Aktivierung von XYZ (logisches 'oder’).

Tip

Mit Hilfe der TRIGGER-Anweisung kann die Wirkung eines dufleren
Ereignisses exakt simuliert werden, da systemintern die gleichen
Programmteile angestofien werden.

6.13 Einbindung eigener ProzeBinterrupts 417

6.13 Einbindung eigener Prozeflinterrupts

Der Nutzer schreibt eine Interruptroutine und versorgt den Interruptvektor so-
wie die sogenannte ,Malfunction® (s. dazu Extrabeschreibung ab Seite 611)
mit Hilfe einer Task oder des GO—Befehles. Dabei miissen genau die angegebe-
nen Register gerettet werden, da sonst der Riickfallmechanismus zum Absturz
fithren kann.

Der Anschlufl konnte bei einem 68k-Prozessor etwa wie folgt aussehen:

DC.L 0,0 Fuer RTOS-Lader !

DC $0010 Modulkopf »

DC.B ’Prozir’ Name des Modules ’’
A e *
IID EQU $7FE Interrupt-identifier *
IRVEC EQU Y Vector-link je nach Hardwarex
TERV OPD $A010 Terminate and vanish *
*.... Hier Einstieg fuer ’G0’-Befehl *

MOVE.L =IRP,IRVEC Einsetzen

TERV ’GOTO’ -Subtask killen.
e *

DC IRPE-IRP Anschluss zu Fehlerrueckfall*

IRP MOVE IID,-(A7) Save old Interruptidentifierx
MOVE =IRVEC,IID For any malfunction-process *
MOVEM.L D1/D6/D7/A1,-(A7) ist vorgeschrieben!!*
*

Interruptbitmuster vom Coupler lesen
und den Interruptrequest des Couplers
zuruecksetzen (IR-Ursache beseitigen).

Triggerbitmuster nach D1.L schaffen.

* ¥ ¥ X X %

MOVE.L =$00001000,D1 Bitmuster fuer EV
MOVEA.L $80E,A1 Zieladresse innerhalb RTOS
JMP (A1) Zum Systemkern
¥.... Malfunctionc ittt iiinnnnnn.
IRPE MOVEM.L (A7)+,D1/D6/D7/A1 Reload registers
MOVE (A7)+,IID Rueckladen des Interrupt-ID
RTE Rueuckfallabschluss

* X X X ¥ ¥ * x

* ¥ ¥ ¥

Durch einmalige Exekution von GO auf den Platz (Ladeadresse+$10) wird
die neue Prozessinterruptbehandlung aktiviert. Dies ist die platzsparendste
Losung, bequemer wiire es, eine richtige Anschlufitask zu schreiben und die-

418 6.13 Einbindung eigener ProzeBinterrupts

se namentlich zu starten.
Hinweis

Nach Abort/Reset wird dieser Anschlufi wieder aufgehoben, es
muf also ein erneuter GO—Befehl abgesetzt werden.

Vor dem Entladen des angeschlossenen Interruptcodes mufl umgekehrt das alte
Link wieder hergestellt werden, eben z. B. mit Abort. Fiir dauerhafte Son-
derbehandlung wird eine Einbettung in den EPROM-Code empfohlen. Siehe
dazu Beschreibung der Scheibe 14, Seite 654. In diesem Fall dndert sich am
Code der Interruptroutine nichts, lediglich der Vektoranschlufl wird durch die
Scheibe automatisiert.

Bei den RISC-Versionen von RTOS—UH (PowerPC) sieht der Mechanismus
in der Struktur ganz dhnlich aus. Dort gibt es jedoch keine Vektorinterrupts.
AuBlerdem ist die Hardwareumgebung vor dem einen (!) Interrupteingang des
Prozessors je nach Prozessorboard sehr unterschiedlich. Die Vektorinterrupts
der 68k-Welt werden in einem Implementierungsmodul nachgebildet. Eine uni-
verselle Darstellung an dieser Stelle ist zur Zeit wenig sinnvoll, bitte informieren
Sie sich zu gegebener Zeit bei uns.

Kapitel 7: Der RTOS-UH Assembler

7.1 Allgemeine Eigenschaften

RTOS-UH verwendet seit der Integration der RISC-Prozessoren (PowerPC)
eine prozessorunabhéngige Maschinensprache, der wir den Namen ,, T-Code“ ge-
geben haben. Niemand sollte iiber diese neue Philosophie erschrecken: Bisheri-
ge 68k-Maschinenprogramme kénnen natiirlich in der 68k-Version unveréndert
weiterbenutzt werden! Erst wenn man diese 68k-Programme auf den PowerPC
portieren mochte, sollte man sich mit dem T-Code beschiftigen. Das ist kein
grofler Aufwand, denn der T-Code unterscheidet sich nur minimal von der 68k-
Assemblersprache. Oft kann man komplette 68k-Programme sogar ohne Ande-
rungen als T-Code verwenden.

Zur Zeit existieren fiir den T-Code 2 Ubersetzer:

e Der T-Code-Ubersetzer fiir den 68k ist durch kleine Erweiterungen aus
dem 68k-Assembler entstanden und ersetzt diesen vollstéindig. Der alten
Gewohnheit folgend nennen wir ihn weiterhin ,,68k-Assembler*.

e Der T-Code-Ubersetzer fiir den PowerPC ist ein neues Produkt, ein echter
,, Transferassembler®. Der zugehorige Bedienbefehl ist TAPP, ein Acronym
fiir Transfer- Assembler PowerPC.

Alle Assembler sind virtuell codiert, sie verhalten sich daher unabhéngig von
der Gastmaschine in allen Implementierungen in gleicher Art und Weise. Den
68k-Assembler gibt es in zwei unterschiedlich leistungsfdhigen Varianten: Die
»2MAXI“- ist gegeniiber der ,, MINI“-Version um die Befehle des 68020/68881 er-
weitert. Der Transferassembler TAPP entspricht beziiglich Befehlsumfang und
Adressierungsarten der Mini-Version.

Ausgegeben werden S-Records in einem gegeniiber dem Original (Motoro-
la) erweiterten Format. Die Ausgabe ist abgestimmt auf das PEARL-System
RTOS-UH und dort bindefiihig. Bei entsprechender Selbstbeschrinkung (kei-
ne relativen Langadressen, keine globalen Symbole) ist jedoch Motorola—
Kompatibilitat erreichbar.

Bei der Codierung richte man sich nach dem Hardwarereference Manual von
Motorola fiir den 68k. Man beachte dabei, dafl die Immediateadressierung durch
=" statt ,#“ spezifiziert werden muf.

419

420 7.2 Programmzeilenautbau

Der Assembler benotigt 2 Durchldufe. Das Quellprogramm mufl zweimal an-
geboten werden, wenn die Quelldatei nicht ,riickspulbar® ist, es sei denn, der
Assembler arbeitet im ,,automatic scratch—-pad“—Mode, bei dem er selbst eine
Zwischendatei anfertigt. Die Betriebsparameter werden iiber das Bedieninter-
face besetzt:

CO /Dew/File Senke fiir die S—Records.

L0 /Dew/File Senke fiir die Liste mit Zeilennummer und Hexcode.
Auch bei LO NO werden die fehlerhaften Zeilen aufgelistet.

SC /Dev/File Scratch—Device. Ist die Input—Datei riickspulbar, so mufl SC nur
angegeben werden, wenn eine neue Quellendatei erstellt werden soll. Wenn
SC angegeben ist, so wird es in jedem Fall benutzt. Bei SC NO muf} bei nicht
riickspulbaren Dateien der Quellcode zweimal angeboten werden.

SI /DEV/FILE Eingabe-Datei.

Bei Betrieb unter RTOS—UH kann zusétzlich noch der Speicherbereich und/-
oder die Bearbeitungsprioritdt angegeben werden.

7.2 Programmzeilenaufbau

Jede Zeile enthélt entweder eine Anweisung an den Assembler oder beschreibt
einen Maschinenbefehl. Sie zerfallt in 4 Sektionen:

Labelfeld Operationsfeld Operandenfeld Kommentarfeld.

Mehrere Anweisungen pro Zeile sind nicht zugelassen. Als Feldtrennung wird
die Liicke (mind. 1 Blank), bei Befehlen, die mit und ohne Operand auftreten
konnen, ein Block > 10 Blanks benutzt.

7.2.1 Labelfeld

Das Feld ist leer (mind. 1 Blank) oder enthilt ein max. 24 Zeichen langes
»,Labelsymbol“. Solche , Labels* konnen auf vier Arten definiert werden:

1. In Spalte 1 bedeutet ,,~“: Das folgende Symbol wird als globales
PEARL90-Symbol definiert und ist dem Lader spéter in dieser Kategorie
namentlich bekannt. Weitere Behandlung wie unter 3.

2. In Spalte 1 bedeutet ,,>“: Das folgende Symbol wird als allgemeines glo-
bales Symbol definiert und ist dem Lader spater namentlich bekannt. In
der alten PEARL80-Welt wurden auch vom Compiler generierte PEARL-
Globals dieser Kategorie zugeordnet. Weitere Behandlung wie unter 3.

7.2 Programmzeilenaufbau 421

3. In Spalte 1 steht ein Buchstabe oder das Buchstabenersatzzeichen #. Es
wird ein bis zu 24 Zeichen langes Symbol definiert und ihm der Wert
des Location—Counter (REL oder ABS) zugewiesen. Danach darf ein : fol-
gen, muf} aber nicht — eine Feldtrennung geniigt. Zwischen Grof- und
Kleinschreibung wird bei den Symbolen unterschieden.

4. Spalte 1 enthélt ein Leerzeichen. Das Symbol darf weiter hinten im Feld
beginnen, aber es muf} das Zeichen : folgen, damit erkennbar ist, daf} kein
OP-Code gemeint sein kann.

Innerhalb des Symboles sind Ziffern erlaubt.

7.2.2 Operationsfeld

Im Operationsfeld wird zwischen Grof3- und Kleinschreibung nicht unterschie-
den. Es enthélt eine der folgenden Anweisungen:

1. Semikolon

Die Zeile dient nur zur Definition eines Labels und enthélt keinen Ope-
rationscode. Wegen des freien Anweisungsaufbaues wiirde bei einfachem
Weglassen des Operationscodes sonst ein eventueller Kommentar als Be-
fehl interpretiert. Das Semikolon ist nicht erforderlich, wenn die Zeile
dahinter leer ist.

2. Bedingungsanweisung fiir Assembler

Diese beginnen mit einem Punkt, dahinter folgt einer der Mnemos IF,
ELSE oder FIN. Nur wenn der Ausdruck hinter IF zur Assemblierzeit(!)
einen Wert ungleich Null ergibt, wird der folgende Text vom Assembler
bearbeitet. Mit dem ELSE Zweig kann der komplementire Fall kodiert
werden.

Mit der bedingten Assemblierung kénnen zur Ubersetzungszeit Source-
textabschnitte ausgeblendet werden, dieses geschieht mit den angegebe-
nen Schliisselworten. Die ausgeblendeten Sourcetextabschnitten werden
auch in der LIST-Ausgabe unterdriickt. Die auszulassende Lénge des
Sourcetextes ist nicht begrenzt.

Syntax: .IF expr.
... Anweisungsfolge 1
.ELSE
... Anweisungsfolge 2
.FIN

422

7.2 Programmzeilenaufbau

Die Expression wird zur Ubersetzungszeit ausgewertet und in Abhingig-
keit von ihrem Wert die entsprechende Anweisungsfolge bei der Uberset-
zung berticksichtigt. Falls der .ELSE-Teil leer ist, kann das Schliisselwort
.ELSE weggelassen werden.

ezpr. = 0 der .ELSE-Zweig wird bei der Ubersetzung beriicksichtigt.
expr. # 0 der .IF-Zweig wird bei der Ubersetzung beriicksichtigt.

2 Beispieltexte dazu:
source EQU 1

Nur die Anweisung MOVE.B

.IF source (A0)+,D0 wird hier fir die

MOVE.B (A0)+,DO Codeerzeugung beriicksich-
-ELSE tigt, weil source=1 ist.
MOVE.B DO, (AO)+
.FIN

S1 EQU 1

S2 EQU 1

MOVE.B (A0),DO wird nicht

] IF) S1-92 beriicksichtigt, da die Expres-
MOVE.B (AO),DO sion gleich 0 ist.
.FIN

Eine Schachtelung dieser Strukturen ist zuléssig. Am Ende des Program-
mes muf} natiirlich die Anzahl der IF mit der Anzahl der FIN iiberein-
stimmen. Vorsicht: Liegt die END-Direktive im abgeschalteten Bereich, so
bricht der Ubersetzer mit ,end of input-file“ ab!

Prozessorswitch

Um Anweisungen optimal an den jeweiligen Zielprozessor anpassen zu
konnen, kam mit dem T-Code eine Umschalteméglichkeit, die in etwa
den Bedingungsanweisungen entspricht, jedoch als Argument spezielle
Schliisselworte verwendet. Es gibt folgende Umschalter:

.IF_PROCTYPE processorname
.IF_TATYPE processorname

Der Wirkungsbereich kann wie bei den normalen IF mit .ELSE unter-
gliedert werden und endet wie diese mit dem .FIN.

Als processorname sind zur Zeit folgende Strings zugelassen:

7.2 Programmzeilenautbau 423

MPC601 oder MPC604 identisch, ganze PowerP C-Familie
M68K ganze 68xxx-Familie

IF_PROCTYPE:

Wenn beim .IF_PROCTYPE vom Transferassembler festgestellt wird, dal
er fiir die fragliche Maschine processorname kodiert, so erfolgt eine Um-
schaltung in den ,native mode“ des Zielprozessors mit der zu dessen As-
semblersprache gehorender Syntax. Erst beim passenden .ELSE bzw.
.FIN wird wieder in die T-Code-Sprache zuriickgeschaltet. Stimmt der
Prozessorname nicht mit der tatséichlichen Zielmaschine iiberein, so wird
der .IF_..-Zweig ignoriert.

Mit dieser Option kann man hochoptimierten prozessorspezifischen Kode
erzeugen. Sie wird an einigen Stellen des Systemkernes, etwa beim Pro-
zessumschalter, benutzt. Ein Umschalten von der ersten Programmzeile
bis zum Ende verwandelt z.B. den PowerPC-Transferassembler in einen
reinen PowerPC-Assembler.

IF_TATYPE:

Wenn der ausfithrende Transferassembler fiir den angegebenen Zielpro-
zessor kodiert, so wird das im .IF-Zweig Stehende transferassembliert,
sonst wird es ignoriert. Eine Mode-Umschaltung findet nicht statt. Damit
kann man gewissen Prozessoreigenheiten Rechnung tragen, dabei jedoch
weiterhin in T-Code kodieren.

INCLUDE-Anweisung
Mit einem Statement der beispielhaften Form
.INCLUDE /HO/SOURCE/X1.AS

kann ein Quellfile an Stelle der Zeile eingefiigt werden. Es ist nur die Sub-
stitution kompletter Zeilen moglich. Hinsichtlich der Méglichkeiten beim
Filezugriff wird hier auf die Beschreibung beim Compiler verwiesen. Le-
sen Sie dazu bitte ab Seite 288 nach. Da der gleiche Unterbau (VCP)
auch beim Assembler benutzt wird, gelten alle Angaben (relative Posi-
tionierung etc.) einschlieBlich der Markierung der Zeilennummern auch
beim Assembler.

Hardware-Instruktion

Alle Mnemos der Motorola 68k Hardwarebeschreibung sind zugelassen.
Eine Langensperzifikation (.L, .B, .W) ist nur hinter solchen Mnemos zuge-
lassen, bei denen iiberhaupt eine Wahlfreiheit besteht. Fehlt die Langen-
angabe, so wird die dem Mnemo eingeprégte Linge — z. B. .L bei LEA —
oder .W bei Wahlfreiheit substituiert. Bei dem Befehl MOVE mufl daher im

424

7.2 Programmzeilenaufbau

Ausnahmefall MOVE ...,USP die Lange MOVE.L ...,USP explizit angege-
ben werden, da sonst ein Léngenfehler diagnostiziert wird. Bei Sprung-
befehlen (BRA, BGE, BPL etc.) ist die Angabe .L, .S oder .B mdoglich. Sie
nimmt dem Assembler die Wahlfreiheit bei der Codierung dieser Befehle.

Alle Hardware—Befehle werden auf geraden Positionszihlerstand gesetzt,
so kann z. B. nach einem DC.B vom Assembler automatisch ein nicht be-
setztes Byte eingefiigt werden, wenn der nachfolgende Befehl eine gerade
Adresse verlangt.

6. Virtueller PEARL-Laufzeit—Befehl (Hyperprozessor)

Diese Instruktionen haben den folgenden Aufbau
V... 0P1,0P2,0P3,0P4

Dabei steht ... fiir eine max. 3-stellige Dezimalzahl im Bereich 0. .. 255.
Es sind 0...4 Operanden moglich, deren Syntax z. T. von der der realen
Befehle abweicht (s. u.). Gleiches gilt bei Verwendung eines mit OPD.V
definierten virtuellen Benutzermnemos.

Assembler—Direktive

Dies sind Anweisungen an den Assembler, zur Assemblierzeit etwas be-
stimmtes zu tun. Solche Anweisungen erzeugen in der Regel keinen
ausfithrbaren Maschinencode. Die Direktiven finden Sie ab Seite 427 ge-
nauer beschrieben.

Aufruf eines vorher definierten Formates

Statt der in den meisten Assemblern zu findenden Makrodefinition gibt es
in den RTOS—UH-Assemblern eine sogenannte Format-definition. For-
mate beschreiben Bauschablonen fiir Bytestrings. Am Ort des Formatauf-
rufes konnen bis zu 9 Parameter mitgegeben werden, die nicht als Text
(wie bei den primitiveren Makros) sondern mit ihren numerischen Wer-
ten den Bau des Bytestrings steuern. Eine allgemein verfiighare Format-
Bibliothek ermoglicht z.B. das Generieren von Prozedurképfen von as-
semblercodierten PEARL90-Unterprogrammen usw. Die Kodierung der
Formatdefinitionen wird auf Seite 432 beschrieben.

7.2.3 Operanden—Feld

Die Adressierungsarten werden kleinlich mit den Hardwaremdoglichkeiten ver-
glichen. Fehlerdiagnose: MODE-ERROR. Es gibt einige Besonderheiten bei den
Adressierungsarten:

Zur Verwendung in Hyperprozessorbefehlen und zur besseren Lesbarkeit nor-
maler Befehle wurden folgende Abkiirzungen eingefiihrt:

425

7.2 Programmzeilenaufbau

Die Adressierungsart label(A4) ist ersetzbar durch label. T
Die Adressierungsart label(A5) ist ersetzbar durch label.X

Bei MOVEM ist eine Ordnung der Registerliste von DO in Richtung A7 zwingend
vorgeschrieben (Schutz vor Tippfehlern).

Adr.Art Syntax Bemerkungen

Absolut—Short AE Absolut Expression

Absolut-Long AE Wenn AF in Pass 1 > $FFFF
AE.L Wertunabhéngig Long

Extern global EG Wie Abs.—Long, kein Ausdruck

Relativ—Long RE.L Rel. durch Lader. Wie 4E.L

Reg. direkt RG RG=Register-Symbol.

Indirekt Reg. (AR) AR=Adrefregistersymbol.

Predecrement -(4R) — ¢ —

Postincrement (AR)+ — ¢ —

Ind.Reg+Disp. AE(AR) AFE muf} in 16 Bit passen

Ind. A4+Disp. AE.T Task—Workspace—Adressierung

Ind. A5+Disp. AE.X Prozedur—Workspace—Adr.

Ind(Ind.A5+Disp) 4E.Z 32 Bit-end-adr. nur bei V!

Disp+AR+Ind. AE(AR,RG) .W-Index, AFE 8 Bit!

? AE(AR,RG.W) —_

” AE(AR,RG.L) .L-Index,”

PC-Relativ RE RE=REL.Expression, s. u.

PC-Rel+Ind. RE(R®) .W-Index

” RE(RG.W) — ¢ —

" RE(RG.L) .L-Index

Label AE Im ORG—-Mode. Bee, BRA, DBcc

7 RE Im RORG—Mode. ” 7 7

Immediate tt =AERE Achtung: ,=* statt ,#*!

Die mit ,x“ gekennzeichneten Adressierungen sind bei realen und bei virtu-
ellen Befehlen zuldssig. Die mit ,,v¢ gekennzeichnete Adressierung ist nur bei
virtuellen (Hyperprozessor-) Befehlen erlaubt.

426

7.2 Programmzeilenaufbau

7.2.4 Ausdriicke

AE
EG

RE

ist ein Ausdruck, dessen Wert lageunabhéngig ist
ist ein Bezug auf ein extern definiertes Symbol:
EG := >symbol oder

EG := ~symbol oder
EG := >symbol+offset. EG := ~symbol+offset.

symbol reprisentiert das iibliche max. 24 Zeichen lange Symbol.

offset ist ein nicht lageabhiingiger Ausdruck, der zur Assemblierzeit be-
rechnet werden kann. Er darf auch einen negativen Wert liefern.

Beispiel: JMP >TEST+$200

Im eigenen Programmodul definierte Globalsymbole kénnen zwar, sollten
aber nicht iiber diese Konstruktion angesprochen werden, um den Lader
zu entlasten. Um Verwirrungen mit den globalen PEARL90-Symbolen
(~-Zeichen am Anfang) zu vermeiden, empfiehlt sich die Verwendung
von internen Aliasnamen.

ist ein Ausdruck, dessen Wert von der Lage des Programmes abhéngig
ist, wobei im Adressausdruck die spitere Ladeadresse nur einfach additiv
eingehen darf. Damit ist z.B. X+Y verboten, wenn beide Symbole relativ
positionierte Objekte sind.

In beiden Typen von Ausdriicken sind Klammerungen erlaubt, ebenso die Vor-
anstellung monadischer Operatoren (+ oder -). Ausdriicke werden grundsétz-
lich mit 32-Bit Arithmetik berechnet und erst in Pass 2 auf Einhaltung der
zuldssigen Grenzen iiberpriift.

Bei AF in Immediate und DC-Anwendungen wird zusétzlich zwischen ,,logisch®
und ,,arithmetisch“ unterschieden. Ein AF ist ,logisch®, wenn in ihm minde-
stens eine Sedezimalzahl auftritt. Eventuell mufl man also die Zahl $0 addieren.
Damit ist z. B. 40126+$0 auch bei Beschrankung auf 16 Bit legal, da ,logisch*.

Elemente in Ausdriicken:

7.2 Programmzeilenaufbau 427

Dezimalzahlen 24,108637 (immer als AE)
Hexadezimalzahlen $0,$AFFE,$2CDE3
Textstrings ‘a’) AB’ xyz’ " Mist’

liefern 8,16 oder 32 bit, bei Bedarf
links mit Nullen aufgefiillt.

Symbol X,AB23 (Max. 24 Zeichen)
(kein Register!) Koénnen RE oder AFE sein.
Loc. counter = $ Ohne folgende Ziffern, ist

RE im RORG-Mode, sonst AF.

Dyadische Operatoren:

+ Addition ABS+ABS = ABS, ABS+REL = REL,
REL + ABS = REL, REL + REL nicht
erlaubt!

— Subtraktion REL—-REL = ABS, REL-ABS = REL,
ABS — ABS = ABS, ABS — REL nicht
erlaubt!

* Multiplikation nur bei zwei AFE erlaubt. Es wird in signed
32 Bit Arithmetik gerechnet.

/ Division Wie bei Multiplikation, nur AFE etc.

Die Prezedenz der Operatoren ist wie iiblich, d. h. %, / geht vor +, —. Durch
Klammerung wird die Prezedenz iibersteuert.

7.2.5 Die Assemblerdirektiven

Etliche der oben bereits erwidhnten Assemblerdirektiven benutzen Ausdriicke.
Die Bedeutung von AE und RF in der folgenden Aufstellung wurde oben bereits
erldutert.

DC Datenablage wie bei Maschinenbefehlen, aber bei
DC.B keine Positionsrundung.

DC AE,... Ablage der 16-Bit Daten (Wert AE).

DC.W AE,... Wie oben. (.W ist Defaultbesetzung).

DC.L AE,... Ablage von 32 Bit Daten mit Wert AF.

DC.L EG,... Adresse des externen globalen Symbol ablegen.

DC.B AE,... Ablage der 8 Bit Daten ohne vorherige Positions-

rundung.

428

7.2 Programmzeilenaufbau

LBL

LBL
LBL
LBL
LBL
LBL
MNE

MNE

MNE

DC.B ’str’,..
DS AE
END

END RE
EQU AE
EQU RE
EQU RG
EQU SR
EQU CCR
EQU USP
FORMAT
LOCK AE
0PD AE
OPD.V AFE
ORG AE

Ablage des Textstrings ’ str’ mit fortlaufenden A-
dressen. Das Zeichen ’ ist durch ’’ zu ersetzen.
Bsp: DC.B ’AB’’CD’,’’’’> — AB’CD’ Mischung
str' AR str’,... ist erlaubt.

Define storage, mit AFE angegebene Zahl von Bytes
freihalten. Inhalt der Bytes nach dem Laden unde-
finiert.

Ende dieser Assembliereinheit. Zwischen END und
Kommentar mind. 10 Blanks!

Riickbezug fiir RTOS—UH herstellen.

Definition von LBL mit Wert AE absolut. VOR-
SICHT: Die Eigenschaft ,logisch“ wird nicht durch
das EQU iibertragen.

Definition von LBL mit Wert RFE relativ.
Definition von LBL als Registersymbol.
Definition von LBL als Statusregister.
Definition von LBL als Condition—Coderegister.
Definition von LBL als USER-AT.

Beginn Formatdefinition. Alle folgenden Zeilen, die
mit ,,/“ beginnen, werden bis zur Endekennung zur
Definition herangezogen. Der genauere Aufbau ist
auf Seite 432 beschrieben.

Sperren bestimmter Register fiir den Transferassem-
bliervorgang, bei 68k-Zielmaschine ignoriert.

Definition des Nutzer—Mnemos (ohne Operanden)
MNE durch das 16 Bit-Wort AE.

Definition des Nutzer-Mnemos MNE als virtueller
Laufzeitbefehl. AE muf} im Bereich 0...255 liegen,
da sonst bei der spéteren Benutzung ein LIMIT-
Error erzeugt werden kann. Der so definierte Befehl
kann 0. . .4 Operanden haben und und unterliegt der
bei den V-Befehlen iiblichen Syntax.

AFE mufl in Pass 1 definiert sein, der Wert wird in den
Positionszahler geladen. Das Programm ist nun im
ABS-Mode und kann vom RTOS—UH-Lader nicht
korrekt geladen werden, sofern nicht ausschliefSlich
relativ adressiert wird.

7.3 Besonderheiten des T-Code 429

PAGE New Page. Es wird ein Seitenvorschub ausgegeben.

PRINT AFE Ist in Pass 2 der Wert von A E ungleich Null, so wird
das Ubersetzungsprotokoll ab dieser Zeile einge-
schaltet, anderenfalls wird das Listing unterdriickt.
Fehlermeldungen erscheinen aber auch dann noch

RORG AFE Wie bei ORG jedoch ist das Modul jetzt verschiebbar
RORG RE und kann korrekt vom Lader geladen werden.
MNE UNLOCK AE Hebt selektierte Registersperren fiir den Transferas-

sembler auf. Gegenteil von LOCK. Die Selektion er-
folgt mit Hilfe der Maske in AF.

7.3 Besonderheiten des T-Code
7.3.1 Problematische 68k-Befehle

Adressierungsarten:

Im T-Code sind nur die Adressierungsarten des 68000 erlaubt. Die erweiterten
Moglichkeiten, die mit dem 68020 hinzugekommen sind, wurden nicht in den
T-Code aufgenommen. Sie werden vom Mini-Assembler und vom PowerPC-
Transferassembler als Fehler erkannt und angezeigt.

Es ist wahrscheinlich, dafl PC-relative Beziige, die in der 68k-Welt so eben noch
mit einem 16-bit Verschiebungswort auskommen, auf einem RISC-Prozessor
wegen der Codeverldngerung nicht mehr in 16 Bit passen. Der .V-Zusatz (V =
Very far) hinter den Befehlen

Bcc.V, BSR.V, LEA.V und PEA.V

zwingt den Transferassembler, statt eines 16-bit langen Displacements — wie es
in der 68k-Welt geniigen wiirde — schon im Pass 1 Platz fiir ein 32-bit langes
Displacement vorzusehen. Damit der Transferassembler nicht unnétigerweise
den ldngeren Code erzeugt, sollte man nur die zuvor von ihm angemahnten
Befehle und wacklige Kandidaten mit der Option versehen. Der 68k-Assembler
ignoriert den .V-Anhang.

Maschinenbefehle:

Es sind nur die Maschinenbefehle des Nutzerprogrammiermodelles des 68000
erlaubt. Supervisorinstruktionen wie z.B. RTE werden von den reinen T-Code-
Ubersetzern als Fehler angezeigt und nicht umgesetzt.

Strukturelle Restriktionen:

430 7.3 Besonderheiten des T-Code

Wenn Programme implizit von der Lénge bestimmter Maschinenbefehle Ge-
brauch machen, weil sie z.B. PC-relativ mit Displacement im Code-Bereich
adressieren, so kann dies oft nicht vom Transferassembler erkannt werden und
es entsteht ein falsches Umsetzergebnis. Werden derart dubiose Codierungen
vom Ubersetzer erkannt (Meldung ,, peculiar coding“), so erfolgt keine Umset-
zung. Ansonsten ist es leider Aufgabe des Programmierers, solche Program-
mierverfehlungen aufzuspiiren und zu eliminieren.

7.3.2 Optimierter T-Code

Die 68k-Hardware fiihrt bei Befehlen zum Transport sowie zur arithmeti-
schen oder logischen Verkniipfung automatisch ein Update des Condition-Code-
Registers (CCR) aus. Dies ist bei den RISC-Prozessoren jedoch nicht der Fall.

Bei der Transferassemblierung eines alten unverénderten 68k-Programmes mufl
der Transferassembler diesen Update mit einer Folge von Extrabefehlen nach-
bilden. Im Transferassembler ist ein Mechanismus eingebaut, der priift, ob der
nachfolgende Maschinenbefehl nicht vielleicht selbst wieder einen neuen Inhalt
in das CCR schreibt. Ist dies der Fall, unterbleibt beim aktuellen Befehl die
Generierung von Extrabefehlen.

Dennoch wird bei iiblichen Programmen schnell eine Fiille im Grunde nutzlo-
ser CCR-Updates erzeugt, insbesondere vor allen Spriingen und Riickspriingen,
aber auch vor Befehlen wie LEA, ADDQ, SUBQ, MOVEA, DBcc usw. Gleiches gilt
vor allen Traps, Formaten und Assemblerdirektiven. Die T-Code-Syntax sieht
darum eine Moglichkeit vor, um bei jedem Maschinenbefehl explizit die Gene-
rierung des CCR-Updates unterdriicken zu kénnen. Dies geschieht durch Vor-

anstellen des Underscore-Zeichens ,,_* vor den Befehlsmnemo:
_MOVE D3,D7 Unterdriicke CCR-Update
BSR SUBROD WEeil in subro nicht gebraucht

Man kann im Protokoll (Listing) des Transferassemblers leicht erkennen, ob
bei der Generierung der Befehlssequenz der CCR-Update unterdriickt war oder
nicht: Zwischen der hexadezimalen relativen Ablageaddresse und dem Hexco-
de, der dort abgelegt wurde, wird ein ,,_“ eingestreut, wenn die Unterdriickung
aktiv war. Dabei wird nicht unterschieden, ob die Unterdriickung durch Ei-
genintelligenz des Ubersetzers oder durch Befehl des Programmierers ausgeldst
wurde.

7.3 Besonderheiten des T-Code 431

Im Sinne einer kompakten und schnellen Kodierung sollte man seine T-Code-
Programme mit Hilfe dieser Option optimieren. Der 68k-Assembler (der ein
Transferassembler fiir den 68k ist) ignoriert den Unterdriickungsbefehl.

7.3.3 Zielmaschinenkonditionierte Befehle

Diese Gruppe von Maschinenbefehlen entstand neu bei der Definition des T-
Codes. Je nach Zielprozessor wird eine hinsichtlich des Datenflusses unter-
schiedliche Maschinenbefehlssequenz (bzw. evtl auch nur ein oder kein Befehl)
erzeugt. Diese Option soll den unterschiedlichen Stackphilosophien der RISC-
und CISC-Prozessoren beim Unterprogrammaufruf Rechnung tragen.

XBSR (Zielmaschinenkonditioniert) Branch to subroutine. Bei
Ubersetzung fiir die 68k-Familie wird hier ein normaler
BSR-Befehl erzeugt. Bei Ubersetzung fiir die PowerPC-
Familie entsteht ein reiner (sehr schneller) ,Branch and
link“. Die Riickkehradresse steht dann ausschliefllich im
Link-Register und es ist Aufgabe des Programmierers,
dafiir zu sorgen, daf} sie dort sicher ist. Mit XSL kann sie
notfalls spater noch gerettet werden.

XJSR (Zielmaschinenkonditioniert) Branch to subroutine. Bei
Ubersetzung fiir die 68k-Familie wird hier ein normaler
JSR-Befehl erzeugt. Bei Ubersetzung fiir die PowerPC-
Familie entsteht ein reiner (sehr schneller) ,Branch and
link“. Die Riickkehradresse steht dann ausschliefllich im
Link-Register und es ist Aufgabe des Programmierers,
dafiir zu sorgen, dafl sie dort sicher ist. Mit XSL kann sie
notfalls spater noch gerettet werden.

XRTS Return from Subroutine. Bei 68k Prozessoren entsteht hier
ein normaler RTS-Befehl. Bei Ubersetzung fiir den Po-
werPC wird ein Branch by Link-Register generiert, d.h. der
Stack ist nicht involviert (sehr schnell).

XSL Save link on stack. Bei Ubersetzung fiir die 68k-Familie
wird hier nichts generiert, da die Riickkehradresse bereits
auf dem Stack steht. Beim Prozessor PowerPC wird der
aktuelle Wert des Link-Registers auf den Stack geschrieben.

432 7.3 Besonderheiten des T-Code

Vorsicht!

Die Ersetzung von BSR-Befehlen durch XBSR etc. darf nur in be-
sonderen Féllen erfolgen, bei denen das Linkregister weder explizit
noch implizit (z.B. durch den Transferassembler bei PC-relativer
Adressierung) zerstort wird. Sicherer — aber langsamer — ist die
Beibehaltung der Original-68k Befehle. Der PEARL-Compiler fiir
den PowerPC springt dennoch alle Unterprogramme mit XJSR an.
Folglich mufl man selbstgeschriebene Maschinenunterprogramme
fiir PEARL90 typischerweise mit XSL beginnen und mit norma-
lem RTS verlassen, wenn sie in beiden Prozessorfamilien korrekt
laufen sollen.

7.3.4 Formatdefinition

Die Formatdefinition entspricht einer Prozedurdefinition, jedoch mit der Beson-
derheit, daB diese Prozedur zur Assemblierzeit — also bei der Ubersetzung des
Assemblerquellfiles — an einer oder mehren Stellen zur Ausfithrung kommt. Das
Innenleben der Formatprozedur besteht aus einer einfachen Folge von Befeh-
len einer sehr einfachen 32-Bit Akkumulatormaschine. Diese beherrscht Befehle
zum Addieren, Subtrahieren, Segmentieren von Bitsequenzen und zur Ablage
von Daten.

Formatnamen diirfen maximal aus 6 Zeichen bestehen, die bei der Definition
aus Groflbuchstaben bestehen miissen und beim Aufruf wahlweise — wie Be-
fehlsmnemos — in Grof3- oder Kleinschreibung ansprechbar sind.

Formate kénnen bis zu 9 Parametern haben, davon kénnen die letzten beiden
— oder nur der letzte — sogenannte ,,Defaultparameter” sein. Das sind Parame-
ter, die nur bei der Definition und spéter nicht mehr bei der Benutzung des
Formates als Aktualparameter angegeben werden. Erkennbar sind die Deafult-
parameter an den umschlieSenden runden Klammern bei der Formatdefinition
(siehe Beispiel unten). Als Aktualparameter kénnen nur zur Assemblierzeit be-
rechenbare 32-Bit Ausdriicke benutzt werden. Diese kénnen entweder absolut
AE oder relativ RE sein. Bei der Definition des Formates muf dies fiir jeden
einzelnen Parameter durch die Buchstaben ,a“ oder ,r“ angegeben werden.
Beim Aufruf des Formates mufl die Anzahl der Aufrufparameter und deren
Typ exakt mit der Definition {ibereinstimmen.

7.3 Besonderheiten des T-Code 433

Formate miissen stets so gestaltet werden, daf} sie insgesamt einen Bitstring
erzeugen, dessen Lénge ein Vielfaches der Zahl 8 ist, weil Assembler und Trans-
ferassembler das Byte als kleinste Ablageeinheit verwenden. Man kann bei der
Definition durch Nachstellen von .B, .W oder .L an das FORMAT-Mnemo
angeben, ob vor Beginn der Bytegenerierung durch das Format der relative
Ablage-PC auf eine Byte-, Wort- oder Langwortgrenze positioniert werden soll.
Beim Aufruf des Formates nimmt der Assembler dann die nétige Einstellung
der Ablageadresse selbsténdig vor. Wird keine Adressjustage vordefiniert, so
verwendet der Assembler oder Transferassembler diejenige, die fiir die Maschi-
nenbefehle seiner Zielhardware vorgesehen ist. Bei Datentabellen — die in den
verschiedenen Prozessorwelten gleich aussehen miissen — wird daher die explizi-
te Angabe von .B, .W oder .L dringend angeraten. In diesem Fall ist zusétzlich
noch eine Verschiebung der Zuordnung des eventuell vor dem Format stehen-
den Labels um eine maximal 2 (dezimal-)stellige Anzahl von Bytes nach hinten
moglich:

ABCD FORMAT.L+16 ...

Test ABCD ... Test liegt 16 byte oberhalb Ablage-PC

Die mit unserem System mitgelieferten Dateiein PROCS.FOR, SUPERVIS.FOR
und GENERAL.FOR enthalten zahlreiche Formatdefinitionen, die man zum Ken-
nenlernen dieser Assembleroption verwenden kann. Hier studieren wir eine hy-
pothetische Formatdefinition zur Generierung eines Tabelleneintrages fiir eine
Tabelle, deren Eintrége jeweils aus einer 16-bit Konstanten ($AFFE), einer 5-bit
Zahl, einer 27-bit Zahl, einer 16-bit Differenz dieser Zahlen und einer relativen
32-bit Adresse bestehen:

TABLX FORMAT.W a,a,r,($AFFE) definiert Format TABLX, Wortgrenze

/ #4(16:31) lege das Bitmuster $AFFE ab.
/ #1(27:31)#2(5:31) Ablage parl 5 bit, par2 27 bit
/ #A=#O#A-#1#A(16:31) Ablage (par2-parl) in 16 bit
/ #3(R) Ablage par3 in 32 Bit relativ
/ e oder E, Ende Formatdefinition

Der Wert des in Klammern stehenden Defaultparameters kann natiirlich statt
als Konstante auch durch einen zur Assemblierzeit berechenbaren Ausdruck
dargestellt werden. Eine normale Benutzung dieses Formates wire etwa:

LABL1 TABLX 25,30,Labelb Defaultparameter wird nicht angegeben!

434

7.3 Besonderheiten des T-Code

Dieses Beispiel benutzt den bereits erwidhnten 32-Bit Akku. Mit ihm wird die
Differenz (Parameter2-Parameterl) berechnet, um anschlieflend die Bits No.
16 bis 31 abzulegen. Mit der Definitionszeile wird das Format geoffnet. An-
schliefend wird mit den Folgezeilen, die mit ,,/“ beginnen, der Formatkorper
beschrieben. Kommentarzeilen sind erlaubt, andere Assembleranweisungen soll-
ten nicht benutzt werden.

Im einzelnen sind zur Zeit folgende Operationen implementiert:

01001100 ...

#7(14:22)

#3(R)

#A=#4
#A+#5
#A-#1
#A=12
#A+4

#A-6

#A(12:29)

#A>6

#A-#$

Eine beliebige Ziffernfolge bestehend aus 0-en und 1-en
wird als Binérstring abgelegt: 10101111 legt das Byte AF
ab.

Ein Teilstring (hier Bits No. 14 bis 22) des Parameters
(hier 7) wird abgelegt. Statt der 7 kann jeder der Pa-
rameter 1 ... 9 benutzt werden. Das Bit mit der No. 0
ist das hochswertige, das Bit mit der No. 31 das nie-
derwertigste.Sollen alle 32 Bit abgelegt werden, so ist
#7(0:31) zu verwenden.

Der Parameter (hier No. 3, muf} ,,r* spezifiziert sein) wird
als 32 bit langer relativer Wert abgelegt. Ein Zerschnip-
peln von relativen Parametern ist nicht zugelassen.
Wertzuweisung: Dem Akku wird der Wert des Parame-
ters (hier No. 4) zugewiesen.

Der Parameter (hier No. 5) wird auf den Akku addiert.
Der Parameter (hier No. 1) wird vom Akku subtrahiert.
Lade Konstante (hier 12) in den Akku. Es sind nur Werte
von 0 ... 31 zugelassen!.

Addiere Konstante (hier 4) zum Akku. Es sind nur Zah-
len von O ... 31 zugelassen.

Subtrahiere Konstante (hier 6) vom Akku. Es sind nur
Zahlen von 0 ... 31 zugelassen.

Ein Teilstring (hier Bits No. 12 bis 29) des aktuellen
Akkuinhaltes wird abgelegt. Sollen alle 32 Bit abgelegt
werden, so ist #A(0:31) zu verwenden.

Es wird sichergestellt, dal der Akku eine Zahl enthélt,
die grofler ist als (hier) 6. Statt der 6 sind Zahlen von 0
... 31 zugelassen. Ist die Bedingung nicht erfiillt, so wird
bei der Ubersetzung eine Fehlermeldung (Limit-Error)
generiert.

Der aktuelle Wert des Ablage-PC wird vom Akku sub-
trahiert.

7.4 PowerPC-Assembler 435

#A%3 Das Bitmuster $80000000 wird um 3 Plétze nach rechts
geschoben auf den Akku aufaddiert. Als Argument sind
Zahlen von Null bis 31 — letzteres entspricht der Addition
einer 1 — zugelassen. Hinweis: Man kann mit mehreren
solcher Befehle ein beliebiges bis zu 32 Bit langes Bitmu-
ster addieren.

#A716 Der Inhalt des Akkus wird daraufhin gepriift, ob er in
ein Vorzeichenbehaftetes 16 Bit-Wort passt. Statt der
16 konnen Zahlen von 1 ... 31 benutzt werden. Ach-
tung, Zweierkomplement: das vorderste Bit des gewihl-
ten rechten Endes des Akkus muss identisch zu allen links
daneben stehenden Bits sein. Ist die Bedingung nicht
erfiillt, so wird bei der Ubersetzung eine Fehlermeldung
(Limit-Error) generiert.

Die Befehle konnen unmittelbar hintereinandergeschrieben oder auf mehrere
Zeilen verteilt werden. Ein Leerzeichen unterbricht den Befehlskode und schal-
tet auf das Kommentarfeld der Zeile um.

Man kann relative Ausdriicke ebenfalls in den Akku laden, das Relativ-Attribut
geht dabei zun#chst verloren. Allerdings kann nach einer Rechnung der Akku
mit #A(R) als relativierter Zeiger (32 bit) abgelegt werden. Das Ablegen von
Schnipseln eines solchen lageabhéngigen Akkuinhaltes macht jedoch im Nor-
malfall keinen Sinn, da spéter beim Laden keine Korrektur durch den Lader
erfolgen kann. Dagegen kann es sehr wohl sinnvoll sein, mit Hilfe des Akkus
die Differenz zweier relativer Parameter oder die Distanz einer relativen Adres-
se zum Ablage-PC (#$) zu berechnen und als Kurzbitzahl abzulegen, weil das
Ergebnis tatséichlich lageunabhéngig ist.

Die Formatmaschine kodiert assemblerintern extrem kompakt. Selbst lingere
Formatdefinitionen belasten den Assembler kaum. Leider ist diese Kompaktheit
auch der Grund fiir die Beschriankungen bei den Konstanten etc. Der Befehls-
satz wird in zukiinftigen Versionen sicher noch erweitert.

7.4 PowerPC-Assembler

Der PowerPC-Assembler ist im Transferassembler TAPP enthalten und wird
durch die Anweisung

.IF_PROCTYPE MPC601 oder
.IF_PROCTYPE MPC604

aktiviert. Seine Syntax richtet sich nach dem PowerPC User’s Manual von
IBM und Motorola. Man beachte die dort definierte gegeniiber der 68k-Welt
andersartige Reihenfolge von Quellen- und Senkenangaben.

436 7.6 FPU-Befehle und Maxi—Version

Soweit sinnvoll, werden auch die vom 68k-Assembler bekannten Direktiven un-
terstiitzt, z.B. EQU,FORMAT und DC. Fast alle Kurzmnemos aus dem User’s Ma-
nual (z.B. fiir bedingte Spriinge) wurden ebenfalls implementiert. Zusétzlich
akzeptiert der Assembler — wo sinnvoll — auch eine 2-Register Notation:

add r5,r30 ist gleichwertig zu
add r5,r5,r30

* ebenso ist
addi 1r6,=12 gleichwertig zu

addi r6,r6,=12 etc.

Nicht implementiert wurden die Befehle der POWER-Architektur aus dem
MPC601-User’s Manual.

7.5 Tabellenkapazitit

Unsere Assembler bzw. Transferassembler bendtigen fiir jedes Symbol mit einer
Lénge von bis zu 6 Zeichen 14 Bytes Listenplatz. Lingere Symbole verbrau-
chen entsprechend mehr. Von dem angebotenen Workspace (z. B. SZ=zz unter
RTOS-UH) gehen zusitzlich noch einmal ca. 600 Bytes fiir Pufferung etc.
verloren. So kann z. B. mit $Z=6000 auf der 68k-Variante ein Programm mit
bis zu 1700 Symbolen {ibersetzt werden.

Der Transferassembler fiir den PowerPC verbraucht deutlich mehr Listenplatz
als die 68k-Version. Defaultméfig fordert er darum stets volle 64 kByte an. Bis
heute reichte dieser Speicher noch bequem selbst fiir unsere grofiten maschi-
nenkodierten Module, wie z.B. Window-Manager und Multiwindow-Editor.

7.6 FPU-Befehle und Maxi—Version

Die , MAXI“—Version des 68k-Assemblers kann zusétzlich zur kleinen Version
und im Gegensatz zu den Transferassemblern den vollstdndigen Befehlsum-
fang inklusive der FPU-Befehle der MC680xx-Familie verarbeiten. Auch dabei
wurde die Befehls—Syntax der Motorola Handbiicher (mit den bekannten Ab-
weichungen) zu den einzelnen Prozessoren zu Grunde gelegt.

Will man die FPU-Befehle des PowerPC benutzen, so mufl der Transferassem-
bler TAPP in den native PowerPC-Mode geschaltet werden.

Achtung

Bei Benutzung der FPU-Befehle in Assemblercodierten Tasks
muf} in jedem Fall eine Hilfszelle im Taskkopf gesetzt werden,
damit der ProzeBumschalter des Betriebssystemes die benutzten
FPU—-Register bei einem Taskwechsel rettet!

7.6 FPU-Befehle und Maxi—Version 437

Diese Hilfszelle ,FPUSFL“ enthilt in besonderer Codierung die Anzahl (Po-
werPC) oder Selektion (68k) der benutzten FPU-Register. FPUSFL befindet
sich im Taskkopf und ist ein Byte lang. Den Offsetwert von FPUSFL wird
durch Inkluden der Datei COMEQU automatisch richtig gesetzt. (Nur falls man
die Datei nicht zur Hand hat: zur Zeit der Drucklegung hatte sie fiir beide
Prozessorfamilien den Wert $45).

FPUSFL-Belegung in der 68k-Familie. ‘

Fiir jedes zu rettende FPU-Register mufl ein Bit in dieser Hilfszelle gesetzt
werden. Zuordnung der einzelnen Bits zu den FPU-Registern:

Bit7 = FPO, Bit6 = FP1 ... Bit0 = FP7

FPUSFL-Belegung in der PowerPC-Familie.

Die Rechenformel lautet 8 + 4 x Anzahl

FPUSFL=$00 FPU wird nicht benutzt.
FPUSFL=$0C FRO wird benutzt.
FPUSFL=$10 FRO und FR1 werden benutzt.

FPUSFL=$88 FRO ...FR31 werden benutzt.

Werte auflerhalb des obigen Bereiches sind unbedingt zu vermeiden,
da sie zu Prozeflumschalterfehlern fithren kénnen!

Die Hilfszelle darf in einer assemblercodierten Task dynamisch verédndert wer-
den, es mufl nur darauf geachtet werden, dafl die Besetzung immer der aktuell
benutzten Anzahl FPU-Register entspricht.

Werden in assemblercodierten PEARL-Unterprogrammen FPU-Befehle ver-
wendet, so mufl in dem PEARL-Modul, in dem die aufrufende Task definiert
ist, der Ubersetzungsmode des Compilers so eingestellt sein, daf die FPU einge-
schaltet ist. Dabei miissen alle irgendwie benutzten FPU-Register freigegeben
wurden. Sonst kénnen sporadische und damit sehr schwer auffindbare nume-
rische Fehler wegen der Nichtwiederkehr von Registerinhalten nach Kontexts-
witchen auftreten!

Benutzen Sie die FPU—-Befehle nur bei Vorhandensein einer FPU in ihrem Sys-
tem, sonst wird die Task an der entsprechenden Stelle mit einem Fehler ange-
halten.

438 7.6 FPU-Befehle und Maxi—Version

Beispiel: assemblercodierte Task

.INCLUDE COMEQU Symbolische offsets laden
.if _proctype MPC604 gef. in PowerPC mode
FPMSK EQU $10 fr0 .. frl
.else ende PowerPC Zweig
FPMSK EQU $CO FPO und FP1
.fin
*... Transferassemblierbare Anweisungen
MOVEA.L TID,A1 Hole Task-pointer
_MOVE.B =FPMSK,FPUSFL (A1) Setze FPU-Zelle
*... Die ersten 2 FPU-Register sind nun benutzbar
.if _proctype MPC604 gef. in PowerPC mode
fadd frO0,fri1 2 register freigegeben
.else ende PowerPC Zweig
FADD FPO,FP1 2 register 68k

.fin

7.6 FPU-Befehle und Maxi—Version

439

Feststellen der Systemkonfiguration (nur 68k):

Name Adresse | Wert | Bedeutung
FPUFLG | $8CE.B 0 | 68881/2 nicht vorhanden
$FF | 68881/2 im System vorhanden
F68020 | $8CF.B 0 | 68000, 68010, 68008 Prozessor
S$FF | 68020/30/40/60

Bitte benutzen Sie moglichst die aus dem file COMEQU stammenden
Symbole statt der Konstanten! Auch wenn wir eine Lageverinde-
rung zentraler Objekte wenn irgend moglich vermeiden, ist diese
Vorgehensweise erheblich sicherer und vereinfacht die Verwendung

Wichtiger Hinweis

Threr Software auf den verschiedenen Hardwareplattformen.

440

7.7 S—Records

7.7 S—Records

Die vom Assembler erzeugten S—Records bestehen aus einer Folge von ASCII-
Zeichen, beginnend mit einem ,,8“, und haben prinzipiell folgenden Aufbau:

Sxyyaaaaaadddddddd...ddddcs
Hierbei bedeuten

z: Typkennung. Verwendet werden
0: Startrecord
1: Datenrecord
2: Datenrecord
3: Datenrecord

9: Endrecord

yy: Byteangabe. Angegeben wird die Anzahl der im Record noch fol-
genden Byte (nach ASCII-Hex —> bindr Wandlung) einschliefllich der
Checksumme.

aaaaaa: AdreBangabe. RTOS—UH verwendet nur relativierte Adressen,
d. h. agaaaa ist relativ zur Ladeadresse des S—Record—Files gerechnet.
aaaaaa umfaft 2*(z+1) Zeichen, d. h. S1-Records konnen 2 Byte Offset,
S2-Records 3 Byte Offset und S3—Records 4 Byte Offset ausdriicken.

dddd. . .: Datenbereich. Die Daten werden in hexadezimaler Form als
ASCII-Text angegeben. Bei RTOS—UH koénnen hier auch Zeichen auf-
treten, die der hexadezimale Darstellung nicht entsprechen. Es handelt
sich dann um Laderdirektiven o. &.

cs: Checksumme. Die Checksumme wird durch ein Byte derart gegeben,
das die Addition aller Bytes des S—Records, beginnend bei der Léngen-
angabe und die Checksumme einschliessend, ohne Beriicksichtigung der
Uberliufe $FF ergibt.

Es enthalten unter RTOS—-UH

S0—Records: im Adrefifeld die Lénge des Datenbereiches, der zwischen SO-
und S9-Record von Daten—Records beschrieben wird. Der Datenbereich kann
interne, zusétzliche Informationen enthalten.

Daten—Records: im Adrefifeld die relative Startadresse des von diesem Record
beschriebenen Datenbereiches; im Datenbereich die dazugehérigen Daten sowie
ggf. Lader—Direktiven.

7.7 S—Records 441

S9—Record: enthilt nur interne Informationen.

442 7.8 Assembler—Fehlermeldungen

7.8 Assembler—Fehlermeldungen

Fehlermeldungen werden zeilenweise eingebettet und durch einen Stern un-
ter dem inkriminierten Zeichen markiert, an der Stelle, an der der Assembler
die Abweichung erkennen konnte. Zusétzlich wird am linken Rand dieser Zeile
<ERROR> eingefiigt, um die fehlerhaften Zeilen in einem Listing schneller auf-
finden zu koénnen.

Im Fehlerfalle wird — wann immer moglich — ein NOP-Code eingesetzt um
ggf. nach dem Laden korrigieren zu kénnen. Dies ist allerdings bei bestimmten
Fehlern, die erst im Pass 2 erkannt werden kénnen, nicht moglich.

BYTEfFRACTION.‘ Ein FORMAT wurde so definiert, dafl die Ge-
samtzahl generierter Bits nicht durch 8 teilbar
ist.

DEF-ERROR. Falsch definiert. Z. B. Vorwirtsbezug bei EQU

oder zu spét als Register, d. h. nachdem das
Symbol bereits benutzt wurde.

DC-OVFL. Es sind zu viele Ausdruecke innerhalb einer

DC-Direktive. Auf mehrere DCs aufteilen.

’ DOUBLE-DEF. ‘ Das Symbol wurde mehrmals definiert.
FORW.REF. Vorwiartsbezug hier nicht erlaubt.
’FPfFORMfERROR. ‘ In einem 68k-FPU-Befehl wurde ein unzulés-

siges (Daten-)Format angegeben.

’ID,TOO,LONG. ‘ Der Bezeichner ist ldnger als erlaubt.

IF/FIN. Strukturfehler bei Benutzung von .IF oder

.ELSE bzw. .FIN.

LENGTH. Operation und Lénge harmonieren nicht.

7.8 Assembler—Fehlermeldungen 443

LIMIT. Grenzwert des Ausdrucks iiberschritten, oder
z. B. durch Null dividiert.

LR_LOCKED Der Transferassembler konnte diese Anwei-
sung nicht iibersetzen, weil das Linkregister
benétigt wird, aber durch ein LOCK vorher
blockiert wurde.

MODE Adressierungsart ist hier nicht erlaubt.

’NO,FORMAT,OPEN. In Spalte 1 steht das Zeichen ,,/“, aber es ist
kein FORMAT mehr geoffnet.

NOT-IMPL. Nicht implementierter Befehl oder Konstrukt.

’Pl /2-MATCH. ‘ Label im Pass 2 entdeckt, das im Pass 1 noch
nicht vorkam. Ubersetzung wird abgebrochen.

’ OPD/FORMAT-DOUBLE.| Bei,,0PD* oder ,,FORMAT* wird ein bereits ver-
gebener Mnemo verwendet.

R/A-ERROR. Ausdruck RE statt AFE oder umgekehrt. Der
falsche Typ wird jedoch eingesetzt, Programm
i. a. unbrauchbar.

rzy- LOCKED Der Transferassembler konnte diese Anwei-
sung nicht {ibersetzen, weil das Register rzy
(moglich: 25 ... r31) bendtigt wird, aber durch
ein LOCK vorher blockiert wurde.

SYNTAX. Keine Produktionsregel gefunden (3*NOP).

UNDEFINED. Das Symbol wurde nicht definiert.

Daneben gibt es noch einige nicht an die aktuelle Zeile gebundene Fehlermel-
dungen, die zu einem Abbruch des Ubersetzungslaufes fithren:

444

7.8 Assembler—Fehlermeldungen

’ Can’t_open_include_file. ‘

’ End_of_input_file. ‘

Illegal Branch_Address.

Incl.fileend_inside_field.

Internal_Error.

’ Not_PowerPC_translated.

’ Peculiar coding! ‘

Der zu inkludende File konnte nicht gefunden
oder nicht gesfinet werden (z.B. wegen exklu-
siver Benutzung durch anderen Prozef).

Bevor das regulidre Ende (END) des Quellfiles
erreicht wurde, endete dieser. Kann durch be-
dingte Assemblierung entstanden sein, wenn
das END im inaktiven Teil des Textes steht.

Beim Transferassemblieren wurde eine Abhén-
gigkeit der Zieladresse von Befehlsldngen er-
kannt, die zu einem héchstwahrscheinlich feh-
lerhaften Ergebnis fithren wiirde.

Ein File, der mit . INCLUDE eingebunden wur-
de, endet innerhalb eines aktiven Feldes der
iibersetzten Zeile. Es konnen nur komplette
Zeilen inkluded werden.

Abbruch des Laufes, weil Input—File nicht les-
bar/vorhanden ist, oder die End-Of-File Be-
dingung vor dem END eingetreten ist.

Eine fehlerhafte Datensituation innerhalb des
Ubersetzers wurde durch die internen Selbst-
priffungen im Assembler erkannt. Falls der
Fehler besténdig ist: bitte Beispielprogramm
aufheben und Fehler anzeigen!

Anweisung konnte nicht transferassembliert
werden, z.B. Befehl des Supervisorprogram-
miermodelles.

Es wurde ein merkwiirdiger Programmierstil
erkannt, der vom Transferassembler zuriickge-
wiesen wird. (Auch im native PowerPC-mode
moglich)

7.8 Assembler—Fehlermeldungen

445

Table—overflow.

Der Speicherplatz innerhalb des Assemblers
reicht nicht aus. Mit SZ beim Aufruf des As-
semblers Listenplatz vergrossern (bis SZ =
10000 méglich!).

446 7.9 Einbettung von Assemblerprogrammen

7.9 Einbettung von Assemblerprogrammen

RTOS-UH eignet sich zusammen mit der Vielzahl von Systemtraps auch sehr
gut fiir die maschinennahe Codierung. Dabei sind allerdings einige Konventio-
nen zu beachten, da mit fehlerhaften Programmen in Maschinensprache durch-
aus ein ,, Absturz“ des gesamten Systemes verursacht werden kann. Dies kann
sogar schon beim Laden eines falsch kodierten Modules erfolgen. Der Lader
benétigt ndamlich fiir Module einen sogenannten Modulkopfund fiir Tasks einen
sog. Taskkopfim Vorspann des eigentlichen Programmes. Dem Taskkopf muf}
dabei ein Deklarationsblock folgen, den man unbedingt mit Hilfe des Forma-
tes TSKDCB generieren sollte, weil er sich zwischen 68k und PowerPC unter-
scheidet! Besteht ein Programmblock aus mehreren Modulen/Tasks, so miissen
diese vom Programmierer miteinander verzeigert werden. Der Nullzeiger zeigt
an, dafl es keinen Vordermann oder Hintermann zu diesem Modul/Task-Kopf
gibt.

Modulkopf: DC.L 0 oder Addresse niichster M /T-Kopfs
DC.L 0 oder Addresse vorheriger M/T-Kopfs
DC modtype Typeindicator: siehe unten
DC.B ’...... ’ namelink , 6 bytes (s.u.)

Von hier ab freie Kodierung des Modules.

Taskkopf: DC.L 0 oder Addresse niichster M/T-Kopf
DC.L 0 oder Addresse voriger M/T-Kopf
DC tasktype (ist unten erldutert)
DC.B ’...... ’ namelink , 6 bytes (s.u.)

Task-DCB: TSKDCB prio,wsplen,start Datei ,,GENERAL.FOR® included
Von hier ab freie Kodierung der Task.

modtype: Es sind 3 Typen von Modulen im System definiert, jedoch ist fiir
normale Anwendungen nur das Standardmodul sinnvoll:

$0010 = Normales Modul.
$0050 PEARL-Shell (,,SMDL“), nur fiir Compiler sinnvoll.
$0090 = Fiir PROM-Befehl (,,PMDL*)

namelink: Entweder unmittelbar der Task— bzw. Modulname mit endigen
Blanks zusammen genau 6 Buchstaben Lénge, oder in den ersten
4 Byte die relativierte (siehe Beispile) Adresse auf einen beliebig
langen Namen, der mit $FF enden mufl. Im 2. Fall miissen die
Bytes 5 und 6 auf Null gesetzt sein. Bei Systemausgaben (z. B. 8-
Kommando) werden Namen nur bis zum 24. Zeichen ausgegeben.

7.9 Einbettung von Assemblerprogrammen 447

tasktype:

Prio:

wsplen:

!

!

—

—

Es sind 4 Kombinationen sinnvoll:

$0001 = Normale Task, ohne ,,RESIDENT“-Attribut.
$0081 = ,Residente“ Task, die ihren , TWSP* behilt.
$0041 = Autostarttask, liuft nach Abort sofort.

$00C1 = Kombination: , Residente* Autostarttask.

Fiir Anwendertask sind nur 16 bit-Werte grofler als Null zugelas-
sen. Bei I/O-Ddmonen kann der Wert Null zur Definition einer
variablen Prioritdt verwendet werden.

Jedes System bendtigt hiervon eine grofle Anzahl Bytes fiir eige-
ne Zwecke, hauptséchlich zur Ablage des Kontextes. Diese Min-
destzahl darf auf gar keinen Fall unterschritten werden. Die ab-
solute Mindestzahl kann man aus der Datei ,,COMEQU“ mit dem
Symbol ,,PMBUF“ erhalten. Wird der Hyperprozessor benutzt,
— z.B. weil eine PEARL-E/A oder der Aufruf eines PEARL-
Unterprogrammes gebraucht wird — so muf} zusétzlich der Platz
,PMBSZ* addiert werden. Auch die FPU verlangt weiteren Platz
(der Hyperprozessor ist dann in jedem Fall mit dabei). Folgen-
de Richtzahlen enthalten jeweils eine kleine Reserve, die fiir die
néchste Zeit reichen sollte:

$00000100 = PowerPC ohne FPU.

$00000140 PowerPC ohne FPU mit Hyperproc.
$00000290 = PowerPC mit FPU +++.
$00000080 = 68xxx, ohne FPU.

$000000C0O 68xxx, ohne FPU mit Hyperproc.
$00000230 = 68020 ... 68060, mit FPU +++.

Beim Start einer Task setzt der Prozeumschalter ,,PU“ das Re-
gister A4 (r12) auf den Anfang des Taskworkspace. Das Register
A5 (r13) sollte man um den obigen giiltigen Mindestwert hcher
als A4 (r12) einstellen, wenn man es wie in der PEARL-Welt
als Anfangszeiger auf den lokalen workspace verwenden will. Das
Register A7 wird nicht gesetzt! Dies mufl der Assemblerpro-
grammierer selbst erledigen, zum Beispiel wie folgt:

WSPLEN EQU $400

LEA WSPLEN.T,A7

In sehr alten Systemen vor ca. 1986 wurde ein kiirzerer Taskkopf
als heute benutzt — uralte Quellfiles unbedingt priifen!

448 7.9 Einbettung von Assemblerprogrammen

7.9.1 Beispiele fiir Modul-/Taskképfe
7.9.1.1 Einzelner Taskkopf

o *
. INCLUDE .../GENERAL.FOR *
* *
DC.L 0,0 keine weiteren Koepfe *
DC $0001 normale Task *
DC.L name-$ Zeiger auf den Namen *
DC 0 Nullwort *
TSKDCB 100,120,start Prio=100, Worksp=120%
e *
start MOVE DO,D1 erste Anweisung der Task *
weitere Aktionen *

*
name DC.B ’Testtask’,$FF *
A e *

7.9 Einbettung von Assemblerprogrammen 449

7.9.1.2 Verzeigerung mehrerer Kopfe

In diesem Beispiel ist zu sehen, wie Task— oder Modulk6pfe untereinander zu
verzeigern sind. Ohne die Verzeigerung ist nach dem Laden nur der erste Kopf
im System vorhanden.

K *
* Erstes Modul: *
* *
MOD1 DC.L MOD2 Vorwaertszeiger *
DC.L O kein Vorgaenger *

DC $0010 Typ : Modul *

DC.B ’Modull’ Name des Moduls *

* *
freie Kodierung *

A *
* zweites Modul: *
* *
MOD2 DC.L O kein weiteres Modul *
DC.L MOD1 vorheriges Modul *

DC $0010 Typ : Modul *

DC.L mod2na-$ Zeiger auf Modulnamen *

DC O Langnamen-Indikator *

* *
freie Kodierung *

* Relativ adressierter Langname: *
mod2na DC.B ’Mod2_long_name’,$FF *
* *
freie Kodierung *

* *
A *
Herstellen des Bezuges auf das letzte *

Modul: *

*

END MOD2 in diesem Fall MOD2 *

Analog wird mit mehr als 2 Modulen oder Tasks verfahren.

450 7.9 Einbettung von Assemblerprogrammen

7.9.2 Task-Deklarationsblock

Fiir die Erzeugung des Taskdeklarationsblockes sollte man unbedingt — wie
oben beschrieben — das Format TSKDCB verwenden. Damit ist sichergestellt,
daf} die Software sowohl vom Assembler als auch vom Transferassembler richtig
an das jeweilige Zielsystem angepasst wird. Die folgenden Beschreibungen sind
daher nur fiir den Notfall — etwa weil die Datei GENERAL.FOR nicht verfiighar
ist — hier angegeben. Die Werte geben den Aufbau Stand Februar 1997 wieder.

TASK-DCB fiir 68xxx:

DC priority Taskprioritdt 1...255

DC.L wsplen Mindestwert beachten !!

DC.L 0,0 Zeiger fiir systemeigene Zwecke

DC priority wie oben, spéter variable Laufprio
DC.L Startadresse Adresse der 1. Anweisung der Task

pc.. 0,0,0,0,0,0,0,0
pc.L 0,0,0,0,0,0,0,0 insgesamt 64 Bytes Null

Von hier an freie Kodierung.

Task-DCB fiir PowerPC:

DC priority Taskprioritdt 1...255

DC 0 Systemintern

DC.L wsplen Mindestwert beachten !!

DC.L 0,0 Zeiger fiir systemeigene Zwecke

DC priority wie oben, spéter variable Laufprio
DC 0 Systemintern

DC.L Startadresse Adresse der 1. Anweisung der Task
pc.. 0,0,0,0,0,0,0,0

pc.L 0,0,0,0,0,0,0 insgesamt 60 Bytes Null

Von hier an freie Kodierung.

Kapitel 8: Innenstrukturen des Systemes

8.1 Die Systemtraps
8.1.1 Hinweise zur Benutzung der Traps

Die Systemtraps sind die eigentlichen Funktionstrager innerhalb des RTOS—
UH-Systemes. Sie sind seit mehr als einem Jahrzehnt weitgehend unveréindert
geblieben und haben dabei mehrere tausend Jahre makellose Betriebserfahrung
vorzuweisen. Normalerweise werden Traps nur innerhalb von compilergenerier-
ten Konstrukten — und damit in gesicherter Umgebung — aufgerufen. Dennoch
stehen sie auch dem Assemblerprogrammierer zur Verfiigung. Hier allerdings
muf} mit grofler Sorgfalt gearbeitet werden: Aus Effizienzgriinden priifen Traps
nicht erneut, ob sie von ihrem Aufrufer korrekt parametriert wurden. Neben
dem Zerschellen der Aufrufertask sind bei Fehlparametrierungen durchaus auch
andere unbeteiligte Tasks gefahrdet. Im Extremfall ist auch ein Totalabsturz
des Systemes nicht auszuschlieflen.

Anderungen an Traps werden zur Unterstiitzung von Robustheitsnachweisen
unserer Anwender sehr sorgfiltig dokumentiert. Dabei ist Abwértskompatibi-
litét oberstes Gebot.

Die Beschreibung der Traps gilt in gleicher Weise fiir die bisherigen 68k-
Assemblerprogramme und fiir den T—Code. Der Transferassembler fiir den
PowerPC erzeugt den jeweils passend parametrierten Supervisor-Call automa-
tisch. Nur bei Traps mit eingebautem Skip — so zum Beispiel beim T0Q — sind
Besonderheiten des T-Codes zu beachten. Bedenken Sie bitte bei der Kodierung
fiir den PowerPC, daf alle Traps neben den jeweils angegebenen 68k-Registern
auch die Register r25 ... 131 sowie das Linkregister verindern kénnen.

Verwenden Sie unbedingt die Datei COMEQU um symbolische Adressen oder Off-
sets einzubinden. Damit werden Unterschiede bei den verschiedenen Prozessor-
familien automatisch ausgeglichen.

Das Inkluden der Datei COMTRAP erspart Thnen die manuelle Definition der
Trap- Opcodes.

451

452 8.1 Die Systemtraps

Vorsicht:

Traps diirfen nicht von der Supervisorebene aus — etwa in Inter-
ruptroutinen — aufgerufen werden! Einzige Ausnahme ist der DPC—
Trap, der hier eine Sonderstellung hat. Im Gegensatz dazu darf
das PIRTRI-Link nur auf Supervisorebene aufgerufen werden.

Auch wenn viele Traps anscheinend auch auf Supervisorebene funktionieren,
so ist dies in jedem Fall eine Fehlprogrammierung, weil damit das Konzept
von RTOS—UH unterlaufen wird und die Echtzeitqualitdten massiv gefdhrdet
werden.

8.1 Die Systemtraps 453

8.1.2 Tabelle der Traps

Umklammerte Traps sind nicht im Nukleus, sondern in irgendeiner anderen
Scheibe angesiedelt, sofern vorhanden.

$4E40 ACTQ Activate quick. Task—ID—pointer is in A1

$4E41 TERMI Exit = Terminate internal = self-termination

$4E42 CON Continue task given by name in $66 (A4)

$4E43 DPC Start a dispatching cycle

$4E44 -— - Ehemals PREVQ, $A054 benutzen!

$4E45 SCAN System-scanner (for mounting of RTOS—UH+loader)
$4E46 REQU Request semaphore. Adr. of sema is in Al

$4E4T7 RELEA Release semaphore. Adr. of sema is in A1l
$4EA8 FETCE Fetch a communication—element, D1.L=size, A1=ptr

$4E49 RELCE Release a communication-element. Pointer is in A1l
$4E4A XIO0 Xfer a communication—element to in/output—handler
$4E4B PENTR Procedure entering (Workspace alloc. etc.)

$4E4C RETN Return from procedure (complement to PENTR)
$4E4D TOQ Take of queue (Inside i/o-handler—tasks)

$4E4E (TOV) Hyperprocessor ,,on“ = to virtual code switching
$4EAF OFF Dispatching and interrupts ,,off“ 4+ supervisormode
$A000 TERME Terminate (external) task by name in $66 (A4)
$A002 ERROR Send error—message to corresponding userterminal
$A004 WSFS Workspace forward search (A1 is loaded)

$A006 ITBO Identify task by name in $66(A4), (A1 is loaded)
$A008 WSFA Workspace fixed address request.

$A00A I0WA I/O-wait by communication—element in A1

$A00C WSBS Workspace backward search (A1 is loaded)

$AOCE GAPST Generate and prepare a subtask (son—process)
$A010 TERV Terminate (self) and vanish (son—process exit)
$A012 DVDSC Device—(facility)-tester (LDN expected in D1)

$A014 ACT Activate task by name in $66 (A4)

$A016 TIAC Time-scheduled activation of task by name $66 (A4)

$A018 TICON Time-scheduled continuation — “ —
$A01A ACTEV Interrupt—scheduled activ. of task by name — “ —
$A01C CONEV Interrupt—scheduled cont. of task by name — “ —

$AO01E Qsa Quote-scanner with answer (Lex.text by adr. A2)
$A020 RUBBL Rubber for blanks (Text—pointer is in A2)
$A022 PREV Prevent task by name in $66(A4)

$A024 TIACQ Time-scheduled activ. of task (quick) by TID=A1
$A026 TRIGEV Trigger = simulation of an interrupt
$A028 SUSP Self suspending of executing task

454

8.1 Die Systemtraps

$A02A
$A02C
$A02E
$A030
$A032
$A034
$A036
$A038
$A03A
$A03C
$A03E
$A040
$A042
$A044
$A046
$A048
$A04A
$A04C
$A04E
$A050
$A052
$A054
$A056
$A058
$A05A
$A05C
$AO5E
$A060
$A062
$A064
$A066
$A068
$A06A
$A06C
$A06E
$A070
$A072
$A074
$A076
$A078
$A07A
$A07C

RWSP
TIRE
(PIT)
(POT)
ENAB
DISAB
LITRA
LITRAV
CSA
IMBS
RCLK
ITS1T
ITS2T
ITS3T
MD2B60
ITBS
RSTT
INTD1
TICONQ
coNg
DELTST
PREVQ
EVACTQ
TERMEQ
EVCONQ
CACHCL
STBCLK
ITS1TL
ITS2TL
ITS3TL
(DATASC)
(CLKASC)
DCDERR
WFEX
MSGSND
RESRB
FREEB
ENTRB
LEAVB
TRY

Release workspace by pointer in A1l
Time—scheduled RESUME of a task
Process—data input (implement. dependent)
Process—-data output — ¢ —

Enable selected process—interrupts

Disable selected process—interrupts
Line-tracer in real environment

Line—tracer virtual (inside hyperproc)
Character scan alternatively (text ptr in A2)
Identify module by string (String ptr in A2)
Read system—clock. Result is in D1.L
Index—tester for 1-dim arrays

Index—tester for 2-dim arrays

Index—tester for 3—dim arrays

Multiply D2.L by 60 (long + fast!)

Identify task by string (string—ptr in A2)
Reset T-Link and new TWS

Integer (long) into D1 by text—pointer in A2
Time-scheduled cont. of task (quick) by TID=A1
Continue task quick by TID=A1

(Right) Delimiter—test of text (ptr is A2)
Prevent task quick by TID=A1
Interrupt—scheduled task—activ. quick by TID=A1
Terminate task quick by TID=A1
Interrupt—scheduled task—cont. quick by TID=A1
Cache clear or NOP if no cache

Set Battery Hardware-Clock

Index—tester for 1-dim arrays with long index
Index—tester for 2-dim arrays with long index
Index—tester for 3—-dim arrays with long index
Date to ASCII conversion

Clock to ASCII conversion

Implementation dependent

Decode error—-message

Wait for exit

Message send

Reserve Bolt

Free Bolt

Enter Bolt

Leave Bolt

Try to request semaphore

Reserviert fiir Erweiterungen

8.1 Die Systemtraps 455

$AOTE - Reserviert fiir Erweiterungen
..... -—= Reserviert fiir Erweiterungen
$A0A0 -—= Reserviert fiir Erweiterungen

Line-A—Traps oberhalb von $A090 koénnen in besonderen OEM-Implementie-
rungen in begrenzter Zahl ebenfalls belegt werden. Die Transferadressen al-
ler Line-A—Traps beginnen auf EXCORG+$400 (fiir $A000), EXCORG+$404 (fiir
$A002) ...usw. in 4-Byte-Schritten. EXCORG erhélt man aus der Datei COMEQU
(Aktuell 0 beim 68k und $4000 beim PowerPC). Also: Rechtes Trap—Byte mal 2
plus EXCORG (aus COMEQU) plus $400. Der Anschlufi kann dann etwa iiber Schei-
be 14 hergestellt werden. Dabei ist zu beachten, dafl beim 68k-System von $800
abwirts bis $600 der System—Stack den Links entgegenwéchst und Traplinks
oberhalb des Trapcodes $AOFE bei hochaufgeladenen Systemen zerstort werden
konnten.

$A0A2 777 Fiir OEM-Sonderanwendungen

«

$AOFE 777 Letzter erlaubter Trap

Desweiteren stehen noch zwei Einsprungadressen im Nukleus zur Verfiigung:
CD7TAS und PIRTRI. Sie werden hier wie Traps beschrieben, obwohl sie anders
angeschlossen werden.

CD7TAS Convert D7 to ASCII-String
PIRTRI Process-Interrupt trigger

456 8.1 Die Systemtraps

ACT = $A014‘ Activate Task by name

Eingaberegister: D1.W Prioritéat der Aktivierung.

OPNAME.T 6 ASCII-Bytes des Tasknamens oder 4 Byte
Adresse des Namensstring, der mit $FF en-

det.
Verianderte Register: D7,D1,A2

Die angegebene Task wird in der Speicherverwaltung gesucht. Wahrend der
Suche bleibt der Trap preemptionfihig. Die Usernummer der Tasks wird nicht
beriicksichtigt. Falls eine so bezeichnete Task nicht gefunden wird, so erfolgt
Fehlermeldung, und eine Operation unterbleibt.

Falls D1.W EQ O ist, wird D1 aus der Taskdefaultprio geladen. Ist D1 negativ,
so erfolgt eine Fehlermeldung und die Aktivierung unterbleibt. Danach wird
gepriift, ob die Task bereits im Dispatcherring steht. Ist dies nicht der Fall,
so wird sie gem#f der Prioritdt aus D1 eingelinkt, und der Trap endet mit
Dispatcherstart.

War die Task dagegen bereits im Dispatcherring, so wird die Blockierbedingung
ywaiting for activation® untersucht und gel6scht.
1. Blockierbedingung war gesetzt.
Es wird gepriift, ob die Task prioritdtsgerecht eingelinkt ist; falls nicht,
so wird sie entsprechend ,,umgelinkt“. Der Trap endet mit einem Dispat-
cherstart.

2. Blockierbedingung war nicht gesetzt.
Die Aktivierung wird mit ihrer Prioritdt in den Puffer der Task geschrie-
ben, falls dort noch Platz ist (max. 3). Wenn kein Platz im Puffer ist,
so erfolgt Fehlermeldung, und die Operation unterbleibt. Der Trap endet
ohne Dispatcherstart.

Fehlermeldungen: ... wrong prio (D1.W negativ)
. overflow (activate) (Aktiv.Puffer Uberlauf)
. not loaded (activate) (Task wurde nicht gef.)

Falls die Datei COMEQU nicht zur Hand ist, hier die wahrscheinlichen Werte fiir
OPNAME:

OPNAME EQU $66 beim 68K
OPNAME EQU $B4 beim PowerPC

8.1 Die Systemtraps 457

Activate Task by interrupt—schedule ACTEV = $A01A‘

Eingaberegister: D1.W Prioritat
OPNAME.T Textadresse oder Text
OPFATI.T Prozef—Interrupt—Ereignis
A4 muf} auf Taskworkspace zeigen
Ausgaberegister: -
Verdnderte Register: D1,D7,A1,A2

Eine Task, deren Name oder deren Adresse des Namens in OPNAME.T =
OPNAME (A4) steht, wird zur Aktivierung eingeplant. In D1 wird die Prioritét der
Aktivierung iibergeben. Ist D1 geltscht, wird die Default—Prioritét eingetragen.
Die aktuelle Prioritdt der laufenden Task bleibt unbeeinflufit. In OPFATI.T =
OPFATI(A4)

wird die Prozefi—Interrupt—Maske eingetragen, auf die die Task eingeplant wer-
den soll. Bestehende Aktivierungs-Einplanungen werden geltscht. Die Fehler-
meldungen entsprechen denen beim Trap ACT beschriebenen.

Beispiel:
ACTEV 0OPD $A01A Trap-Definition

LEA TSKNAM, AO Adresse des Tasknamens
MOVE.L AO,OPNAME.T Eintrag der Adresse

CLR OPNAME+4.T kein Text

_MOVE.L =$80000000,0PFATI.T Interrupt-Maske
ACTEV auf Prozessir. einplanen

TSKNAM DC.B ’Alarm’
Falls die Datei COMEQU nicht zur Hand ist, hier die wahrscheinlichen Werte fiir
OPNAME und OPFATI:

OPNAME EQU $66 und OPFATI EQU $6C beim 68K
OPNAME EQU $B4 und OPFATI EQU $BC beim PowerPC

458 8.1 Die Systemtraps

ACTQ = $4E40 Activate quick
Eingabe: D1.W Prioritat

A1.L Adresse der Task (TID)
Ausgaberegister: -

Veréanderte Register: D1,D7,A1

Eine Task, deren Adresse in A1 steht, wird aktiviert. In D1 wird die Prioritdt der
Aktivierung iibergeben. Ist D1 gleich Null, wird die Task mit ihrer Standard-
prioritit gestartet. Negative Prioritéiten sind den Systemtasks vorbehalten und
damit nicht erlaubt, sie fithren zu einer Fehlermeldung. Léuft die Task schon,
wird die Aktivierung gepuffert. Beim Uberlaufen des Aktivierungspuffers erhilt
man ebenfalls eine Fehlermeldung.

Beispiel:

ACTQ OPD $4E40 Trap-Definition
. TID in A1l
_MOVE =$20,D1 Prio=$20
ACTQ Activate Task

8.1 Die Systemtraps 459

Cache clear CACHCL = $A05C‘

Eingaberegister: -
Ausgaberegister: -

Verénderte Register: D7

Im Nukleus wird hier zunichst nur eine Leeroperation angeschlossen. Der
Trap mufl darum in den Implementierungsscheiben bei allen Prozessoren, die
einen Cache besitzen, neu definiert werden. Seine Aufgabe besteht darin, alle
Prozessor-Caches ungiiltig zu machen. Beim 68040 z. B. bedeutet dies, dafi alle
dirty-lines (Copyback mode) des Datencaches in den Speicher gebracht werden
miissen.

Der Trap wird an vielen Stellen der Systemsoftware benutzt, zum Beispiel in
der Shell beim ,,SM“- und “SD“-Befehl. Auch der Lader und manche I/O-Treiber
setzen ihn ein. Der Systemprogrammierer kann nur mit ihm sicherstellen, dafl
etwa ein mit MOVE in den Datenspeicher geschriebener Maschinenbefehl vom
Prozessor dort als Instruktion gefunden wird oder daff beim memory-mapped
I/O die Daten nicht nur im internen Cache, sondern auch in der Auflenwelt
ankommen.

460 8.1 Die Systemtraps

’CD7TAS = JSR XXXX‘ Convert D7 to ASCII-String
Eingaberegister: D7.W Hex.—Zahl
Ausgaberegister: D6.L ASCIT-Text der Hex.—Zahl

Verdnderte Register: D7

Hierbei handelt es sich nicht um einen Trap! Vielmehr kann diese Routine iiber
eine feste Adresse, deren Wert man mit der Datei COMEQU erhilt, angesprungen
werden:

JSR CD7TAS

angesprungen werden. Die Hex.—Zahl in D7 .W wird Zeichen um Zeichen in einen
ASCII-String verwandelt, der in D6.L steht. Diese Routine kann genutzt wer-
den, um sich die Umwandlung in ASCII-Strings z. B. bei der Ausgabe einer
Adresse zu sparen. Die niederwertige Hélfte von D7, also D7.W ist nach der
Routine unveréndert.

Beispiel:
.INCLUDE .../COMEQU.NOL (ohne Liste)
_MOVE =$12A4,D7 Hex.-Zahl
JSR CDT7TAS konvertieren

D6=$31324134

Fiir den Notfall (COMEQU nicht zur Hand) hier die wahrscheinlichen Adressen
fiir CD7TAS:

CD7TAS EQU $8A4 68k-Familie
CD7TAS EQU $5210 PowerPC-Familie

8.1 Die Systemtraps 461

Clock to ASCII Conversion CLKASC = $A068‘
Eingaberegister: D1.L Zeit in msec

A2. L Zieladresse des Ausgabestrings
Verdnderte Register: D1.L,D5,D6,D7,SR

A2.L zeigt auf erste freie Byte nach Ausgabestring

Die in D1.L iibergebene Zeitangabe in msec wird in einen Ausgabestring (8
Zeichen, Aufbau: hh:mm:ss) verwandelt und auf die in A2 iibergebene Adresse
geschrieben. A2 wird um die Anzahl der Zeichen erhoht.

Beispiel: (nicht T-Code kompatibel!)

CLKASC 0OPD $A068 Trapdefinition
time EQU $88A time (Systemzelle 68k)
timeb EQU $88E timeb (Systemzelle 68k)

MOVEM.L time,D1/D2 time+timeb lesen

ADD.L. D2,D1 Systemzeit errechnen
LEA BUFFER, A2 Zieladresse laden
CLKASC Zeit auf (A2)+

Man beachte bitte den MOVEM—Befehl im Beispiel! Wiirde man ndmlich die Zellen
time und timeb durch 2 ,Moves® lesen, so sind unsinnige Ergebnisse moglich,
falls der Clockinterrupt die beiden Leseoperationen trennt. In Multiprozessor-
systemen und bei den meisten RISC-Prozessoren funktioniert das jedoch nicht
korrekt und so miissen derartige Sequenzen bei der Umstellung auf legalen
T-Code veréndert werden:

Beispiel: (legaler T-Code)

CLKASC 0OPD $A068 Trapdefinition
RCLK OPD $A03E Trapdefinition
RCLK Uhrzeit nach D1

LEA BUFFER,A2 Zieladresse laden
CLKASC Zeit auf (A2)+

462 8.1 Die Systemtraps

CON = $4E42‘ Continue Task by name
Eingaberegister: OPNAME.T Textadresse oder Text

A4 L muf} auf Taskworkspace zeigen
Ausgaberegister: -

Verédnderte Register: D7,A1,A2

Eine Task, deren Name oder deren Adresse des Namens in OPNAME.T =
OPNAME (A4) steht, wird fortgesetzt. Ist die Task nicht geladen oder nicht sus-
pendiert, wird eine entsprechende Fehlermeldung ausgegeben und der Aufrufer
suspendiert. Wahrend der Suche im Speicher bleibt der Trap preemptionfihig.
Beispiel:

CON OPD $4E42 Trap-Definition
LEA TSKNAM, AO Adresse des Tasknamens
MOVE.L AO,OPNAME.T Eintrag der Adresse

_CLR OPNAME+4.T kein Text
CON fortsetzen

Die Distanzwerte von OPNAME fiir den Notfall:

OPNAME EQU $66 68k-Familie
OPNAME EQU $B4 PowerPC-Familie

8.1 Die Systemtraps 463

Continue Task by interrupt—schedule CONEV = $A01C ‘
Eingaberegister: OPNAME.T Textadresse oder Text

OPFATI.T Prozefi—Interrupt—Maske

A4.L mufl auf Taskworkspace zeigen
Ausgaberegister: -

Verinderte Register: D7,A1,A2

Eine Task, deren Name oder deren Adresse des Namens in OPNAME.T =
$66 (A4) steht, wird zur Fortsetzung eingeplant. Bestehende Fortsetzungs-
Einplanungen werden geloscht. In OPFATI.T = $6C(A4) mufl die Prozef3-
Interrupt—Maske eingetragen sein. Wahrend der Suche ist der Trap preemp-
tionfihig.
Beispiel:

CONEV OPD $A01C Trap-Definition

LEA TSKNAM, AO Adresse des Tasknamens
MOVE.L AO,OPNAME.T Eintrag der Adresse

CLR OPNAME+4.T kein Text

MOVE.L =$00040000,0PFATI.T Interrupt-Maske
CONEV bei Interrupt fortsetzen

Falls die Datei COMEQU nicht zur Hand ist, hier die wahrscheinlichen Werte fiir
OPNAME und OPFATI:

OPNAME EQU $66 und OPFATI EQU $6C beim 68K
OPNAME EQU $B4 und OPFATI EQU $BC beim PowerPC

464 8.1 Die Systemtraps

CONQ = $A050 Continue quick
Eingaberegister: Al1.L Adresse der Task (TID)
Ausgaberegister: -

Verénderte Register: D7

Eine Task, deren Adresse in A1l steht, wird fortgesetzt. Ist die Task nicht sus-
pendiert, wird eine entsprechende Fehlermeldung ausgegeben und der Aufrufer
suspendiert.

Beispiel:
CoNQ OPD $A050 Trap-Definition
R TID in A1l
CONQ fortsetzen

! — Der Trap priift nicht, ob iiber A1 {iberhaupt ein sinnvoller Task-
ID iibergeben wurde. Dies mufl der Aufrufer unbedingt sicher-
stellen!

8.1 Die Systemtraps 465

Character—Scan alternate CSA = $AO3A‘
Eingabe-Register: A2.L Adresse des zu unters. Textes
Ausgabe-Register: A2.L Inkrementiert um 1 falls gefunden

SR Status der Funktion
Verédnderte Register: D7,SR

PC iiberspringt das Wort nach dem Trap

Die beiden hinter dem Trap im Speicher folgenden Bytes werden nacheinan-
der mit dem Zeichen auf (A2) verglichen. Stimmt eines der beiden mit dem
Eingabetext iiberein, so wird A2 um eins erhoht und das Statusregister auf
»EQ“ gesetzt. Stimmt keines der beiden Bytes mit (A2) iiberein, so bleibt A2
unverdndert, und im Statusregister wird die Kondition ,NE“ gesetzt.

In jedem Fall wird das auf den Trap folgende Rechnerwort (2 Bytes beim 68k,
4 Bytes beim PowerPC) bei der Riickkehr iibersprungen.

Der Trap eignet sich fiir eine einfache Textanalyse und wird innerhalb des
Bedieninterpreters eingesetzt. Er ist darum auch zur Realisierung neuer Be-
dienbefehle optimal geeignet.

Beispiel:

CSA OPD $A03A Trap-Definition
A2 zeigt auf Eingabetext
CSA Aufruf
DC.B ’Aa’ Pruefe, ob kleines/grosses A folgt.
BEQ Weg Wenn ja, springe mit erhoehtem A2

466 8.1 Die Systemtraps

DATASC = $A066‘ Date to ASCII Conversion
Eingaberegister: DO.W Datum
A2.L Zieladresse des Ausgabestrings

Verénderte Register: DO,D7 zerstort
A2. L zeigt auf néchstes Byte nach Ausgabestring

Die in DO iibergebene Datumsangabe (Anzahl der Tage seit 31.12.1983) wird
in einen Ausgabestring (10 Zeichen, Aufbau: tt-mm-75475) verwandelt und auf
die in A2 iibergebene Adresse geschrieben. A2 wird um die Anzahl der Zeichen
erhoht. Ist DO.W = $0000 (nicht gesetztes Datum), so wird die Zeichenfolge

pmmmmm - “ ausgegeben.
Beispiel:
DATASC OPD $A066 Trapdefinition
. INCLUDE .../COMEQU.NOL (ohne Liste)

_MOVE DATE,DO Datum aus Systemzelle laden
LEA BUFFER,A2 Zieladresse laden
DATASC Datum auf (A2)+

Falls die Datei COMEQU nicht zur Hand ist, hier die wahrscheinlichen Adressen
von DATE:

DATE EQU $80A bei 68k-Familie
DATE EQU $5058 bei PowerPC-Familie

8.1 Die Systemtraps 467

Decode Error—Text DCDERR = $AOGC‘
Eingaberegister: A2.L Zieladresse fiir Ausgabetext

D1.W Error-code-Wort

D5.W Verfiigbarer Platz auf Zieladresse
Ausgaberegister: A2.L Inkrementierte Zieladresse

D5.W noch verfiigharer Platz auf Zieladresse

Verdanderte Register: A2,D1,D5,D6,D7

Das 16-bit Wort in D1 wird in wortweise zusammengesetzten Text umgewandelt
und nach (A2)+ geschrieben. Dabei wird mit Hilfe von D5 eine Uberwachung
vorgenommen, die ein Uberschreiben des Zielpuffers verhindern kann: Die Text-
generierung endet sofort, wenn der Zahlerstand in D5 erschopft ist. Sowohl A2
als auch D5 werden vom Trap sinnentsprechend veréndert zuriickgegeben.

Das Wort in D1 bestehe aus den vier Nibbles (Hexzahlen) abed. Das hochst-
wertige Nibble, hier a, ist fiir den Dekodiervorgang ohne Bedeutung, da es nur
Informationen fiir den Error-Déamon bzw. den Exceptionhandler enthélt.

Beispiel:

DCDERR OPD $A06C
LEA output,A2 Zieladresse des Textes

MOVEQ =25,D5 Max. Platz im Puffer
_MOVE =$0285,D1 Kuenstl. Error-code
DCDERR

* Auf der Zieladresse Text ’wrong address (trap)’
* ablegen. A2 und D5 sind passend veraendert.

468 8.1 Die Systemtraps

a: Fiir diesen Trap ohne Bedeutung

b: Auswahl aus folgendem Vorrat:

0 Blank 1 not 2 wrong

3 zero—division 4 CHK 5 blocks

6 breakpoint 7 directory 8 disc

9 memory A module B missing

C underflow D alignmen‘c1 E —-

F -

¢: Auswahl aus folgendem Vorrat:

0 Blank 1 bus-error 2 device-ldn
3 prio 4 loaded 5 suspended
6 active 7 command 8 address

9 op-—code A priviledged B overflow

C in system D I/0 E operand

F .

d: Auswahl aus folgendem Vorrat:

0 Blank 1 (activate) 2 (terminate)
3 (continue) 4 (xio—call) 5 (trap)

6 (floppy/harddisc) 7 loader-input 8 rec—checksum
9 label A (mode) B timing

C (array)index D FPU-68881> E parameterlist
F —-

1 Nur beim PowerPC
2 Nur beim 68k

8.1 Die Systemtraps 469

Delimiter—Test DELTST = $A052‘
Eingaberegister: A2.L Adresse des zu unters. Textes
Ausgaberegister: A2. L Inkrementiert bis Delimiter

SR Bei Delimiter auf ,EQ“

Verédnderte Register: D7,SR

Es wird gepriift, ob der zu untersuchende Text als néchstes Zeichen einen Deli-
miter enthélt. Als Delimiter gelten Semikolon($3B), Bindestrich($2D) und <Re-
turn>($0D). Blanks($20) und Kommata($2C) werden iiberlesen. A2 wird solan-
ge erhoht, bis ein Zeichen gefunden wird, das kein Blank oder Komma ist.
Ist dieses Zeichen ein Delimiter, so wird das Statusregister auf ,EQ“ gesetzt,
andernfalls auf ,NE“. A2 zeigt auf dieses Zeichen.

Dieser Trap eignet sich zur Analyse eines Textes, z. B. bei der Realisierung
neuer Bedienbefehle.

Beispiel:

DELTST OPD $A052
- A2 zeigt auf den Eingabetext
DELTST Aufruf
BNE NOLIM Springt, wenn kein Delimiter

470 8.1 Die Systemtraps

DISAB = $A034‘ Disable ProzeSlinterrupt
Eingaberegister: DO.L Interruptmaske
Ausgaberegister: -

Verénderte Register: DO,D7

Das Bitmuster in DO wird so mit der Enable-Maske verkniipft, so dafl alle
Prozeflinterrupts, deren Bits in DO auf 1’ gesetzt sind, gesperrt werden.

Beispiel:

DISAB OPD $A034 Trap-Definition

_MOVE.L =$40000000,D0 Interruptmaske
DISAB Sperrung des Interrupts

8.1 Die Systemtraps 471

Dispatcher Call DPC = $4E43‘

Eingaberegister: -
Ausgaberegister: -

Verénderte Register: -

Wenn der Trap im Supervisormode des Prozessors aufgerufen wird, so wird
dieser beendet. Der Prozessor wird in den User-mode gebracht, und es wird ein
Dispatcherstart forciert. Damit ist dieser Trap das Gegenstiick zum OFF-Trap,
siehe Seite 499).

Der Trap kann allerdings auch jederzeit aus dem Usermode heraus aufgerufen
werden, auch dann erfolgt ein Dispatchersuchlauf. So 148t sich ggf. erzwingen,
dafl auf irgendwelche Manipulationen an Taskzusténden sofort reagiert wird.

Wichtig: Interruptprozesse starten einen Dispatcherlauf nicht mit diesem Trap,
sondern durch Setzen der Dispatcher-Call-Flag — das ist entweder eine Spei-
cherzelle (68k) oder ein Bit im Prozessorzustandsregister (PowerPC)! Das Set-
zen erfolgt im T—-Code mit dem Format DPCALL (aus der Datei SUPERVIS.FOR).
Diese Flag wird grundsitzlich bei jedem Ubergang vom Supervisor— in den
Usermode beachtet. (Eine direkte Riickkehr vom Supervisor- in den Usermode,
etwa mit RTE, ohne weitere Mafinahmen ist verboten!)

Beispiel (T-Code):

DPC OPD $4E43 Trap-Definition
OFF OPD $4E4F -——= " -

OFF To supervisor

R . superv. code ...
DPC Start Dispatcher

In Interruptroutinen aber:

. INCLUDE .../SUPERVIS.FOR
. INCLUDE .../COMEQU
DPCALL alert dispatcher (if task-state changed)

JMP DISEX always: IR-Exit by dispatcher!

472 8.1 Die Systemtraps

DVDSC = $A012‘ Device-Description—Link
Eingaberegister: D1.B LDN
Ausgaberegister: Di1.L Diff. Adr. der Device—Parameter

Verénderte Register: D7

Der Trap liefert die Differenz der Adresse der Device-Parameter zu A1, wie sie
beim DD- und SD-Kommando beschrieben werden. In D1.B muf} die LDN der Da-
tenstation iibergeben werden. Es wird nicht gepriift, ob die entsprechende LDN
iiberhaupt im System vorhanden ist. Bei Verdnderungen der Device—Parameter
muf} also sichergestellt sein, dafl die Adresse einer giiltigen LDN verwendet wird,
sonst kann es zu Systemabstiirzen kommen, die sich u. U. erst spéter zeigen.

Beispiel:
DVDSC OPD $A012 Trap-Definition

_MOVE.B =2,D1 LDN = 2 (Port 2)
DVDSC Adresse von Device-Para
MOVE.B =1,1(A1,D1.L) Zweites Byte von

A2: auf ESC-Sequenzen setzen

8.1 Die Systemtraps 473

Enable ProzeSlinterrupt ENAB = $A032‘
Eingaberegister: DO.L Interruptmaske
Ausgaberegister: -

Verénderte Register: D7

Das Bitmuster in DO wird mit der Enable-Maske ,,geodert“. Damit werden alle
Prozeflinterrupts, deren Bits in DO auf ’1’ gesetzt sind, freigegeben.

Beispiel:
ENAB OPD $A032 Trap-Definition

_MOVE.L =$80000000,D0 Interruptmaske
ENAB Freigabe des Intrrupts

474 8.1 Die Systemtraps

ENTRB = $A076‘ Enter Boltvariable
Eingaberegister: Al Adresse der Bolt-Variablen
Ausgaberegister: -

Verénderte Register: D7

Die mit A1 angegebene Boltvariable wird daraufhin untersucht, ob ein weiterer
»Enter* moglich ist.

Ist dies der Fall, so wird der Entercount um eins erhoht und der Trap ohne
weitere Aktion verlassen.

Die aufrufende Task wird in folgenden Féllen blockiert:
e Wenn die Boltvariable ,,reserved® ist.
e Wenn der Entercount erschopft ist.
e Wenn ein oder mehrere ,,Reserver” bereits ihr Interesse angemeldet haben
und warten.
Wenn die aufrufende Task blockiert wird, so wird der Boltvariablen der Zu-

stand ,,mindestens ein Enterer wartet“ aufgeodert. Neuer Taskzustand ist dann
,SEMA*.

Maximal kann eine Boltvariable in RTOS—UH 8191 mal ,entered“ sein.
Beispiel:

ENTRB OPD $A076

LEA Boltx,Al Adresse der Boltvariablen

ENTRB Task wird je nach

A Vorzustand evtl. blockiert
Boltx DC 0 Bolts sind 16-bit Obj.

8.1 Die Systemtraps 475

Write Error—Message ERROR = $A002‘
Eingaberegister: Parameter iiber PC, ggf. A1 sowie $66 (A4)
Ausgaberegister: -

Verdnderte Register: D7,PC iiberspringt Wort nach dem Trap

Es wird eine wortweise zusammengesetzte Meldung erzeugt und im Normal-
fall iiber den Error-Dédmon (Task #ERRDM) zum Standard-Error-device/file
des Nutzers geleitet. Der Text wird durch den Inhalt der Zelle OPNAME.T =
OPNAME (A4) sowie durch das Wort hinter dem Trap bestimmt. Wenn dieses aus
den Hexziffern ,,abcd“ besteht, so bestimmen b, ¢ und d den eigentlichen Text,
wahrend «a eine Zusatzinformation festlegt. In OPNAME. T steht entweder ein 6
Byte langer Text oder eine 4 Byte Adresse gefolgt von einem Nullwort (Adre-
Bindikator). Textende durch $FF. Die Textausgabe wird bei einem Leerzeichen
abgebrochen. Der Text mufl konstant sein, da er nicht gepuffert wird!

Wenn fiir den aufrufenden Prozef ein eigener Exception-Handler angeschlossen
ist, so wird dieser aktiviert. Je nach im Exception-Frame vereinbartem Mode
unterbleibt ggf. die Ausgabe des Textes durch den Error-Damon. Die Dekodie-
rung des Textes ist mit Hilfe des DCDERR-Traps auf Seite 467 moglich. Auch der
Error-Damon benutzt intern den DCDERR-Trap.

Beispiel:

ERROR 0PD $A002
ERROR Trap-Aufruf
DC $1234 a=1,b=2,c=3,d=4
* Meldung waere >>task:filename wrong prio (xio-call)

Falls die Datei COMEQU nicht zur Hand ist, hier die wahrscheinlichen Werte fiir
OPNAME:

OPNAME EQU $66 beim 68K
OPNAME EQU $B4 beim PowerPC

476 8.1 Die Systemtraps

a: enthélt folgende funktionelle Bits:

2 unterdriicke den Text in OPNAME

8 suspendiere die aufrufende Task

b: Auswahl aus folgendem Vorrat:

0 Blank 1 not 2 wrong

3 zero—division 4 CHK 5 blocks

6 breakpoint 7 directory 8 disc

9 memory A module B missing

C underflow D alignment! E —-

F —_

¢: Auswahl aus folgendem Vorrat:

0 Blank 1 bus-error 2 device-ldn
3 prio 4 loaded 5 suspended
6 active 7 command 8 address

9 op—code A priviledged B overflow

C in system D 1I/0 E operand

F —_

d: Auswahl aus folgendem Vorrat:

0 Blank 1 (activate) 2 (terminate)
3 (continue) (xio—call) 5 (trap)

6 (floppy/harddisc) loader—input 8 rec—checksum
9 label (mode) B timing

C (array)index FPU-688812 E parameterlist
F N

1 Nur beim PowerPC
2 Nur beim 68k

8.1 Die Systemtraps 477

Interrupt—schedule activation quick EVACTQ = $A056
Eingaberegister: D1.W Prioritat

A1.L Adresse der Task (TID)

OPFATI.T Prozef—Interrupt—Maske

A4 muf} auf Taskworkspace zeigen
Ausgaberegister: -

Verdnderte Register: D1,D6,D7,A1

Eine Task, deren Adresse in Al steht, wird zur Aktivierung eingeplant. Beste-
hende Aktivierungs-Einplanungen werden geloscht. In D1 wird die Prioritét der
Aktivierung iibergeben. Ist D1 geloscht, wird die Default—Prioritét eingesetzt.
Die Prioritét der aktuell laufenden Task wird nicht gedndert. In OPFATI.T =
OPFATI(A4) muf die ProzeB—Interrupt—Maske eingetragen sein.

Beispiel:
EVACTQ OPD $A056 Trap-Definition
R TID in Al
_MOVE.L =$80004000,0PFATI.T Interrupt-Maske
EVACTQ auf Interrupt einplanen

Fiir den Notfall (Datei COMEQU nicht zur Hand) hier die wahrscheinlichen Werte
von OPFATI:

OPFATI EQU $6C in der 68k-Familie
OPFATI EQU $BC in der PowerPC-Familie

478 8.1 Die Systemtraps

EVCONQ = $A05A Event continue quick
Eingaberegister: Al1.L Adresse der Task (TID)

OPFATI.T Prozefi—Interrupt—Maske

A4 muf} auf Taskworkspace zeigen
Ausgaberegister: -

Verdnderte Register: D6,D7,A1

Eine Task, deren Adresse in A1l steht, wird zur Fortsetzung eingeplant. Be-
stehende Fortsetzungs-Einplanungen werden geléscht. In OPFATI.T = $6C(A4)
muf} die Proze—Interrupt—Maske eingetragen sein.

Beispiel:
EVCONQ OPD $A05A Trap-Definition
. TID in Al
_MOVE.L =$80001000,0PFATI.T Interrupt-Maske
EVCONQ auf Interrupt einplanen

Fiir den Notfall (Datei COMEQU nicht zur Hand) hier die wahrscheinlichen Werte
von OPFATI:

OPFATI EQU $6C in der 68k-Familie
OPFATI EQU $BC in der PowerPC-Familie

8.1 Die Systemtraps 479

Fetch Communication—Element ’FETCE = $4E48‘
Eingaberegister: D1.L Grofle des 1/O-Buffers
Ausgaberegister: Al.L Adresse des CE’s

Verdnderte Register: D1,D6,D7

Der Inhalt von D1.L wird als Grofle des effektiv nutzbaren zu schaffenden Puf-
fers im CE angesehen. Will man den Puffer (I0BUF, siche Beschreibung CE in
8.3.1 auf Seite 559) nicht benutzen, so ist durchaus ein Aufruf mit D1.L=0 sinn-
voll. Im Register A1 wird die Adresse des CEs zuriickgegeben. Die Ausfithrung
dieser Instruktion kann die exekutierende Task blockieren:

1. Die Task hat bereits ihr Kontingent an CE-Speicherraum verbraucht. Sie
wird mit ,,CWS?“ blockiert und erst wieder lauffdhig, wenn andere in ihrem
Besitz befindliche CEs zu freiem Speicher riickverwandelt sind.

2. RTOS—UH hat nicht mehr geniigend Speicher zur Verfiigung. Die Task
wird in der Kondition ,,PWS?“ blockiert und erst wieder lauffihig, wenn
irgendwo gentigend Speicher freigeworden ist.

Die Blockierung im ersten Fall 148t sich vermeiden, wenn das Least—significant
Bit (ungerade Zahl) im Eingaberegister D1.L gesetzt ist. Dieses Bit wird nicht
bei der Groflenberechnung beriicksichtigt, sondern dient als Indikator fiir die
Zulassung einer , kontingentiiberschreitenden“ Anforderung.

Das CE wird vom FETCE mit folgenden Eintrigen vorparametriert:

PRIO Eigenprioritat der Task
BUADR Adresse von IOBUF (A1)
STATIO $00

FNAME} 1 Blank+$FF
Die restlichen Parameter (LDNIO, RECLEN, MODE ...) miissen von der Task

besetzt werden, bevor das CE iiber ,,XI0“ benutzt werden kann. Natiirlich
diirfen dabei auch die obigen vorbesetzten Parameter veréindert werden.

480 8.1 Die Systemtraps

FREEB = $A074‘ Free Boltvariable

Eingabe-Register: Al.L Addresse der Boltvariablen
Veranderte Register: D5,D6,D7

Dieser Trap ist Teil des ,,FREE“-Konstruktes aus PEARL. Er kann allerdings
auch ohne den entsprechenden Umgebungscode direkt benutzt werden. Die
mit Al adressierte Boltvariable wird bedingungslos auf den Zustand ,,FREE® ge-
bracht. Evtl. vorhandene auf diese Variable wartende ,, Enterer* oder ,,Reserver*
werden entblockiert, was ggf. wie jede Entblockierung einen Dispatcherstart be-
wirkt.

Wenn man als Assemblerprogrammierer das extrem schnelle Konstrukt des

PEARL-Compilers beim ,,FREE“-Statement nachbilden will, so kann wie folgt
verfahren werden:

FREEB 0PD $A074

LEA Boltx,Al Adresse der 16-bit Bolt

LSL (AL Test and clear sign-bit
BEQ.B Weiter Branch if no waiting Task
FREEB Total clear etc.

Weiter ...

Boltx DC 0 Bolts sind 16 Bit, init O

Bitte verwenden Sie nur entweder den Trap pur oder exakt obiges schnelleres
Konstrukt. Der Transferassembler fiir den PowerPC kann namlich nur genau
diesen LSL-Befehl in eine gegen Taskwechsel gesicherte Ersatzkonstruktion mit
Hilfe des 1warx-Befehles iibersetzen.

Der Trap, bzw. das komplette PEARL-Konstrukt kann auch benutzt werden,
um eine Boltvariable unbedingt freizugeben. Eine Boltvariable im ,entered-
state“ diirfte eigentlich nie dem FREE-Trap angeboten werden — wenn man sich
iiber die Folgen im Klaren ist, kann das dennoch eine wichtige Programmierhilfe
zur Re-Initialisierung sein: Die Boltvariable steht hinterher auf Null, natiirlich
darf sich dabei keine lebendige Task mehr im kritischen Pfad befinden.

8.1 Die Systemtraps 481

Generate and prepare SubTask GAPST = $AO0E‘
Eingabe-Register: D1.L Total size of required task—header
D6.W Priority of son—process

OPNAME.T 6 Bytes of son’s name (kann spéter noch
geindert werden)

A4 L muf} auf Taskworkspace zeigen
Ausgabe-Register: A1.L Pointer to generated task—header
CCR ,EQ“ if possible, ,NE“ if no space av.

Verénderte Register: D1,D7

Es wird ein Taskkopf der in D1 angegebenen Grofle (mufl mindestens der Grofle
des Task-DCB entsprechen, die aus der Zelle PTHLEN gelesen werden kann,
wahrscheinlicher Inhalt: $62) nach Suche von oben nach unten erzeugt. Konnte
der bendtigte Platz nicht gefunden werden, so retourniert der Trap mit ,NE“
und es wird keine Aktion ausgefiihrt. Anderenfalls antwortet er mit ,,EQ* und
lad A1 (Zeiger auf den Taskkopf). Der Task—Declaration Block ,, Task-DCB*
wird wie folgt vorbesetzt:

TYPE : User-no. des Aufrufers + TYPE Task

PRIO . Eingangswert D6, nicht mehr d&nderbar!

NAME : 6 Bytes aus OPNAME.T des Aufrufers,
dnderbar

WSPLEN : Defaultiert zu $78 (minimaler Platz),
dnderbar

. : No schedule, No buff. activation, no TWS
BLOCK : Waiting for activation (blocked, but lin-
ked)

Der Anwender muf} jetzt unbedingt den Start—PC, SPC(A1), auf die zu exe-
kutierende Code—Sequenz bringen! Er kann WSPLEN (A1) und NAME(A1) noch
verindern (etwa bei Langnamen den langrelativen Zeiger einsetzen). Irgend-
welche Parameter kann man dem Sohn nur iiber die Zellen hinter dessen Task-
DCB — also nicht vor $64 (A1) — einschreiben, wenn D1.L grof§ genug war. Der
Sohn kann die Parameter dort spéter mit Hilfe seiner eigenen TID abholen und
auswerten.

482 8.1 Die Systemtraps

Nachdem alle Parameter versorgt worden sind, kann man das Blockbyte 16schen
und einen Dispatcherstart mit dem Trap DPC ($4E43) wagen. Der Sohn setzt
sich nun in Gang und raubt — je nach PRIO — eventuell dem erzeugenden
Prozefl den Prozessor. Irgenwann wird aber auch der erzeugende Prozef} hinter
dem CLR BLOCK (A1) oder dem DPC—Trap fortgesetzt, er muf} also entsprechend
weitergefithrt werden.

Der Trap wird im Bedieninterpreter benutzt, z. B. COPY, LOAD, P, AS um diesen
zeitlich sowie speicherplatzméfig zu entlasten.

Er ist hervorragend fiir kompliziertere Shell-Extensions geeignet, erfordert al-
lerdings auch Sorgfalt bei der Anwendung. Wenn der Sohnprozefl nach getaner
Arbeit verschwinden soll, so mufl man ihn nur auf den Trap TERV ($A010) statt
TERMI ($4E41) laufen lassen. Wenn man auf das Ende des Sohnprozesses warten
will, so empfiehlt sich dafiir der Trap WFEX, beschrieben auf Seite 539.
Verwenden Sie unbedingt die Datei COMEQU oder COMEQU.NOL (ohne Liste) um
die richtigen Displacements zu erhalten. Zwischen dem 68k und dem PowerPC
gibt es einige Unterschiede

8.1 Die Systemtraps 483

Identify Module by String IMBS = $A03C‘
Eingaberegister: A2.L Adresse des Modulnamens
Ausgaberegister: A1.L Adresse des Moduls

SR »EQ“ wenn gefunden, sonst ,,NE*

Verédnderte Register: D7,A2

Der RAM—Bereich des Rechners wird nach einem Modul durchsucht, dessen
Name mit dem von A2 adressierten tibereinstimmt. Wird das Modul gefunden,
antwortet der Trap mit ,,EQ“, und in A1 steht die Adresse des Moduls. Wird
das Modul nicht gefunden, lautet die Antwort ,NE“. Der Name muf3 mit einem
ASCII-Zeichen kleiner $2F oder Semikolon ($3B) enden. Wéhrend der Suche
ist der Trap preemptionfihig.

Beispiel:
IMBS OPD $A03C Trap-Definition
LEA TEXT,A2 Adr. von Modulnamen-> A2
IMBS Suchen

BEQ FOUND Springe, wenn gefunden

TEXT DC.B ’Mist’ Modulname
DC.B $20 Ende des Namens

484 8.1 Die Systemtraps

INTD1 = $AO4C‘ Integer to D1
Eingaberegister: A2.L Adresse des Textes
Ausgaberegister: D1.L 32 Bit Integer

SR ,NE“ wenn keine Ziffer, sonst ,EQ“

A2 um Anzahl Ziffern inkrementiert

Verdnderte Register: D7

Eine Zahl in ASCII-Darstellung wird in eine 32 Bit Integer-Zahl gewandelt. In
A2 muf} die Anfangsadresse der ASCII-Zahl stehen. Das Ergebnis wird in D1
zuriickgegeben. Die Umwandlung wird abgebrochen, wenn A2 auf ein ASCII-
Zeichen zeigt, welches nicht zwischen 0 ($30) und 9 ($39) zeigt. Liegt gleich das
erste Zeichen auflerhalb, so antwortet der Trap mit ,NE“. Ist das erste Zeichen
eine Ziffer, ist die Antwort ,EQ“. Es wird nicht gepriift, ob ein Overflow auftritt!

Beispiel:

INTD1 OPD $A04C Trap-Definition
.. A2 zeigt auf ASCII-String
INTD1 Wandeln
BNE MUELL springe, wenn keine Zahl

8.1 Die Systemtraps 485

1/0-Wait—Function TIOWA = $A00A |
Eingaberegister: A1.L muf auf ein CE zeigen
Ausgaberegister: -

Verénderte Register: D7

Es wird gepriift, ob das mit A1 bezeichnete Element noch in einer Warteschlange
steht oder noch in laufender Bearbeitung der Betreuungstask ist. In diesem
Fall wird die den ,,IOWA® exekutierende Task blockiert im Status ,,I/07¢. Ist
das Element bereits vollstdndig bearbeitet, so wirkt der Befehl wie ein ,No
Operation®.

Mit der Blockierung der Task wird im CE-Modewort nachtréglich das ,, War-
tebit“ gesetzt, so daf die aufrufende Task sofort mit der Beendigung des I/O—
Vorganges wieder lauffihig wird.

Die Verwendung dieses Traps empfiehlt sich insbesondere, wenn Inputopera-
tionen friith vor der Benutzung der Daten in Auftrag gegeben wurden und die
Daten nun gebraucht werden. Auch nach einem Output ohne Wartebit mufl
diese Funktion aufgerufen werden, wenn das CE neu parametriert werden soll.

Warnung:

Der Trap kann in der jetzigen Form nicht benutzt werden, wenn
das CE mit gesetztem Return-Bit zum I/O-Démonen geschickt
wurde. Die Blockierung durch diesen Trap wird némlich nicht auf-
gehoben, wenn das CE in die eigene Warteschlange zuriickkehrt,
und die Task bleibt ewig blockiert.

486 8.1 Die Systemtraps

ITBO = $A006‘ Identify Task by Opname
Eingaberegister: OPNAME.T Textadresse oder Text

A4 muf} auf Taskworkspace zeigen
Ausgaberegister: Al.L Adresse der Task

SR »EQ“ wenn gefunden, sonst ,NE*

Verdnderte Register: D7,A2

Der RAM-Bereich des Rechners wird nach einer Task durchsucht. Die Task
wird durch den Inhalt von OPNAME.T = OPNAME(A4) beschrieben. In OPNAME.T
steht entweder ein 6 Byte langer Text oder eine 4 Byte Adresse eines Textes,
der mit einem ASCII-Zeichen kleiner $2F oder Semikolon ($3B) enden muf,
und ein Wort $0000. Wird die Task gefunden, antwortet der Trap mit ,,EQ“,
und in A1 steht die Adresse der Task. Wird die Task nicht gefunden, lautet die
Antwort ,,NE“.

Beispiel:
ITBO OPD $A006 Trap-Definition
MOVE.L =$41464645,0PNAME.T ’AFFE’ nach OPNAME
MOVE =$2020,0PNAME+4.T Mit Blanks auf 6 Byte

ITBO Suchen
BEQ FOUND Springe, wenn gefunden

Falls die Datei COMEQU nicht zur Hand ist, hier die wahrscheinlichen Werte fiir
OPNAME:

OPNAME EQU $66 beim 68K
OPNAME EQU $B4 beim PowerPC

8.1 Die Systemtraps 487

Identify Task by String ITBS = $A048‘
Eingaberegister: A2.L Adresse des Tasknamens
Ausgaberegister: A1.L Adresse der Task

SR »EQ“ wenn gefunden, sonst ,,NE*

Verédnderte Register: D7,A2

Der RAM—Bereich des Rechners wird nach einer Task durchsucht, deren Namen
mit dem von A2 adressierten iibereinstimmt. Wird die Task gefunden, antwortet
der Trap mit ,EQ“ und in A1 steht die Adresse der Task (TID). Wird die Task
nicht gefunden, lautet die Antwort ,NE“. Der Name mufl mit einem ASCII-
Zeichen kleiner $2F oder Semikolon ($3B) enden.

Wiihrend der Suche ist der Trap preemptionfihig.
Beispiel:
ITBS OPD $A048 Trap-Definition
LEA TEXT,A2 Adr. des Tasknamen-> A2
ITBS Suchen

BEQ FOUND Springe, wenn gefunden

TEXT DC.B ’Mist’ Taskname
DC.B $20 Ende des Namens

488 8.1 Die Systemtraps

ITS1T = $A040‘ Index—test one—dimension
Eingaberegister: Al.L Adresse Feldbeschreibungsblock

DO.W linearer Index
Ausgaberegister: -

Veranderte Register: A1,D5,D6,D7

Es wird gepriift, ob der lineare Index eines eindimensionalen Feldes inner-
halb der Feldgrenzen liegt. A1 muf} auf den Feldbeschreibungsblock (siehe auch
PEARL-Assembler-UP, 8.4.1) zeigen, hier also auf die Feldgrenze der ersten
Dimension. Wenn der Index auflerhalb der Feldgrenzen liegt, wird die Fehler-
meldung ,wrong index“ ausgegeben. War die Zeileniiberwachung eingeschal-
tet, wird auch die Zeilennummer mit ausgegeben. Der Pearl-Compiler gene-
riert diesen Trap bei der +T-Option. Er ist nicht fiir selbstgeschriebene As-
semblerprogramme gedacht, da man dort meist bessere Priifméglichkeiten zur
Verfiigung hat.

Beispiel:

ITSIT OPD $A040 Trap-Definition
Index in DO.W
Al1.L zeigt auf 1st Dimension
ITSIT teste Index

Hinweis:

Dieser Trap wird vom PEARL90-System nicht mehr benutzt. Er
ist nur noch zur Abwértskompatibilitdt im Systemkern enthalten!

8.1 Die Systemtraps 489

Long Index—test one—dimension ITS1ITL = $A060‘
Eingaberegister: Al.L Adresse Feldbeschreibungsblock

DO.L linearer Index
Ausgaberegister: -

Verédnderte Register: A1,D5,D6,D7

Es wird gepriift, ob der lineare Index eines eindimensionalen Feldes inner-
halb der Feldgrenzen liegt. A1 muf} auf den Feldbeschreibungsblock (siehe auch
PEARL-Assembler-UP, 8.4.1) zeigen, hier also auf die Feldgrenze der ersten
Dimension. Wenn der Index auflerhalb der Feldgrenzen liegt, wird die Fehler-
meldung ,wrong index“ ausgegeben. War die Zeileniiberwachung eingeschal-
tet, wird auch die Zeilennummer mit ausgegeben. Der Pearl-Compiler generiert
diesen Trap bei der +T-Option. Er ist eigentlich nicht zur Anwendung in As-
semblerprogrammen gedacht.

Beispiel:

ITSITL O0OPD $A060 Trap-Definition
Index in DO.L
... Al1.L zeigt auf 1st Dimension
ITS1ITL teste Index

Hinweis:

Dieser Trap wird vom PEARLI0-System nicht mehr benutzt. Er
ist nur noch zur Abwirtskompatibilitdt im Systemkern enthalten!

490 8.1 Die Systemtraps

ITS2T = $A042‘ Index—test two—dimension
Eingaberegister: Al.L Adresse Feldbeschreibungsblock

DO.W linearer Index
Ausgaberegister: -

Veranderte Register: A1,D5,D6,D7

Es wird gepriift, ob der lineare Index eines zweidimensionalen Feldes inner-
halb der Feldgrenzen liegt. A1 muf} auf den Feldbeschreibungsblock (sieche auch
PEARL-Assembler-UP, 8.4.1) zeigen, in dem die Feldgrenzen in umgekehrter
Reihenfolge liegen. Wenn der Index auflerhalb der Feldgrenzen liegt, wird die
Fehlermeldung ,wrong index“ ausgegeben. War die Zeileniiberwachung ein-
geschaltet, wird auch die Zeilennummer mit ausgegeben. Der Pearl-Compiler
generiert diesen Trap bei der +T-Option. Er ist eigentlich nicht zur Anwendung
in Assemblerprogrammen gedacht.

Beispiel:
ITS2T 0OPD $A042 Trap-Definition
Index in DO.W
Al1.L zeigt auf Feldbeschreibungsb.
ITS2T teste Index

Hinweis:

Dieser Trap wird vom PEARL90-System nicht mehr benutzt. Er
ist nur noch zur Abwértskompatibilitdt im Systemkern enthalten!

8.1 Die Systemtraps 491

Long Index—test two—dimension ITS2TL = $A062‘
Eingaberegister: Al.L Adresse Feldbeschreibungsblock

DO.L linearer Index
Ausgaberegister: -

Verédnderte Register: A1,D5,D6,D7

Es wird gepriift, ob der lineare Index eines zweidimensionalen Feldes inner-
halb der Feldgrenzen liegt. A1 muf} auf den Feldbeschreibungsblock (siehe auch
PEARL-Assembler-UP, 8.4.1) zeigen, in dem die Feldgrenzen in umgekehrter
Reihenfolge liegen. Wenn der Index auflerhalb der Feldgrenzen liegt, wird die
Fehlermeldung ,wrong index“ ausgegeben. War die Zeileniiberwachung ein-
geschaltet, wird auch die Zeilennummer mit ausgegeben. Der Pearl-Compiler
generiert diesen Trap bei der +T-Option. Der Trap ist eigentlich nicht zur An-
wendung durch den Assemblerprogrammierer gedacht.

Beispiel:

ITS2TL O0OPD $A062 Trap-Definition
Index in DO.L
... Al1.L zeigt auf Feldbeschreibungsb.
ITS2TL teste Index

Hinweis:

Dieser Trap wird vom PEARLI0-System nicht mehr benutzt. Er
ist nur noch zur Abwirtskompatibilitdt im Systemkern enthalten!

492 8.1 Die Systemtraps

ITS3T = $A044‘ Index—test three—dimension
Eingaberegister: Al.L Adresse Feldbeschreibungsblock

DO.W linearer Index
Ausgaberegister: -

Veranderte Register: A1,D5,D6,D7

Es wird gepriift, ob der lineare Index eines dreidimensionalen Feldes inner-
halb der Feldgrenzen liegt. A1 muf} auf den Feldbeschreibungsblock (sieche auch
PEARL-Assembler-UP, 8.4.1) zeigen, in dem die Feldgrenzen in umgekehrter
Reihenfolge liegen. Wenn der Index auflerhalb der Feldgrenzen liegt, wird die
Fehlermeldung ,wrong index“ ausgegeben. War die Zeileniiberwachung ein-
geschaltet, wird auch die Zeilennummer mit ausgegeben. Der Pearl-Compiler
generiert diesen Trap bei der +T-Option. Er ist eigentlich nicht zur Anwendung
durch den Assemblerprogrammierer gedacht.

Beispiel:

ITS3T 0OPD $A044 Trap-Definition
Index in DO.W
Al.L zeigt auf Feldbeschreibungsb.
ITS3T teste Index

Hinweis:

Dieser Trap wird vom PEARL90-System nicht mehr benutzt. Er
ist nur noch zur Abwértskompatibilitdt im Systemkern enthalten!

8.1 Die Systemtraps 493

Long Index—test three—dimension ITS3TL = $A064‘
Eingaberegister: Al.L Adresse Feldbeschreibungsblock

DO.L linearer Index
Ausgaberegister: -

Verédnderte Register: A1,D5,D6,D7

Es wird gepriift, ob der lineare Index eines dreidimensionalen Feldes inner-
halb der Feldgrenzen liegt. A1 muf} auf den Feldbeschreibungsblock (siehe auch
PEARL-Assembler-UP, 8.4.1) zeigen, in dem die Feldgrenzen in umgekehrter
Reihenfolge liegen. Wenn der Index auflerhalb der Feldgrenzen liegt, wird die
Fehlermeldung ,wrong index“ ausgegeben. War die Zeileniiberwachung ein-
geschaltet, wird auch die Zeilennummer mit ausgegeben. Der Pearl-Compiler
generiert diesen Trap bei der +T-Option. Er ist wie alle Indextest-Traps eigent-
lich nicht zur Anwendung durch den Assemblerprogrammierer gedacht.

Beispiel:

ITS3TL O0PD $A064 Trap-Definition
Index in DO.L
... Al1.L zeigt auf Feldbeschreibungsb.
ITS3TL teste Index

Hinweis:

Dieser Trap wird vom PEARL90-System nicht mehr benutzt. Er
ist nur noch zur Abwirtskompatibilitdt im Systemkern enthalten!

494 8.1 Die Systemtraps

LEAVB = $A078‘ Leave Boltvariable
Eingaberegister: Al.L Adresse der Boltvariablen
Ausgaberegister: -

Verdnderte Register: D5,D6,D7

Der Trap ist das Gegenstiick zum ENTRB-Trap, der auf Seite 474 beschrieben
ist. Es sind vier Fille denkbar:

e Der Entercount ist im normalen Bereich, und es wartet kein ,, Reserver®:
Einzige Aktion ist die Dekrementierung der Boltvariablen.

e Der Entercount beim Aufruf ist 1, und es warten 1 oder mehrere ,,Reser-
ver*: Die Boltvariable geht in den Zustand ,reserved“, und der hochst-
priore auf sie wartende Prozefl wird lauffahig gemacht. Ein Dispatcherlauf
folgt.

e Der Entercount beim Aufruf steht auf dem Maximum ($3FFF), und ein
oder mehrere ,, Enterer* warten: Alle wartenden Tasks werden freigegeben
(Dispatcherlauf) und kénnen ihre Anforderung wiederholen.

e Der Entercount beim Aufruf war filschlicherweise Null: Eine Reduktion
unterbleibt, aber evtl. auf die Boltvariable wartende Tasks werden frei-
gegeben.

Beispiel:
LEAVB 0OPD $A078

LEA Boltx,Al
LEAVB

8.1 Die Systemtraps 495

Line Tracer LITRA = $A036‘

Eingaberegister: PC Zeilennummer steht nach PC
BRKADR Break—Adresse

Ausgaberegister: -

Verédnderte Register: A1,D1,D6,D7

Wenn eine Task diesen Trap exekutiert und die Zeilennummer in BRKADR =
$3E(TID) mit der Zeilennummer nach diesem Trap iibereinstimmt, wird sie
suspendiert, und es erfolgt die Meldung ,,breakpoint suspended® unter An-
gabe der Zeilennummer. Die Zeilennummer nach dem Trap wird in jedem Fall
iibersprungen. Desweiteren wird die hinter dem Trap stehende Zeilennummer
in LINENO.T = $A2(A4) eingetragen und ersetzt die bisher evtl. dort stehende.
Der PEARL—-Compiler generiert diesen Trap, wenn die +M—Option eingeschal-
tet ist und er realen Code erzeugt. Der Eintrag der Zeilennummer nach BRKADR
kann mit Hilfe des TRACE-Kommandos erfolgen.

Beispiel:
LITRA OPD $A036 Trap-Definition

LITRA Line Trace
DC $0001 Zeile Nummer 1

496 8.1 Die Systemtraps

LITRAV = $A038‘ Line Tracer virtuell
Eingaberegister: D1.W Zeilennummer
Ausgaberegister: -

Verdnderte Register: A1,D1,D6,D7

Wenn eine Task diesen Trap exekutiert und die Zeilennummer in BRKADR =
$3E(TID) mit der Zeilennummer in D1 iibereinstimmt, wird sie suspendiert,
und es erfolgt die Meldung ,breakpoint suspended“ unter Angabe der Zei-
lennummer. Die Zeilennummer in D1 wird in LINENO.T = $A2(A4) eingetragen.
Der Hyperprozessor (Laufzeitsystem von PEARL) benutzt diesen Trap als Teil
eines virtuellen Befehls, den der Pearl-Compiler bei eingeschalteter +M—Option
erzeugt. Der Eintrag der Zeilennummer nach BRKADR kann mit Hilfe des TRACE-
Kommandos erfolgen.

Beispiel:
LITRAV O0OPD $A038 Trap-Definition

_MOVEQ =1,D1 Zeilennummer nach D1
LITRAV Line Trace virtuell

8.1 Die Systemtraps 497

Multiply D2 by 60 MD2B60 = $A046|
Eingaberegister: D2.L wird mit 60 multipliziert
Ausgaberegister: D2.L

Verédnderte Register: D2,D7

Der Inhalt von D2 wird mit 60 multipliziert. Das Ergebnis steht ebenfalls in
D2. Dieser Trap kann bei der Berechnung der Uhrzeit in Stunden, Minuten,
Sekunden verwendet werden.

Beispiel:
MD2B60 OPD $A046 Trap-Definition
ce D2 Stunden
MD2B60 aus Stunden->Minuten
MOVE.L D2,MIN Speichern
MD2B60 aus Min.->Sekunden

MOVE.L D2,SEC Speichern

498 8.1 Die Systemtraps

MSGSND = $A070‘ Message send
Eingaberegister: A1.L Pointer Communication-Element

D1.L Task-Identifier der Zieltask
Ausgaberegister: -

Veranderte Register: D1,D5,D6,D7

Mit diesem Trap kann einer in D1.L iiber ihren Task-Identifier bezeichne-
ten Task das in A1.L bezeichnete Communication—Element geschickt werden.
Ist die Zieltask inaktiv oder blockiert (,waiting for activation®), so wird
sie aktiviert bzw. diese eine Blockierbedingung wird aufgehoben. Ist deren
Defaultprioritét Null, so erfolgt eine dynamische Priorisierung (siehe XI0, Seite
550). Ist im Mode-Byte des CE das Wartebit gesetzt, so wird die aufrufende
Task durch den Trap blockiert im Zustand I/07. Diese Blockierung hebt der
Empfinger der Nachricht nach deren Auswertung mit Hilfe des RELCE-Traps
erst spater wieder auf.

Der Trap funktioniert vollig analog zum XI0-Trap, kann allerdings das CE an
beliebige Tasks verschicken. Genau wie beim XI0 wird auch hier eine prioritéts-
gerechte (an Hand der Zelle PRIO im CE) Einkettung vorgenommen: Dringende
Nachrichten kommen ganz nach vorne in die Schlange.

Das weitere Schicksal des CE nach dessen Abarbeitung durch den Message-
Empfinger wird durch das Byte STATIO im CE bestimmt. Wenn das Bit STABRE
(Bitno. 1) gesetzt ist, wird das CE mit dem RELCE des Empféngers in freien
Speicher verwandelt. Ist dagegen das Bit STABRT(Bitno. 2) gesetzt, so kehrt
das CE nach Abarbeitung in die eigene CE-Schlange des Aufrufers zuriick und
kann von dort bei Bedarf mit dem TOQ-Trap geholt werden.

Beispiel:
MSGSND OPD $A070

CE nach A1l

. Target TID nach D1.L

MSGSND

8.1 Die Systemtraps 499

Switch Dispatcher off OFF = $4E4F‘

Eingaberegister: -
Ausgaberegister: -

Verdnderte Register: SR

Der Prozessor wird in den privilegierten Mode mit gesperrtem Interruptsystem
(beim 68k: Interruptebene 7) gebracht. Damit kommen keine Interrupts und
Dispatchereingriffe mehr zum Zuge.

Achtung!

Dieser Befehl ist mit grofiter Sorgfalt anzuwenden
und darf nur fiir sehr kurze Zeit (max. ca. 20 ...
50 Maschinenbefehle) zur Inhibierung der Interrupts
fithren. Sinn dieser Anweisung ist, bei bestimmten
Problemen in E/A-Treibern Sequenzen von wenigen
Befehlen unteilbar zu machen.

Der privilegierte Zustand wird in legalem T—Code durch Aufruf des DPC-Traps
beendet.

In reinen 68k-Programmen kann auch der Befehl ANDI =$D8FF, SR verwendet
werden, wenn ohnehin sofort irgendein anderer Trap von RTOS-UH folgt.
Zwischenzeitliche Verédnderungen von Taskzustéinden koénnen sich dadurch al-
lerdings verzogert auswirken.

500 8.1 Die Systemtraps

PENTR = $4E4B‘ Procedure entry
Eingaberegister: D1.L Nutzbare Workspace-Grofie

A5.L Wird im alten Workspace gerettet
Ausgaberegister: Al.L Adresse des Workspaces

A5.L Zeiger auf erstes Nutzbyte

SR ,NE“ kein Erfolg, ,EQ“ Al geladen

Verdnderte Register: D1,D7,A1,A5

Der von RTOS—UH verwaltete Speicherbereich wird von oben nach unten
auf die erste freie Sektion durchsucht, in die eine Sektion der in D1 angegebe-
nen Grofle samt ihrem Verwaltungskopf hineinpafit. D1 enthélt also die effektiv
nutzbare WSP-Grofle. Die Suche beginnt dabei versuchsweise zunéchst an der
Stelle, an der beim letzten Mal erfolgreich Speicher zugeteilt werden konnte.
Wenn das nicht gelingt, wird nach unten weitergesucht, und erst danach wer-
den die oberhalb liegenden Freisektionen inspiziert. Wihrend der Suche ist der
Trap preemptionfihig.

Wird keine passende freie Sektion gefunden, so antwortet der Trap mit ,NE“
anderenfalls mit ,EQ“. Das Register A5 wird in den Verwaltungskopf gerettet
und anschlieend ebenso wie A1 neu geladen. Register Al zeigt auf die erzeugte
Sektion, A5 auf die Stelle in der Sektion, ab der der Anwender D1 Datenbytes
ablegen darf.

Die Umkehroperation hierzu ist der Trap ,RETN® ($4E4C). Man beachte, daf die
so erzeugte Speichersektion als ,PWS“, d. h. ,Procedure-Work—Space* verbucht
wird und mit der Terminierung der einstmals erzeugenden Task automatisch
wieder zu freiem Speicher wird. Dafiir sorgt das sog. ,,T-link*, eine Kette, die
ihren Ursprung im ,, Task-WorkSpace® hat und alle von der Task angeforderten
CEs (Communication-Elements) und ,,PWS* miteinander zu einem Ring verbin-
det. Will man die Sektion von der Task ablésen, wie es zum Beispiel der Editor
mit neuen Blécken macht, so mufl die Sektion mit einer besonderen Prozedur
aus dem ,, T-link“ herausgenommen werden. In solchen Fillen empfiehlt sich
allerdings nicht dieser Trap, sondern der Trap WSBS ($A00C).

8.1 Die Systemtraps 501

Beispiel:

PENTR O0OPD $4E4B
RETN 0OPD $4EAC

.INCLUDE .../COMEQU.NOL wegen PRTNAD *

BSR SUBR Unterprogramm
B *
SUBR MOVE.L =500,D1 500 Bytes Daten

PENTR

BNE MIST B: Kein Platz mehr

MOVE.L (A7)+,PRTNAD(A1) Return-adr ableg.

Nun koennen die Bytes 0(A5) bis
incl 499(A5) benutzt werden

RETN Wsp zurueck+Jump

Hier die wahrscheinlichen EQUs fiir den Fall, dafl die Datei COMEQU nicht zur
Hand ist:

PRTNAD EQU $1A Fiir die 68k-Familie
PRTNAD EQU $1C Fiir die PowerPC-Familie

502 8.1 Die Systemtraps

’PIRTRI = kein TRAP‘ ProzeBinterrupt Triggern
Eingaberegister: D1.L Bit(s) des ProzeBinterrupts
Ausgaberegister: -

Verénderte Register: D1

Hierbei handelt es sich nicht um einen Trap, sondern um eine Linkzelle fiir
einen Transfer in den Nukleus! Der Anschluf} ist das hintere Ende einer Super-
visorfunktion und darum nicht fiir den normalen Nutzer, sondern ausschlieflich
zur Systemerweiterung durch den Implementierer vorgesehen.

Uber PIRTRI kann eine interrupterzeugende Hardware einen ProzeBinterrupt
auslosen. Im D1 wird die 32-bit Eventmaske iibergeben, die festlegt, welche(r)
der 32 ProzeBinterrupt ,,gefeuert“ werden soll(en). Diese Eventmaske entspricht
genau derjenigen aus dem Systemteil von PEARL-Programmen in der Klammer
des Schliisselwortes ,EV(. ..)“. Nur wenn der entsprechende Interrupt enabled
ist, erfolgt eine Aktion.

Aus Griinden der Effizienz und wegen unterschiedlicher Kodierung der Riick-
fallmechanismen kommt eine Formulierung der Aufrufkonvention im T—Code
nicht in Frage.

Prozessorspezifisch miissen genau die unten angegebenen Register gerettet wer-
den!!

Beispiel 68k-Familie: Der Interrupt wurde auf $100 , eingeklinkt*.

PIRTRI EQU $80E Adresse des Soft-IR (besser: COMEQU)
IID EQU $7FE Interrupt Identifier (besser: COMEQU)

DC irmal-irpt mal-funktion
irpt MOVE IID,-(A7) save IID
MOVE =$100,IID new IID

MOVEM.L D1/D6/D7/A1,-(A7) reg. -> Systemstack
R Interrupt zuruecknehmen

MOVE.L =$80000000,D1 event code setzen
MOVEA.L PIRTRI,A1 Sprungadresse laden
JVMP (A1) Prozess-IR feuern

8.1 Die Systemtraps 503

ProzeBinterrupt Triggern PIRTRI (Forts.)

Mit dem JMP (A1) wird in den Systemkern gesprungen, der iiberpriift, ob der
entsprechende Prozefinterrupt ,,enabled” ist. Wenn dies der Fall ist und eine
oder mehrere Tasks auf den oder die IR’s eingeplant sind, werden sie aktiviert
oder fortgesetzt. Die Interruptroutine wird vom Systemkern beendet, und es
wird ein Dispatcherlauf forciert, um die Anderungen der Taskzustéinde wirksam
werden zu lassen.

Bei der PowerPC-Hardware liegen die Verhéltnisse sehr viel komplizierter. Der
Prozessor selbst verfiigt nur iiber einen sehr rudimentiren Unterbrechnungs-
mechanismus, der durch duflere Spezialhardware unterstiitzt werden muf3.

Wir studieren hier exemplarisch die Hardware der Motorola VME-Karte MV-
ME1600, die weitgehend der urspriinglichen PowerPC Reference-Plattform ent-
spricht: Alle Interruptsignale werden iiber den sog. PIC-Baustein (PC-Baustein
von Intel!) im ISA-Bridge Controller (IBC) geleitet. Passend zu diesem Bau-
stein enthilt die Implementierungsscheibe eine Art ,, Interruptgateway*, das die
Uberleitung vom Hardware-IR-Slot des PowerPC zu 16 PIC-Jumpslots managt.
(Wahrscheinliche Jumpslotadressen: $4100+4*Irno) Alle Interruptantwortrou-
tinen miissen in dieses , Interruptgateway* zuriickkehren, da am Baustein noch
komplizierte Endeoperationen ausgefiihrt werden miissen. Im Beispiel soll ein
Hardwareinterrupt den Event mit der Kodierung $02000000 auslosen. Die An-
sprungadresse von GENEV mufl dazu vorher auf den zum Interrupt gehérenden
PIC-Jumpslot gebracht worden sein.

. INCLUDE .../FORM1600 Spezialformate MVME1600

GENEV ~ PIRIBC $02000000 erledigt alles

Fiir andere Prozessorhardware sollten Sie bei uns nachfragen.

504 8.1 Die Systemtraps

’PIT = $A02E‘ Peripherie-Input
Eingaberegister: D6.L
Ausgaberegister: Di1.L

Verénderte Register: alle auBler D6.L, A4.L bis A7.L
(impl. abhingig)

Es wird eine binére, ungepufferte Eingabe in implementierungsspezifischer
Form durchgefiihrt. Die Adresse des peripheren Gerites sowie evtl. eine Be-
schreibung der Zugriffsart sind in D6.L enthalten, D1.L enthélt das eingelesene
Datum. D1.L wird implementationsabhéngig nicht in voller Linge eingelesen.

Der Trap ist nicht Bestandteil des Nukleus von RTOS—UH. Genauere In-
formationen entnehme man daher bitte dem Implementierungshandbuch des
jeweiligen Systemes.

8.1 Die Systemtraps 505

Peripherie—Output POT = $A030‘

Eingaberegister: D6.L, D1.L

Ausgaberegister: -

Verdnderte Register: alle auler D6.L, D1.L, A4.L bis A7.L
(implementationsabhéingig)

Es wird eine binére, ungepufferte Ausgabe in implementierungsspezifischer

Form durchgefiihrt. Die Adresse des peripheren Geriites sowie evtl. eine Be-

schreibung der Zugriffsart sind in D6.L enthalten, D1.L enthélt das auszuge-

bende Datum. D1.L wird implementationsabhéngig nicht in voller Linge aus-

gegeben.

Der Trap ist nicht Bestandteil des Nukleus. Eine genauere Beschreibung ist
darum dem jeweiligen Implementierungshandbuch zu entnehmen.

506 8.1 Die Systemtraps

PREV = $A022‘ Prevent Task by name
Eingaberegister: OPNAME.T Textadresse oder Text

A4 L muf} auf Taskworkspace zeigen
Ausgaberegister: -

Verédnderte Register: D7,A1,A2

Eine Task, deren Name oder deren Adresse des Namens in OPNAME.T =
OPNAME (A4) steht, wird ausgeplant. Auch im Aktivierungspuffer aufgelaufene
Aktivierungen werden geloscht. Ist die Task nicht im System vorhanden, wird
mit einer entsprechenden Fehlermeldung reagiert und der Aufrufer suspendiert.

Wihrend der Suche nach der Task ist der Trap preemptionfihig.
Beispiel:
PREV 0OPD $A022 Trap-Definition
MdvE.L =’HALL’ ,OPNAME.T °’HALL’ nach OPNAME

_MOVE =’0 ’,0PNAME+4.T ’0 > nach OPNAME
PREV Task ’HALLO’ ausplanen

Falls die Datei COMEQU nicht zur Hand ist, hier die wahrscheinlichen Werte fiir
OPNAME:

OPNAME EQU $66 beim 68K
OPNAME EQU $B4 beim PowerPC

8.1 Die Systemtraps 507

Prevent quick PREVQ = $A054
Eingaberegister: Al.L Adresse der Task (TID)
Ausgaberegister: -

Verdnderte Register: D7,A1

Eine Task, deren Adresse in A1.L steht, wird ausgeplant. Auch im Aktivie-
rungspuffer aufgelaufene Aktivierungen werden geloscht.

Der Trap priift nicht, ob ihm in A1 eine legale Task-ID iibergeben wird.
Beispiel:
PREVQ OPD $A054 Trap-Definition

. TID in Al
PREVQ Task ausplanen

508 8.1 Die Systemtraps

QSA = $AO01E Quote—scan with answer
Eingaberegister: A2.L Adresse des zu untersuchenden Textes
Ausgaberegister: A2.L Bei ,EQ“ um Stringlédnge inkrementiert

SR »EQ“ falls gleich
Verdnderte Register: D7
PC Uberspringt folgendes Wort

Durch das PC-relative Wort hinter dem Trap wird die Adresse eines Strings
iibergeben. Der ASCII-String mufl mit dem Zeichen $FE beendet sein. QSA
priift nun, ob der String mit der iiber (A2) erreichbaren Sequenz iiberein-
stimmt. Kleinbuchstaben des (A2)—String werden versuchsweise in Grof3buch-
staben verwandelt, falls der Vergleich eines Zeichens nicht gelingt. Wenn bis
zum $FE alle Zeichen des String mit der (A2)-Sequenz iibereinstimmen, wird
A2 auf das néchste Zeichen der Sequenz vorgeriickt und CCR auf ,EQ“ gesetzt.
Stimmt auch nur ein Zeichen (trotz Kleingrofkonvertierung) nicht {iberein, so
bleibt A2 unverindert, und CCR wird auf ,NE“ gesetzt.

In jedem Fall werden die beiden auf den Trap folgenden Bytes bei der Riickkehr
iibersprungen, beim PowerPC zwei weitere Fiillbytes.

Der Trap eignet sich fiir eine einfache Textanalyse und wird innerhalb der Shell
eingesetzt. Er ist darum zur Realisierung neuer Bedienbefehle optimal geeignet.

Beispiel (T—Code):

QSA O0OPD $A01E Trap-Definition
A2 zeigt auf Eingabetext
QSA Aufruf
DC TEXT-$ Stringadresse relativiert.
BEQ Irgendwo Springt bei erhoehtem A2 nach Irgendwo.

TEXT DC.B ’STIMMTS’,$FE

Der BEQ wird ausgefiihrt, wenn A2 vor dem Trap z. B. auf einen Text der Form
Stimmtsblabla oder sTIMMtSzz etc. zeigt. Nach dem QSA zeigt A2 dann z. B.
auf blabla bzw. zz.

8.1 Die Systemtraps 509

Read-Clock RCLK = $A03E]
Eingaberegister: -
Ausgaberegister: D1.L Uhrzeit in Millisekunden

Verénderte Register: D7

Die aktuelle Uhrzeit wird gelesen und in D1 zuriickgegeben. D1 enthélt die
Uhrzeit in Millisekunden. Prinzipiell kann man bei 68k-Systemen die Uhrzeit
auch durch einen MOVEM-Befehl zum gleichzeitigen Lesen der Zellen TIME und
TIMEB mit anschlieflender Addition der beiden Register ermitteln (siehe Seite
461 CLKASC-Trap). Der Trap sieht hier eine zum T—Code kompatible, sichere
und multiprozessorkompatible Alternative vor.

Beispiel:
RCLK OPD $AO3E Trap-Definition

RCLK Uhrzeit lesen
MOVE.L D1, ... Uhrzeit speichern

510 8.1 Die Systemtraps

RELCE = $4E49‘ Release CE
Eingaberegister: A1.L Zeiger auf CE
Ausgaberegister: -

Verdnderte Register: D5,D6,D7,A1

Das mit A1 angegebene Communication—Element wird vom Besitzer freigegeben
oder vom I/O-Démonen zuriickgegeben. Zum Verstéindnis dieses Traps ist es
erforderlich, da§ man sich mit dem besonderen I/O-Konzept von RTOS-UH
und der CE-Philosophie vertraut macht. Dazu wird auf die Beschreibung des
CEs auf Seite 559 hingewiesen.

Warnung!

Es ist unbedingt sicherzustellen, dafl A1 auf ein exi-
stierendes CE (Communication—-Element) zeigt, da
sonst u. U. das ganze System zum Absturz gebracht
werden kann.

An Hand des Verwaltungszeigers FORS des in Al.L bezeichneten CEs wird
zunéchst gepriift, ob das CE zur Zeit in einen E/A-Vorgang verwickelt ist.
Ist das nicht der Fall, d. h. ist FORS=0, so wird es sofort in freien Speicher
umgewandelt, und der Trap kehrt zuriick.

Wenn dagegen das CE in einer Warteschlange steht und noch nicht in Bearbei-
tung einer Betreuungstask (I/O-Dimon) ist, so wird lediglich das Release-Bit
(STABRE = Bitno.l in STATIO) gesetzt und der Trap verlassen.

8.1 Die Systemtraps 511

Release CE RELCE (FOI‘tS.)

Im besonderen Fall (FORS=$00000001, (siche auch Seite 534 T0OQ)), bei dem das
CE bereits in Bearbeitung durch eine Betreuungstask (I/O-Démon) ist, wird
nach folgender Testreihenfolge verfahren:

1.

Ist die exekutierende Task Besitzer des CEs?
In diesem Fall wird nur das Release—Bit in STATIO gesetzt, und der Trap
kehrt zuriick.

Ist im CE die Zelle TIDO geltscht, d. h. gibt es keinen Besitzer mehr?
Falls das so ist, wird das CE zu freiem Speicher, und der Trap kehrt
zuriick.

Ist dieser Testpunkt erreicht, wird fest davon ausgegangen, dafl der RELCE
von einem I/O-Démon exekutiert wurde. Vor weiterer Untersuchung des
CEs wird ggf. der auf die Fertigstellung der I/O—Operation wartende
Besitzer des CEs lauffihig gemacht.

Ist das ,,Release-Bit* (STABRE = Bitno.1) in STATIO gesetzt?

Jetzt wird davon ausgegangen, dafl der aufrufende I/O-Démon alle Ope-
rationen mit dem CE abgeschlossen hat und dieses nunmehr zu vernichten
ist. Das CE wird zu freiem Speicher, und der Trap kehrt zuriick.

Ist das ,Return-Bit“ (STABRT = Bitno.2) in STATIO gesetzt?

In diesem Fall wird davon ausgegangen, daf} der aufrufende I/O-Démon
(I/O-Task) das CE nach Abarbeitung in die CE-Schlange des Besitzers
zuriickgeben will. Das CE wird in die CE-Schlange des Besitzers einge-
kettet. Damit trotz der Verkettung erkennbar bleibt, daf3 dieses CE nicht
mehr in eine I/O-Operation verwickelt ist, wird das ,OwnQueue-Bit*
(STABOQ = Bitno.3) in STATIO gesetzt und der Trap verlassen.

512 8.1 Die Systemtraps

RELEA = $4E47‘ Release semaphore

Eingabe-Register: Al L Adresse der Semavariable (2 Byte)
Ausgabe-Register: -
Verdnderte Register: D5,D6,D7

Die angegebene Semaphorvariable (per Adresse in A1) wird um 1 erhoht. Je
nach neuem Wert sind drei Félle zu unterscheiden:

1. Der neue Wert ist grofler als Null. Es erfolgt unmittelbar ohne weitere
Aktion die Riickkehr aus dem Trap.

2. Der neue Wert ist Null, und bei einer mit der hochsten Prioritdt be-
ginnenden Suche wird unter allen Tasks im Blockierzustand ,,SEMA“ eine
gefunden, die genau auf diese Semavariable wartet. Diese Task wird ent-
blockiert. Die Suche wird nicht fortgesetzt, die Semavariable erhélt den
Wert -1, damit mégliche weitere wartende Tasks spéter nicht ,,vergessen®
werden.

3. Der neue Wert ist Null, und es wurde keine Task entdeckt, die auf ge-
nau diese Semavariable wartet. Der Wert der Semavariablen wird auf +1
gesetzt, und der Trap wird ohne weitere Aktion verlassen.

Man beachte, dafl der , Aulenwelt® gegeniiber der zeitweilig angenommene
Wert -1 gleichwertig zur Null (,Requested”) ist und nur interne Bedeutung
hat (,,Requested and task may be waiting*).
Beispiel:

RELEA OPD $4E4T

LEA >SEMA4,A1 z.B. globale externe Semavariable
RELEA

8.1 Die Systemtraps 513

Request Semaphore REQU = $4E46

Eingabe-Register: A1.L Adresse der Semavariablen (2 Byte)
Ausgabe-Register: -

Verénderte Register: D7

im Task-WSP: OPFATI.T im TWS

Die angegebene Semavariable (per Adresse in A1) wird um 1 erniedrigt.

Ist der neue Wert grofler oder gleich Null, so erfolgt die Riickkehr ohne weitere
Aktion.

Ist der neue Wert jedoch negativ, so wird er auf -1 korrigiert, und die anfordern-
de Task wird blockiert. Im Taskworkspace der anfordernden Task (OPFATI (A4))
wird eine Notiz hinterlassen, die spéater ggf. vom Trap RELEA aufgefunden wer-
den kann. Innerhalb des Traps ist kein Dispatchereingriff moglich, so dafl die
notwendige Unteilbarkeit des Request gesichert ist. Obwohl in diesem Fall der
Taskworkspace benutzt wird, braucht A4 nicht besetzt zu sein. Der Trap holt
sich die entsprechende Adresse des TWS auf andere Weise.

Man beachte, dafl der , Auflenwelt“ gegeniiber der zeitweilig angenommene
Wert -1 gleichwertig zur Null (,Requested®) ist und nur interne Bedeutung
hat (,,Requested and task waiting®).

Beispiel:
REQU OPD $4E46
LEA >SEMA4,A1 Globale Semavariable
REQU Je nach vorherigem

Zustand wird die
Task evtl. blockiert

514 8.1 Die Systemtraps

RESRB = $AO72‘ Reserve Boltvariable
Eingaberegister: Al.L Adresse der Boltvariablen
Ausgaberegister: -

Verénderte Register: D7

Der Trap ist Teil des Reserve-Konstruktes, das der PEARL-Compiler generiert.
Er sollte nur mit dem entsprechenden Vorspann benutzt werden, da sonst trotz
korrekter Funktion der Geschwindigkeitsvorteil der Boltvariablen verloren geht.

Die Anwendung muf3 im T-Code wie folgt aussehen:

RESRB OPD $A072 Trap-definition

LEA Boltx,Al1 Adr of Bolt

TAS (A1) Test and set
BEQ.B weiter branch if it was free
RESRB

weiter

Der Trap wird also nicht ausgefiihrt, wenn der Vorzustand der Boltvariablen
,Free“ (=$0000) war. Durch den TAS wird dann als neuer Zustand , Reserved,
nobody waiting“ (=$8000) in der Boltvariablen abgelegt. Der Transferassem-
bler iibersetzt genau diesen TAS in eine ldngere geschiitzte Sequenz auf Basis
der Befehle lwarx und stwarx.

Wenn der Trap zur Ausfithrung kommt, so wiederholt er zunéchst testweise den
TAS (es konnte ja sein, dafl die Boltvariable inzwischen freigeworden ist). Falls
der TAS diesmal ,EQ“ abliefert, wird der Trap ohne weitere Aktion verlassen.
Ansonsten wird die Task blockiert und der Boltvariablen der Zustand ,,Reserver
waiting“ aufgeordert, so daf als neue mogliche Zustédnde ,x-times entered +
reserver waiting* oder ,,Reserved + reserver waiting“ entstehen konnen.

Man beachte, dal auch nach vergeblicher RESRB-Operation keine Enter-
Operationen mehr moglich sind, bis die Boltvariable wieder frei ist.

8.1 Die Systemtraps 515

Return from procedure RETN = $4E4C ‘
Eingaberegister: A5.L Zeiger auf zuletzt eingerichteten Workspace
Ausgaberegister: A5.L Wird aus dem freigebenen WSP geladen

PC Wird aus dem freigegebenen WSP geladen

Verdnderte Register: A1,D7

Der vorher mit PENTR eingerichtete PWSP (Procedure-WorkSPace) wird mit
diesem Trap wieder freigegeben. Vorher wird allerdings das vom PENTR gerette
Register A5 zuriickgeladen.

Wichtig!

Der Trap kehrt nicht zum Aufrufer zuriick,
sondern holt sich die Riickkehradresse eben-
falls aus dem Verwaltungskopf der mit dem
Eingaberegister A5 bezeichneten Speichersek-
tion. Auf PRTNAD, erreichbar {iber -8(A5),
muf} also unbedingt eine verwertbare Fortset-
zungsadresse stehen. Der Trap PENTR schreibt
dort nichts hin (s. Beispiel néchste Seite)!.

Der Trap wird in den Formaten PROCEX, X8090 und QX8090 benutzt. Der alte
PEARLS0-Compiler generiert bei jedem RETURN- Statement einen RETN.

516

8.1 Die Systemtraps

RETN (Forts.)

Beispiel:

PENTR O0OPD $4E48

Return from procedure

RETN OPD $4E4C
BSR SUBR Unterprogramm
e e T *
SUBR _MOVE.L =500,D1 500 Bytes Daten
PENTR
BNE MIST B: Kein Platz mehr
MOVE.L (A7)+,-8(A5) Return-adr ableg.
Nun koennen die Bytes 0(A5) bis
incl 499(A5) benutzt werden
RETN Wsp zurueck+Jump
MIST Fehlermeldung ..
Vorsicht:

Die friither empfohlene Konstruktion mit PRTNAD (A1) statt -8 (A5)
erfordert das Inkluden der COMEQU-Datei, weil das Displacement
PRTNAD in der PowerPC-Familie einen anderen Wert als in der
68k-Familie hat!

8.1 Die Systemtraps 517

Restart Task, TWS new RSTT = $AO4A‘
Eingaberegister: D1.L New Size of Task-Workspace
Ausgaberegister: A4 L Zeiger auf neuen Task-Workspace

Verdnderte Register: A1,D5,D6,D7

Der Trap 16scht zunéchst einen evtl. Anschluf} eines Exception-Handlers, d. h.
SIGLNK(TID) wird auf Null gesetzt. Danach arbeitet er die komplette T-Link-
Kette des Aufrufers ab und 16scht jedes Element genauso, wie es der TERMI-Trap
tut, d. h. Communication—Elemente werden wie beim RELCE-Trap abgelost etc.
Wihrend der Abarbeitung der Kette ist der Trap preemptionfihig.

Nach dem Abraumen des T-Links wird schliellich der bisherige Task-Workspa-
ce zuriickgegeben und durch einen neuen mit der in D1.L angegebenen Léinge
ersetzt. Ist dafiir allerdings nicht geniigend Platz verfiigbar, so wird die aufru-
fende Task blockiert im Zustand ,,PWS?“, und der Versuch wird zu gegebener
Zeit wiederholt. Vorldufig behélt die Task dabei noch den bisherigen Task-
Workspace.

Nach der Riickkehr aus dem Trap ist A4 neu geladen. Alle im alten Task-
Workspace bisher gespeicherten Daten sind verloren! Der Trap ermoglicht
der aufrufenden Task, ihre gesamte Speichersituation neu zu organisieren. Se-
kundére Shellprozesse benutzen ihn, z. B. wenn sich ein Compiler nach Ab-
schluf} seiner eigentlichen Arbeit um die kaum Workspace bendtigenden Shell-
folgeanweisungen kiimmern muf.

518 8.1 Die Systemtraps

RSTT (FOI'tS.) Reset T-link and new TWS

Man kann nur eine beschrinkte Anzahl von Daten aus dem bisherigen ,,Leben®
der Task in das neue hiniiberretten: Es sind die Register, die der Trap nicht
verandert sowie notfalls einige Daten aus dem permanten Task-Header.

Wichtiger Hinweis!

Die in D1.L iibergebene Lénge mufl den Ver-
waltungskopf des Task-WSP mit enthalten,
auerdem muf} ggf. der Platz zum Retten der
FPU-Register vorgesehen werden. Der Trap
setzt A5 nicht neu auf und korrigiert auch
die Zelle WSPLEN im permanenten Task—Head

nicht.
Beispiel:
RSTT OPD $AO4A Trap-definition
_MOVE.L =....,D1 new TWSP-size

RSTT Ein neues Leben ...

8.1 Die Systemtraps 519

Rubber Blanks RUBBL = $A020‘
Eingaberegister: A2.L Adresse des zu untersuchenden Textes
Ausgaberegister: A2.L Um Anzahl Blanks inkrementiert

Verénderte Register: D7

In einem Text kénnen Leerzeichen iiberlesen werden. A2 zeigt auf den Text und
wird solange inkrementiert, wie Leerzeichen hintereinander im Text stehen.
Dieser Trap kann bei der Realisierung von neuen Bedienbefehlen sehr niitzlich
sein. Er wird an vielen Stellen in der Shell eingesetzt.

Beispiel:

RUBBL 0OPD $A020 Trap-Definition
A2 zeigt auf Text
RUBBL Ueberliest Blanks
Weitere Textanalyse

520 8.1 Die Systemtraps

RWSP = $A02A‘ Release Workspace
Eingaberegister: Al.L Adresse der zu loschenden Sektion
Ausgaberegister: -

Verénderte Register: D7

Die angegebene Speichersektion wird in freien Speicherraum zuriickverwandelt.
Anschliefend darf A1 nicht mehr als Zeiger verwendet werden. Falls irgendwo
Tasks auf die Zuteilung von ,, TWS“ (Task—WorkSpace) oder ,PWS* (Prozedur—
WorkSpace) gewartet haben, erfolgt nunmehr moglicherweise ihre Freigabe —
falls der Platzbedarf nun befriedigt werden kann.

Warnung!

Mit diesem Trap diirfen nur solche Sektionen geloscht werden, die weder
im ,,S“~ (Dispatcher, I/O-Queue) noch im ,, T“~link (Task-link) eingeket-
tet sind, schwere spéiter auftretende Abstiirze kénnen sonst resultieren.
So miissen z. B. mit WSFA, WSBS und WSFS eingerichtete ,,PWS“—Sektionen
ausgelinkt werden, bevor dieser Trap eingesetzt werden darf. Das Aus-
linken ist z. B. beim WSBS auf Seite 543 beschrieben. Mit PENTR einge-
richtete Sektionen werden dagegen nicht mit RWSP riickgegeben, sondern
durch RETN (ohne vorheriges Auslinken!) geléscht. Ebenso werden mit
FETCE erzeugte CEs (Communication-Elemente) mit RELCE (ebenfalls
ohne vorheriges Auslinken) getilgt.

Der Trap RWSP wird intern in den Traps RELCE und RETN benutzt, nachdem diese
das Auslinken, sowie ihre Nebenoperationen erledigt haben. Auch innerhalb des
UNLOAD—Befehles sowie im Trap TERV wird er benutzt. Der Editor verwendet
RWSP beim ,,ERASE*.

Beispiel:

RWSP OPD $A024
WSBS OPD $A00C

_MOVE.L ...,D1 Wsp-Size
WSBS Wsp anfordern
Auslinken! siehe WSBS-Beschr.
Nun als ’Dauerblock’ benutzbar
evtl auch von anderen Tasks
RWSP Sektion zurueckgeben.

8.1 Die Systemtraps 521

Scanner Trap SCAN = $4E45‘
Eingaberegister: D7.L Nummer der Scheibe

Al,A6 Nur bei Fortsetzungssuche
Ausgaberegister: A1.L ggf. Scheibenadresse

A6.L Intern fiir néchste Suche

D7.L Intern fiir ndchste Suche

SR »EQ“ wenn gefunden, sonst ,NE*

Veranderte Register: D5,D6,D7,A6

Es wird der Scan—Bereich, der beim Nukleus eingetragen ist oder der mit Hilfe
einer O-er Scheibe angeschlossen wurde (siehe Seite 637), nach der Scheibe,
deren Nummer in D7 {ibergeben wird, durchsucht.

Wenn die Scheibe gefunden wird, antwortet der Trap mit ,,EQ“, und man erhélt
in A1 die Adresse nach der Signalmarke. Nun kann man Al auswerten —sollte
aber die Registerinhalte D7.L, A1.L und A6.L dabei nicht verdndern. Nachdem
man Al ausgewertet hat, kann man den Trap erneut aufrufen, dank der in D7,
A1 und A6 geretteten Daten setzt er nun die Suche fort und antwortet ggf.
wieder mit ,EQ“ etc.

Wird die Scheibe nicht, bzw. wird keine weitere derartige mehr gefunden, so
antwortet der Trap mit ,NE“.

Beispiel:
SCAN OPD $4E45 Trap-Definition

_MOVEQ =1,D7 Scheibe 1
LABEL SCAN suchen
BNE.S READY B: nichts zu finden
Action, aber Al, A6, D7
A bleiben unveraendert
BRA.S LABEL Fortsetzung der Suche
READY ... hier geht’s weiter...

522 8.1 Die Systemtraps

STBCLK = $A05E‘ Set Battery Clock
Eingaberegister: D1 Date oder Marker fiir Zeit

D2.L wenn D1 = 0, Zeit in msec
Ausgaberegister: -

Verdnderte Register: D7

Dieser Trap wird beim CLOCKSET— und DATESET-Kommando der Shell exeku-
tiert. Im Nukleus des Systemes liegt auf dem Trap zunéchst nur eine Leer-
operation. Vom Implementierer oder vom Nutzer kann allerdings ein passender
eigener Trap angeschlossen werden, um eine eventuell vorhandene Hardware—
Uhr zu stellen.

Beim CLOCKSET ist das Register D1 mit Null und D2.L mit der Uhrzeit in
Millisekunden gesetzt.

Beim DATESET enthélt D1 das Datum ,,BCD-kodiert*:

30.8.1994 -> D1 = $30081994

8.1 Die Systemtraps 523

Suspend actual running Task SUSP = $A028‘

Eingaberegister: -
Ausgaberegister: -
Verénderte Register: D7,A1

Die gerade laufende Task wird suspendiert. Bis auf D7 und A1 bleiben alle
Register und Speichersektionen der Task erhalten, so dafl die Task zu einem
spéateren Zeitpunkt fortgesetzt werden kann. Sie kehrt also erst nach fremder
Hilfe wieder aus dem Trap zuriick.

Die Traps CON und CONQ sind geeignet, um mit Hilfe anderer Tasks diese Sus-
pendierung wieder aufzuheben.

Beispiel:
SUSP OPD $A028 Trap-Definition

R Task laeuft
SUSP Task suspendiert sich

524 8.1 Die Systemtraps

TERME = $A000‘ Terminate external
Eingaberegister: OPNAME.T Textadresse oder Text

A4 L muf} auf Taskworkspace zeigen
Ausgaberegister: -

Veréanderte Register: D1,D5,D6,D7,A1,A2

Die Task, deren Name oder deren Zeiger auf dem Namen in OPNAME.T =
OPNAME (A4) steht, wird in der Speicherverwaltung gesucht. Wird die Task
nicht gefunden, so wird die Meldung ,,... not loaded (terminate)“ abge-
setzt, und es erfolgt keine Operation.

Ist die Task inaktiv (nicht im Dispatcherring), so kehrt der Trap ohne weitere
Aktion zuriick.

Ist die zu terminierende Task identisch mit der den Trap ausfithrenden Task,
so verwandelt der Trap sich in den TERMI-Trap.

In allen anderen Féllen wird die adressierte Task lauffihig gemacht, nachdem
vorher der Fortsetzungs-PC und die Laufprioritit wie folgt manipuliert wurden:

e Der neue PC zeigt auf einen TERMI-Trap innerhalb des Nukleus, wobei
vorher noch der Code $00000001 nach MSGLNK (Zieltask-TID) gebracht
wird. Damit wird evtl. wartenden Tasks (siehe WFEX auf Seite 539) das
irreguldre Ende mitgeteilt.

e Die adressierte Task erhélt eine neue Laufprioritéit, die identisch ist zur
Prioritét der diesen Trap ausfiithrenden Task. Allerdings wird die Task im
Dispatcherring vor die den Trap ausfithrende eingekettet.

Beispiel:
TERME OPD $A000 Trap-Definition
MOVE.L =’REGL’ ,0PNAME.T °’REGL’

MOVE =’ER’,0PNAME+4.T °’ER’ (6 Bytes)
TERME ’REGLER’ terminieren

8.1 Die Systemtraps 525

Terminate quick TERMEQ = $A058
Eingaberegister: Al.L Adresse der Task (TID)
Ausgaberegister: -

Verdanderte Register: D1,D5,D6,D7,A1

Dieser Trap ist der hintere Teil von TERME, wobei jedoch die angesprochene zu
beendende Task nicht gesucht wird, sondern schon in A1l {ibergeben wird.

Wie beim TERME so wird auch hier der PC und die Prioritét der angesprochenen
Task so manipuliert, daf sie auf einen TERMI lauft.

Warnung!

Es ist unbedingt sicherzustellen, dafl A1 im Moment
des Aufrufes wirklich der Task—ID einer existieren-
den Task ist. Der Trap selbst priift dies aus Zeit-
griinden nicht.

Auf evtl. bestehende Einplanungen der adressierten Task nimmt der Trap kei-
nen Einflufl. Falls bei der noch gepufferte Aktivierungen vorliegen, so werden
diese wie beim TERMI iiblich nachgeholt.

Beispiel:
TERMEQ EQU $A058 Trap-Definition

.. TID nach Al.L
TERMEQ Terminate Task

526 8.1 Die Systemtraps

TERMI = $4E41‘ Terminate internal

Eingaberegister: -
Ausgaberegister: -
Verénderte Register: alle

Eine Task, die diesen Befehl exekutiert, wird sofort beendet. Die Registerin-
halte werden nicht gerettet und gehen somit in jedem Fall verloren. Bei einer
nichtresidenten Task werden alle Speichersektionen (PWS, TWS, CE) an das Be-
triebssystem zuriickgegeben. Residente Tasks behalten ihren Taskworkspace.
Die Ausgabe—CE’s verbleiben in der Schlange, wihrend Eingabe—CE’s, die nicht
schon von der E/A-Betreuungstask bearbeitet werden, aus der Schlange ent-
fernt werden.

Eingeplante Tasks verbleiben auch nach dieser Anweisung im Ring des Proze$3-
umschalters (Dispatcher). War bereits eine neue Aktivierung gepuffert, so wird
die Task der gepufferten Aktivierung entsprechend mit ggf. anderer Prioritét
erneut lauffahig gemacht.

Wenn es andere Tasks gibt, die mit WFEX (siehe Seite 539) auf das Ende dieser
Task warten, so werden diese entblockiert. Dabei wird ihnen der Inhalt von
MSGLNK auf deren eigene MSGLNK—Zelle kopiert.

Wiéhrend des sukzessiven Abbaues der (evtl. sehr zahlreichen) Speichersektio-
nen ist eine Prozefumschaltung méglich (Preemption).

8.1 Die Systemtraps 527

Terminate and vanish ’ $TERV = $A010‘

Eingaberegister: -
Ausgaberegister: -

Verénderte Register: alle

Es werden die gleichen Aktionen ausgefiihrt wie beim TERMI ($4E41). Zusitzlich
verschwindet die Task aus dem System, falls sie nicht eingeplant ist oder noch
Aktivierungen gepuffert sind. Eine verschwundene Task kann natiirlich nicht
mehr aktiviert werden.

Dieser Trap kann dazu genutzt werden, um einen Sohnprozefl, der mit GAPST
erzeugt wurde, nach Erledigung seiner Aufgabe aus dem System zu entfernen.

Beispiel:

TERV OPD $A010 Trap-Definition
Code des Sohnprozesses

TERV Ende des Sohnprozesses

Hinweis:

Der Trap sollte bei Sohnprozessen der Shell nicht benutzt werden. Es wiirden
dann n&mlich keine Nachfolgekommandos mehr ausgefithrt, und es wiirde
an den iibergeordneten Prozefl keine Antwort (,gelungen“ oder ,mifflungen®)
zuriickgegeben. (Zur Codierung shellkonformer Sohnprozesse in Assemblerspra-
che benotigen Sie entsprechende Extrainformationen.)

528 8.1 Die Systemtraps

TIAC = $A016‘ Time—schedule activation

Eingaberegister: D1.W Prioritat
OPNAME.T Textadresse oder Text
OPFATI.T Startzeit
OPINTV.T Intervall
OPLTI.T Endzeit
A4 muf} auf Taskworkspace zeigen
Ausgaberegister: -
Verdnderte Register: D1,D6,D7,A1,A2

FEine Task, deren Name oder deren Namensadresse in OPNAME.T = OPNAME (A4)
steht, wird zur Aktivierung eingeplant. In D1 wird die Prioritdt der Aktivierung
iibergeben. Ist D1 geloscht, wird die Default—Prioritdt eingetragen. Lauft die
Task bereits, so bleibt die aktuelle Prioritdt unbeeinfluf3t.

In OPFATI(A4) (First Activation Time) wird entweder (gesetztes Vorzeichen-
bit) eine relative Verzégerungszeit in Millisekunden oder (ohne gesetztes Vor-
zeichenbit) der absolute Zeitpunkt fiir die erste Aktivierung vorgegeben. Liegt
ein absolut angegebener erster Aktivierungszeitpunkt vor der aktuellen System-
uhrzeit, so wird die Task zur vorgegebenen Uhrzeit, jedoch erst am folgenden
Tag, zur Ausfithrung eingeplant.

Mit OPINTV(A4) (Intervall) wird der Abstand zyklischer Aktivierungen vorge-
geben. Ist der Wert negativ oder Null, findet keine zyklische Einplanung statt.

Mit OPLTI(A4) (last time) wird der letzte Aktivierungszeitpunkt zyklischer
Einplanungen vorgegeben. Bei gesetztem Vorzeichenbit ist er relativ zum Ist-
zeitpunkt, sonst absolut. Als Endlosindikator dient der groffitmogliche positive
Wert im obersten Byte.

Bestehende andere Einplanungen zur Aktivierung — auch solche auf externe
Interrupts — werden geldscht. Die Fehlermeldungen entsprechen den beim Trap
ACT beschriebenen.

8.1 Die Systemtraps

529

Time—schedule activation

TIAC (Forts.)

Der Trap tibertrigt die aus den iibergebenen Parametern errechneten Ergebnis-
se in den Taskdescriptionblock (Zellen TIA, TINV und TIL). Ein Uberschreiben
der Eingabeparameter von TIAC nach dessen Aufruf beeinfluf3t folglich beste-

hende Einplanungen in keiner Weise.

Beispiel:

TIAC OPD $A016

MOVE.L =’Test’,0PNAME (A4)
MOVE.L =’xy’,0PNAME+4 (A4)
MOVE.L =$80002710,0PFATI (A4)
MOVE.L =1000,0PINTV(A4)
_MOVE.B =$7F,0PLTI (A4)

TIAC

Trap-Definition
TID in Al
Name
)
after 10 sec
all 1 sec
Endlos-Indikator
nach 10 Sek alle 1 Sek

Falls die Datei COMEQU nicht zur Hand ist, hier die wahrscheinlichen Werte fiir

obige Displacements:

OPNAME EQU $66 und OPFATI EQU $6C beim 68K
OPINTV EQU $70 und OPLTI EQU $74 beim 68K

OPNAME EQU $B4 und OPFATI EQU $BC beim PowerPC
OPINTV EQU $CO und OPLTI EQU $C4 beim PowerPC

530

8.1 Die Systemtraps

TIACQ = $A024

Eingaberegister: D1.W
Al1.L

Time—schedule activation quick

Prioritét
Adresse der Task (TID)

OPFATI.T Startzeit
OPINTV.T Intervall

OPLTI.T
Ad

Ausgaberegister: -

Endzeit

muf auf Taskworkspace zeigen

Verdnderte Register: D1,D6,D7,A1,A2

Eine Task, deren Task-ID (Adresse des Task-DCB) in A1 steht, wird zur Akti-
vierung eingeplant. Alle anderen Parameter entsprechen vollstéandig denen des
Traps TIAC. TIAC lduft ndmlich nach der Task-Suche als TIACQ weiter.

Bitte lesen Sie auf Seite 528 bei TIAC nach.

Beispiel:

TIACQ OPD $A024

LEA TDCBXY, A1l

Trap-Definition

TID -> A1l

MOVE.L =$80002710,0PFATI(A4) after 10 sec

MOVE.L =1000,0PINTV(A4) all 1 sec
_MOVE.B =$7F,0PLTI (A4) ohne Ende
TIACQ nach 10 Sec aktivieren

Wie bei allen Quick-versionen eines Trap, so muf3 auch hier sichergestellt wer-
den, daf im Register A1 wirklich ein giiltiger Task-ID (TID) steht!

8.1 Die Systemtraps 531

Continue by time—schedule TICON = $A018‘
Eingaberegister: OPNAME.T Textadresse oder Text

OPFATI.T Zeitdauer oder Zeitpunkt

A4 L muf} auf Taskworkspace zeigen
Ausgaberegister: -

Verianderte Register: D6,D7,A1,A2

Eine Task, deren Name oder deren Adresse des Namens in OPNAME.T =
OPNAME (A4) steht, wird zur Fortsetzung eingeplant. Bestehende Fortsetzungs-
einplanungen werden geldscht. Einplanungen zur Aktivierung bleiben aber un-
beeinflufit.

Wenn die Task nach einer bestimmten Zeitdauer fortgesetzt werden soll, muf in
OPFATI.T = OPFATI(A4) die Zeitdauer in Millisekunden mit gesetztem ober-
sten Bit eingetragen sein.

Soll die Fortsetzung zu einem bestimmten Zeitpunkt erfolgen, darf das ober-
ste Bit nicht gesetzt sein. Liegt unter Beriicksichtigung der Systemuhrzeit ein
vergangener Aktivierungszeitpunkt vor, erfolgt die Taskeinplanung zur angege-
benen Uhrzeit am folgenden Tag.

Beispiel:
TICON OPD $A018 Trap-Definition

LEA TSKNAM,AO Adresse des Tasknamens
MOVE.L AO,OPNAME.T Eintrag der Adresse
CLR OPNAME+4.T kein Text

_MOVE.L =$800003E8,0PFATI.T 1 sec Zeitdauer
TICON nach 1 Sec fortsetzen

Falls die Datei COMEQU nicht zur Hand ist, hier die wahrscheinlichen Werte fiir
obige Displacements:

OPNAME EQU $66 und OPFATI EQU $6C beim 68K
OPNAME EQU $B4 und OPFATI EQU $BC beim PowerPC

532 8.1 Die Systemtraps

| TICONQ = AO4E Time continue quick
Eingaberegister: Al.L Adresse der Task (TID)

OPFATI.T Zeitdauer oder Zeitpunkt

A4 L muf} auf Taskworkspace zeigen
Ausgaberegister: -

Verdnderte Register: D6,D7,A1,A2

Eine Task, deren Adresse in Al steht, wird zur zeitgesteuerten Fortsetzung
eingeplant. Bisher bestehende Einplanungen zur Fortsetzung werden geldscht.
Das gilt auch fiir ereignisgesteuerte Fortsetzungseinplanungen, jedoch bleiben
evtl. Einplanungen zur Aktivierung unangetastet.

Wenn die Task nach einer bestimmten Zeitdauer fortgesetzt werden soll, muf in
OPFATI.T = OPFATI(A4) die Zeitdauer in Millisekunden mit gesetztem ober-
sten Bit eingetragen sein. Soll die Fortsetzung zu einem bestimmten Zeitpunkt
erfolgen, darf das oberste Bit nicht gesetzt sein, und Taskeinplanungen, die un-
ter Beriicksichtigung der aktuellen Systemuhrzeit in der Vergengenheit liegen,
werden zur entsprechenden Uhrzeit des nichsten Tages vorgenommen.

Beispiel:
TICONQ OPD $AO4E Trap-Definition
LEA TSDCBXY,A1 TID -> Al

_MOVE.L =$800003E8,0PFATI.T 1 sec Zeitdauer
TICONQ nach 1 Sec fortsetzen

Der Trap ist ein Zwischeneinstieg in das hintere Ende des Traps TICON.

8.1 Die Systemtraps 533

Time resume TIRE = $AOZC‘
Eingaberegister: OPFATI.T Zeitdauer oder Zeitpunkt

A4 muf} auf Taskworkspace zeigen
Ausgaberegister: -

Verédnderte Register: D6,D7,A1

Die Task, die diesen Trap absetzt, wird suspendiert und nach der angegebenen
Zeit oder zu einem bestimmten Zeitpunkt fortgesetzt. Der Trap besteht quasi
aus einer untrennbaren Einheit von Suspendierung und Selbsteinplanung.

Irgendwelche bestehenden Einplanungen zur Fortsetzung werden geldscht. Je-
doch bleiben Einplanungen zur Aktivierung unangetastet.

Wenn die Task nach einer bestimmten Zeitdauer fortgesetzt werden soll, muf in
OPFATI.T = OPNAME(A4) die Zeitdauer in Millisekunden mit gesetztem ober-
sten Bit stehen. Andernfalls wird die eingetragene Zeit als Zeitpunkt interpre-
tiert, und die Task zur Fortsetzung eingeplant. Liegt der angegebene Fortset-
zungszeitpunkt vor der aktuellen Systemuhrzeit, erfolgt eine Einplanung zum
angegebenen Zeitpunkt des folgenden Tages.

Beispiel:
TIRE 0OPD $A02C Trap Definition

_MOVE.L =$80000008,0PFATI.T 8 msec Zeitdauer
TIRE nach 8 msec fortsetzen

_MOVE.L =1000%60%60%23,0PFATI.T 23 Uhr in msec
TIRE Fortsetzung um 23:00:00.000 Uhr

Falls die Datei COMEQU nicht zur Hand ist, hier die wahrscheinlichen Werte fiir
OPFATI:

OPFATI EQU $6C beim 68K
OPFATI EQU $BC beim PowerPC

534 8.1 Die Systemtraps

TOQ = $4E4D Take of queue

Eingaberegister: -
Ausgaberegister: A1.L,PC
Verénderte Register: A1,D7

Mit diesem Trap wird versuchsweise ein Communication—Element aus der CE—
Schlange der aufrufenden Task geholt. Ist die Warteschlange leer, so wird die
Exekution mit dem n#chsten folgenden Befehl fortgesetzt. Ist die Warteschlange
nicht leer, so wird A1 mit dem Zeiger auf das vorne — am Kopf der Schlange
— stehende Communication—Element geladen. Vor der Riickkehr wird jetzt
der PC um 2 (68k) bzw. um 4 (PowerPC) erhoht, so dal der néchstfolgende
Einwortbefehl iibersprungen wird. Das Element ist danach ausgekettet, und
sein Vorwartszeiger FORS steht auf $00000001, um die in ,RELCE“ und ,, IOWA“
enthaltenen Abfragen korrekt vorzubereiten. Auflerdem wird das ,,OwnQueue-
Bit* (STABOQ = Bitno.3) in STATIO zuriickgesetzt, falls es gesetzt war.

In <eren Systemversionen mufite noch das Register D1 als Eingangsparame-
ter versorgt werden. Dies ist nun nicht mehr erforderlich. Auf den alten Trap
fuBlende Programme brauchen aber nicht gedindert zu werden.

Der Trap ist das Gegenstiick zum XI0 und MSGSND (siehe dazu XIO0 auf Seite 549
und MSGSND auf Seite 498). XI0 bringt ein Communication-Element in die CE-
Warteschlange einer I/O-Task (I/O-Damon). MSGSND funktioniert gleichartig,
jedoch mit jeder beliebigen Task als Ziel. Die typische Anwendung von TOQ
ist innerhalb der I/O-Démonen. Aber auch jede andere Task, die Botschaften
oder riickkehrende eigene CEs erwartet, kann diesen Trap sinnvoll nutzen.

8.1 Die Systemtraps 535

Take of queue TOQ = (Forts.)

Vorsicht!

Die friihere typische Benutzung mit einem weiteren Trap unmit-
telbar hinter TOQ ist kein legaler T-Code, weil damit implizit die
Codeldnge des Folgetraps eingearbeitet war. Wenn alte Assemb-
lerprogramme mit solchen Konstrukten auf den PowerPC iibert-
ragen werden sollen, so miissen sie unbedingt auf die im Beispiel
angegebene Form umgestellt werden. Der Folgetrap wird dabei
durch einen BRA.B ersetzt.

Beispiel (T—Code):

TOQ EQU $4E40
TERMI EQU $4E41

TAKE TOQ CE aus Schlange holen
BRA.B TERMEX 2/4 byte langer Sprung wenn Schlange leer
.. Verarbeitung des CE
BRA TAKE Hole naechstes

TERMEX TERMI Terminate
Hinweis: Sollte nach dem vergeblichen TOQ wahrend des Sprunges nach TERMEX

doch noch ein CE auflaufen, so wird eine Taskaktivierung in den Puffer ge-
schrieben und der TERMI bewirkt sofort einen Neustart der Task.

536 8.1 Die Systemtraps

TOV = $4E4E‘ To virtual

Eingaberegister: -
Ausgaberegister: -
Verdnderte Register: D2--D7,A0--A3,A6

Im Nukleus ist hier zunéchst ein ,,wrong opcode* angeschlossen. Erst durch die
Hyperprozessor-Scheibe wird der Trap benutzbar. Er dient zum Umschalten des
Prozessors in den virtuellen Hyperprozessor-Mode.

Bitte beachten!

Ein bedeutend schnelleres Einschalten des Hyperpro-
zessors ist durch die folgende T—Code Befehlsfolge
moglich.

HYPLNK EQU $8CA

MOVEA.L HYPLNK,A6
XJSR (A6)

Man beachte, daf in der PEARL-Laufzeitwelt A6 so-
wieso schon mit dem Inhalt der Zelle HYPLNK perma-
nent geladen ist.

Der Trap wird nur noch aus Griinden der Kompatibiltdt zu alten S-Records
angeboten.

Die wahrscheinlichen Adressen von HYPLNK:
HYPLNK EQU $8CA in der 68k-Familie
HYPLNK EQU $51A4 in der PowerPC-Familie

8.1 Die Systemtraps 537

Trigger Event TRIGEV = $A026‘

Eingaberegister: D1.L Interrupt—Maske
Ausgaberegister: -

Verénderte Register: D7

Alle Interrupts, die durch ein gesetztes Bit in D1.L beschrieben werden und die
»enabled“ sind, werden gefeuert. Damit werden alle Tasks, die auf die entspre-
chenden Interrupts zur Aktivierung oder Fortsetzung eingeplant sind, freigege-
ben. Im System wird nicht unterschieden, ob ein Interrupt von der Hardware
oder dem TRIGEV-Trap ausgelost wurde. Der Trap benutzt innerhalb des Nu-
kleus exakt den gleichen Mechanismus, wie er bei PIRTRI (siehe Seite 502) zum
FEinsatz kommt. Somit ist es also moglich, Hardware—Interrupts zu simulieren
und ihre Wirkung zu testen.

Beispiel (T—-Code):
TRIGEV O0OPD $A026 Trap-Definition

_MOVEQ =1,D1 EV 1
TRIGEV trigger EV 1

538 8.1 Die Systemtraps

TRY = $A07A‘ Try Semaphore
Eingaberegister: Al Adresse der Semaphore
Ausgaberegister: DO.L logisches Resultat

SR »2EQ“ oder ,MI*“

Veréanderte Register: DO, D7

Der Trap arbeitet dhnlich wie REQU. Er fithrt jedoch in keinem Fall zu einer
Blockierung des Aufrufers.

Wenn die Semaphore ,frei“ ist (,requestable®), dann wird sie um 1 erniedrigt
und der Trap anwortet mit ,MI“. In D0.L steht das Datum $FFFF8000. Dies
entspricht der Registerwertigkeit eines PEARL-Bit(1) Objektes '1’B1.

War die Semaphore dagegen , belegt® (,,rot“), so bleibt sie unveréindert und der
Trap antwortet mit , EQ*. In D0.L steht das Datum $00000000. Dies entspricht
der Registerwertigkeit eines PEARL-Bit(1) Objektes "0’B1.

TRY wird vom PEARL-Compiler beim gleichnamigen PEARL90-Konstrukt ge-
neriert.

Beispiel (T—Code):

TRY OPD $A07A Trap-Definition

LEA Semal,Al Adresse der Sema

TRY Versuche request

BEQ Nein Bei branch: Sema unver'"andert
Nun im kritischen Pfad

8.1 Die Systemtraps 539

Wait for exit WFEX = $A06E‘
Eingaberegister: Al.L Task-ID to wait for
Ausgaberegister: SR Performance indication

...(TID) MSGLNK wird verdndert
Verédnderte Register: D6,D7

Zunichst wird untersucht, ob in A1 die TID einer Task aus dem Dispatcherring
steht. Wihrend dieser Suche ist der Trap preemptionfihig.

Ist A1 kein giiltiger Task—ID aus dem Dispatcherring, so wird der Trap mit
dem Status ,NE“ verlassen. Vorher wird als Report-code das Datum $FFFFFFFF
auf MSGLNK (TID) im Taskdescriptionblock (Task-DCB im permanenten Task—
Head) des Aufrufers abgelegt. Weitere Aktionen unterbleiben.

Wenn (was der Normalfall sein sollte) A1 im Dispatcherring gefunden wurde,
so wird die Blockierbedingung ,waiting for activation® bei der durch A1l
adressierten Task aufgehoben, falls sie gesetzt war. Die den Trap aufrufende
Task wird blockiert im Zustand ,,SEMA“. Der mit A1l adressierten Task wird
das mitgeteilt, damit bei deren Ende (exit) der TERMI- bzw. TERME-Trap die
Entblockierung ausfiihrt.

Mit der freiwilligen oder gewaltsamen Beendigung der durch A1l beschriebenen
Task wird der Aufrufer dieses Traps wieder lauffahig und erhélt sowohl iiber
SR als auch iiber seine eigene Zelle MSGLNK (TID) einen Report. Das Statusregi-
ster SR ist im Zustand ,EQ“ um anzuzeigen, daf} tatséchlich ein Wartezustand
eingenommen wurde — im Gegensatz zum Fall bei dem Al auf eine inaktive
Task zeigt oder gar ungiiltig ist. Beziiglich MSGLNK (TID) sind zwei Félle zu
unterscheiden:

540 8.1 Die Systemtraps

WFEX (FOI'tS.) Wait for exit

e Die mit Al bezeichnete Task beendet sich selbst. In diesem Fall iibertragt
sie den Inhalt ihrer eigenen Zelle MSGLNK (A1) in MSGLNK (TID) des Aufru-
fers. Wenn nichts besonderes passiert ist, wird das der Code $00000000
sein. Es ist aber moglich dal der mit A1 adressierte Prozefl hier vorher ei-
ne Botschaft fiir denjenigen, der auf ihn wartet, deponiert hat. Dabei sind
die Muster $FFFFFFFF, $00000000 ... $00000010 bereits mit fester oder
reservierter Bedeutung belegt. Ein irregulidres Ende kann durch Ablage
des Codes $00000001 dem Wartenden mitgeteilt werden.

e Die mit Al bezeichnete Task wird von jemandem mit TERME beendet,
z. B. durch das ,,UNLOAD“-Kommando der Shell. In diesem Fall wird das
vorzeitige irreguldre Ende automatisch durch den Eintrag des Datums
$00000001 in MSGLNK(TID) angezeigt, eine evtl. vorher dort deponierte
Botschaft wird iiberschrieben.

8.1 Die Systemtraps 541

Der Trap eignet sich besonders, um logische Warteketten im Zusammenhang
mit Sohnprozessen aufzubauen. Siehe dazu auch die Beschreibung des GAPST—
Traps auf Seite 481. Scheitert ein Sohnprozefl bzw. wird er abgebrochen, so
wird bei richtiger Benutzung die ganze Wartekette riickwérts abgebaut. Die
Shell benutzt intern diesen Trap im Zusammenhang mit dem WAIT-Befehl.

Beispiel:

TID EQU $802

GAPST OPD $AOOE

WFEX OPD $AO6E
c Set up parameters for GAPST
GAPST Create son process -> Al

R Final alignment of son process
WFEX Wait for process in Al

BNE .. branch if no waiting

MOVEA.L TID,A1 own Task-ID

TST.L MSGLNK(A1) inspect report

BEQ allfine

Falls die Datei COMEQU nicht zur Hand ist, hier die wahrscheinlichen Displace-
mentwerte fiir MSGLNK:

MSGLNK EQU $48 68k-Familie
MSGLNK EQU $48 PowerPC-Familie

542 8.1 Die Systemtraps

WSBS = $AOOC‘ Workspace backward search
Eingaberegister: D1.L Grofle des angeforderten Workspace
Ausgaberegister: A1.L Adresse der Speichersektion

CCR ,NE“ kein Erfolg, ,EQ“ Al geladen

Veranderte Register: D1,D7

Der von RTOS—UH verwaltete Speicherbereich wird von oben nach unten
nach dem ersten freien Stiick abgesucht, in welches die Anforderung hineinpaft.
Zunéchst wird an der Stelle begonnen, an der beim letzten Mal erfolgreich Spei-
cher zugewiesen wurde. Erst wenn es darunter keinen freien Platz gibt, werden
auch die oberen freien Sektionen inspiziert. Der untere nicht bendtigte Rest
der gefundenen Freisektion wird in eine neue kleinere Freisektion verwandelt.
A1 wird so geladen, daBl es auf den (nach oben biindig liegenden) zugeteilten
Bereich zeigt. Das Statusregister CCR wird zur Riickantwort benutzt. Wenn
namlich kein Platz gefunden wurde, so antwortet der Trap mit ,,NE“, anderen-
falls (wenn A1 geladen werden konnte) mit ,EQ“.

Man beachte, dal die so erzeugte Speichersektion als ,,PWS“, d. h. ,Procedure—
WorkSpace® verbucht wird und mit der Terminierung der einstmals erzeugen-
den Task automatisch wieder zu freiem Speicher wird. Dafiir sorgt das sog.
,» T-link“, eine Kette, die ihren Ursprung im , Task—WorkSpace* hat und alle
von der Task angeforderten CEs (Communication-Element) und ,,PWS“ mitein-
ander zu einem Ring verbindet. Will man die Sektion von der Task ablosen,
wie es zum Beispiel der Editor mit neuen Blocken macht, so mufl die Sektion
mit einer besonderen Prozedur aus dem ,, T-link“ herausgenommen werden, die
unten erldutert ist.

Der mit D1.L angeforderte Speicher kann wegen des T-links erst ab dem Dis-
placement WLOLD benutzt werden!

8.1 Die Systemtraps 543

Workspace backward search WSBS (Iﬁ)rts.)

Beispiel (T-Code):

WSBS OPD $a00C

_MOVE.L =$1000,D1 Sektion 4 kB brutto

WSBS

BNE MIST B: kein Platz mehr
*---— Nur wenn ’Dauerblock’ gewuenscht wird: auslinken!

OFF unteilbare Sequenz

MOVEA.L BACKT(A1),A2 A2 nur als Beisp.

MOVE.L FORT(A1) ,FORT(A2) linker Nachb.
MOVEA.L FORT(A1),A2
MOVE.L BACKT(A1),BACKT(A2) rechter Nachb.

MOVE =$0010,TYPE(A1) als ’MODULE’ ausg.
MOVE.L =’Mod1’,NAME(A1) Modulname
_MOVE =’23°,NAME+4 (A1) Modulname 6 Bytes

DPC back to user-mode

544 8.1 Die Systemtraps

WSBS (Forts.) Workspace backward search

Die symbolischen Displacements miissen im T—Code aus der Datei COMEQU in-
kluded werden. Sie unterscheiden sich zwischen der 68k- und der PowerPC-
Familie. Gleich sind jedoch NAME=$0A und TYPE=8. Eine so erzeugte Speicher-
dauersektion kann nur mit RWSP oder den Bedienbefehl UNLOAD name wieder
eliminiert werden. Bei ausgelinkten Sektionen kénnen ab Displacement $10
eigene Daten abgelegt werden.

Der Trap WSBS ist ein Bruder der Traps WSFA, WSFS und PENTR, die dhnliche
Grundeigenschaften aufweisen. Wie diese, so ermdoglicht auch WSBS jederzeit
wéhrend der Suche eine Taskumschaltung (Preemption).

Eine verantwortungsvolle und sorgfiltige Anwendung versteht sich von selbst!

Hier fiir den Notfall (COMEQU nicht zur Hand) die wahrscheinlichen Displace-
ments:

FORT EQU $0A 68k-Familie
BACKT EQU $OE 68k-Familie
WLOLD EQU $16 68k-Familie

FORT EQU $0C PowerPC-Familie
BACKT EQU $10 PowerPC-Familie
WLOLD EQU $18 PowerPC-Familie

8.1 Die Systemtraps 545

Workspace fixed address request WSFA = $A008‘
Eingaberegister: D1.L Gewiinschte Adresse, teilbar durch 4!

Al1.L Endadresse+4, teilbar durch 4!
Ausgabe-Register: ~ A1.L Bei Erfolg A1 = D1

CCR ,NE“ kein Erfolg, ,EQ“ Al geladen

Verianderte Register: D1,D5,D6,D7

Der Trap priift, ob zwischen der Untergrenze in D1.L und der Obergrenze+4 in
A1.L freier Bereich liegt. Ist dies nicht der Fall, so antwortet der Trap mit ,,NE*,
anderenfalls mit ,EQ“. Eventuelle Reste oberhalb und unterhalb werden — falls
grofl genug — zu freien Sektionen. Der Ausgangswert von Al ist identisch mit
dem Eingangswert von D1, falls CCR = ,EQ“.

Man beachte, dafl die so erzeugte Speichersektion als ,PWS“, d. h. ,Procedure—
WorkSpace®“ verbucht wird und mit der Terminierung der einstmals erzeugen-
den Task automatisch wieder zu freiem Speicher wird. Dafiir sorgt das sog.
, T-link“, eine Kette, die ihren Ursprung im ,, Task—WorkSpace“ hat und alle
von der Task angeforderten CEs (Communication-Element) und ,,PWS“ mitein-
ander zu einem Ring verbindet. Will man die Sektion von der Task ablosen,
wie es zum Beispiel der Editor mit neuen Blocken macht, so mufl die Sektion
mit einer besonderen Prozedur aus dem ,, T-link“ herausgenommen werden, die
schon auf Seite 543 erldutert wurde.

Beispiel:

WSFA OPD $A008
_MOVE.L =$8000,D1 Sektionadr=$8000
LEA $9000.L,A1 Bereich:$8000-$8FFF
WSFA
BNE MIST B:Bereich nicht frei

*---— Nur wenn ’Dauerblock’ gewuenscht wird: auslinken!
OFF unteilbare Sequenz
MOVEA.L BACKT(A1),A2 A2 zuf. Beisp.
MOVE.L FORT(A1),FORT(A2) 1linker Nachb.
MOVEA.L FORT(A1),A2
MOVE.L BACKT(A1),BACKT(A2) rechter Nachb.
MOVE =$0010,TYPE(A1l) als ’MODULE’ ausg.
_MOVE ... Modulname 6 Bytes
DPC wieder user-mode

546

8.1 Die Systemtraps

WSFA (Forts.)

Workspace fixed address request

Die symbolischen Displacements wurden bereits auf Seite 543 beschrieben. Im
Ubrigen gelten alle anderen Anmerkungen zum Trap WSBS entsprechend. Auch
die mit WSFA erzeugte und danach ausgelinkte Speichersektion kann nur mit
RWSP oder dem Bedienbefehl ,,UNLOAD name* wieder eliminiert werden.

Der Trap WSFA ist ein Bruder der Traps WSBS, WSFS und PENTR, die dhnliche

Grundeigenschaften aufweisen.

Natiirlich stort dieser Trap die automatische Speicherverwaltung und ist darum
nur fiir Spezial- und Testzwecke sinnvoll.

8.1 Die Systemtraps 547

Workspace forward search WSFS = $A004‘
Eingaberegister: D1.L Grofle des angeforderten Workspace
Ausgaberegister: Al.L Adresse der Speichersektion

CCR ,NE“ kein Erfolg, ,EQ“ Al geladen

Veranderte Register: D1,D7

Der von RTOS—UH verwaltete Speicherbereich wird von unten nach oben
nach dem ersten freien Stiick abgesucht, in welches die Anforderung hineinpaft.
Dann wird Al als Zeiger auf diesen Abschnitt geladen. Der ggf. vorhandene
(obere) Rest wird zur freien Sektion verwandelt. Das Statusregister wird zur
Riickantwort benutzt. Wenn némlich kein Platz gefunden wurde, so antwortet
der Trap mit ,NE“, anderenfalls (wenn Al geladen werden konnte) mit ,EQ“.

Man beachte, dafl die so erzeugte Speichersektion als ,PWS*, d. h. ,Procedure—
WorkSpace* verbucht wird und mit der Terminierung der einstmals erzeugen-
den Task automatisch wieder zu freiem Speicher wird. Dafiir sorgt das sog.
» T-link“, eine Kette, die ihren Ursprung im , Task—WorkSpace“ hat und alle
von der Task angeforderten CEs (Communication—Element) und ,,PWS“ mitein-
ander zu einem Ring verbindet. Will man die Sektion von der Task ablosen,
wie es zum Beispiel der Editor mit neuen Blocken macht, so mufl die Sektion
mit einer besonderen Prozedur aus dem ,, T-link“ herausgenommen werden, die
schon auf Seite 543 beschrieben wurde.

Beispiel:

WSFS 0PD $A004
_MOVE.L =$1000,D1 Sektion 4 kB brutto
WSFS
BNE MIST B: kein Platz mehr

*---— Nur wenn ’Dauerblock’ gew'"unscht wird: auslinken!
OFF unteilbare Sequenz
MOVEA.L BACKT(A1),A2 A2 zuf. Beisp.

MOVE.L FORT(A1),FORT(A2) 1linker Nachb.
MOVEA.L FORT(A1),A2

MOVE.L BACKT(A1),BACKT(A2) rechter Nachb.
MOVE =$0010,TYPE(A1l) als ’MODULE’ ausg.
_MOVE.... Modulname 6 Bytes

DPC wieder user-mode

548 8.1 Die Systemtraps

WSFS (Forts.) Workspace forward search

Die symbolischen Displacements wurden bereits auf Seite 543 beschrieben. Im
Ubrigen gelten alle anderen Anmerkungen zum Trap WSBS entsprechend. Auch
die mit WSFS erzeugte und danach ausgelinkte Speichersektion kann nur mit
RWSP oder dem Bedienbefehl ,,UNLOAD name* wieder eliminiert werden.

Der Trap WSFS ist ein Bruder der Traps WSFA, WSBS und PENTR, die dhnliche
Grundeigenschaften aufweisen. Genau wie jene erlaubt er wihrend der Suche
jederzeit eine Taskumschaltung (Preemption).

Eine verantwortungsvolle, sorgfiltige Anwendung versteht sich von selbst!

8.1 Die Systemtraps 549

Transfer CE for Input/Output XIO = $4E4A‘
Eingaberegister: A1.L muf auf ein CE zeigen
Ausgaberegister: -

Verdnderte Register: D1,D5,D6,D7

Das durch A1 festgelegte Communication—Element wird mit Hilfe der dort ein-
getragenen Prioritdt an den ihm zustehenden Platz in die Warteschlange eines
I/O-Démons (I/O-Task) eingekettet. Welcher I/O-Démon zusténdig ist, er-
mittelt der Trap an Hand des Parameters LDNIO im Communication—Element.

Wenn eine ungiiltige ,LDN“ (logical dation number) das Auffinden eines I/O-
Déamonen unméglich macht, so lost der Trap ein Fehlersignal (Exception) mit
der Kennung ,,... wrong device-ldn (xio-call)“ aus, setzt den Parame-
ter RECLEN auf Null und fiithrt die Operation ,RELCE“ so aus wie es ein I/O-
Déamon normalerweise tun wiirde. Das Fehlersignal kann mit Hilfe der CE-
Parametrierung nur dann unterdriickt werden, wenn das Bit STABRE (im Byte
STATIO des CE) nicht gesetzt ist.

Ist die iiber die LDN adressierte Zieltask inaktiv oder blockiert (,waiting for
activation®), so wird sie aktiviert bzw. diese eine Blockierbedingung wird
aufgehoben. Wenn im Mode-Byte des CEs das Wartebit gesetzt ist, wird die
aufrufende Task durch den Trap im Zustand I/07 blockiert. Diese Blockierung
hebt der Empfianger der Nachricht nach deren Auswertung mit Hilfe des RELCE—
Traps erst spiter wieder auf.

Der Trap funktioniert vollig analog zum MSGSND-Trap, kann allerdings das CE
nur an I/O-Démonen verschicken. Genau wie beim MSGSND wird auch hier eine
prioritéitsgerechte (an Hand der Zelle PRIO im CE) Einkettung vorgenommen:
Dringende Nachrichten kommen ganz nach vorne in die Schlange. Die Warte-
schlange kann natiirlich niemals {iberlaufen.

Das weitere Schicksal des CE nach dessen Abarbeitung durch den I/O-Démon
wird durch das Byte STATIO im CE bestimmt. Wenn das Bit STABRE(Bitno.
1) gesetzt ist, wird das CE mit dem RELCE des Empfiingers in freien Speicher
verwandelt. Ist dagegen das Bit STABRT(Bitno. 2) gesetzt, so kehrt das CE
nach Abarbeitung in die eigene CE—Schlange des Aufrufers zuriick und kann
von dort bei Bedarf mit dem TOQ—Trap geholt werden.

550 8.1 Die Systemtraps

XIO (Forts.) Transfer CE for Input/Output

Hinweis!

Im Normalfall haben die I/O-Démonen eine Defaultprio-
ritéit von Null. Der XI0O-Trap (wie iibrigens auch der
MSGSND-Trap) interpretiert eine Null dort nédmlich als ,,dy-
namische Prioritét“: Die Prioritdt des I/O-Démonen wird
optimal an die Gegebenheiten angepafit, so dal durch den
E/A—Vorgang moglichst keine Tasks behindert werden, de-
ren Prioritdt oberhalb der im CE eingetragenen liegt!

8.2 Das Filesystem 551

8.2 Das Filesystem
8.2.1 Der Verwaltungskopf

Es wird mit logischen Blécken gearbeitet, deren jeweilige physikalische Position
auf dem Speichermedium durch die , Untergliederungsdaten“ errechenbar ist.
Alle Blocke sind von gleicher Grofle. So werden etwa beim ,,B“-Format fiir DD-
Disketten 5 Sektoren zu einer Blockgrofie von 5 kB zusammengefaflt. Der erste
Block triagt die Nummer 0. Die Blécke werden je nach Inhalt in zwei Typen
unterschieden: den Verwaltungsblock und den Datenblock. Mit dem Block 0
beginnt der Hauptverwaltungsteil des Mediums. Ab einer bestimmten Block-
nummer (bei Disketten ist das in der Regel Block 1) beginnt der Bereich der
Datenblocke, in die fiir Unterdirectories wieder einzelne kiirzere Verwaltungs-
blocke eingestreut sein konnen.

Block 0 beginnt bei Disketten auf Track 00, Sektor 1 und Seite 0. Platten
konnen mehrere, auch systemfremde, Partitionen haben. Dort liegt der Beginn
des Blockes 0 jeweils genau an der physikalischen Stelle der Platte, an der die
entsprechende Partition beginnt.

Der Hauptverwaltungsblock beginnt stets im Block 0. Seine Struktur ist in
der Tabelle 8.1 genau wiedergegeben. Bei Platten ist der Inhalt {iber mehrere
fortlaufende Blocke verteilt.

552

8.2 Das Filesystem

$00

$02
$04

$06
$08

$0A
$ocC
$0E
$10
$12
$14
$16

$18
$1A
$1C
$1E
$20
$22
$32
$36

$aaaa

$dddd

HDDRV 11 00 4 Bytes Kennungskopf des UH-Fman zur I-
dentifikation.
00 00 Gehort noch zum Kopf
SODSID 00 0x Single Or Double-SIDed x=0 single x=1 dou-
ble etc.
FBLEN xx xx Anzahl phys. Bytes pro Block, immer n-256
NOBLPT xx xx 2-er Logarithmus aus Blockzahl/Track/Seite.
Beispiel: 0 => 1 Bl/Track, 1 -> 2 Bl/Track etc.
NOSEPB xx xx Anzahl Sektoren pro Block, Sektorinkrement.
HDBLNO xx xx HeaDer BLock Nummer —1
ABMLEN xx xx Anzahl der insgesamt vorhandenen Blocke.
ABMIDX aa aa ,ABM¢“-Start-Index.
DIRSTR dd dd Directory-Start-Index zum Auffinden des Dir.
DIRLEN xx xx Directory-Lange = max. mogl. Anzahl Files
DIRLEE xx xx Lénge des Einzeleintrages/File im Directory.
Mindestens Namensldnge+8 (normal: 16)
NAMLEN xx xx Namenslidnge in Bytes im Directory, typ. 8
DIRNUM nn nn Number of this directory
RES1 00 00 Reserviert
RES2 00 00 Reserviert
RES3 00 00 Reserviert
LABEL »Label“-Text der Diskette (16 Bytes)
EXTMRK 4 bytes Extension-valid mark
EXTTB Table for 15 Extensions

Assigned-block-map ,,ABM*“. Zu jedem Block gehoren 4 Bytes.
Die ersten beiden bezeichnen den Besitzer-File, die letzten bei-
den erzeugen eine Kette. Ein unbenutzter (freier Block) ist durch
4 Nullbytes zu erkennen. Die , ABM*“ wird so initialisiert, daf3
die Blocke, die dieser Verwaltungsteil belegt, automatisch zu
Anfang fiir immer belegt sind. Gleiches gilt fiir Blocke, die beim
Formatieren als fehlerhaft erkannt wurden. Insgesamt enthélt
die ,ABM*“ (4-Anzahl Blocke) Bytes.

Directory. Wird wie folgt initialisiert: Erster Eintrag Name
*+FREE** (mit Blanks auf Namenslinge gefiillt) und alle weite-
ren (total: DIRLEN-DIRLEE) Bytes jeweils Null. Das Directory
kann auch vor der ,,ABM* liegen.

Tabelle 8.1: Filesystem, Verwaltungskopf

8.2 Das Filesystem 553

8.2.2 Die Datenblécke

Die Datenbltcke benotigen zu Anfang nur die Hardware-Initialisierung. Die in-
nere Struktur ermdoglicht ein Lesen der Information auch bei Verlust des Verwal-
tungskopfes — sofern die Zuordnung der Blocknummern zu den physikalischen
Sektoren noch bekannt ist. Jeder Datenblock sieht wie folgt aus:

$00 FORBLK =xx xx Folgeblock (0 falls letzter Block des Files)

$02 BACBLK =xx xx Vorgingerblock (0 falls erster Block)

$04 MINIDX aa aa Index des ersten Nutzdatenbytes.

$06 ACTIDX bb bb Aktueller Lese-/Schreibindex

$08 WRTIDX cc cc Writer-Index. Schleppzeiger von ACTIDX.
$0A WMXIDX dd dd Indexgrenze, letztmogl. Byte des Blocks+1

$aaaa Erstes Nutzdatum

$bbbb (Zufilliger) aktueller Zeiger.

$ccec (Zufdllige) Schreiber-Schlepposition.
$dddd-1 Letztes mogliches Nutzdatum

Tabelle 8.2: Filesystem, Datenblock

8.2.3 Eigene Driver fiir das RTOS—-UH-Filesystem

Um eigene Driver schreiben zu koénnen, die weitgehend unabhéngig von den
internen Revisionen der Filehandler sind, ist es unbedingt notwendig, den Dri-
ver mit dem gemeinsamen Head der entsprechenden Version des Filehandlers
zu assemblieren, der in Threm System verwendet wird. Dazu mufl die Versions-
nummer des Heads mit der der Filemanger iibereinstimmen. Im Augenblick ist
die Version 3 Revision 8 der Filehandler giiltig, es ist also ein Head der Version
3.z zu verwenden.

Ein Filehandler Driver ist eine Task, die in ihrem Taskworkspace eine Rei-
he von Parametern aufsetzt, die Controller Hardware initialisiert und dann in
den eigentlichen Filehandler springt. Dieser ruft dann eine Reihe von Unter-
programmen auf, mit denen z. B. ein Block von der Diskette/Platte gelesen
wird, ein Block geschrieben wird oder auch das Medium formatiert wird. Alle
diese Unterprogramme kehren immer wieder iiber einen RTS zum Filehandler
zuriick. Fehler werden immer dem Filehandler gemeldet, ein Driver sollte nie
eine eigene Ausgabe von Fehlermeldungen veranlassen.

554 8.2 Das Filesystem

Die Unterprogramme, die der Driver dem Filehandler zur Verfiigung stellen
muf, sind:

-RDISC um einen Block vom Medium zu lesen. Die Para-
meter dazu werden in zwei Datenblocken iiber-
geben, auf die A0 und A6 zeigen.

-WDISC um einen Block auf das Medium zu schrei-
ben. Die Parameter werden wie bein ,,RDISC“-
Unterprogramm iibergeben.

Eine Anzahl von weiteren Unterprogrammen sind nicht unbedingt notwendig.
Wenn sie nicht implementiert werden, konnen sie durch ein einfaches RTS ersetzt
werden.

-FORM um eine Anzahl von Tracks auf einem Medium physikalisch
zu formatieren. Die Parameter dazu werden in festen Zel-
len im Taskworkspace iibergeben. Wenn dieses Unterpro-
gramm nicht vorhanden ist, wird bei einem FORM Befehl
an den Filehandler nur das Medium auf defekte Blocke un-
tersucht und das Root Directory neu eingerichtet. Die phy-
sikalische Formatierung kann dann z. B. mit einem ande-
ren Programm erfolgen. Dies ist z. B. bei Platten an SCSI-
Controllern notwendig, da der Filehandler nicht geniigend
Informationen zum Einrichten der Description Pages im
Controller iibergeben kann.

-DESEL Der Filehandler ruft dieses Unterprogramm auf, wenn auf
keinem der von dieser I/O-Task betreuten Laufwerken noch
ein File offen ist. Typischerweise kann man damit die Select
Lampen aller Laufwerke ausschalten.

-DISPOP wird wéahrend des Formatierens automatisch fiir jeden
Block aufgerufen, nachdem zuvor , RDISC* aufgerufen wur-
de. Die Parameter sind die Blocke, auf die A0 und A6 zeigen.

8.2 Das Filesystem 555

Die Adressen dieser Routinen hat die Driver Task in feste Addressen in ihrem
Taskworkspace einzutragen, bevor die Kontrolle an den Filehandler weiterge-
geben wird. Unter dem Label RDISCA hat die Addresse der Routine RDISC,
unter WDISCA die Addresse von WDISC, unter FORMA die Adresse von
FORM, unter DISPOA die Adresse von DISPOP und unter DESELA die Ad-
dresse von DSEL zu stehen. Neben den Adressen dieser Unterprogramme sind
aber noch Zeiger auf einige Tabellen zu iibergeben:

FOCTS ist die Tabelle der Beschreibung der einzelnen Formate fiir
Single Density. Fiir jeden Formattyp ist ein Eintrag not-
wendig, der mindestens aus folgenden vier Worten bestehen
muf:

1. Anzahl der Sektoren pro Block

. Bytes je Sektor

. Einem Infowort

. Der Anzahl Bloécke pro Track —1

=0 N

Der Filehandler iibertrigt diese vier Worte vor dem Aufruf des Formatters
(FORM) in die Zellen NSEPT, SEL, FSELB und NBLPT im Taskworkspace.
Das erste Byte von FSELB wird zusétzlich mit dem zur Laufwerknummer
gehohrenden Eintrag aus der FOCTU Tabelle verkniipft. Ein Zeiger auf diese
Tabelle ist in FOCTSA im Taskworkspace einzutragen.

FOCTD ist die Beschreibungstabelle fiir der einzelnen Formate in
Double Density. Sie is wie FOCTS aufgebaut. Der Zeiger
auf diese Tabelle hat in FOCTDA im Taskworkspace zu
stehen.

Weiter ist die Linge (Anzahl Bytes) eines Eintrages in den Tabellen FOCTS
und FOCTD im Taskworkspace als Langwort bei FOCTEL einzutragen.

5

o6

8.2 Das Filesystem

FOCXX

FOCTU

DRVMSA

DRVNAM

ist die Tabelle der im FORMAT Befehl angebbaren For-
mattypen. Jeder Eintrag ist genau zwei Byte lang. Das En-
de dieser Tabelle wird mit zwei Bytes Null gekennzeich-
net. Die Formattypen sind in der Reihenfolge anzugeben,
in der sie auch in den FOCTS und FOCTD Tabellen ste-
hen, und fiir jeden Eintrag in der FOCXX Tabelle hat in
den FOCTS und FOCTD Tabellen jeweils ein Eintrag vor-
handen zu sein.

enhilt fiir jedes mogliche Laufwerk einen ein Byte langen
Eintrag. Vor dem Aufruf des Formatters fiir das Laufwerk
n wird das n-te Byte dieser Tabelle mit dem ersten Byte
in FSELB oder Verkniipft. Auf die Tabelle FOCTU hat
FOCTUA im Taskworkspace zu zeigen.

Maske im Taskworkspace des Drivers. Hier ist eine Maske
einzutragen, die zur Ermittlung der giiltigen Laufwerknum-
mer dient. Die im Filehandler verwendete Laufwerksnum-
mer entsteht durch eine ,, UND“-Verkniipfung dieser Maske
mit der aus dem CE stammenden Drive Nummer.

ist die Tabelle der Laufwerknamen. In ihr ist fiir jedes nach
der Ausblendung iiber DRVMSA mogliche Laufwerk ein
Eintrag vorzusehen. Jeder Eintrag in diese Tabelle ist genau
4 Bytes lang. In den ersten beiden Bytes steht die Laufwer-
knummer ASCII codiert. Das dritte Byte enthilt die LDN,
fiir die dieser Driver arbeiten soll, plus $80, und im vierten
Byte steht die Laufwerknummer. Die Tabelle ist mit einem
Wort $0000 abzuschlielen. Wenn das System aus dieser Ta-
belle auch die Memo’s fiir die Laufwerkbezeichnungen er-
mitteln soll, so mufl vor der DRVNAM Tabelle die Scan-
Marke (Scheibe 9) $AEB1, $BF95, $02BF stehen. Denken Sie
auch daran, in dem Driver die Device Facilities der ver-
wendeten ,LDN*“ auf $C7F8 zu setzen. Ein Zeiger auf die
DRVNAM Tabelle ist unter DRVNNA im Taskworkspace
abzulegen.

8.2 Das Filesystem 557

Das Langwort INITYA und das Wort FTYMSA im Taskworkspace werden nur
fiir alte Driver benotigt. Sie miissen aber mit $00000004 bzw. $0004 vorbesetzt
werden.

In das Wort FLDN im Taskworkspace ist die LDN, unter der dieser Driver
arbeitet, einzutragen.

Das Langwort FATTSA im Taskworkspace des Drivers ist nur fiir dem MSFM
von Bedeutung. Ein gesetztes Bit bedeutet, dafi der MSFM fiir das dem Bit
entsprechende Laufwerk eine FAT mit 16 Bit langen Eintrdgen annehmen wird.

Die Routinen RDISC und WDISC erhalten ihre Parameter aus Datenblocken,
auf die die Register A0 und A6 zeigen. Die mehr allgemeinen Parameter fiir ein
Laufwerk sind in dem iiber A0 zu erreichenden Driveblock abgelegt. Dies sind:

BLKLEN (Wort) Linge der zu lesenden oder schreibenden Daten.
NOSEPB (Wort) Anzahl der Sektorn pro Block.
SODSID (Wort) Anzahl der Oberflichen —1
NOBLPT (Wort) Anzahl der Blécke pro Track —1
(Wort)

ERRPTC (Wort) Anzahl der Versuche

Das Byte FPTFL (A0) muf} auf jeden Fall geloscht werden. Wenn moglich, sollte
hier auch bei jedem Leseauftrag eingetragen werden, ob der Schreibschutz fiir
das Medium aktiviert ist: es ist dann auf $FF zu setzen.

Die iiber A6 zu erreichenden Parameter betreffen den einzelnen Lese- oder
Schreibauftrag:

BLKNO (Wort) Der zu bearbeitende Block.
DADR (Langwort) Adresse der Daten.
ERRNO (Wort) Fehlernummer.

Die Routinen RDISC und WDISC melden mit dem Zero Bit (,EQ“) im Status-
register des Prozessors, ob der Auftrag erfolgreich ausgefiithrt werden konnte.
»NE“ bedeutet, dal in ERRNO eine Fehlermeldung abgelegt worden ist. Es sind
folgende Fehlernummern zugelassen:

558 8.2 Das Filesystem

4: Data Address Mark Error
8: Track 000 not found (Position Error)
12: Aborted Command Error
16: Controller fault
20: ID-Field not found
24: CRC-Error in ID or Data
28: Uncorrectable Data
32: Bad Block found
36: Drive not ready
40: Device Write protected
44: Disk Changed
48: Drive not present

Die Anzahl der Versuche in ERRPTC ist normalerweise auf 12 vorbesetzt. Nur
beim Lesen, das zum Auffinden von defekten Blocken dienen soll, wird hier 2
eingesetzt. Die Speicherzelle darf aber nicht verdndert werden.

Driver, die Disks mit unterschiedlichen Formaten handhaben, miissen in der
Lage sein, beim Parametersatz ,Block 0, Blocklinge 1024 Bytes, 4 Sekto-
ren/Block, 1 Block pro Track und 1 Oberfliche* (BLKNO=0, BLKLEN=1024,
NOSEPB=0, NOBLPT=0, SODSID=0) die ersten 1024 Byte vom Medium ein-
zulesen. Nur bei dieser Kondition braucht damit gerechnet zu werden, daf} eine
Diskette mit einem anderen Format zu bearbeiten ist. Nach einem Format Be-
fehl hat aber das Lesen mit der Sektorldnge, die beim Formatieren verwendet
wurde, sofort moglich zu sein. Der Driver muf3 also, wenn es die Hardware er-
fordert, eine Information in eigenen Zellen speichern, an der er erkennt, welches
Format zuletzt auf welchem Laufwerk verwendet wurde.

Das FORM Kommando erhilt seine Daten iiber Speicherplitze im
Taskworkspace. Diese sind:

FSELB
SEL Wort) Sektor Lénge in Bytes
MAXTRK (Wort) Anzahl der Tracks

(Wort)
(Wort)
(Wort)
SINGFL (Wort) 0: Single Density
(Wort)
(Wort)
(Wort)

Siehe FOCTS

NSEPT Wort) Sektoren pro Track
FERRC Wort
FORMT Wort

Fehlercode beim formatieren
Position des Formats in FOCXX

Im Fehlerfall wird die Fehlernummer bei FERRC eintragen. Die Nummern sind
wie beim Schreiben/Lesen vergeben.

8.3 Das Communication Element 559

8.3 Das Communication Element
8.3.1 Benutzung und Aufbau des CE

Das Betriebssystem iibernimmt die Betreuung von Warteschlangen an E/A-
Bausteinen mit begrenzter Ubertragungsgeschwindigkeit, wie z. B. UART
(ACTIA) oder solchen digitalen Ein-/Ausgaben, bei denen zwischen den Trans-
fers aus anderen Griinden Wartephasen anfallen (z. B. Floppy-Koppler o. i.).
Fiir rein elektronische und damit aus der Sicht des digitalen Prozesses beliebig
schnell mogliche E/A ist das Betriebssystem nicht zustindig, da keine Warte-
phasen anfallen, die einen Taskwechsel sinnvoll werden lassen.

Eine Task, die eine Ein-/Ausgabe beginnt, muf} sich zuvor in den Besitz eines
»Communication-Elements“ (CE) bringen - wenn sie nicht noch ein ,leeres®
von einer vorhergehenden E/A besitzt. Dafiir ist die Operation mit dem Trap
,FETCE“ vorgesehen.

Das CE wird von der Task parametriert, z. B. durch Einsetzen der Warte-
schlangen-Nummer (, LDN“), des Ubertragungsmodes, der Satzlinge, des File-
Namens usw.

Das gefiillte CE wird von der Task mit Hilfe der Trap-Operation ,XI0“ oder
»MSGSND“ dem Betriebssystem angeboten. Diese Traps bringen die Task in den
Wartezustand ,,1/07¢, sofern bei der Parametrierung des CE das Wartebit
im Ubertragungsmode gesetzt wurde. Wenn das Freigabebit (,Release“-Bit)
von der Task gesetzt wurde, ist der Aufruf von XI0 (bzw. MSGSND) die letzte
zuldssige Operation der Task mit diesem CE, da es nach Abarbeitung in der
Warteschlange automatisch als freier Speicher in die Verwaltung von RTOS—
UH zuriickkehrt.

Wenn das Freigabebit nicht gesetzt wurde, muf} die Task in geeigneter Weise mit
dem CE weiter verfahren. Eine Neuparametrierung ist erst erlaubt, nachdem
das CE abgearbeitet wurde. War beim Aufruf von XI0 das Wartebit gesetzt,
so kann die Task nach dem XIO/MSGSND sofort neu iiber das CE verfiigen.
Andernfalls ist mit der Systemfunktion ,, IOWA* (I/O-Wait) das Ende der I/0O-
Operation abzuwarten. Ggf. kann noch vor einer Neuparametrierung nach dem
I0WA der Riickmeldecode im CE analysiert werden.

560 8.3 Das Communication Element

Ein CE wird auf drei mogliche Arten wieder zu freiem Speicherraum:

1. Aufruf von ,XI0“ mit gesetztem Freigabebit.
2. Die besitzende Task wird terminiert oder beendet sich selbst.

3. Die Task ruft die Operation ,RELCE“ fiir dieses CE auf.

Der Aufruf von ,RELCE“ (Release CE) ist immer moglich, solange die Task
Besitzer des CE ist, also auch wihrend eines noch laufende E/A-Vorganges
iiber dieses CE. RELCE beeinflufit nicht die laufende oder durch XIO gerade
veranlafite E/A-Operation.

Bei der Terminierung einer Task ist zwischen Ein- und Ausgabe zu unterschei-
den:

e Bei der Ausgabe verbleiben mit XI0 bereits in die Ausgabewarteschlange
gebrachte CEs dort, es wird nur das Freigabebit gesetzt und die Task-ID
im CE geloscht.

e Bei der Eingabe werden die CEs, die noch nicht in Bearbeitung durch
die Betreuungstask der Warteschlange sind, aus der Schlange genommen
und zu freiem Speicher umgewandelt. In Bearbeitung befindliche CEs
verbleiben bei der Betreuungstask (die angefangene Eingabe muf also
regulir zu Ende gefithrt werden) bis sie abgearbeitet sind und werden
dann zu freiem Speicher umgewandelt.

Das CE ist ein wichtiger Bestandteil der Ein-/Ausgabe im Betriebssystem
RTOS-UH. Dabei ist der genaue Aufbau nur fiir den Assemblerprogram-
mierer interessant. Fiir den Hochsprachanwender iibernehmen Compiler und
Laufzeitsystem die Parametrierung der CE’s. In der folgenden Tabelle sind in
der linken Spalte die Displacements der einzelnen Parameter relativ zu A1, dem
Zeiger auf das CE nach ,FETCE“, und daneben kurz ihre Bedeutung angegeben.

8.3 Das Communication Element 561

Name 68xxx | PowPC | len || Funktion

- - $00 $00 — || Verwaltungszeiger, nicht verindern!
TIDO $12 $14 4 || Task-ID of owner, nicht verdndern!
FORS $16 $18 4 || Verwaltungszeiger, nicht verindern!
BACKS $1A $1C 4 || Verwaltungszeiger, nicht veréindern!
PRIO $1E $20 2 || Plazierungsprioritit in der Queue, darf

verandert werden. Defaultwert ist die
aktuelle Laufprio. der Task.

BUADR $20 $24 4 || Buffer-Adresse. Darf verindert werden.
Defaultbesetzung: zeigt auf den Platz
FNAME + max. erlaubte Pfadlange.
RECLEN | $24 $28 2 || Blocklinge (Anzahl Bytes), I/O-Task
gibt eine Null oder negative Zahl zu-
riick, falls I/O nicht ausfithrbar.
STATIO | $26 $2A 1 || Statusbyte

LDNIO $27 $2B 1 || LDN der Warteschlange, fiir die das CE
bestimmt ist oder in der es steht.

MODE $28 $2C 2 || Betriebsart, Endebedingung etc.
DRIVE $2A $2E 2 || Drive-Nr. linkes Byte: Time-Out

wenn $80 addiert.

FNAME $2C $30 ? || File-Name oder , Pathlist®, Autostop
durch $FF, es sei denn, die maximale
Lénge ist bereits erreicht. Beachten Sie
bitte die maximale Linge (implem. ab-
hiingig)

Tabelle 8.3: Aufbau des Communication Elementes

562 8.3 Das Communication Element

8.3.2 Die Modebytes

Die beiden Bytes des Mode-Wortes haben sehr unterschiedliche Bedeutung.

e Das linke Byte (Adresse+0) ist bitweise mit iiberlagerbaren Funktionen
belegt. Das Setzen des entsprechenden Bits aktiviert die beschriebene
Funktion. Die niederwertigen 3 Bit haben bei den seriellen Schnittstellen
eine feste, beim Filesystem dagegen eine vom Betriebsbefehl abhédngige
(sehr oft auch keine) Bedeutung. Genauere Informationen dazu in der
Tabelle 8.5.

e Das rechte Byte (Adresse+1) benutzt fiir die héchstwertigen 3 Bit eben-
falls eine bitweise Kodierung. Die verbleibenden rechten 5 Bit kodie-
ren einen von 32 méglichen Betriebsbefehlen fiir den ausfithrenden I/0-
Déamonen. Die Ddmonen werten nur die fiir sie interessante Teilmenge der
Betriebsbefehle aus.

Am besten versteht man die Funktion des gesamten I/O-Systemes, wenn man
sich neben diesem Abschnitt die Beschreibung der Traps FETCE, IOWA, MSGSND,
RELCE und XIO durchliest. Das CE ist ein Baustein eines leistungsfahigen und
komplexen Kommunikationssystemes. Es ist keinesfalls nur fiir die echte ,,Ein“-
oder ,,Ausgabe® gedacht. Auch zum Rangieren von Botschaften und Befehlen
zwischen verschiedenen Prozessen (Tasks) — auch iiber eine Vernetzung — be-
dient RTOS—UH sich dieses Werkzeuges.

8.3 Das Communication Element 563

Byte | Mnemo Bedeutung
$80 | MODMWA Suspend (Wait) until ready
$40 | MODMOU Directionbit, set if Output-direction
$20 | MODMCR Auto-stop after transmission of a Carriage-return
$10 | MODMLF Auto-stop after transmission of a Line-feed
$08 MODMEO Auto-stop after transmission of an EOT
$04 MODMSC Beim Filesystem: Siehe Tabelle 8.5
Bei serieller Schnittstelle: Suppress Command,
Cotr. A, B, C ohne Wirkung.
$02 | MODMNE Beim Filesystem: Siehe Tabelle 8.5
Bei serieller Schnittstelle: No echo on input
$01 MODMBI Beim Filesystem: Siehe Tabelle 8.5
Bei serieller Schnittstelle: Bindrer Transfer
Tabelle 8.4: Die Bits im linken Modebyte
Byte | Mnemo Bedeutung
$07 | FINDA Bei DIR ($0E): FIND -A
$06 | FIND Bei DIR ($0E): FIND-Befehl
$04 | NOCLO Bei READ: kein automatisches Close am Ende
des Files.
$03 | DIREA Bei DIR ($0E): DIR -EA
$02 | BADBL Bei READ raw: Badblock setting
-“- | DIRE Bei DIR ($0E): DIR -E
$01 | DIRA Bei DIR ($0E): DIR -A
Bei SAVE ($14): Riickgabe Filesize
-“- | RETA Bei RETURN ($04): -A Parameter
Tabelle 8.5: Die unteren 3 Bits im linken Modebyte
Byte | Mnemo Bedeutung
$80 | IOCMEF Riickmeldebit bei Eingabe: End-of-file
$40 | IOCMNE No Error messages by damon
$20 | IOCMEX Exclusiv access this task.
$1x Betriebsbefehlkodierung
in diesen Bits geméf
$0x Tabelle 8.7 unten.

Tabelle 8.6: Die funktionellen Bits im rechten Modebyte

564 8.3 Das Communication Element

Byte | Bedeutung

500 | READ/WRITE ,0ld" File

$01 ERASE the File

$02 | REPORT Error

$03 -

$04 | RETURN the File (-a => Modebyte)

$05 | -

$06 CLOSE the File

507 | READ/WRITE ,ANY* File

$08 | REWIND existing (OLD) File

$09 APPEND the File

$0A | -

$0B | -

$0C | (list) FILES (CE in the CE)

$0D | (list) FREE (CE in the CE)
(

$OE list) DIRectory (CE in CE) (-e -a => Modebyte)
$OF
$10 | SYNC (i.e. save on medium)

$11 | TOUCH the File, (read or write by directionbit in Modebyte)
$12 | LINK (additional name) to File

$13 | SEEK (change position in file)

$14 | SAVE next pos. to write to a file (SEEK’s counterpart)

$15 | REWIND any (install if necessary) File

$16 | REWIND new (error if exists) File

$17 | FORMAT single density, parameters by FNAME*

$18 | FORMAT double density, parameters by FNAME*

$19 CF, change filesystemstate, parameters by FNAME*

$1A | MaKe DIRectory

$1B | ReMove DIRectory

$1C | RENAME (change name)

$1D | -

$1E | -
$1F | READ/WRITE rawblock, BADBLOCK by Modebyte

Tabelle 8.7: Die Betriebsbefehle im rechten Modebyte

* Zur Kodierung von FNAME siehe gleichnamigen Shellbefehl.

8.3 Das Communication Element 565

Byte | Mnemo

Bedeutung

$80 | STABFL

,FLag* zur freien Verwendung des Nutzers, wird vom
System nicht veréndert oder beachtet.

$40 Reserviert.
$20 Reserviert.
$10 | ... Reserviert.
$08 STABOQ | ,in Own Queue“. Der Trap RELCE setzt dieses Bit im

Moment der Riickgabe (STABRT war gesetzt) des CE
in die eigene Queue des Besitzers. Obwohl eingekettet,
ist es in Wirklichkeit ungebunden.

$04 STABRT

sReTurn®. Der Trap RELCE soll, wenn er vom I/O-
Déamonen exekutiert wird, das CE in die eigene Queue
des Besitzers zuriickgeben.

$02 | STABRE

»,RElease“. Der Trap RELCE soll, wenn er vom I/O-
Déamonen exekutiert wird, das CE in freien Speicher ver-
wandeln (,, Verschrottungsbit“). Kann vom Nutzer vor
dem XIO0 oder MSGSND gesetzt werden (dann ist das CE
mit dem XIO/MSGSND fiir ihn gestorben). Ein von der
Besitzertask auf das CE ausgefiihrter RELCE oder ein
TERMI bzw. TERME, der auf die Besitzertask wirkt, setzt
dieses Bit ebenfalls (fiir die interne Aufrdumarbeit).

Reserviert

Tabelle 8.8: Die Bits im Statusbyte des CEs

Man sollte die zur Zeit vom System nicht benutzten Bits in STATIO geméf
Tabelle 8.8 wirklich frei lassen. Bei zukiinftigen Erweiterungen des Systemes
konnte es sonst zu groflen Komplikationen kommen.

566 8.4 Assemblerkodierte PEARL-Unterprogramme

8.4 Assemblerkodierte PEARL-Unterprogramme
8.4.1 Parameteriibergabe bei PEARL90

Die Assembler und Transferassembler des RTOS—UH-Systemes sind sehr gut
geeignet, um in Maschinensprache fiir Sonderzwecke Unterprogramme zu ko-
dieren, die von PEARL-Programmen aufgerufen werden koénnen. Mit dem
Ubergang auf PEARL90 und der Einfithrung der Formate wurde diese Auf-
gabe einerseits fiir den Programmierer erheblich erleichtert, andererseits aber
auch die Effizienz dieses Anschlusses deutlich verbessert. An dieser Stelle wird
zunéchst nur noch der neue T-Code kompatible Anschlufl beschrieben. Die alte
PEARLR&0-Notation sowie Umstellhinweise von PEARLS80 auf PEARL90 folgen
in den néchsten Abschnitten.

Wir betrachten hier exemplarisch den Fall
ABCD(pl, ... , pn); gleichbedeutend zu CALL ABCD(pl, ... , pn);

wobei ABCD ein Assemblerunterprogramm mit n Parametern sein soll; das Sym-
bol ABCD muf} im aufrufenden PEARL-Programm als ... ENTRY GLOBAL spe-
zifiziert sein. Auf der Assemblerseite wird der Einstiegpunkt von ABCD durch
Voranstellung des Zeichens ,~* (Tilde) global deklariert. Dies ist ein wich-
tiger Unterschied zum alten PEARLS80. Durch nunmehr zwei Sorten globa-
ler PEARL-Symbole werden gefihrliche Irrtiimer mit Mixturen aus ,alt“ und
,neu* ausgeschlossen.

Der PEARL90-Compiler erzeugt zu obiger Aufrufanweisung folgende 4 Ko-
deabschnitte:

Berechnung etwaiger Parameter oder Feldelementadressen
Bereitstellung und Vorbereitung von Prozedurarbeitsspeicher
Ablage der Parameterverweise im Prozedurarbeitsspeicher
Nur im Testmode: Signaturgenerierung

Native Sprung an die Stelle ~ABCD oder ~ABCD-12.

G o =

Im Testmode wird die um 12 reduzierte Einstiegsadresse als Sprungziel ver-
wendet. Der Sprung erfolgt mit einem Befehl, der im T—Code als XJRS kodiert
wiirde.

Im Gegensatz zum alten PEARLSO beginnen alle Unterprogramme heute im
native mode des jeweiligen Prozessors. Virtuelle Befehle sind bei Prozeduraufruf
und —Riickehr nicht mehr beteiligt.

8.4 Assemblerkodierte PEARL-Unterprogramme 567

Die Schnittstellenbedingungen unmittelbar an der Einsprungstelle — bzw. am
Signaturpriifungseinstieg — kénnen wie folgt beschrieben werden:

DO

Signatur, wird nur im Testmode versorgt, bei dem die
Routine 12 Bytes vor dem eigentlichen Einstieg ange-
sprungen wird.

A2

enthélt den potientellen neuen A5-Wert. Die Prozedur mufl
an Hand der Grofie (mit Hilfe von A3) entscheiden, ob er
verwendbar ist.

A3

zeigt auf das erste Byte hinter dem letzten nutzbaren Byte
im per A2 angebotenen Workspace

A5

zeigt noch auf den lokalen Workspace des Aufrufers.

-4(A2)

enthélt die 4 byte lange Adresse fiir die Wertriickgabe.
Diese Zelle ist auch vorhanden, aber undefiniert besetzt,
wenn es sich nicht um eine Funktionsprozedur handelt.

-4-x1(A2)

Wert oder Adresse (IDENT) des Parameters pl. Im Mo-
de ,per IDENT“ ist x1 bei skalaren Objekten genau 4,
bei Feldern dagegen so lang wie der zugehorige Feldbe-
schreibungsblock. Im Mode ,,by value® ist x1 die nach be-
stimmten Regeln aufgerundete Lénge des Parameters pl.
Besteht der Wert eines Parameters aus mehr als 256 By-
tes, so wird vom Compiler statt des Parameterwertes die
4-Byte lange Adresse einer zuvor vom Compiler angefer-
tigten Kopie iibergeben.

-4-x1-x2(A2)

Wert oder Adresse (IDENT) des Parameters p2. Weiteres
analog zum Parameter pl.

Tabelle 8.9: Parameterschnittstelle bei PEARL90

568 8.4 Assemblerkodierte PEARL-Unterprogramme

Man sieht, daB Parameterwerte oder Objektadressen in gegeniiber der Pro-
zedurdefinition umgekehrter Reihenfolge im A2-Space stehen. Dieser Bereich
mit negativen Offsets ist auf 16 kB begrenzt. Bei einer extrem groflen Para-
meteranzahl und/oder vielen groen Objekten knapp unterhalb der 256-Byte
Grenze im ,,per value“-Mode kann es passieren, dafl der Compiler einen Ka-
pazititsiiberlauf beim Prozeduraufruf anzeigt. Bei ernsthaften Programmen
wurde das allerdings noch nie gesehen.

Weil der Compiler so ausgelegt ist, dafl stets mindestens 32 Bytes zwischen die
in A2 und A3 angegebenen Adressen passen, 1d8t sich bei vielen Bibliotheks-
routinen ein schneller Sonderfall konstruieren. Wenn dieser 32 Byte grofle
Platz fiir interne Variablen reicht und keine anderen unterlagerten Unterpro-
gramme aufgerufen werden, so kann ein Unterprogramm ohne weitere Priifung
sofort mit der Aktion innerhalb des A2-Space beginnen und direkt mit dem
T-Code—Befehl XRTS beendet werden.

Im Regelfall muf} jedoch zunichst sichergestellt werden, ob der Platz reicht.
Auflerdem miissen Vorbereitungen fiir unterlagerte Prozeduren getroffen wer-
den. Auch das Verlassen der Routine ist nun mit einigen Maschinenbefehlen
verbunden, weil A5 veréindert wurde und wieder auf den Aufruferwert zuriick-
gestellt werden muf.

Beide Fille werden wir im folgenden betrachten.

8.4 Assemblerkodierte PEARL-Unterprogramme

569

Schneller Sonderfall

Wir kodieren eine beispielhafte simple Funktion, die weniger als 32 Bytes pri-
vaten Speicher benotigt und keine weiteren Unterprogramme aufruft. Es sei

XYZ: PROC((I1,I2) FIXED(15) RETURNS(FIXED(15));
RETURN(I1+I2); END;

als Assemblerversion zu kodieren.

retva
I1
I2

~XYZ

=$0100

.INCLUDE .../PROCS.FOR
.INCLUDE .../COMEQU.NOL
EQU -4

EQU -6

EQU -8

LOCK RGLR

SIGCHK $F175106F
MOVE I1(A2),D1

ADD I2(A2),D1
MOVEA.L retva(A2),Al
_MOVE D1, (A1)

XRTS

wegen SIGCHK

wegen RGLR

Offset returnvalue adr.
Offset 11

Offset 12

Linkregister-lock

wird spéter beschrieben
Wert von I1 nehmen
Wert von 12 addieren
Adr Riickgabewert
Ergebnis ablegen
schnelle Riickkehr

Das Beispiel enthélt bereits den Signaturcheck, der spéter beschrieben wird.
Wiirde man im obigen Beispiel noch ein paar private Speicherzellen benétigen,
so konnte man diese Bytes im Bereich

0(A2)

... $1F(A2)

ablegen.

Bitte beachten:

Mit Ausnahme der Register A4, A5, A6 und A7 diirfen alle Register inner-
halb des Unterprogrammes frei verwendet werden. Beim PowerPC steht
die Riickkehradresse zundchst nur im Linkregister. Der Transferassemb-
ler beklagt sich bei PC-relativen Adressierungen moglicherweise iiber das
Linkregister-LOCK. Es kann entfernt werden, wenn am Prozedureingang
ein XSL eingefiigt und gleichzeitig der XRTS durch den gewdhnlichen RTS
ersetzt wird. A7 ist beim schnellen Sonderfall nur mit 1 weiteren BSR-
Level (4 Bytes) belastbar!

Moglichst jedes PEARL-Unterprogramm sollte ,REENTRANT* sein! Es
diirfen folglich keine statisch (auf festen Speicherzellen) angelegten Ob-
jekte im UP verédndert werden.

570 8.4 Assemblerkodierte PEARL-Unterprogramme

Der Regelfall

Das obige Beispiel ist nicht typisch, denn es enthilt beinahe gar keine Akti-
on innerhalb der Prozedur. Nur aus diesem Grund lduft das assemblerkodier-
te Unterprogramm tatséchlich deutlich (etwa um den Faktor 2) schneller als
eine gleichwertige, vollstdndig in PEARL90 kodierte Variante. Der PEARL-
Compiler zieht namlich keinen Nutzen aus dem Spezialfall sondern kodiert
stets den ,Regelfall“ einer Prozedur, bei dem vorab nicht gesichert ist, dafl
der bendétigte Platz fiir die internen Variablen tatséichlich in den vom Aufrufer
angebotenen Raum pafit.

Den Regelfall kénnen wir auch in Assemblersprache mit Hilfe des PRODEC-
Formates kodieren. Dieses Format l4d in jedem Fall A5 neu. Dabei ist der neue
A5-Wert nicht identisch mit dem Eingangswert von A2 sondern um den Versatz
FLVA grofler. Die Parameter wurden also scheinbar etwas weiter in den negati-
ven Bereich geschoben. Dies ist erforderlich, weil zum Beispiel auf -4(A5) in der
PEARL-Welt mit der Zelle BWIO eine wichtige Pufferzelle fiir die formatierte
Ein-Ausgabe steht. Der Versatz FLVA ist zwischen 68k und PowerPC unter-
schiedlich und mufl im T-Code darum aus der Datei COMEQU geholt werden.
Die wahrscheinlichen Werte sind

FLVA EQU $22 bei der 68k-Familie
FLVA EQU $24 bei der PowerPC-Familie

Reicht der mit A2/A3 angebotene Platz fiir die internen Prozedurobjekte
nicht aus, so wird mit dem Maschinenkode des PRODEC-Formates automa-
tisch eine neue RTOS—UH-Sektion mit Hilfe des PENTR-Traps angefordert.
Durch die Compileroption ,,/*+R=. . .*/“ kann man aber einen geniigend groflen
Taskworkspace vorhalten und damit diesen zeitlich sehr teuren Exkurs in die
Speicherverwaltung vermeiden. (Im Beispiel kann durchaus ein Verlust um den
Faktor 10 auftreten.)

Das PRODEC-Format hat zwei Parameter, ndmlich die Gesamtgrofle des in der
Prozedur benétigten Workspace (im Bereich positiver A5-Displacements) und
das Gesamtparametervolumen in Bytes. Bei letzterem darf man nur dann 0 ein-
setzen, wenn die Prozedur weder Parameter erhélt noch ein Ergebnis zuriick-
liefert.

Die Riickkehr aus dem Unterprogramm darf nun nicht mehr mit einfachem
XRTS erfolgen sondern es mufl das PROCEX-Format verwendet werden. In
diesem Format wird sichergestellt, dal ein eventuell aus der RTOS—UH-
Speicherverwaltung angeforderter Workspace an das System zuriickgegeben
wird.

8.4 Assemblerkodierte PEARL-Unterprogramme 571

Wir nehmen das gleiche Beispiel wie oben an, nun jedoch mit Extra-Workspace
von 1kB. Im Bereich der positiven Displacements von A5 sind damit 1024 Bytes
frei verfiighar (die im Beispiel allerdings nicht benutzt werden).

.INCLUDE .../PROCS.FOR wegen SIGCHK
.INCLUDE .../COMEQU.NOL wegen RGLR, FLVA
retva EQU -4-FLVA Offset returnvalue adr.
I1 EQU -6-FLVA Offset 11
I2 EQU -8-FLVA Offset 12
WSPSZ EQU $400 angenommener WSP
SIGCHK $F175106F wird spéter beschrieben
~XYZ PRODEC WSPSZ,-I2-FLVA Workspace anlegen
MOVE I1(A5),D1 Wert von I1 nehmen
ADD I2(A5),D1 Wert von 12 addieren
MOVEA.L retva(A5),Al Adr Riickgabewert
_MOVE D1, (A1) Ergebnis ablegen
PROCEX Verlassen des UP

Dieses Beispiel [duft nun sehr genau mit der gleichen Geschwindigkeit wie die
PEARL-kodierte Version. Die Assemblerkodierung lohnt sich also nur bei Sy-
stemroutinen, die mit dem Miniworkspace auskommen oder sehr spezielle Hard-
wareoperationen nutzen, die sich in PEARL nicht gut formulieren lassen.

8.4.2 Der Signaturcheck in PEARL90

Der PEARL90-Compiler priift bekanntlich schon zur Compilezeit die Korrekt-
heit der Aktualparameter eines Prozedur- oder Funktionsaufrufes. Bei im selben
Modul deklarierten Prozeduren ist diese Priifung immer aktiv und liickenlos.
Werden jedoch globale Prozeduren aus externen Modulen aufgerufen, so kann
der Compiler die Aktualparameter nur mit der vom Programmierer nieder-
geschriebenen Spezifikation vergleichen, welche natiirlich fehlerhaft sein kann.
Dieses Problem war in fritheren Jahren bei der Umstellung von PEARLS0 hin-
reichend bekannt. Das RTOS—UH-PEARL90 sieht einen mit dem Testmode
»/*¥+T x/“ zuschaltbaren besonderen Mechanismus vor, der auch derartige Feh-
ler mit grofler Wahrscheinlichkeit erkennen und gefiéhrliche Nebenwirkungen
verhindern kann, den Signaturcheck.

572 8.4 Assemblerkodierte PEARL-Unterprogramme

Wie bei den Beispielen fiir assemblerkodierte Unterprogramme deutlich zu se-
hen war, werden {ibergebene Parameter direkt und ohne Priifung von ihren
mutmaflichen Ablageplitzen geholt. Eine individuelle Priifung wie im alten
PEARLSO wiire zeitlich viel zu teuer. Der Compiler berechnet darum zu jeder
Prozedurdefinition eine 32-Bit lange Zahl, die mit sehr hoher Wahrscheinlich-
keit (aber nicht sicher!) bei relevant anders definierten Prozeduren einen ande-
ren Wert annimmt. Benutzt wird dabei eine Polynomformel fiir einen sog. 31
Bit Galoiskorper. In diese Formel gehen Art, Stellung und Zahl der Parame-
ter auf recht komplizierte Weise ein. Sogar der innere Aufbau geschachtelter
Strukturen und der Gleitkommatypus eines FLOAT-Objektes (IEEE long, IEEE
short, RTOS) geht dabei mit ein. Man kann die Signatur leider nicht durch
eigene Rechnung bestimmen, sondern mufi den PEARL90- Compiler fiir die-
se Aufgabe einsetzen. Man kodiert dazu die Prozedurdeklaration in PEARL90
und iibersetzt sie im ,,/*+P */-Mode. Man erhilt dann beim 68k-Compiler
etwa folgendes Protokoll:

1 MODULE TEST;/*+P %/
2 PROBLEM;

001C: >>Check signature:F175106F

0028: PHDR N/2,

004A: PNTR FFF4 ,

= 3 XYZ: PROC((I1,I2) FIXED) RETURNS(FIXED);
004C: MOVW DO ,I2 X16 LOC FFD6(WL) ,

0050: ADDW DO ,I1 X16 LOC FFD8(WL) ,

0054: MOVX AO ,#fretv X16 LOC FFDA(WL) ,

0058: MOVW (AO) ,DO ,

005A: RETN

006C: RETN

007E: >>VALUE 0000=>N/

007E: >>VALUE 0022=>N/2

007E: >>ESL

= 4 RETURN(I1+I2); END;

007E: >>CON-BLK

007E: >>MODEND

= 5 MODEND;

8.4 Assemblerkodierte PEARL-Unterprogramme 573

Beim PowerPC-Compiler — der ja nur einen anderen Codegenerator verwendet
— sieht die entsprechende Sequenz wie folgt aus:

1 MODULE TEST;/*+P */

= 2 PROBLEM;

001C: >>Check signature:F175106F

0028: phdr N/2,

0076: pntr FFF4 ,

= 3 XYZ: PROC((I1,I2) FIXED) RETURNS(FIXED);
0078: movw rO ,I2 X16 LOC FFD4(r13) ,
007C: addw rO ,I1 X16 LOC FFD6(ri13) ,
0084: movx r8 ,#fretv X16 LOC FFD8(ri13) ,
0088: movw (r8) ,r0 ,

008C: retn

00BO: retn

00D4: >>VALUE 0000=>N/

00D4: >>VALUE 0024=>N/2

00D4: >>ESL

= 4 RETURN(I1+I2); END;

00D4: >>CON-BLK

00D4: >>MODEND

= 5 MODEND;

In beiden Féllen finden wir die gleiche hier interessierende Zeile
>>Check signature:F175106F

aus der wir den Parameter fiir das SIGCHK-Format ablesen konnen.

Der Signaturcheck verbraucht relativ wenig Zeit, weil es nur ein einfacher 32-Bit
Compare mit konditioniertem Trapaufruf ist. Da auch der Feldindextester sehr
viel schneller als in der PEARL80-Welt geworden ist, kann in vielen Féllen der
Testmode des Compilers sogar in der endgiiltigen Version eines Programmes
belassen werden.

Natiirlich kann man auch signaturlose Unterprogramme schreiben, zum Teil
wird das von anderen Ubersetzern (etwa IEP-C) offenbar auch ausgenutzt.
In diesem Fall wird das SIGCHK-Format einfach durch eine 12 Byte lange Se-
quenz von NOP-Befehlen ersetzt. Jetzt mufl freilich sehr viel mehr Aufwand in
die Programmentwicklungssystematik gesteckt werden, denn falsch spezifizier-
te signaturlose Unterprogramme konnen neben Fehlfunktionen sehr gefdhrliche
Seitenwirkungen verursachen.

574 8.4 Assemblerkodierte PEARL-Unterprogramme

Einige Systemprogramme akzeptieren auch Signaturen aus einem Tabellenvor-
rat — etwa weil es ihnen egal ist, ob eine Datenstation nur fiir Ausgabe, nur fiir
Eingabe oder fiir beide Richtungen spezifiziert wurde. Dies wird dann durch
einen entsprechenden Wegsprung von der um 12 reduzierten Einstiegadresse
kodiert. Dabei wird ausgenutzt, daf§ der Compiler im Testmode eine Versor-
gung des Registers DO (bzw. r0) mit der Signatur unmittelbar vor dem Sprung
auf den Signatur—Entry generiert.

Vorsicht!

Man kann die Signatur nicht verwenden, um den aktuellen Pa-
rametertyp festzustellen! Wenn der Testmode nicht eingeschaltet
ist, wird die Signatur ndmlich auf der Aufruferseite gar nicht be-
rechnet und das Register DO (bzw. r0) ist undefiniert.

8.4.3 Der Feldbeschreibungsblock

PEARL90 verwendet einen gegeniiber PEARLS0 erheblich erweiterten Feldbe-
schreibungsblock. Er erméglicht eine praktisch kaum begrenzte Zahl von Di-
mensionen, nicht bei 1 beginnende Indizes sowie eine volle 32-bit Feldadressie-
rung.

Jede Zeigervariable vom Typ ,array“ ist identisch zum hier beschriebenen Feld-
beschreibungsblock. Auch Felder als Prozedurparameter und statisch (evtl. glo-
bal) definierte Felder werden durch einen solchen Feldbeschreibungsblock re-
prasentiert. Bei lokalen Feldern innerhalb von Tasks oder Prozeduren sowie
bei Feldern innerhalb von Strukturen sind dem Compiler sdmtliche Daten be-
kannt und es gibt zunéchst nur compilerintern einen Feldbeschreibungsblock.
Der Compiler generiert aber bei der Ubergabe solcher Felder an Prozeduren
oder Zuweisungen an eine Zeigervariable automatisch ebenfalls ein solches zur
Laufzeit existentes Datenobjekt.

PEARL verwendet bekanntlich das Prinzip der ,,mitreisenden Felddeskripto-
ren*, welches viele Probleme und Fehlerquellen anderer Sprachen — besonders
bei C und auch C++ — vermeidet. Leider stellt man bei Umsteigern von die-
sen Sprachen immer wieder fest, daf§ sie diese Art der Objektorientierung gar
nicht oder erst sehr spét schitzen lernen. Dabei ist der Zeitverlust der Methode
durchaus vernachléssigbar.

8.4 Assemblerkodierte PEARL-Unterprogramme 575

’ Offset \ Bedeutung des 32-Bit Objektes

0 Physikalische Speicheradresse des ersten Elementes

4 Anzahl der Dimensionen des Feldes

8 Gesamtzahl der Feldelemente — 1. Diese Information verwertet
der Indextester.

12 Minimal zuléssiger linearer Index. Bezeichnet den Versatz

(in Feldelementen, nicht in Bytes!), den das Feldelement
(0,0,0,...,0) gegeniiber der Feldanfangsadresse besitzt. Hier
steht bei Feldern, die sémtliche Startindizes 0 haben (wie bei
C), logischerweise eine exakte 32-bit 0. Diese Information wird
bei der Feldformel und vom Indextester benutzt.

16 Untergrenze des ersten Index

20 Obergrenze erster Index — Untergrenze erster Index +1
24 Untergrenze des zweiten Index (falls vorhanden)

28 Obergrenze zweiter Index — Untergrenze zweiter Index +1

usw. fiir alle folgenden Indizes jeweils ein Pérchen

Tabelle 8.10: Der Feldbeschreibungsblock in PEARL90

Am sinnvollsten ist es, wenn man sich an Hand obiger Angaben mit Hilfe der
/*+P .. */-Option des Compilers die Feldbeschreibungsblocke statisch (auf
Modulebene) deklarierter Felder in der Praxis ansieht. Auch ein Studium der
Feldzugriffsformel ist damit moglich. Dabei sollte man keine konstanten Indizes
verwenden, weil sonst Rechnungen vom Compiler wegoptimiert werden kénnen!

Wenn eine Prozedur als Aktualparameter ein komplettes Feld iibergeben be-
kommt, so steht der Feldbeschreibungsblock direkt im A2-Space. Seine An-
fangsadresse relativ zu A2 erhilt man wie {iblich nur durch Kenntnis der Ob-
jektlinge Len, die sich nach folgender Formel berechnet:

Len =16 + Ndim * 8

Dabei ist Ndim die Anzahl der Dimensionen des Feldes. Da beim Prozedurauf-
ruf der Raum im A2-Space auf 16 kB beschrinkt ist, kann es bei Mutwilligkeit
passieren, dafl bei zu vielen Parametern und/oder zu vielen Feldern mit zu vie-
len Dimensionen (mehr als 4 machen normalerweise in der Wissenschaft kaum
Sinn!) der Compiler beim Prozeduraufruf einen Kapazititsiiberlauf anzeigt,
weil die 16 kB-Grenze iiberschritten wird.

Wenn Sie selbst Zugriffsformeln in Assembler kodieren, denken Sie bitte daran,
daB der zunéchst berechnete lineare Index noch mit der Anzahl Bytes, die ein
einzelnes Feldelement belegt, multipliziert werden mu$.

576 8.5 Parameteriibergabe im alten PEARLS0

8.5 Parameteriibergabe im alten PEARLSO

Von einer Neukodierung von Assemblerroutinen fiir das PEARL80-System wird
dringend abgeraten. Die folgenden Angaben aus einer alten Handbuchversion
werden nur noch zur Information wiedergegeben und kénnen als Hilfestellung
dienen, wenn alte assemblerkodierte PEARL80-Routinen vorhanden sind, die
auf den T-Code der PEARL90-Welt umgestellt werden miissen.

Die Ubergabe der Programmkontrolle an das Unterprogramm (UP) erfolgte im
PEARLS80-System mit Hilfe virtueller Befehle, die vom PEARL-Laufzeitsystem
(Hyperprozessor) exekutiert werden. Wir betrachten hierzu den Fall

CALL ABCD(para-list);

wobei ,,ABCD“ ein Assemblerunterprogramm sein soll; das Symbol ABCD muf}
im aufrufenden PEARL-Programm als ,ENTRY GLOBAL® spezifiziert sein. Auf
der Assemblerseite wird ABCD durch Voranstellung des Zeichens ’>’ global
deklariert. Das PEARL-Run-time betritt das UP im virtuellen Mode an der
Stelle ,,>ABCD*“, unser UP muf} also in jedem Fall mit einem virtuellen Befehl
beginnen, wobei dies ggf. der Befehl ,,v0“ zum Abschalten des Hyperprozessors
sein kann. Die weiteren Randbedingungen beim Eintritt sehen wie folgt aus:

A0 zeigt auf die Stelle, an der das Parameterlink beginnt.
D2 enthilt das Register A5 (=, WL*) des Aufrufers.
A5 ist noch identisch mit D2.

Wichtige Hinweise

Die Register A4, A5, A6, A7 diirfen im Laufe des UP nicht vom
Programmierer verdndert werden. Kurzzeitige Verdnderung ist
zwar in gewissen Fillen moglich, wird aber nicht empfohlen.
A7 ist mit max. 2 BSR-Level (8 Bytes) belastbar, es mufl beim
UP-Austritt oder vor der Benutzung irgendwelcher virtuellen
Befehle unbedingt wieder auf dem Eingangswert stehen.

Bitte denken Sie auch daran, daf} es Ihre eigene Aufgabe ist,
dafiir zu sorgen, dafl das UP ,REENTRANT“ ist. Es diirfen also
keine statisch allokierten Objekte im UP verdndert werden,
wenn Sie diese Bedingung einhalten wollen.

Im folgenden sollen 2 Félle unterschiedlicher Schwierigkeit betrachtet werden:

8.5 Parameteriibergabe im alten PEARLS0 577

’ Fall A (nicht fiir Neuentwicklung!) ‘

Es sollen weder Parameter noch Funktionswerte iibergeben werden. Die Proze-
dur benttigt auer einigen wenigen Registern keinen eigenen Arbeitsspeicher.
Ein Transfer von Werten ist {iber globale PEARL-Objekte dennoch méglich.

Auf der PEARL-Seite generiert der Compiler aus CALL ABCD; die (vir-
tuelle) Sequenz (Liste aller virtuellen Befehle sieche Abschnitt 8.7):

PROC >ABCD (PROC=V18)
EPAR (EPAR=V19)

Auf der Assembler-UP-Seite programmieren wir (ein Module-Head gem.
Seite 446 ist nicht dargestellt):

>ABCD VO Hyperproc. off
CMPI.B =19, (A0) Vergl.auf EPAR
BNE Error - Zweig

68000-Usr-code
PEARL-Assembler-UP

DO ... D7 zur freien Verfuegung
Al ... A3 -————- "
JMP 2(A0) Ruecksprung HP

Der Fall A ist die schnellste Form des Anschlusses iiberhaupt. Notfalls kann auf
das Uberpriifen der leeren Parameterliste (CMPI.B ...) auch noch verzichtet
werden. Wenn Sie z. B. in dem UP Floatingbefehle benétigen, so mufl zuvor
der Hyperprozessor wieder angeworfen werden. Dies gelingt mit Hilfe des dem
UH-Assembler bekannten Befehles TV, der nur ein bequemer Mnemo fiir den
Trap 14 ist.

578 8.5 Parameteriibergabe im alten PEARLS0

’ Fall B (nicht fiir Neuentwicklung!) ‘

Es sollen Parameter und Funktionswerte iibergeben werden. Auflerdem nehmen
wir an, dafl unser UP zusétzlichen internen Arbeitsspeicher bené6tigt, dabei aber
,reentrant® sein soll. Wir betrachten wiederum zunéchst die PEARL-Seite:

SPC ABCD ENTRY(FIXED,FLOAT IDENT) RETURNS(FLOAT(55)) GLOBAL;

Z=ABCD(3,Y); /* Der P80-Compiler generiert hieraus: */

PROC >ABCD (V18=PR0OC)
INVW Xcon=3 (V14=INVW)
VARF Y (V12=VARF)
VARD resultcell (V13=VARD)
EPAR (V19=EPAR)
MOVD resultcell,Z (MOVD ist ein Macro, 2x MOVE.L)

Beim Studium des Codes wird erkennbar, dafl Funktions-UPs sich nur durch
einen zusitzlich angehiingten Ubergabeparameter von den durch ,,CALL® auf-
rufbaren UPs unterscheiden. Der Riickgabewert mufl in eine vom Compiler
beschaffte Zelle geschrieben werden.

Vor der Codierung unseres Assembler-UP muf} zunéchst bestimmt werden, wie-
viel Prozedurworkspace ,,PWSP* gebraucht wird. In diesem PWSP miissen
auch die Parameterwerte oder - bei ,IDENT* - die vier Byte langen Adressen
der Objekte untergebracht werden. Sollen Felder iibergeben werden, so miissen
auch Kopien der Feldbeschreibungsblocke (s. unten) darin Platz finden.

In unserem Beispiel sei angenommen, dafl das UP intern das 4 Byte lange
Objekt ,HILF1, und das 8 Byte lange Objekt ,HILF2“ benttigt. Wir codieren:

8.5 Parameteriibergabe im alten PEARLS0 579

RETN OPD $4E4C Opcode definition = TRAP 12
ENTR 0OPD.V 29 Opcode proc-entry (Hyperproc.)
INVW OPD.V 14 Invariant 16 bit fixed = V14
VARF 0OPD.V 12 Variable Float 32 bit = V12
VARD O0PD.V 13 Variable Float 64 bit = Vi3
EPAR 0OPD.V 19 End of parameter Xfer = V19
* PWSP-Allocation
PAR1 EQU 0 2 bytes positioned to 0(A5)
PAR2 EQU PAR1+2 4 bytes (adr) pos. to 2(A5)
WERT EQU PAR2+4 4 bytes (adr) pos. to 6(A5)
HILF1 EQU WERT+4 4 bytes (internal) to 10(A5)
HILF2 EQU HILF1+4 8 bytes (internal) to 14(A5)
WSPSZ EQU HILF2+8 Total Size of Procedure-WSP
*
>ABCD ENTR WSPSZ.L Fetch storage from ’RTOS-UH’
INVW PAR1.X xfer 16-bit FIXED by ’value’
VARF PAR2.Z xfer 32-bit FLOAT by ’Ident’
VARD WERT.Z xfer 64-bit FLOAT by ’Ident’
EPAR End of param., + hyperproc off

reeller 68000-code. DO...A3 sind frei verfuegbar.
A5 zeigt auf Ablageplatz des Wertes von PARI1.
Beispielhafter Zugriff auf die Objekte:

MOVE.L =$01400000,HILF1(A5) oder (gleichwertig):
MOVE.L =$01400000,HILF1.X

MOVE PAR1.X,D4 Die Zahl 3 des obigen Bsp.->D4

MOVEA.L PAR2.X,AQO Zeiger laden, da IDENT xfer!
MOVE.L =$01400000, (AO) Wert-> ’Y’ des Beispieles

MOVEA.L WERT.X,A0 Zeiger auf Ergebniszelle laden
MOVE.L HILF2.X,(AO)+ xfer Bytes 1..4 Ergebnis

MOVE.L HILF2+4.X, (A0) ° 5..8 »

* Bsp. letzte Sequenz unter Verwendung des Hyperproc
TV Hyperproc hier ’anwerfen’
Vi WERT.Z,HILF2.X (Reihenfolge: dest,source)
cee evtl. andere virt. Befehle
VO Hyperproc hier abschalten
ce evtl. weiterer Realcode
RETN Realer Befehl, exit des UP

END

580 8.5 Parameteriibergabe im alten PEARLS0

Man beachte dabei, dafl das Verlassen des UP nur mit dem ,RETN-Trap“ moglich
ist. Dieser mufl naturgemifl im Bereich realen Maschinencodes stehen.

Die Verwendung des V1-Befehles, der auch als MOVU OPD.V 1 hétte deklariert
werden konnen, dient nur der Demonstration, da der Befehl inzwischen von den
Compilern nicht mehr benutzt wird. (s. Liste in Abschnitt 8.7). MERKE: Hilfs-
zellen und per ,,value® iibergebene Objekte werden mit ,,.X oder (nur bei realen
Befehlen méglich) ,,. .. (A5)“ adressiert. Durch Zeiger vertretene Objekte wer-
den bei realen Befehlen durch Laden eines Adrefiregisters und bei virtuellen
Befehlen durch die ,, . Z-Adressierung“ erreicht. Bei den Parameteriibergabebe-
fehlen im Kopf des UP wird durch .Z der Ident- und durch .X der Valuemode
der Ubergabe festgelegt. Bei Identmode darf das Objekt der Aufrufseite nicht
invariant sein, sonst wird wie bei falschem Parameterdatentyp ein Laufzeitfehler
angezeigt. Grundsitzlich kann man die Ubergabe auch ohne den Hyperprozes-
sor schaffen, wenn der Aufbau der Aufrufseite durch das UP selbst interpretiert
wird.

] Feldbeschreibungsblock (alt, PEARLS0) \

Beim Zugriff auf in der PEARL8SO-Welt global deklarierte Felder sind einige
Besonderheiten zu beachten, da dem eigentlichen Variablenfeld im Speicher ein
Vorspann (Feldbeschreibungsblock) vorangestellt ist. Aus

DCL A(boundl,bound2,bound3) ... GLOBAL wird im Speicher
>A DC.W bound3 2 Bytes
DC.W bound2 2 Bytes
DC.W boundl 2 Bytes
DC.L offset+adr 4 Bytes

DS (Speicherbereich des Feldes) size Bytes

Bei weniger als 3 Dimensionen entfillt die Ablage der nicht angegebenen Feld-
grenzen. Die Werte von boundl etc. sind mit der ,,Global+offset“-Option des
UH-Assemblers ohne Probleme adressierbar. Die 32-bit-zahl ,,of fset+adr® gibt
die physikalische Adresse an, auf der das Feldobjekt A(0,0,0) (welches nicht
existiert) stehen wiirde. Damit wird die Indexformel beim Feldzugriff durch den
Compiler (und den Assemblerprogrammierer) schneller und kiirzer. Bei Unklar-
heiten ist ein Studium des vom Compiler generierten Codes (/*+P*/-Option)
sehr zu empfehlen.

8.5 Parameteriibergabe im alten PEARLS80 581

’FIXED und FLOAT Parameterbefehle (nicht fir Neuentwicklung!) ‘

Diese Befehle haben jeweils nur einen Operanden, der mit .X oder .Z Adres-
sierung (s. 0.) angesprochen wird.

INVD V17 Invariant Float (55) = 8 Byte Float
INVF V16 Invariant Float (23) = 4 Byte Float
INVW V14 Invariant Fixed (15) = 2 Byte Fixed
INVX V15 Invariant Fixed (31) = 4 Byte Fixed
VARD V13 Variable Float (55) = 8 Byte Float
VARF V12 Variable Float (23) = 4 Byte Float
VARW V10 Variable Fixed (15) = 2 Byte Fixed
VARX V11 Variable Fixed (31) = 4 Byte Fixed

Skalare Parameter aufler FIXED, FLOAT (nicht fiir Neuentwicklung!) ‘

Die seltener auftretenden Parametertypen werden durch etwas lingeren Code
iibergeben. Fiir alle restlichen Datentypen aufler FIXED und FLOAT steht dafiir
nur ein gemeinsamer virtueller Befehl zur Verfiigung:

MPXF OPD.V 139 , Miscellaneous parameter xfer

Der MPXF-Befehl hat 2 Operanden, von denen einer fiir den Objekttransfer und
der zweite fiir die Typpriifung notig ist.

Anwendung: MPXF dtyp,object.X oder ...object.Z

582 8.5 Parameteriibergabe im alten PEARLS8O0

Die Information auf der Adresse dtyp besteht aus 2 oder 4 aufeinanderfolgenden
Bytes. Sie haben folgende Bedeutung:

Byte | Code | Bedeutung
1 $xx | Lénge (1...255) bei CHAR und (1...32) bei BIT
$00 Bei den andern Datentypen, DUR etc.
2 $08 CHAR variable
$09 INV CHAR
$0A | BIT(1...16) variable
$0B | INV BIT(1...16)
$0C | BIT(17...32) variable
$0D | INV BIT(17...32)
$0E | DURATION variable
$0F | INV DURATION
$10 CLOCK variable
$11 INV CLOCK
$12 STRUCT variable
$13 INV STRUCT
$xx Nur bei STRUCT: High byte of obj.length
4 $yy Nur bei STRUCT: Low byte of obj. length

w

Wie man richtig vermutet, wird beim Transfer von Strukturen nicht die innere
Typuntergliederung gepriift, sondern lediglich eine Priifung der Lénge in Bytes
ausgefiihrt.

Beispiel:

MPXF O0OPD.V 139

MPXF C7,TEXT.X ’Value’-Uebergabe String.
MPXF B16,MASK.Z ’Ident’-Uebergabe Bitmask

c7 DC.B 7,$09 CHAR(7) invariant object.
Bi6 DC.B 16,$0A BIT(16) variable object.

Fuer MASK muessen 4 Byte (Adresse!) und fuer
TEXT 7 Bytes im PWSP vorgesehen sein.

Bei ’value’-Uebergabe findet ggf. eine Anpas-
sung der CHAR-Laengen statt.

* ¥ ¥ ¥

8.5 Parameteriibergabe im alten PEARLS0 583

Felder vom Typ ,no string“ als Parameter (nicht fiir Neuentwicklung!) ‘

Mit dem Befehl ARNS (Array no string) werden Felder der Datentypen FIXED,
FLOAT, DURATION, CLOCK und STRUCT transferiert. Beispielprogramm:
ARNS OPD.V

122 ’Array no string’ 3 Operanden.

ARNS offs+adr-cell,boundlistcells,descr.mask

ARNS OFFS.X,BOUNDS.X,$0812.X (2dim DUR-Feld)

Fiir OFFS sind 4 Bytes bereitzustellen, fiir die Liste der ,bounds* (2-Anz.
Dimensionen) Bytes. Die Feldgrenzen werden in der Reihenfolge des Feldbe-
schreibungsblockes abgelegt. Auf OFFS steht die (fiktive) Speicheradresse des
Feldelementes (0) bzw. (0,0) oder (0,0,0). Wenn OFFS unmittelbar hinter BOUNDS
liegt, entsteht somit ein kompletter neuer Feldbeschreibungsblock.

Die ,,descriptionmask* enthélt Informationen tiber die Anzahl der Dimensionen
und den Datentyp wie folgt:

Typ 1 dim var,inv | 2 dim var,inv | 3 dim var,inv
FIXED(15) | $0401,$0541 | $0801,$0941 | $0C01,$0D41
FIXED(31) | $0402,$0542 | $0802,$0942 | $0C02,$0D42
FLOAT(23) | $0404,$0544 | $0804,$0944 | $0C04,$0D44
FLOAT(55) | $0408,$0548 | $0808,$0948 | $0C08,$0D48
DURATION | $0412,$0552 | $0812,$0952 | $0C12,$0D52
CLOCK $0416,$0556 | $0816,$0956 | $0C16,$0D56
STRUCT $0415,$0555 | $0815,$0955 | $0C15,$0D55

Bekanntlich ist der Feldtransfer nur im ,, IDENT“-Mode moglich, so daf} es keine
weitere Fallunterscheidung wie bei den Skalaren gibt.

Bei den Verbundobjekten (STRUCT) folgt dem ARNS noch eine Léngeniiberprii-
fung LTST als weiterer Parameteriibergabebefehl. Er hat einen Operanden, der
unmittelbar die Anzahl Bytes, aus der die Struktur besteht, angibt.

LTST O0OPD.V 72
ARNS
LTST

Definition LTST
Uebergabe Verbundfeld.
Verbundtyp besteht aus 25 Bytes.

.s...,$0415.X
256.X

o84

8.5 Parameteriibergabe im alten PEARLS0

Felder der Typen BIT und CHAR als Parameter (nicht fiir Neuentwicklung!) ‘

Hierfur sind die Befehle ARBS (Bitstring) und ARCS (Charstring) vorgesehen.
Wir studieren eine beispielhafte Anwendung:

ARBS
ARCS

ARCS
ARBS

ARCS
ARBS

0OPD.V 123 ’array bitstring’, 3 Operanden
OPD.V 124 ’array char.string’,3 Operanden

offs+adr-cell,boundlist-cells,descr.mask
P

OFFS.X,BOUNDS.X,$0812.X ..(,) CHAR(18)
OFF2.X,B0U2.X,$0C09.X = ..(,,) BIT(9)

Es gelten sinngeméfl die gleichen Bedingungen wie bei der Instruktion ARNS;
im Gegensatz zum ARNS enthélt die ,,description-mask® nun im rechten Byte
die Linge in Bytes (CHAR) oder in Bits (BIT) des Feldelementes. Im Einzelfall
ist wie folgt zu kodieren:

Typ

Befehl | 1 dim var,inv | 2 dim var,inv | 3 dim var,inv

BIT(xx) ARBS | $04xx,$05xx | $08xx,$09xx | $0Cxx,$0Dxx
CHAR(yy) | ARCS | $04yy,$05yy | $08yy,$09yy | $0Cyy,$0Dyy

8.5 Parameteriibergabe im alten PEARLS0 585

Datenstationen als Parameter (nicht fiir Neuentwicklung!) ‘

Die Ubergabe von Stationen ist nur im Ident-Mode méglich. Dafiir ist der
Befehl ,DMYD“ (Dummy Dation) vorhanden:

DMYD

neset

OPD.V

DMYD

137

adrpt

Dationuebergabe, 1 Operand

r.X Uebergabeparameter ist die
Adresse des Dation-Blockes
Aufbau s.u.

MOVEA.L adrptr.Z,Al1 Dation-Blockadresse holen

Es gab einen fehlerhaften Transfer, was nun 7

MOVE
BMI.S

TFU(
nese

A1) ,D7 Hole erstes Wort fuer test
t B: NE-option ist gesetzt

NE-option war nicht gesetzt, gebe Meldung aus

ERROR
DC

RTS

$1234

setze Trap ab
irgend einen Code

Weiter mit irgendwas

Aufbau des PEARL-Dation Blockes

Mnemo offs | len | Bedeutung

DIOFAC | 0 2 I/0 Facility fiir das Laufzeitsystem. Bit 2: End-of-
File Bit

DLDN 2 1 aktuelle LDN der Dation

DDRIVE | 3 1 aktuelle Drive-Nummer der Dation

DSTAT | 4 2 Status des I/O-Transfers (hier greift ST() zu)

DTFU 6 2 Transferlinge der Dation (max. 32 Kbyte, oberstes
Bit ist NE-Flag)

DINFO 8 2 Zelle fiir die aktuellen Al- bzw. MB-Parameter

DPATH 10 | ?? | Pathlist ohne den Hardwarenamen der Dation, wird
durch $FF beendet. Am Ende folgt noch ein $FE,
welches niemals iiberschriebn werden darf, denn es
markiert das Ende des vom Compiler vorgesehen
PLatzes fiir die pathlist.

586 8.6 Umstellung von alten Assemblerunterprogrammen auf PEARL90

8.6 Umstellung von alten Assemblerunterprogrammen
auf PEARL90

Diese Anleitung soll dazu dienen, vorhandene P80-Assemblerprozeduren so zu
verandern, daf} sie sowohl in der alten P80- als auch in der neuen PEARL90-
Welt benutzt werden konnen. Fiir die Kodierung neuer, nur fiir PEARL90
ausgelegter Routinen ist sie nicht gut geeignet. Dazu wurde ja bereits eine
vollstéindige Erlduterung ab Seite 566 gegeben. Die folgenden Seiten enthal-
ten zum Teil bereits Bekanntes, denn sie sollen auch ,stand alone“ aus dem
Handbuch herauskopiert verstanden werden konnen.

Wenn Sie die empfohlenen Formate und INCLUDE-Files benutzen, werden IThre
Routinen mit hoher Wahrscheinlichkeit problemlos transferassemblier sein und
sind damit auch auf anderen RTOS-Hardwareplattformen, z.B. dem PowerPC,
direkt einsetzbar.

Bei kleinen Prozeduren mit nur ca. einer Seite Assemblertext ist es fast im-
mer giinstiger, den eigentlichen Kode der Originalroutine zu duplizieren und
mit eigenem Vor- und Nachspann in eine reinrassige PEARLI0-Version umzu-
wandeln. Diese kann dann einfach neben die unverénderte alte Routine gestellt
werden.

Groflere Anpassungsarbeiten gibt es allenfalls bei der Benutzung von Feldern als
Parameter, da man hier den wesentlich {ippigeren P90-Feldbeschreibungsblock
erst auf den alten P80-Block umfingern mufl. Dabei gehen natiirlich alle in P80
nicht moglichen Optionen (etwa nicht bei 1 beginnende Untergrenzen) verlo-
ren. Probleme bereiten auch die sehr seltenen Félle, bei denen eine formatierte
Ein-/Ausgabe (d.h. PUT, GET oder CONVERT) mit den Hyperprozessorbefehlen
innerhalb der Routine nachgebildet wird, da die dafiir notige Zelle BWIO auf
-4 (A5) bei dieser rigiden Losung nicht angelegt wird.

8.6 Umstellung von alten Assemblerunterprogrammen auf PEARL90 587

Prinzip der Parameteriibergabe im PEARL90-System.

Der P90-Compiler benutzt ausschlieBlich reellen Code, eine Ubergabe im frither-
en Sinne gibt es nicht mehr. Die meiste Arbeit wird auf der Aufruferseite erle-
digt. Dies vereinfacht das Kodieren von Assemblerroutinen erheblich und fiihrt
zu einem sehr deutlich schnelleren Laufzeitverhalten. Der Compiler arbeitet
auf der Aufruferseite mit dem sogenannten A2-Space, in dem er Objekte oder
deren Adressen bereitstellt.

Wenn die aufzurufende Routine nur einen minimalen privaten Workspace von
24 oder weniger Bytes benétigt, so kann sie auch direkt diesen A2-Space in
einen A5-Space umarbeiten. Dieser Sonderfall verursacht noch einmal erheblich
kleinere Ein- und Ausstiegszeiten. Er wird spéter behandelt.

Man beachte folgende Regeln:

e Jede Prozedur besitzt eine sogenannte Signatur. Das ist ein 32 Bit langes
Muster, welches mit hoher Wahrscheinlichkeit (aber nicht sicher) nur die-
ser einen Prozedurspezifikation zugeordnet ist. (Fiir Insider: Berechnung
nach der Polynomformel fiir einen 31 Bit Galoiskorper). Diese Signatur
wird nur beim Testmode benétigt, um eventuell falsche Spezifikationen
der externen Prozedur entdecken zu konnen. Die Signatur IThrer Routine
erhalten Sie mit Hilfe des Compilers (s.u.).

e Die Parameter werden in umgekehrter Reihenfolge im A2-Space (und
auch im spiteren normalen A5-Space) abgelegt. Am oberen Ende auf -
4(A2) steht die Adresse, auf der der Riickgabewert abzulegen ist. Diese
Zelle ist auch vorhanden, aber undefiniert, wenn die Prozedur keine Werte
(oder Pointer) zuriickgibt. Zur Prozedur

X:PROC(A FIXED,B FLOAT,C CHAR(1) IDENT) RETURNS(FIXED);
ergibt sich dann z.B. folgendes A2-Space-Layout:

-4(A2) Adr. Riickgabewert (immer 4 Bytes)

-6(A2) Wert des FIXED(15)-objektes A
-10(A2) Wert des FLOAT(23)-objektes B
-14(A2) Adresse der Variablen C, CHAR(1)

Objekte, deren Lange in Bytes nicht durch 2 teilbar ist, werden durch
Auffiillen so plaziert, dafl folgende Objekte wieder auf geraden Adressen
stehen.

e Adrefizeiger und Array-pointer werden mit ihrer jeweils bendtigten Linge
direkt im A2-Space abgelegt. Gleiches gilt fiir alle per value transferierten
Objekte, solange sie nicht mehr als 256 Bytes bendtigen. Objekte mit
mehr als 256 Bytes werden auch im per value -Mode durch einen Pointer

088

8.6 Umstellung von alten Assemblerunterprogrammen auf PEARL90

(4 byte) représentiert; dieser Zeiger zeigt auf eine temporire Kopie, die
der Compilercode auf der Aufruferseite angefertigt hat und nun von der
Routine ohne Auswirkungen auf das Original verdndert werden darf.

Der P90-Compiler generiert am Prozeduranfang hinter dem Signatur-
check das sogennante PRODEC-Format. Es hinterldfit die Parameter in
gleicher Reihenfolge im A5-Space, allerdings noch weiter im negativen
Bereich als im A2-Space. Dieser zusiitzliche Versatz ist zwischen der 68K-
und den RISC-Implementierungen unterschiedlich und wird bei reinrassi-
gen P90-Prozeduren durch die Verwendung der Assembliervariablen FLVA
(first local variable address) aus dem File COMEQU ausgeglichen (zur Zeit
der Drucklegung $22=34 beim 68K und $24=36 beim PowerPC).

Das hier vorgeschlagene spezielle P8090-Format schiebt im Gegen-
satz zum PRODEC-Format die Parameter scheinbar (also nicht durch
Move-Befehle zur Laufzeit) in einen bei 0(A5) beginnenden Prozedur-
Workspace. Dies bedingt, dafl die Zelle BWIO (Bufferpointer Workspace
I0) auf -4 (A5) nicht angelegt ist und formatierte PEARL-Ein-/Ausgabe
mit nachgebildeten PUT-, GET- oder CONVERT-Anweisungen innerhalb der
Routine nicht zugelassen ist. Zum Verlassen der Routine ist das reinrassi-
ge P90-Format PROCEX ebenfalls nicht geeignet, dafiir ist in der Mischwelt
das Format X8090 zusténdig.

Die hier vorgeschlagenen Formate aus der Datei PROCS.FOR passen
sich automatisch der Zielhardware an. Assembler und Transferassembler
picken sich automatisch die richtigen Befehlssequenzen heraus. Verédndern
Sie bitte daher auf keinen Fall diese Datei!

Wir betrachten exemplarisch die Umstellung der Prozedur

X:PROC(A FIXED,B FLOAT,C CHAR(1) IDENT) RETURNS(FIXED);

Dazu hatten wir in der P80-Welt evtl. wie folgt kodiert:

AIN EQU O Input para A
BIN EQU 2 Input para B
CIN EQU 6 Adr. von para C
RESLT EQU 10 Result pointer
LORG EQU 14 origin local wsp
MY_X EQU LORG My own cell

Andere lokale Objekte

WSPSZ EQU LORG+100 Angenommene 100 locals

*

>X ENTR WSPSZ.L Auftakt para xfer

VARW AIN.X Value 16 bit fixed
VARF BIN.X Value 32 bit float

8.6 Umstellung von alten Assemblerunterprogrammen auf PEARL90 589

MPXF C1,CIN.Z Ident char(1)
VARW RESLT.Z Result pointer

EPAR End para-list
XCDE MOVE Code von X
EXIT RETN Exit von X

Wir wollen den Code zwischen den Marken XCDE und EXIT unverindert lassen,
aber der Routine einen zweiten PEARL90-Einstieg hinzufiigen. Dazu verfahren
wir in folgenden Schritten:

1. Bestimmung der Signatur.

Wir kodieren das folgende PEARL-Programm:

MODULE ; PROBLEM; /*+P*/

X:PROC(A FIXED,B FLOAT,C CHAR(1) IDENT) RETURNS(FIXED);
RETURN (5) ; /*-P*/

END;

MODEND;

Bei der Ubersetzung im IEEE-Float-Modus (bitte beachten!) steht in der
Zeile mit dem Signatur-check $C5D74285, bei Softfloat $C5D54285.

2. Umordnen der Parameter-EQUs.

Die Parameter werden in neuer P90-Reihenfolge abgelegt. Diese Ande-
rung sollte bei normaler Kodierung des Innenlebens von X keine Auswir-
kung haben. Aulerdem miissen wir eine Flag einfiihren und den lokalen
eigenen Workspace um FLVA hochschieben:

CIN EQU O Adr. von para C
BIN EQU 4 Input para B
AIN EQU 8 Input para A
RESLT EQU 10 Result pointer

FLAGY9 EQU RESLT+4 Flag fiir P90

LORG EQU FLAGY9+FLVA Hochschieben

MY_X EQU LORG My own cell

e e Andere lokale Objekte
WSPSZ EQU LORG+100 Liegt jetzt hoher

Bitte beachten: Das hier beispielhaft FLAGY genannte Objekt muf} exakt
4 Bytes hinter dem Ergebniszeiger stehen! Die Zellen zwischen FLAGY und
LORG diirfen nicht benutzt werden! Dort liegen interne Daten.

Prozeduren ohne Parameterliste, die auch kein Ergebnis abliefern, setzen
FLAGY wie folgt:

590

8.6 Umstellung von alten Assemblerunterprogrammen auf PEARL90

FLAGO EQU O Flag fiir P90

3. P90-Entry anlegen.

Wir kodieren einen zusétzlichen P90-Einstieg wie folgt:

SIGCHK $C5D74285 Signature check
“X P8090 WSPSZ,FLAG9 Aus PROCS.FOR
BRA XCDE To common code

Verdnderung hinter dem EPAR.

Vor der Stelle XCDE muf} die Flag gesetzt werden, an der das X8090-For-
mat erkennt, dafl die Routine im alten P80 Modus zu beenden ist:

>X ENTR WSPSZ.L Auftakt para xfer
VARW AIN.X Value 16 bit fixed
VARF BIN.X Value 32 bit float
MPXF C1,CIN.Z Ident char(1)
VARW RESLT.Z Result pointer

EPAR End para-list
_CLR.L FLAG9(A5) *** Neu ***
XCDE MOVE Code von X

Das Zeichen ’_’ vor dem CLR.L ist ein Hinweis fiir den Transferassem-

bler, dafl der Statusregister-Update entfallen kann. Es wird vom 68K-
Assembler ignoriert.

Ersetzung aller RETN-Traps.
Alle RETN-Traps werden durch das Format X8090 ersetzt:
EXIT X8090 FLAG9 Exit, A5-Bezug implizit.

8.6 Umstellung von alten Assemblerunterprogrammen auf PEARL90 591

Umstellung bei sehr kleinem Workspace.

Wie oben erwéhnt, kann eventuell mit dem vom Compiler bereitgestellten A2-
Space auch direkt gearbeitet werden, so dafl ein A5-Space weder im vom Compi-
ler angebotenen Raum noch als RTOS-Sektion angelegt werden muf. In diesem
Fall miissen die privaten lokalen Objekte in den kleinen Raum hinter FLAG9+8
passen, der bei allen RTOS-Varianten mindestens 24 Byte grof3 ist. Bei dieser
Losung wird also kein Workspace neu angelegt, so daf3 lediglich das Retten von
A5 und das Neuladen wegen der P80-Kompatibilitéit erforderlich ist. Die Durch-
laufzeit der Routine kann dadurch merkbar verkiirzt werden: es wird nahezu
die Geschwindigkeit des auf Seite 569 beschriebenen Sonderfalles errreicht.

Bedingung fiir diese Losung ist allerdings, dafl kein weiteres Unterprogramm
von der Routine aufgerufen wird, ausgenommen interne Routinen, die mit BSR
aufgerufen werden (Stackplatz reicht nur fiir einen weiteren Level!).

Die EQUs werden nun erneut geringfiigig geéindert und die Formate P8090
sowie X8090 werden durch ihre schnelleren und einfacheren Briider QP8090
sowie QX8090 ersetzt. Das komplette Ergebnis sieht dann wie folgt aus:

592 8.6 Umstellung von alten Assemblerunterprogrammen auf PEARL90

CIN EQU O Adr. von para C
BIN EQU 4 Input para B
AIN EQU 8 Input para A

RESLT EQU 10 Result pointer
FLAGY9 EQU RESLT+4 Flag fiir P90
e 4 Bytes intern
LORG EQU FLAG9+8 *** Neu ***
MY_X EQU LORG My own cell
e e Andere lokale Objekte
WSPSZ EQU LORG+24 *** Maximum! ***

SIGCHK $C5D74285 Signature check
“X QP8090 WSPSZ,FLAGS **k Neu ***
BRA XCDE To common code

>X ENTR WSPSZ.L Auftakt para xfer
VARW AIN.X Value 16 bit fixed
VARF BIN.X Value 32 bit float
MPXF C1,CIN.Z Ident char(1)

EPAR End para-list
_CLR.L FLAG9(A5) *** bleibt ***
XCDE MOVE Code von X

R

EXIT QX8090 FLAGY A Neu ¥

Bitte keinesfalls die Quick-Versionen mit den normalen Versionen kombinieren!

Wenn WSPSZ den zugelassenen Wert iiberschreitet, erzeugt der FORMAT-Prozes-
sor des Assemblers bzw. Transferassemblers bei der Generierung des QP8090
eine Fehlermeldung /LIMIT/.

8.6 Umstellung von alten Assemblerunterprogrammen auf PEARL90

993

CIN
BIN
AIN
RESLT
FLAGO
LORG

WSPSZ

ENTR
VARW
VARF
MPXF
EPAR

>X

Using the quick model with few locals
T-Code used

.INCLUDE PROCS.FOR load Formats
EQU 0 *x adapted **
EQU 4 ** adapted **
EQU 8 ** adapted **
EQU 10 ** adapted **
EQU RESLT+4 ** new! *k

EQU FLAG9+8 FLVA ** adapted *x*

EQU LORG+24 not changed
DC 0,0,0,0,$0010 not changed
DC.B >AAABBB’ not changed

.IF_PROCTYPE M68K -> No P80 on PowerPC!!

OPD.V 29 not changed
0PD.V 10 not changed
0PD.V 12 not changed
0PD.V 139 not changed
OPD.V 19 not changed
ENTR WSPSZ.L not changed
VARW AIN.X not changed
VARF BIN.X not changed
MPXF C1,CIN.Z not changed
VARW RESLT.Z not changed
EPAR not changed
CLR.L FLAG9(A5) **kx POOFLAG,new!! kxx
.FIN *x*x End 68K,new!! *kxx
Result=TOFIXED(CIN)+AIN
movea.l CIN(A5),AO not changed
clr.1 do not changed
move.b (A0),dO not changed
_add AIN(A5),d0 not changed

movea.l RESLT(A5),A0 not changed

¥ O K X K K K X K K X X K XK X K K X X K K X X K X K X K X ¥ ¥ X ¥ *

*

* ¥ ¥ X ¥

594 8.6 Umstellung von alten Assemblerunterprogrammen auf PEARL90

_move do, (A0) not changed *
EXIT QX8090 FLAG9 *** was a RETN before! *
* *
C1 DC $0108 not changed *
T *
..., Additional P90-Entry with IEEE-Float obj: *
x e *
SIGCHK $C5D74285 *xx new! *** (IEEE) x*
X QP8090 WSPSZ,FLAGY *x*x new! ¥k *
BRA XCDE *x*x new! kxxk *
* *
END That’s all *

8.7 Hyperprozessorbefehle 595

8.7 Hyperprozessorbefehle

Die virtuellen Maschinenbefehle des Laufzeitsystemes bilden den sogenannten
,Hyperprozessor“. Die Benutzung der Befehle ist zwar auch dem Assembler-
programmierer moglich, doch wird keine Gewéhr fiir langfristige Unverénder-
lichkeit des Hyperprozessors gegeben. Im Zuge von Compilerverbesserungen
konnen immer auch Verdnderungen des Befehlssatzes auftreten. Man iiberzeuge
sich daher genau, ob die aktuelle Variante noch alle benutzten Befehle enthélt.
Die Hyperprozessorbefehle kénnen die Register DO-A3 zerstoren.

No. X Mnemo Bemerkungen *
VO - TOREAL Abschalten des Hyperprozessors *
Vi 2 MOvU Nicht fiir Neuentwicklung (Move 8 bytes) *
V2 1 (ADDF) Nicht fiir Neuentwicklung (Add Float 23) *
V3 1 (ADDD) Nicht fiir Neuentwicklung (Add Float 55) *
V4 1 (SUBF) Nicht fiir Neuentwicklung (Sub Float 23) *
V5 1 (SUBD) Nicht fiir Neuentwicklung (Sub Float 55) *
V6 1 (MULX) Nicht fiir Neuentwicklung (Mul Fixed 31) *
V7 1 (MULD) Nicht fiir Neuentwicklung (Mul Float 55) *
V8 1 (DIVX) Nicht fiir Neuentwicklung (Div Fixed 31) *
V9 1 (DIVD) Nicht fiir Neuentwicklung (Div Float 55) *
V10 1 VARW Param. XFER P80: Variable Fixed 15 *
Vi1 1 VARX Param. XFER P80: Variable Fixed 31 *
V12 1 VARF Param. XFER P80: Variable Float 23 *
V13 1 VARD Param. XFER P80: Variable Float 55 *
Vi4 1 INVW Param. XFER P80: Konstante Fixed 15 *
V15 1 INVX Param. XFER P80: Konstante Fixed 31 *
V16 1 INVF Param. XFER P80: Konstante Float 23 *
V17 1 INVD Param. XFER P80: Konstante Float 55 *
V18 1 CALL Call P80-procedure. (Im Comp. als PROC) *
V19 - EPAR P80: End of Parameterlist + Hyperproc. off *
V20 2 SHFS Shift 1 TO 16 BIT Object *
V21 2 SHFL Shift 17 to 32 BIT Object *
V22 - CVXF Nicht fiir Neuentwicklung, Fix31 to Flo23 *
V23 - CVWD Nicht fiir Neuentwicklung, Fix15 to Flo55 *
V24 - CVXD Nicht fiir Neuentwicklung, Fix31 to Flo55 *
V25 - CVFD Nicht fiir Neuentwicklung, Flo23 to Flo55 *
V26 4 CATC Concatenation von 2 CHAR-strings *
V27 3 PUT Eroffnung einer Liste fiir PUT *
V28 3 GET Eroffnung einer Liste fiir GET *
V29 1 ENTR P80: Prozedureintritt mit PWSP-Erzeugung *

596

8.7 Hyperprozessorbefehle

V30
V31
V32
V33
V34
V35
V36
V37
V38
V39
V40
Va1
V42
V43
V44
V45
V46
Va7
V48
V49
V50
V51
V52
V53
V54
V55
V56
V57
V58
V59
V6o
V61
V62
V63
V64
V65
V66
ver
V68
V69
V70

e e T T O S S JUR)

Tl QW NN NN R W L e

[|

EFR2
EFR3
PAGE
XFOR
RLFO
EALW
EALX
EALF
EALD
EADU
EACL
LBRK
RBRK
FESP
FACT
AFOL
LIFO
SKFO
OPN3
RWND
SYNC
APND
EORL
CSHL
I0BS
CSHS
SEEK
SAVP
NEBS
NECS

EQUD
SUSE
NEQD

* %
* %
* %
* X%

* %
* X%

E-(E/A)Format mit 2 Parametern
E-(E/A)Format mit 3 Parametern

PAGE-(E/A)Format
X-(E/A)Format

Remote-Left-Bracket in (E/A)Format

E/A of Fixed15

E/A of Fixed31

E/A of Float23

E/A of Float55

E/A of Duration

E/A of Clock

Left Bracket in (E/A)Format
Right Bracket in (E/A)Format
(E/A)Format-End-specification
(E/A)Format Wiederholfaktor
A-(E/A)Format
List-(E/A)Format
SKIP-(E/A)Format

OPEN 3 Param. (BY IDF(...))
REWIND Dation and open
Synchronize Dation

Append to a File

EOR with 32 Bit Obj.

Cyclic Shift 17 to 32 Bit

I/0 Bit-string

Cyclic Shift 1 to 16 Bit

Seek a position in a file

Save a position in a file

Nicht mehr besetzt

Not equal for Bit-strings

Not equal Character-string
Nicht mehr besetzt

Nicht mehr besetzt

Equal long Float

Suspend external (given Task)
Nicht mehr besetzt

Not equal long Float

Nicht besetzt

Nicht besetzt

Nicht besetzt

Nicht besetzt

K OX O XK X K X K XK X K X K K X K X K K X K X K K X K XK X K X K K X ¥ K X ¥ X ¥ ¥ %

8.7 Hyperprozessorbefehle 597

V71 - - Nicht besetzt *
V72 1 LTST P80: Length-test (Struct-param xfer) *
V73 1 (LTHF) Nicht fiir Neuentwicklung (LT Float(23)) *
V74 1 (LTHD) Nicht fiir Neuentwicklung (LT Float(55)) *
V75 - - == Nicht mehr besetzt *
V76 - - === Nicht mehr besetzt *
V77 - - - - Nicht mehr besetzt *
V78 - - - - - Nicht mehr besetzt *
V79 - - - - - Nicht mehr besetzt *
V80 - - - - Nicht mehr besetzt *
V81 - - - - Nicht mehr besetzt *
V82 - - - - Nicht mehr besetzt *
V83 1 POWW Power Fixed(15) *
V84 1 POWX Power Fixed(31) *
V85 1 POWF Power Float(23) *
V86 1 POWD Power Float(55) *
V87 1 TERM Terminate (given Task) *
V88 1 PREV Prevent (given Task) *
V89 1 CONT Continue (given Task) *
V90 1 LIMV Line-marker in virtual environment *
Vo1 1 ODAT Open Dation (no operation) *
V92 1 CDAT Close Dation (if closable) *
V93 1 WCON (When) ... Continue *
V94 1 TCON (Timed) ... Continue *
V95 2 ACTI Activate with priority *
V96 2 WACT (When) ... activate with priority *
Vo7 2 TACT (Timed) ... activate with priority *
VEE - WRES (When) ... Resume (own Task) *
V99 - TRES (Timed) ... Resume (own Task) *
V100 - STSC Start schedule-definition *
V101 1 ATCL AT (clock) schedule param. set *
V102 1 AFTR AFTER (duration) schedule param. set *
V103 1 ALLD ALL (duration) schedule param. set *
V104 1 UNIL UNTIL (clock) schedule param. set *
V105 1 DUDU DURING (duration) schedule param. set *
V106 1 WHEV WHEN (event) schedule param. set *
V107 3 WRIT WRITE-Instruction *
V108 3 READ READ-Instruction *
vi09 - ---- Nicht mehr besetzt *
V1o - ---- Nicht mehr besetzt *

998

8.7 Hyperprozessorbefehle

Viil
V112
V113
V114
V115
V116
V116
V118
V119
V120
vi21
V122
V123
V124
V125
V126
V127
V128
V129
V130
V131
V132
V133
V134
V135
V136
V137
V138
V139
V140
V141
V142
V143
V144

PN b=

Pl NN WWWWWE &t

DO = = = = e

EOLT
RFEN
EACS
FFOR

EQBS
EQCS
MVBS
MVCS
ARNS
ARBS
ARCS
BFOR
DFOR
TFOR

(MULF)
(DIVF)
EORW

(CVWF)
(LDAD)
(STAD)
DMYD

DMYI

MPXF

(ABSF)
(ABSD)
(ENTI)
(ROUN)
(SIGN)

End I/O-List (escape-label)
Remote-(E/A)Format end

E/A Character-string

F-(E/A)Format

Nicht besetzt

Nicht besetzt

Nicht besetzt

Equal Bit-strings

Equal char. strings

Move Bit-string

Move character-string

P80: Array-param.xfer 'no string’

P80: Array-param.xfer ’'bitstring’

P80: Array-param.xfer ’char.string’
B-(E/A)Format

D-(E/A)Format

T-(E/A)Format

Nicht mehr besetzt

Nicht mehr besetzt

Nicht mehr besetzt

Nicht fiir Neuentwicklung (MUL Float(23))
Nicht fiir Neuentwicklung (DIV Float(23))
Excl.Or 32 Bit (Fehlt in 68000 Hardw.)
Nicht fiir Neuentwicklung (Fix15 to F123)
Nicht fiir Neuentwicklung (Load acc.8 by)
Nicht fiir Neuentwicklung (St. accu 8 by)
P80: (Dummy)-Dation parameter xfer

P80: (Dummy)-Interrupt parameter xfer
P80: Miscellaneous Parameter X-fer

Nicht fiir Neuentwicklung (ABS accu F123)
Nicht fiir Neuentwicklung (ABS accu F155)
Nicht fiir Neuentwicklung (ENTIER)
Nicht fiir Neuentwicklung (ROUND)
Nicht fiir Neuentwicklung (SIGN)

KX K X K K X K X X K X K X X K X K X X K X K XK X K K X X X X ¥ X ¥

8.7 Hyperprozessorbefehle

599

Im Folgenden sind alle Befehle, die unsere Compiler erzeugen, in alphabetischer
Reihenfolge aufgelistet.

Mnemo

ABAL
ABSD
(ABSD)
ABSF
(ABSF)
Ac-1
ACTI
ADDA
(ADDD)
ADDD
(ADDF)
ADDF
ADDI
ADDM
ADDW
ADDX
ADIL
AD+2
AFOL
AFTR
ALLD
ANDW
ANDL
ANTW
ANIL
APND
ARBS
ARCS
ARNS
ATCL
BFOR
BGE4
BGEL
BGTL
BLTL

X

(\}

el

DO = 0 W W e e e e e

=

Operation Bemerkung

ADD.L A5,DO Add base adr long

JSR -72(A6) Abs Wert double float

V141 Nicht fiir Neuentwicklung (ABS accu FI155)
JSR -68(4A6) Abs Float23

V140 Nicht fiir Neuentwicklung (ABS accu F123)
SUBQ =1,D0 Dekrement DO

V95 Activate with priority

ADD.L A1,DO add address

V3 Nicht fiir Neuentwicklung (Add Float 55)
Macro LEA obj,Al + JSR -20(A6)

V2 Nicht fiir Neuentwicklung (Add Float 23)
Macro LEA obj,Al + JSR -4(A6)

ADDI.W =con,Xxxx

ADD.W DO, xxx

ADD.W Native Add

ADD.L Native Add long

ADD.L =xx,D0O Add immediate long

ADDQ.L =2,A1 Quick adr. shifter

V45 A-(E/A)Format

V102 AFTER (duration) schedule param. set
V103 ALL (duration) schedule param. set
AND.W Native AND Word

AND.L Native AND Long

ANDI.W =xx,DO

ANDI.L =xx,D0

V51 *x* Append to a File

V123 Array-param.xfer 'bitstring

Vi24 Array-param.xfer ’char.string’

V122 Array-param.xfer 'no string’

V101 AT (clock) schedule param. set

V125 B-(E/A)format

BGE.S $+4

BGE.L xxx Conditioned branch ge

BGT.L xxx Conditioned branch gt

BLT.L xxx Conditioned branch 1t

*

* K XK X X X X K K K K K K XK XX X X X X K K K K K X X X X X X X X X ¥

600

8.7 Hyperprozessorbefehle

CALL
CASE
CATC
CDAT
CLRL
CMPW
CMPL
CONT
CSHL
CSHS
CVBL
CVFD
(CVFD)
CVWD
(CVWD)
CVWF
(CVWF)
CVWX
CVXD
(CVXD)
CVXF
(CVXF)
DOAO
DOA1
DO*2
DO*4
DO*8
DFOR
DISA
DIVD
(DIVD)
DIVF
(DIVF)
DIVW
DIVX
(DIVX)
DMYD
DMYI
DSCO
DUDU

TN N = = = s

LI = G e S e T = T T = T = L T

V18

JMP -96(A6)
V26

Vo2

CLR.L xx
CMP.W
CMP.L

V89

V53

V55

Macro
CLR.L D1
V25

JSR -56(A6)
V23

JSR -64(A6)
V134

EXT.L DO
JSR -60(A6)
V24

JSR -52(A6)
V22

Call procedure. (Im Comp. als PROC)

For CASE-construct
Concatenation von 2 CHAR-strings
Close Dation (if closable)

Native Compare to DO
Native Compare long to DO
Continue (given Task)
Cyclic Shift 17 to 32 Bit
Cyclic Shift 1 to 16 Bit

Convert Bitstring to long SWAP D0 + CLR

Convert Flo23 to Flob5

Nicht fiir Neuentwicklung, Flo23 to Flo55
Convert Fix15 to Flob5

Nicht fiir Neuentwicklung, Fix15 to Flo55
Convert Fix15 to Flo23

Nicht fiir Neuentwicklung (Fix15 to F123)
Convert Fix15 to Fix31
Convert Fix31 to Flo55

Nicht fiir Neuentwicklung, Fix31 to Flo55
Convert Fix31 to Flo23

Nicht fiir Neuentwicklung, Fix31 to Flo23

MOVEA.L DO, A0 Quickload of adr-reg (optim.)
MOVEA.L DO,A1

ADD DO,DO

LSL =2,D0

LSL =3,D0

V126

TRAP $A034
Macro

Vo

Macro

V132

DIVS

Macro

V8

V137

V138

SUBQ =1,D2
V105

Verdoppele DO

Vervierfache DO

Verachtfache D0
D-(E/A)Format

Disable Interrupt
LEA obj,Al + JSR -32(A6)
Nicht fiir Neuentwicklung (Div Float 55)
LEA obj,Al + JSR -16(A6)
Nicht fiir Neuentwicklung (DIV Float(23))
Native divide
LEA obj,Al + JSR -48(A6)
Nicht fiir Neuentwicklung (Div Fixed 31)
(Dummy)-Dation parameter xfer
(Dummy)-Interrupt parameter xfer

Decrement Shift count one
DURING (duration) schedule param. set

*OX K X X K X K XK X K X K X X K X K XK X K X K XK X K XK X K X K K X X X X X X ¥ *

8.7 Hyperprozessorbefehle

601

EACL
EACS
EADU
EALD
EALF
EALW
EALX
EFR2
EFR3
ENAB
ENTI
ENTI)
ENTR
EOLI
EORL
EORW
EPAR
EQBS
EQCS
EQUD
EQUF
EQUW
EQUX
EXIT
EX20
FACT
FESP
FFOR
FLFR
FRFL
GET
INVD
INVF
INVW
INVX
10BS
ITS1
ITS2
ITS3

PN = = =N

L N e

TN = = = = o

V40

V113

V39

V38

V37

V35

V36

V30

V31

TRAP $A032
JSR -76(A6)
V142

V29

Viii

V52

V133

V19

V118

V119

V63

Macro
Macro
Macro

TRAP =1
EXG D2,DO
V44

V43

Vii4

JSR -88(A6)
JSR -92(A6)
V28

V17

Vié

Vid

V15

V54

TRAP $A040
TRAP $A042
TRAP $A044

E/A of Clock
E/A Character-string
E/A of Duration
E/A of Float55
E/A of Float23
E/A of Fixed15
E/A of Fixed31
E-(E/A)Format mit 2 Parametern
E-(E/A)Format mit 3 Parametern
Enable Interrupt
ENTIER-Funktion
Nicht fiir Neuentwicklung (ENTIER)
Prozedureintritt mit PWSP-Erzeugung
End I/O-List (escape-label)
EOR with 32 Bit Obj.
Excl.Or 16 Bit (Fehlt in 68000 Hardw.)
End of Parameterlist
Equal Bit-strings
Equal char. strings
Equal long Float
Konstruktion mit CMP.L + versch. ff
Konstruktion mit CMP.W + versch. ff
Konstruktion mit CMP.L + versch. ff
Terminate own Task
(in FOR ... BY variable ... REPEAT)
E/A)Format Wiederholfaktor
(E/A)Format-End-specification
F-(E/A)Format
Float to fraction conv. ('SEND’)
Fraction to Floating conv. ('TAKE’)
Eroffnung einer Liste fiir GET
Param. XFER: Konstante Float 55
Param. XFER: Konstante Float 23
Param. Xfer: Konstante Fixed 15
Param. XFER: Konstante Fixed 31
I/0 Bit-string
Index-test 1-dim.
Index-test 2-dim.
Index-test 3-dim.

¥ X X X X X K K K K K X X X X X X X X K K K K K K K XK XX XK X X X K K K X X X

602

8.7 Hyperprozessorbefehle

JRSI
JSR
LBRK
LDAD
LDIL
LEFA
LIFO
LIMR
LIMV
LTHD
(LTHD)
LTHF
(LTHF)
LTST
MMBY
MOVB
MOVF
MOVD
MOVU
MOVW
MOVX
MPXF
MULD
(MULD)
MULF
(MULF)
MULU
MULW
MULX
(MULX)
MVBS
MVCS
NEBS
NECS
NEGW
NEGL
NEQF
NEQW
NEQX

—_ 1

[

e T e e e N e e e e S T T e - B I B N R B . B N B e e R e O S S S

JSR (A1)
JSR xxx
V41
V135

Native pointered jump subroutine
Native jump subroutine
Left Bracket in (E/A)Format
Nicht fiir Neuentwicklung (Load acc.8 by)

MOVE.L =xx,DO (Load immediate long)

LEA xx,Al
V46

TRAP $A036
Vo0
Macro
V74
Macro
V73

V72
Macro
MOVE.B
MOVE.L
Macro

Vi
MOVE.W
MOVE.L
V139
Macro

i

Macro
V131
MULU
MULS
Macro

V6

V120
vi21

V59

V60
NEG.W xx
NEG.L xx
Macro
Macro
Macro

List-(E/A)Format
Line-marker in real environment

Line-marker in virtual environment

LEA obj,Al + JSR -40(A6)

Nicht fiir Neuentwicklung (LT Float(55))

LEA obj,Al + JSR -36(A6)

Nicht fiir Neuentwicklung (LT Float(23))

Length-test (Struct-param xfer)

Move multibyte, schnelle DBF-Konstrukt.

Native Move byte

Native Move long

Verschiedene Sequenzen native Code

Nicht fiir Neuentwicklung (Move 8 bytes)

Native Move

Native Move long

Miscellaneous Parameter X-fer

LEA obj,Al 4+ JSR -28(A6)

Nicht fiir Neuentwicklung (Mul Float 55)

LEA obj,Al + JSR -12(A6)

Nicht fiir Neuentwicklung (MUL Float(23))

Native Multiply 16 bit unsigned

Native Multiply 16 bit

LEA obj,Al + JSR -44(A6)

Nicht fiir Neuentwicklung (Mul Fixed 31)

Move Bit-string

Move character-string

Not equal for Bit-strings

Not equal Character-string

Konstruktion mit CMP.L + versch. ff
Konstruktion mit CMP.W -+ versch. ff
Konstruktion mit CMP.W + versch. ff

KX K X K K X K X X K X K X K K X K XK X K X K XK X K X K XK X KX K X X X X ¥ X ¥

8.7 Hyperprozessorbefehle

603

NOT
NOTW
NOTL
ODAT
OPN3
ORW
ORL
PAGE
PHDR
PNTR
POWD
POWF
POWW
POWX
PREV
PROC
PUT
QSHC
RBRK
READ
REQU
RELA
RETN
RETN
RFEN
RLFO
ROLL
ROUN
(ROUN)
RWND
SAVP
SEEK
SHFL
SHFS
SIGN
(SIGN)
SKFO
SSHC
STAD
STAL
STSC
SUBD

= QO = b b e e e e e e e QO e e

= = = =N N NN

[t

NOT.W Native NOT Word

NOT.W Native NOT Word

NOT.L Native NOT Long

Vo1 Open Dation (no operation)

V48 % OPEN 3 Param. (BY IDF(...))
OR.W Native OR

OR.L Native OR long

V32 PAGE-(E/A)Format

Macro Vorderer Teil des PRODEC-Formates
DC.W ... Only Extension Word

V86 Power Float(55)

V85 Power Float(23)

V83 Power Fixed(15)

V84 Power Fixed(31)

V88 Prevent (given Task)

V18 Call procedure

V27 Eroffnung einer Liste fiir PUT
MOVEQ ...,D2 Quick shiftcount

V42 Right Bracket in (E/A)Format
V108 READ-Instruction

TRAP =6 Request SEMA (adr. by Al)
TRAP =7 Release SEMA (adr. by Al)
Macro In PEARLS0O: Trap =12
Macro In PEARL90: PROCEX-Format
V112 Remote-(E/A)Format end

V34 Remote-Left-Bracket in (E/A)Format
ROL.L D2,D0

JSR -80(4A6) ROUND-function

V143 Nicht fiir Neuentwicklung (ROUND)
V49 *x* REWIND Dation and open

V57 %% Save a position in a file

V56 *x Seek a position in a file

V21 Shift 17 to 32 BIT Object

V20 Shift 1 TO 16 BIT Object

Macro LEA obj,Al + JSR -84(A6) SIGN-function
V144 Nicht fiir Neuentwicklung (SIGN)
V47 SKIP-(E/A)Format

MOVE DO,D2 Store Shiftcount in D2

V136 Nicht fiir Neuentwicklung (St. accu 8 by)
MOVE.L DO,xx(A5)

V100 Start schedule-definition

Macro LEA obj,Al 4+ JSR -24(A6)

* X XK X X X X K K K K K K K X X X X X X X X K K K K K K K XK XX X X X X K K K X X X

604

8.7 Hyperprozessorbefehle

(SUBD)
SUBF
(SUBF)
SUBW
SUBX
SUSE
SUSP
SU20
SWAP
SWLT
SYNC
TACT
TCON
TERM
TFOR
TRES
TSTW
TSTL
UNIL
VARD
VARF
VARW
VARX
WACT
WCON
WHEV
WRES
WRIT
XFOR

PN = =N =

N~ LI S S O N i S S e e L

Vb

Macro

Va4
SUB.W
SUB.L
V64

TRAP $A028
SUB D2,DO
SWAP DO
Macro
V50 *x*
Vo7

Vo4

V87

V127

Vo9
TST.W DO
TST.L DO
V104

Vi3

V12

V10

Vi1

Vo6

Vo3

V106

Vo8

V107

V33

Nicht fiir Neuentwicklung (Sub Float 55)

LEA obj,Al + JSR -8(A6)

Nicht fiir Neuentwicklung (Sub Float 23)

Native Subtract Word
Native Subtract Long
Suspend external (given Task)
Suspend self
(In FOR ... REPEAT)

SLT DO + EXT DO

Synchronize Dation

(Timed) ... activate with priority
(Timed) ... Continue

Terminate (given Task)
T-(E/A)Format

(Timed) ... Resume (own Task)

UNTIL (clock) schedule param. set
Param. XFER: Variable Float 55
Param. XFER: Variable Float 23
Param. XFER: Variable Fixed 15
Param. XFER: Variable Fixed 31
(When) ... activate with priority
(When) ... Continue

WHEN (event) schedule param. set
(When) ... Resume (own Task)
WRITE-Instruction
X-(E/A)Format

K OX K X X K X K X X KX K X X K K K X X K K X X X X K X ¥

8.8 E/A in Assemblersprache 605

8.8 E/A in Assemblersprache

Vor dem Studium der Codierung eigener E/A-Treiber sollte man sich mit der
typischen Maschinencode-Sequenz einer Ein- oder Ausgabe vertraut machen.
Dazu betrachten wir den Fall einer E/A tiber den ACIA/SCC mit der War-
teschlangennummer 2. Weil sich die Displacements zwischen der 68k- und der
PowerPC-Familie unterscheiden, wird dringend empfohlen, die Datei ,,COMEQU*
per . INCLUDE einzubinden. Die nachfolgend angegebenen EQUs sind nur zur In-
formation angegeben. Bitte lesen Sie dazu auch auf Seite 559 die Beschreibung
des Communication Elements (CE) nach.

* Define Systemtraps:

FETCE OPD $4E48 Fetch communication-element (CE) Systrap
I0OWA OPD $A00A I/0 wait function

RELCE 0PD $4E49 Release the CE

XIO OPD $4E4A Xfer communication-element for I/0

* Displacements (PowerPC rechts, sofern abweichend) :
BUADR EQU $20 $24 4 byte long buffer-address (from FETCE)
FNAME EQU $2C $30 File-name

LDNIO EQU $27 $2B Logical dation number (=Queue-number)
MODE EQU $28 $2C Mode-Byte of Communication-Element
DRIVE EQU $2A $2E Driver-Number or ACIA-Mode

RECLEN EQU $24 $28 Record length (16 bit)

STATIO EQU $26 $2A Statusbyte of communication-element

* Symbolic masks and bit-positions:

MODMOU EQU $40 Mode-mask for Output

MODMCR EQU $20 Mode-mask ’carriagereturn ends record’
MODMWA EQU $80 Mode-mask ’wait for completion’

MODM. . Other masks when used

STABRE EQU 1 ’Verschrottungsbit’

Es soll eine Ausgabe gestartet werden und wéihrend des Transfers noch etwas
anderes gemacht werden. Das CE soll anschlieflend fiir einen weiteren E/A-
Vorgang erneut benutzt werden. Textlédnge sei 50 Characters. Wir codieren:

- R Arbitrary code before write sequence
_MOVEQ =50,D1 Communication-elem. with 50 char. info-len.
FETCE Get space from RTOS-UH, Al is loaded
MOVE.W =MODMOU*$100,MODE(A1) Xfer-mode: out,no wait,by cnt.
MOVE.B =2,LDNIO(A1) Queuenumber = 2 (Dation=ACIA2)
_MOVE =0,DRIVE(A1) Ax (not Bx or Cx)

606 8.8 E/A in Assemblersprache

MOVEA.L BUADR(A1),A2 pointer 1st character in buffer
MOVE.B ..., (A2)+ put info into communication elem.

_MOVE =50,RECLEN(A1) all 50 characters to write
XIO Make the output
other activities while output is running
Al must be saved and reloaded !!
IOwWA Wait for completion of I/0 with Al-com.el

from here on: A1-CE may be used again
RELCE Release the CE in Al. Al is invalid now

Uber B2 soll ein Stiick Text gelesen werden und dabei noch Programmaktivitét
wihrend des Lesens stattfinden. Auflerdem soll kein Echo erzeugt werden, der
Zugang zum Bedieninterface ist zu verriegeln, damit die Zeichen $01 etc. gele-
sen werden konnen. Maximale Textldnge sei 40 und beim ersten auftretenden
Carriagereturn soll der Transfer beendet werden (Das Zeichen CR steht dann
als letztes im Puffer). Wir codieren zusiitzlich zum Universalvorspann:

MODMCR EQU $20 End Transfer with 1st carriagereturn.
MODMNE EQU $02 ’No echo’ (Only ACIA/SCC)
MODMSC EQU $04 Suppress Command (only ACIA/SCC)
_MOVEQ =40,D1 D1.L = length of info in CE
FETCE load Al by RTOS-UH
MOVE.B =2,LDNIO(A1) Queue-Number is 2

MOVE.W =(MODMCR+MODMSC+MODMNE) *$100,MODE (A1) Xfer mode setup
MOVE =40,RECLEN(A1) max. number of char’s
_MOVE =2,DRIVE(A1) ’B’ (buffered) instead of ’A’
XIO Make the Xfer
Arbitary-code, command-if remains blocked.

I0WA Wait until record ready (CR or 40 char’s).
* Die Daten liegen nun bereit. In RECLEN(A1l) ist die Anzahl
* Bytes zu finden. Auf BUADR(A1) die 4 bytes lange Adresse

* des ersten Zeichens. Nach Auswertung der Daten:

RELCE Release CE. Al invalid from now on!

8.8 E/A in Assemblersprache 607

Anmerkungen zum hier demonstrierten Beispiel:

Damit das Bedieninterface wieder ’befreit’ wird, muss ein
ACIA2-XI0 ohne den ’suppress command-if’- Mode folgen
oder der Terminalbediener drueckt die ’break’-taste.

»Ausgeben und vergessen“ eines Konstantenstring. Zusétzlich zum Universal-
vorspann codieren wir nun:

¥ ¥ ¥ ¥

_CLR.L D1 Length of textbuffer = 0

FETCE Fetch a CE

LEA textadr,AO

MOVE.L AO,BUADR(A1) Start adr of text to write
MOVE.W =MODMOU+MODMCR+$0,MODE(A1) Output until CR
BSET =STABRE,STATIO(A1) ’Verschrottungsbit’

MOVE =100,RECLEN(A1) Max. number of char if no CR
MOVE.B =2,LDNIO(A1) queue-number
_CLR DRIVE(A1) Set to Ax
XIO Al no longer valid!
* Die Ausgabe laeuft, das CE ist fuer diese Task nun nicht
* mehr erreichbar, da nicht festzustellen ist, ob es noch

* existiert.

608 8.9 Ergédnzung von E/A-Treibern

8.9 Erginzung von E/A-Treibern

In der 68k-Version des Betriebssystemes RTOS—UH sollten alle Peripherie-
gerdte, bei denen Wartezeiten einmalig > 0.6 ms bzw. wiederholt > 80 us anfal-
len, durch sog. ,I/O-Déamonen® (Treibertasks) betreut werden. Fiir die schnel-
len PowerP C-Versionen sind die obigen Zeitrichtwerte erheblich zu verkleinern.
Beim E/A-Vorgang wird durch die Usertask mit dem ,XI0“-Trap ein Eintrag
in eine prioritéitentengeordnete Warteschlange angelegt. War die Warteschlange
vorher leer, so aktiviert XIO0 iiber eine LDN-Tabelle den fiir diese Warteschlange
zustdndigen I/O-Démonen.

Fiir Peripherie, die dem Prozessor keine verwendbaren Zeitreste 1483t, macht
diese Konstruktion keinen Sinn. So wird z. B. iiber den VME- oder PIA-Bus
mit SEND und TAKE direkt und ohne Taskwechsel kommuniziert.

Wenn Sie Thr System mit weiteren Peripheriegeréiten ausbauen und dafiir keine
der im RTOS—UH vorhandenen Treibertasks benutzt werden kann — z. B. neu-
es V24-Port — dann ist das System in der hier angegebenen Weise zu erweitern.
Die Aufgabe, die hierbei zu erledigen ist, gliedert sich in drei Phasen:

Phase 1: Festlegung einer ,LDN“ fiir das neue Peripheriegerit.
Phase 2: Codierung des I/O-Démonen.
Phase 3: Codierung des Interruptprozesses.

’ Phase 1: Festlegung einer LDN‘

a) Das System soll fortan dauerhaft die neue Station enthalten: Der Boot-
block oder das ROM muf erweitert werden. Zweckméfigerweise wird die
néchste freie LDN belegt. Geht man nach oben dariiber hinaus, so wird
vom Nukleus beim Autolinking die LDN-Liicke fiir nachladbare I/O-Tasks
verwaltungstechnisch aufbereitet. (Tabellenplatz) Die Station mufl mit
einem {iblichen alphanumerischen Namen versehen werden, der die Ver-
wendung durch das Bedieninterface ermoglicht. Dazu ergédnzen wir eine
»ocheibe* vom Typ 9. Die Stationseigenschaften werden mit einer Schei-
be des Typs 10 vorbesetzt, sie wirkt wie ein ganz zu Anfang ausgefiihrter
,»3D“-Bedienbefehl. Die notwendigen Informationen sind ab Seite 635 bei
der ,,Scheibenstruktur® zu finden.

b) Das System soll nur voriibergehend um die neue Datenstation erweitert
werden: In diesem Falle miissen Sie eine LDN aus einer der vorhandenen
Liicken wihlen. Die Station ist bei dieser Form der Erweiterung allerdings
immer nur als ,LD/x.y/“ vom Bedieninterface errreichbar. Die Stations-
eigenschaften konnen nur mit Hilfe des ,,SD*“-Bedienbefehles besetzt wer-
den.

8.9 Ergédnzung von E/A-Treibern 609

’Phase 2: Codierung des I/O—Déimonen‘

Der Taskname (Name des Dédmonen) ist frei wihlbar. Allerdings sollte bei ei-
ner Boot/ROM-Erweiterung dieser mit ,#“ beginnen, um den D#monen vor
dem UNLOAD zu schiitzen. Beim Entladen eines I/O-Dédmonen ist in jedem Fall
besondere Vorsorge zu treffen, so dafl der Eintrag in der ,,LDN-TID“-Tabelle
des Nukleus wieder geloscht wird.

Damit der von irgendwo exekutierte ,XI0“-Trap sein Communication-Element
(siehe dazu Seite 559) weiterleiten kann, benétigt er eine Zuordnungstabelle,
die die LDN in den Task-Identifier (TID) umwandeln kann. Beim Autolinking
baut der Nukleus diese Tabelle auf (siehe Scheibe 1). Bei den nachmontierten
Tasks miissen Sie (oder jemand anders) diesen Eintrag selbst erledigen. Nicht
belegte Tabellenplétze sind durch den Eintrag einer (4-Byte) 0 markiert.

* Task-head mit Namen,Prioritaet etc. *
* Oder: Scheibencode der Scheibe no. 1 *
* Hohe Prioritaet wird empfohlen, z.B. -1 oder *
* dynamische Prioritaet durch Angabe von 0 *
* *
* System-traps needed here: *
DPC 0PD $4E43 Dispatcher-caller *
OFF 0PD $4EAF A1l interrupts ’off’ *
RELCE OPD $4E49 Release Comm.element *
TOQ 0PD $4E4D Take of queue *
TERMI 0PD $4E41 Terminate (self) *
*

* Displacements (PowerPC rechts) use COMEQU !! *
EXCORG EQU 0 $4000 Exception origin *
BLOCK EQU $24 $22 Block-byte of a Task *
BLKBSU EQU 4 4 Suspend-bit-no. in BLOCK *
TID EQU $802 $5000 Actual running Task ident.*
SIOLDT EQU $852 $50BO Start i/o-LDN to TID tablex
IDP1 EQU $832 $508C Interr. data buffer 1 *
IDP7 EQU $84A $50A4 Interr. data buffer 7 *
*

* Interrupt-buffer

* a) Platz ueber Scheiben 2 ... 8

* Interrupt-Vector anschliessen ueber Scheiben-

* nummer 14

* b) Platz im RAM freihalten: *

610 8.9 Ergédnzung von E/A-Treibern

IRLINK DC 0,0,0,0,...0 as used by ir-process *

*

START: ; *
nur b) MOVEA.L SIOLDT,A1 Tab-pointer LDN-TID *

nur b) MOVE.L TID,ldn*4(A1) Montieren der I/0-Task*

TAKE: TOQ Take of queue *

BRA.B EXIT (muss .B sein!)Wenn Schlange leer

BRA.B DOIT CE aus Schlange gefunden *

EXIT: TERMI Ende weil Schlange leer x*
DOIT:

nur a) MOVEA.L IDP1...IDP7,A0 Buffer-pointer IDPx *

nur a) LEA OFFS(AO0) ,A0 benutzten Ber. auslassen*

nur b) LEA IRLINK,AO0 access to ir-link-block *

MOVE.L A1, (AO)+ Comm.element for ir *

MOVEA.L TID,A2 Link to Task-identifier *

MOVE.L A2,(A0)+ fuer ir-process *

CLR (A0)+ Character-index reset *

hier moeglicherweise anderex*
Interruptunkritische Op. *

* *
* Beginn der unteilbaren Sequenz: *
*

OFF Alle Unterbrechungen sperr*

(coupler) Interrupt-process mit Para-
metern versorgen, Hardware
70 ’scharf’ machen, IR-PC *
cee versorgen etc.
nur b) MOVE.L =IRxy,IVEC+EXCORG Vector anschl. *

cee !l privilegierter Mode ! !x*
_BSET =BLKBSU,BLOCK(A2) Task suspendieren
DPC Ende Off-sequ. Disp. startx*
* *
* Der Daemon schlaeft nun bis der IR-Process *
* ihn wieder freischaltet. *
* *
RELCE Freigabe des Comm.elem. *

BRA TAKE naechstes El. aus Schlangex*

8.9 Ergédnzung von E/A-Treibern 611

Phase 3: Codierung des Interruptprozesses

Typische Aufgabe des Interruptprozesses wird die Behandlung des Dateninter-
rupts oder die Beendigung der Blockierphase des zugehorigen Damonen aus
irgendwelchen Griinden sein. Nach Abschluss oder Abbruch der Dateniibert-
ragung mufl der suspendierte Damon wieder freigegeben werden. Damit auf
Interruptebene der Zugriff auf dessen Blockbyte moglich ist, mufl bereits auf
Taskebene vor der Selbstsuspendierung der TID des Ddmonen im Interruptda-
tenblock abgelegt werden.

RTOS—-UH besitzt im Gegensatz zu fast allen anderen Betriebssystemen einen
speziellen Reparaturmechanismus fiir unerwartete Fehler innerhalb von In-
terruptantwortroutinen. Um solche Fehler wie wrong opcode, wrong address
etc. auf eine interruptspezifische Art in einen geordneten Riickfall ableiten zu
kénnen, gibt es die Zelle ,1ID“ ($7FE bei 68k, $5004 bei PowerPC) = ,In-
terruptidentifier*. Der Nukleus bestimmt im Fehlerfalle mit Hilfe von IID, die
aktuelle Ansprungadresse fiir den Riickfallmechanismus. Die genaue Kodierung
von IID ist zwischen der 68k- und der PowerPC-Version dabei unterschiedlich,
weil die Prozessoren sich im Supervisormode zu stark unterscheiden — so besitzt
der PowerPC keinerlei Aquivalent zum Vectorbaseregister des 68k. Aus diesem
Grund werden fiir die Versorgung von IID in der Datei SUPERVIS.FOR Forma-
te angeboten, die sich automatisch an die Zielhardware (68k oder PowerPC)
anpassen.

In jedem Fall mufl die Zelle IID zunéchst gerettet werden, denn der Inter-
ruptprozefl konnte ja einen anderen unterbrochen haben, dessen Vektorlink am
Ende wiederhergestellt werden mufl. Entsprechend mufl am Ausgang der In-
terruptroutine die Zelle IID wieder auf den alten Wert zuriickgestellt werden.
(Wenn man mit Hilfe der Shell auf IID nachsieht, wird man dort stets und alle
Zeit den Wert 0 finden, der angibt, dafl man sich nicht in einer Interruptroutine
befindet.)

Man beachte, dafl beim PowerPC ein besonderer , Interruptpreprozessor® die
Register r31, ccr und 1r zunichst automatisch freistellt. Danach wird 1r aller-
dings mit der Riickehradresse in das Interruptgate neu geladen und mufl notfalls
gerettet werden. Weil der Transferassembler fiir die Umsetzung des T-Codes
auf den PowerPC neben den freien Registern r31 und ccr im Extremfall noch 9
weitere Hilfsregister benttigt, werden diese vom Format IRENTC zu Beginn der
Interruptroutine neben IID ebenfalls gerettet. Mit dem Format IREXTC werden
sie wieder zuriickgeladen. Will man ,native“ PowerPC kodieren, so sind die
Formate IRENPP und IREXPP statt dessen zu verwenden. Letztere retten die
Register r25 ... r30, ctr, xer und 1r nicht, sind ansonsten aber funktionsiden-
tisch.

Die ,,Malfunction“-Routine muf} dafiir sorgen, daf§ z. B. alle Register restauriert

612 8.9 Ergédnzung von E/A-Treibern

werden und ggf. der Interruptverursacher (Coupler etc.) in einen normierten
Zustand versetzt wird. Als Minimum ist die Ableitung der Malfunction auf den
reguléren Interruptausgang anzusehen.

Warnung 1

Die Benutzung von Traps auf Interruptebene ist generell verboten — ob-
wohl es mit einigen moglich wére. Auch die Verwendung von ,,BSR“—
Befehlen ist wegen der damit verbundenen Paralysierung des ,,Riick-
fallmechanismus® geféhrlich!! BSR/RTS kann durch LEA ...,Ax und JMP
(Ax), eine obendrein schnellere Losung, ersetzt werden, oder aber man
rettet nach dem IID- und Registersave das System-A7 in ein eigenes Re-
gister, um es bei Malfunction als erstes wieder auf den korrekten Wert zu
bringen. Jedes Verlassen der Interruptroutine darf nur unter Einschal-
tung des Prozeflumschalters erfolgen, damit wahrend der IR-Prozedur
aufgelaufene Taskzustandsédnderungen nicht ,,verschlafen“ werden: Ver-
wenden Sie also in der 68k-Welt nie den RTE-Befehl direkt!

Warnung 2

Die Interruptantwortroutine liegt typischerweise im gleichen Programm-
text wie die Grundebenentask, bedenken Sie aber, dafl zum Zeitpunkt
des Interrupteintrittes irgendein vollig fremder Prozef die Prozessorregi-
ster etc. besitzt. Sie miissen grofite Aufmerksamkeit darauf verwenden,
dafl der unterbrochene Prozess korrekt fortgesetzt werden kann! Man
legt hier sonst eine extrem gefihrliche Zeitbombe in das System!

Wir studieren nun den schematischen Aufbau einer T—kodierten Interrupt-
Antwortroutine:

. INCLUDE . ./COMEQU EQUs

. INCLUDE ../SUPERVIS.FOR Supervisorformate *
IVEC EQU $200 Assumed IR-Vector adr *
*
*oo... Here is the Interrupt entry point *
IRxy IRENTC malfxy,IVEC Malfunc Anschluss etc. *

MOVEM.L DO...,-(A7) Save Registers used *
nur b) LEA IRLINK,AO Parameter-feld anschl. *
nur a) MOVEA.L IDP1...IDP7,AO IDPx laden *
nur a) LEA OFFS(A0Q) , A0 fremden Bereich skip*

....... Von der Task-Grundebene *
....... angelegte Daten, z.B. diex
....... Adresse des CE, sind ueber

8.9 Ergédnzung von E/A-Treibern 613

....... xx(AO) erreichbar *
MOVEA.L (AO) ,A1 access to comm.elem. *
MOVE.B e Daten ueber Coupler *
....... *
CMP ey Test ob Transfer fertig *
BNE Exitxy Sprung wenn nicht fertig *

*
oo Transfer fertig: Daemon wieder freigeben ... *
MOVEA.L 4(A0),AO access Task-id *
_BCLR =BLKBSU,BLOCK(AO) continue task *
DPCALL Alert dispatcher *
Exitxy MOVEM.L (A7)+,DO... Register rueckladen *
IREXTC korrekter Ausgang *
* *
malfxy IRMALF IVEC bei 68k Leeroperation *
cee Controller normieren *
BRA Exitxy Exit by Disp. test *

614 8.9 Ergédnzung von E/A-Treibern

Phase 3: Andere Konstruktion ohne Interrupts

Liefert der Coupler keine Interrupts, so kann auf der Ebene der Task selbst
das Communicationelement bearbeitet werden. Um Verluste durch Abfrage-
schleifen zu vermeiden, bediene man sich einer ,,durchlécherten® Schleife, etwa,
indem die Task alle 4 msec nachschaut und sich bei fehlender Bereitschaft des
Couplers erneut selbst suspendiert fiir 4 msec. Bei hohen Datenraten geht es
natiirlich auch ganz ohne Suspendierung der I/O-Task.

Beispiel fiir einen E/ A—Treiber‘

Es handelt sich um ein einfaches Programm, welches einen normalen CE-
Transfer zu einem ACIA-Baustein gestattet. Zur Demonstration wurde auch
die typische ausgereizte Sequenz zur Erkennung von CR, LF oder EOT angege-
ben.

Das Maschinenprogramm braucht nur noch zugeladen zu werden. Die Task ist
einmal zu aktivieren, damit der Tabelleneintrag erfolgen kann. (Wegen leerer
Schlange keine Aktion). Anschliefiend ist iiber ,SD /LD/5/ xx“ das Port zu pa-
rametrieren. Bevor die Task mit UNLOAD entfernt wird, mufl entweder iiber eine
Hilfstask oder mit Hilfe des SM-Befehles (Vorsicht! sorgféltig rechnen) wieder
eine Null an Stelle des TID eingesetzt werden. (4 Byte Null)

8.9 Ergédnzung von E/A-Treibern 615

>k >k 3K 3K 3k 3k 3k 5k 5k 3k 5k 5k %k %k %k >k >k 3k 5k 3k 5k 3k %k %k 5k %k %k %k >k >k >k 5k 5k 5k %k %k %k >k >k %k %k % >k >k >k >k %k %k k k

* Demonstrationsprogramm ’eigene E/A’ *
* HIER: Nachmontierte Version *
* *
* Taskname: Queue5, LDN=5 *
LDN EQU 5 For assembler *
e e *

.INCLUDE .../COMEQU.NOL passende EQUs *

.INCLUDE .../GENERAL.FOR Task-DCB etc *

.INCLUDE .../SUPERVIS.FOR fuer IR-Prozess
e *
¥ TASK-HEAD for RTOS-UH: *

p¢c.s 0,0,0,0,0,0,0,0,0,1,’Queueb’ *

TSKDCB 0,WSPMIN,START prio=0=dynamic *
A *
* Coupler- and interrupt- addresses: *
* **x*x Depending upon actual hardware *x** *
T *
ACST EQU $50041 Statusreg ACIA *
ACDT EQU $50043 Datareg ACIA *
IVEC EQU $210 Interrupt-link *
e *
* System traps: *
DPC OPD $4E43 Dispatcher-caller *
OFF OPD $4EAF A1l interrupts off *
RELCE 0PD $4E49 Release comm.elem. *
TOQ 0PD $4E4D Take off queue *
TERMI OPD $4E41 Terminate self *
e et *
*..... Link-cells daemon<->IR-process *
IRLINK DC.L O Actual Text-address *

DC.L O Task-ID of this Task*

DC 0 Length-control-word *
e *
* TASK - CODE *
* *
TERMEX TERMI Used from below *
START MOVEA.L SIOLDT,AO Table-address *

_MOVE.L TID,LDN*4(AO) Nachmontage LDN *

TOQ Inspect the queue *

BRA.B TERMEX B: queue empty *
*..0... Queue is not empty *

616 8.9 Ergédnzung von E/A-Treibern

LEA IRLINK,AO For rapid access *
_MOVE.L BUADR(A1),(A0)+ Start adr of Text x*
MOVEA.L TID,A2 Task Id for access x*
MOVE.L A2, (A0)+ save for ir-process *
*
Determine number of chars to transmit *
*
MOVE RECLEN(A1),D2 Assumed length *
MOVEQ =MODMCR+MODMLF+MODMEQ,D6 Testmask *
AND.B MODE(A1),D6 Quick check *
BEQ.S A06 b: no mode specifiedx*
MOVEA.L BUADR(A1),A3 Text-org *
CLR D3 Reset Record-length *
A02 CMP D2,D3 Reclength test *
BGE.S A06 b:all done *
ADDQ =1,D3 Move counter *
MOVE.B (A3)+,DO Inspect the byte *
MOVEQ =MODMCR,D7 Test-mask *
SUB.B =$0D,DO Test for Carr. rtn *
BGT.S A02 b: not cr,lf or eot *
BEQ.S A0O4 b:is cr *
MOVEQ =MODMLF,D7 Testmask *
ADDQR.B =$0D-$0A,DO Test for LF *
BEQ.S A04 b:is LF *
ADDQ.B =$0A-$04,D0 Test for EOT *
BNE.S A02 b:not eot *
MOVEQ =MODMEQ,D7 Testmask *
A04 AND.B D6,D7 Mode-match? *
BEQ.S A02 b:no match *
MOVE D3,D2 result length *
AO6 MOVE D2, (AO)+ Store length *
LEA IRENT,A3 Ir-entry address *
*
OFF Disable interrupts *
MOVE.B =$35,ACST New coupler status x*

MOVE.L A3,IVEC+EXCORG Ir-vector connectionx
_BSET =BLKBSU,BLOCK(A2) suspend the task*

DPC Call dispatcher *
* Now the task is suspended for last interr.*
RELCE Release Caller *

BRA START Repeat queue-op. *

8.9 Ergédnzung von E/A-Treibern

617

* *
* INTERRUPT-PROCESS *
* *
* *
IRENT IRENTC IRMAL,IVEC IR-Header *
MOVEM.L AO/A1,-(A7) Save registers *
LEA IRLINK,AO Link to parameters *
SUBQ =1,8(A0) Counter control *
BMI.S IRCOD4 b:end of transm. *
MOVEA.L (AO0),A1 Buffer-address *
MOVE.B (A1)+,ACDT Send data to periph.x*
_MOVE.L A1, (AO) Restore new pointer *
IRCODO MOVEM.L (A7)+,A0/A1 reload reg’s *
IRCOD1 IREXTC IR-Exit *
* *
* End of transmission *
IRCOD4 MOVE.B =$15,ACST Switch coupler off =
MOVEA.L 4(A0),AO Access task-id *
_BCLR =BLKBSU,BLOCK(AO) Continue *
DPCALL Flag dispatcher-callx
BRA IRCODO Exit *
* *
* Malfunction recovery-exit *
IRMAL TIRMALF IVEC Whatever is necessarx
BRA.S IRCOD4 Make daemon runnablex*

*
END

618 8.10 Exception-Handler

8.10 Exception-Handler
8.10.1 Einfithrung

Programmierfehler kénnen nicht gewollte asynchrone Traps auslosen, wie z.B.
den Bus-Error-Trap bei versuchtem Zugriff auf nicht vorhandene Speicheradres-
sen. RTOS—UH kann diese Fehlermeldungen iiber den Error-Démon ausgeben.
Der Error-Damon ist gewohnlich die Task mit der héchsten Prioritéat im Sys-
tem. Dadurch erfolgt die Ausgabe immer mit hochster Prioritét.

Anstelle des Error-Dédmons als zentrale Task fiir die Fehlerbehandlung kann
man jeder Task taskindividuell eine Prozedur, den sogenannten , Exception-
Handler“ zur Verfiigung stellen. Dieser behandelt dann alle Ausnahmen ein-
schliefflich der vom Anwender selbst programmierten Aufrufe des ,, Error-Traps*
(siehe Seite 475).

Eine Restaurierung aller Register in den Zustand vor der Ausnahme ist dabei
wegen der Fehleranalyse und einer eventuellen Fortsetzung der Task wiinschens-
wert. Prinzipiell kann der Anwender einen Exception-Handler selbst schreiben
und anschlieBen (siehe Unterabschnitt ,Interna“). Wegen der Restaurierung
der Prozessorregister sowie wegen der unterschiedlichen Behandlung von Aus-
nahmen durch die verschiedenen Prozessoren stellt RTOS—UH den sogenann-
ten ,RTOS—UH-internen Exception-Handler“ zur Verfiigung. Er besitzt ge-
geniiber dem Error-Démon folgende Vorteile:

e Die Fehlermeldung besitzt die Prioritéit der aufrufenden Task. Dadurch
werden hoherpriorisierte Tasks nicht behindert.

e Lost eine Task mehrere Ausnahmen so schnell hintereinander aus, daf die
vorherigen Fehlermeldungen vom FError-Damon noch nicht ausgegeben
sind, erfolgt beim Exception-Handler im Gegensatz zum Error-Dimon
eine korrekte Ausgabe der Zeilennummer nicht nur bei der ersten Mel-
dung.

e Liuft nach einer Ausnahmebehandlung eine Task weiter, wie es z. B.
héufig bei Floating-Point-Exceptions der Fall ist, werden zwei Taskwech-
sel gespart.

e Der Anwendungsprogrammierer bekommt die Mo6glichkeit, verschiedene
Ausnahmen selbst zu bearbeiten.

Der Error-Damon hat allerdings auch Vorteile. Zum einen ist es nicht immer
erwiinscht, dal die Prioritdt der Fehlermeldung die der auslosenden Task ist.
Zum anderen sendet die auslosende Task bei einem Exception-Handler die Feh-
lermeldung selbst an den I/O-Dédmon, was mit einem Warten auf das Ende der
Ausgabe verbunden ist.

8.10 Exception-Handler 619

8.10.2 Anschlufl des Exception-Handlers

Bevor auf die innere Struktur eingegangen wird, soll zunéchst der Anschlufl
des RTOS—UH-internen Exception-Handlers beschrieben werden. Das Shell-
Subroutine-Package stellt dafiir die Routine EXLKL bereit. Im einfachsten Fall
ist sie wie folgt zu parametrieren:

D7.W O

A1.L Zeiger auf den Arbeitsbereich des Exception-Handlers, der
bei diesem Aufruf dem Exception-Handler fortan fiir seine
spatere Tétigkeit zur Verfliigung gestellt wird. Bei diesem
sogenannten ,, Exception-Frame® handelt es sich typischer-
weise um einen reservierten Bereich aus Taskworkspace
oder Taskkkopf. Die minimale Groéfle ist durch das in
COMEQU definierte Label SGEFFS festgelegt (68xxx: 82By-
tes, PowerPC: 132 Bytes).

A2.L Zeiger auf den Error-Pfad. Ausschnitt aus einem CE von
STATIO bis zum Ende des Names.

A6.L TID der Task, die einen Exception-Handler bekommen soll.
Meistens montieren sich Tasks selber einen, aber bei De-
buggern o. &. kann es sich auch schon eimal um eine andere
Tasks handeln.

Beispiel: Eine Task mochte sich selber einen Exception-Handler montieren und
will Fehlermeldungen immer auf den ,,Permanent-Error® Pfad von User 1 aus-
geben.

e *
.include COMEQU.NOL *

K *
EXLKL EQU 124 *
A o e e e e e e e e e e e *
* Taskworkspace-Layout *
* PMBUF: erste freie Speicherstelle im Taskworkspace *
FRAME EQU PMBUF Platz fuer Exception-Frame *
FFREE EQU FRAME+SGEFFS Ab hier eigene Variablen *
A o e e e e e e e e e e e *
u.a. Stack initialisieren *

* *
_MOVEQ =0,D7 einfachster Anschluss *
MOVEA.L TID,A6 Eigener Taskkopf-Zeiger *

LEA FRAME.T, A1l Zeiger auf den Exception-Frame *

* Standard-Error-Pfad holen *

620 8.10 Exception-Handler

MOVEA.L UITIDP,A2 USER TO TID-TABLE *
MOVEA.L (A2),A2 Taskkopf User 1 *

ADDA PTHLEN,A2 A2:Shell-Environment-Zeiger *
MOVEA.L STDELP(A2),A2 Fehler-Pfad *
MOVEA.L CIADR,AOQ Zeiger auf SSRP-Tabelle *

* A4 muss auf eigenen Taskworkspace zeigen! *
JSR EXLKL (A0) Exeption Handler anschliessen *

*

*

K *

Nach Ausfithrung dieser Sequenz ist der Exeption-Handler montiert. Er {iber-
nimmt anstelle des Error-Damons nun die Fehlerbehandlungen. Auf den ersten
Blick verhilt sich RTOS—UH genauso wie vorher. Die oben angegebenen Vor-
teile sind nun jedoch vorhanden.

8.10.3 Selbstverarbeitete Ausnahmebehandlungen

Der Vorteil des im vorherigen Unterabschnitts vorgestellten Exception-Hand-
lers liegt in der Erweiterbarkeit durch ein Anwendungsprogramm. Dieses kann
wahlweise einige oder alle Ausnahmen selbst verarbeiten. Als Schliissel fiir die
Zustandigkeit dient das Error-Codewort, welches der Exception-Handler an
Hand der Tabelle auf Seite 467 auswertet.

Beim Aufruf der Routine EXLKL koénnen folgende Fille unterschieden werden:

D7.W 0 Keine Erweiterung durch Nutzer.

D7.W 1 FEine gemeinsame Prozedur fiir alle selbstbehandelten Aus-
nahmen. In D6.L steht ein Zeiger auf eine Liste mit Error-
Code-Worten, die mit 0 abgeschlossen ist. Die anzusprin-
gende Adresse, falls das Code-Wort in der Liste enthalten
ist, steht in A3.L.

D7.W 2 Eine individuelle Prozedur fiir jede Ausnahme. In D6.L
steht ein Zeiger auf eine Liste. Ein Listeneintrag sieht wie
folgt aus: 2 Bytes Error-Code Wort, gefolgt von einem
Langwort, das die fiir dieses Code-Wort zugehorige Adresse
enthilt. Das Codewort $FFFF steht fiir ein beliebiges Code-
Wort, das Codewort $0000 schliefit die Liste ab.

D7.W 3 Eine gemeinsame Prozedur fiir alle Ausnahmen. In A3.L
steht die anzuspringende Adresse.

Weiterhin konnen noch folgende funktionelle Bits in D7 gesetzt werden:
SGCBFM+8 bewirkt, dafl vor Ansprung der externen Routine die Fehlermel-
dung ausgeben wird. Ist Bit SGCBBR+8 gesetzt, wird auch bei Breakpoints der
Exception-Handler aufgerufen (Sonst macht der Error-Démon die Meldung —

8.10 Exception-Handler 621

unabhéngig davon, ob ein Handler angeschlossen ist oder nicht.) Um das Trace-
Bit des Prozessors zu l6schen, wiahrend der Exception-Handler selbst liduft, kann
das Bit SGCBNT+8 gesetzt werden. Beim Verlassen des Handlers mit der im fol-
genden beschriebenen Prozedur EXRTN setzt diese das Trace-Bit in den Zustand
vor dem Auslosen der Exception.

Um seine eigenen Prozeduren korrekt zu beenden, stellt das SSRP die Routi-
ne EXRTN zur Verfiigung, die verschiedene Arbeitsregister in den Zustand vor
der Ausnahmebehandlung zuriickversetzt (siehe Beispiel). Sie ist wie folgt zu
parametrieren:

A2.L Zeiger auf den Exception-Frame

D5.B MI: Task wird immer suspendiert.

D5.B EQ: Task wird nie suspendiert.

D5.B GT: Task wird suspendiert, falls es vom Error-Codewort
vorgesehen ist.

D5.W MI: Fehlermeldung wird nachgeholt.

D5.W PL: Normaler Ausstieg.

Beispiel: Das obige Programm ist so zu erweitern, dafl bei einem Bus-Error,
falls er bei einem bestimmten PC ausgelost wird, die auslésende Task fort-
gesetzt wird. Dadurch lafit sich {iberpriifen, ob ein bestimmter Baustein oder
eine bestimmte Einschubkarte vorhanden ist. Ideal wére eine Unterdriickung
der Fehlermeldung im Falle des Fortsetzens.

A *
.include COMEQU.NOL *

A *
EXLKL EQU 124 *
EXRTN EQU 128 *
A *
* Taskworkspace-Layout *
* PMBUF: erste freie Speicherstelle im Taskworkspace *
FRAME EQU PMBUF Platz fuer Exception-Frame *
CODLST EQU FRAME+SGEFFS Code-Wort-Liste *
FFREE EQU CODLST+4 Ab hier eigene Variablen *
A *
u.a. Stack initialisieren *

*

MOVEQ =1,D7 Liste mit Sammel-PC *
_MOVE.L =$80150000,CODLST.T Bus-Error & Listenende *

LEA CODLST.T, A6 Zeiger auf Liste *
_MOVE.L A6,D6 Fuer SSRP-Ansprung *

LEA BUSEPC, A3 Bus-Error PC *

622 8.10 Exception-Handler

MOVEA.L TID,A6 Eigener Taskkopf-Zeiger *

LEA FRAME.T, A1 Platz fuer Arbeitsbereich *

* Standard-Error-Pfad holen *
MOVEA.L UITIDP,A2 USER TO TID-TABLE *
MOVEA.L (A2),A2 Taskkopf User 1 *

ADDA PTHLEN, A2 A2:Shell-Environment-Zeiger *
MOVEA.L STDELP(A2),A2 Fehler-Pfad *
MOVEA.L CIADR,AOQ Zeiger auf SSRP-Tabelle *

* A4 muss auf eigenen Taskworkspace zeigen! *
JSR EXLKL (A0) Exeption Handler anschliessen *

_MOVEQ =0,DO Annahme: kein Bus-Error *
NOP_PC MOVEA.L (A3),A3 Falls hier Bus-Error,fortsetzenx
TST DO Test: Bus-Error?? *

BEQ 7?7 B: War keiner *

*

K *
*Eigene Ausnahmebehandlung fuer Bus-Error *
*Folgende Register stehen zur eigenen Verfuegung: *
*68xxx: SR *
*PowerPC: r25...r31, xer,lr,cr *
*Beide: D1,D5,D6,D7,A1,A2,A3,A5,A7 *
* *
BUSEPC LEA NOP_PC,A1 PC fuer Fortsetzen holen *
MOVEA.L D7,A2 Zeiger auf Exception-Frame *
MOVE.L SGOLPC(A2),D7 Ausloesender PC *

MOVER =1,D5 Annahme: anderer PC *

CMP.L A1,D7 Test: Anderer PC *

BNE.S BUSEP4 B: Anderer PC=>Suspendierung *

* PC war bekannt, Task fortsetzen *
ADDQ.L =PCSKIP,SGOLPC(A2) PC-erhoehen *

MOVER =0,D5 Immer fortsetzen *

_MOVEQ =1,DO Fuer Ausloesende Task:Bus-Errorx

* Ausstieg *
BUSEP4 MOVEA.L CIADR,A1 SSRP-Adresse *
JMP EXRTN (A1) Ausstieg *

e *

Da DO nicht zu den Registern gehoért, die von EXRTN restauriert werden, kann
die eigene Ausnahmebehandlungsroutine hier sogar der auslosenden Task eine
Nachricht hinterlassen.

8.10 Exception-Handler 623

Dieses Programm ist {ibrigens komplett transferassemblierbar, so dafl innerhalb
der RTOS—UH-Welt prozessorunabhéngig programmiert werden kann.

So wie das Programm dort steht, hat es noch einen entscheidenen Nachteil: Je
nachdem, ob das Bit SGCBFM in SGCNTL gesetzt ist, wird bei einem Bus-Error
immer oder nie eine Fehlermeldung abgesetzt. Es fehlt noch die Moglichkeit, im
nachhinein, also beim Ausstieg iiber EXRTN die Meldung nachzuholen. Anstelle
des MOVEQ =1,D5 codieren wir MOVE =$8001,D5. Damit ist auch das letzte
Manko unseres Anwendungsbeispiels behoben.

8.10.4 Interna

Im Taskkopf gibt es eine Speicherzelle fiir den ,Exception-Frame.“ Ist dieses
Langwort nicht geloscht, zeigt es auf die in Tabelle 8.11 dargestellte Struktur.

SIGTOT ist der minimal benétigte Platz, der dem Betriebssystem zur Verfligung
gestellt werden muf, falls man einen eigenen Exception-Handler schreiben
mochte. Bei Ansprung des Exception-Handlers sind alle Prozessor-Register re-
stauriert. D7 steht zur Verfiigung, da es tiber SGOLD7 jederzeit restauriert wer-
den kann.

Der RTOS—UH-interne Exception-Handler ist in der Lage, nach dem Absen-
den der Fehlermeldung alle Prozessor-Register mit den Werten zu belegen, die
zum Zeitpunkt der Prozessorausnahme in den Registern standen. Dieses ist fiir
eine Fehleranalyse und ein eventuelles Fortsetzen wichtig. Der Handler benétigt
daher den hinter SIGTOT liegenden Speicherbereich. Der Gesamtbedarf ist durch
das Label SGEFFS festgelegt und hat bei 68xxx-Prozessoren den Wert SGESSR,
bei PowerPC-Prozessoren den Wert SGEPFS.

Die ersten 6 Bytes der 12 Byte langen Fehlermeldung haben folgenden Auf-
bau: Zuerst kommt das 2 Byte lange Error-Codewort, gefolgt vom TID der
auslosenden Task. Steht im letzten Wort $0001, steht im Langwort hinter dem
TID eine auszugebende 32-Bit Hexadezimalzahl. Lautet das letzte Wort $0000,
folgt dem TID ein Zeiger auf ASCII-Text, der auszugeben ist. In allen anderen
Fillen werden die letzten 6 Byte als ASCII-Text interpretiert und ausgegeben.
Bei den ASCII-Texten gelten die Zeichen ,;,,“ und die ASCII-Werte $00 bis
$1F als Begrenzer. Der ,,_“ wird durch ein ,,,“ ersetzt.

624 8.10 Exception-Handler

Label Offset Lénge Bedeutung

SGAEB1 0 2 Hier steht immer ein $AEB5 zur Validierung.

SGCNTL 2 2 Kontrollwort. Im Wesentlichen das bei Aufruf
von EXLKL iibergebene D7.

SGRESV 4 4 1 Langwort Reserve fiir Erweiterungen. Z. Z.
0

SGTGPC 8 4 Der Zeiger auf den Exception-Handler.

SGOLPC 12 4 PC, der die Ausnahme ausloste.

SGOLSR 16 2 68xxx Prozessor: Status-Register vor Ausnah-
me. PPC: Trace-Bit steht im MSB

SGOLD7 18 4 D7 vor der Ausnahmebehandlung. Dadurch
hat der Exception-Handler erst einmal ein Re-
gister zum Arbeiten.

SGEM12 22 12 12 Bytes Fehlermeldung. Erklarung weiter un-
ten.

SIGTOT 34 0 Minimaler Speicherplatz fiir einen Exception-
Frame.

SGERPT 34 4 Zeiger auf den Error-Pfad fiir die Ausgabe von
Fehlermeldungen.

SGEXPC 38 4 Zeiger auf den externen PC, falls ein Anwen-
der bestimmte Ausnahmen selbst bearbeiten
mochte.

SGEXEL 42 4 Zeiger auf Liste mit Code-Worten, die der An-
wender selbst bearbeiten mochte.

SGSTAC 46 4 1 Langwort Stack.

SGSREG 50 32 Speicherplatz zum Retten verschiedener Regi-
ster.

SGESSR 82 0 Speicherplatzbedarf des RTOS—UH-internen
Handlers bei einem 68xxx-Prozessor.

SGRES2 82 10 PPC: Reserve fiir zukiinftige Erweiterungen.
7.7.0

SGPCR 92 4 PPC: Condition-Register vor der Ausnahme.

SGPXER 96 4 PPC: xer-Register vor der Ausnahme.

SGPLR 100 4 PPC: link-Register vor der Ausnahme.

SGPREG 104 28 PPC: Platz fiir r25...r31 vor der Ausnahme.

SGEPFS 132 0 Speicherplatzbedarf des RTOS—UH-internen
Handlers bei einem PowerP C-Prozessor.

Tabelle 8.11: Struktur von Exception-Frames

Kapitel 9: Das Scheibenkonzept

9.1 Die Systemkonfigurierung

Das Betriebssystem besteht aus einer Vielzahl kleiner Module, die vollkommen
lageunabhéngig sind. Die gegenseitigen Verbindungen zwischen den Modulen
werden erst nach Einschalten des Systemes im Grundmodul, dem ,,Nukleus*,
hergestellt. Dazu baut der Nukleus im unteren Speicherbereich ab $800 eine
Vielzahl von Tabellen auf, in denen die Querbeziige ihren Niederschlag fin-
den. Die Querbeziige werden durch Abtasten (,,Scanning®) eines vereinbarten
EPROM (oder RAM-) Bereiches aufgespiirt. Signalmarke ist dabei die auf ge-
rader Adresse beginnende Bytesequenz $AEB1BF95, gefolgt von einem Wort mit
einem ungeraden Vielfachen der Primzahl 37. Wir sprechen von der Scheibe «,
wenn dieses Wort genau den Wert (x*2+1)*37 besitzt.

Die Signalmarke ist so gew#hlt, dafl sie im normalen Assemblercode sowie im
VCP—Code nicht vorkommen kann. Man hiite sich aber, ungeniigend vorbe-
setzte Speicherbereiche abtasten zu lassen. Auch besteht eine gewisse Gefahr,
wenn grofle Datenfelder im Betriebssystembereich abgelegt werden sollen.

Das Zusammenbauen eines Betriebssystemes besteht nun einfach in einer
moglichst liickenlosen Hintereinanderreihung der einzelnen Module (’Scheiben’)
und dem Besetzen des Scanbereiches in den dafiir vorgesehenen Zellen des Nu-
kleus.

Das 68k—System startet auf der Adresse Nukleus+$18 im Supervisormode.
Das PowerPC—System startet auf der Adresse Nukleus+$20 im Supervisormo-
de.

Der Scanbereich mufl immer mit der Anfangsadresse des Nukleus beginnen. Er
kann absolut oder relativ zur Nukleusanfangsadresse definiert werden. Dabei
sind maximal zwei getrennte Bereiche moglich. Dies geschieht durch Eintra-
gung von 4 Byte—Adressen auf den Zellen Nukleus+$20 beim 68k und auf
Nukleus+$28 beim PowerPC.

Beispiel 68k:

Nukleus+$20 DC.L $00000001,$0000FFFF relativ
+$28 DC.L $F60000,$F7FFFE absolut

625

626 9.2 Modifikation eines Systems

Beim PowerPC sind die Ablageadressen um 8 hoher. Gesetztes LS-Bit heifit
orelativ zum Nukleus®. In der ersten Sektion werden also 64 kB, in der zwei-
ten 128 kB abgetastet. Fehlt der zweite Bereich, so sind dort 4 bytes Nullen
abzulegen.

Denken Sie also bitte daran, dafl bei einer Erweiterung des Systemes ggf. der
Scanbereich im Nukleus angepafit werden mufl. Dabei geniigt es, wenn die letzte
Signalmarke noch innerhalb des Bereiches liegt, der Code darf also dariiberhin-
ausragen.

Beim Scanning darf kein Bus—Error auftreten, sonst lduft das System nicht an.

Das kleinste denkbare System besteht nur aus dem Nukleus. Allerdings leistet
es nichts, aufler dafl die Task #IDLE dauernd lduft. Durch Hinzufiigen einer
oder mehrer Scheiben wird daraus entweder ein kleines reines Laufsystem oder
ein komfortables Entwicklungssystem, je nach dem beabsichtigten Einsatz.

9.2 Modifikation eines Systems

Ein normal aufgebautes Entwicklungssystem startet mit einer Uberschrift, an
der man in etwa erkennen kann, aus welchen ,Scheiben“ das System besteht.
Gedacht ist diese Uberschrift auch zur Erkennbarmachung der jeweiligen Re-
visionsstufen, die meist durch ein ,,=*“ Zeichen angehéingt wird. Allerdings gibt
es wesentlich mehr Scheiben, als sich in der Uberschrift melden. Die folgende
Tabelle kann daher nur einen groben Uberblick geben:

9.2 Modifikation eines Systems 627

Nuc Betriebssystemkern, enthilt Speicherverwaltung, Taskmanage-
ment, stellt Systemtraps zur Verfiigung

Daemon | Systemdaemon, hichstpriore Systemtask, ist fiir korrekte Auswer-
tung und Ausgabe von im NUKLEUS erkannten Fehlersituationen
zustidndig und startet Bedieneingriffe

EdFm ED-Filemanager, die Datenstation /ED

Vi/Vo | /VIund /VO (Pipe) Datenstationen

Math Das mathem. Paket mit SIN, COS etc.

Hyp Der Hyperprozessor, PEARL-Laufzeitsystem

Editor | Der kleine Standardeditor, Bedienbefehl ED

Help Kurzhilfe, der HELP-Bedienbefehl

Sh/sr | Das Shell-subroutine package, SSRP

Shell | Die Grundshell mit den Standardbedienbefehlen

XC Die Datenstation /XC (remote command)

Loader | Der Systemlader

copy Bedienbefehl COPY

Fm Filemanagement, UHFM, evtl. auch zuséatzlich MSFM

P PEARL-Compiler

Imp Die zur Hardware gehérende Implementierungsscheibe

EX Bourne-Shell Interpreter

Net Netzwerkscheibe.

Samtliche dieser Module sind aus Scheiben gemifl der in diesem Kapitel fol-
genden Beschreibung aufgebaut. Zusétzlich zu den Modulen umfaf3t eine Im-
plementation die Integration eines Schutzmechanismus, der Verinderungen des
Codes im EPROM registriert.

Die Implementierung eines neuen Systems beginnt mit der Erstellung des (rech-
nerspezifischen) Imp—Moduls. Danach folgt die Zusammenstellung der einzel-
nen Module in geeigneter Reihenfolge sowie die Festlegung des zu schiitzenden
Code—Bereiches. Es sind hierbei verschiedene Systemkonfigurationen mit un-
terschiedlichem Leistungsumfang denkbar:

e Minimalsystem
umfat nur das Modul Nuc. Das Betriebssystem lduft vollstdndig, alle
Traps sind angeschlossen, Schnittstellen sind nicht ansprechbar.

Ein derartiges System hat praktisch keinen sinnvollen Einsatz, da Kom-
mandointerpreter und Schnittstellentreiber fehlen. Es kann jedoch Pro-
gramme, die keine Unterstiitzung durch EdFm, Math und Hyp bendotigen,
aus dem EPROM heraus exekutieren.

e Laufzeitsystem fiir Assemblerprogramme
umfait Nuc, Daemon, Sh/sr, Shell und Imp. Das System kann nach au-

628

9.2 Modifikation eines Systems

Ben kommunizieren, Kommandos empfangen und exekutieren. Es leistet
dhnliches wie das Minimalsystem, ist jedoch von auflen steuerbar.

komplettes Laufzeitsystem

ist erweitert um EdFm, Math und Hyp, ggf. Fm. Das System kann sdmtliche
in PEARL oder Assembler erstellten Programme bearbeiten und ggf. den
Massenspeicher verwalten. Da der Lader noch nicht vorhanden ist, kénnen
nur EPROM-residente Programme ausgefiihrt werden.

potentielles Entwicklungssystem

ist erweitert um Loader, EdFm und die nicht in der Uberschrift stehen-
de VCP-Scheibe. Das System kann Programme von Massenspeicher oder
Schnittstellen laden und exekutieren. Damit kann das System beliebige
Programme ausfiihren.

komplettes Entwicklungssystem

enthilt zusétzlich Compiler, Assembler und Windoweditor WE, entweder
EPROM-resident oder von Massenspeicher nachgeladen. Hiermit ist der
volle Leistungsumfang eines Standard-RTOS—UH/PEARL-Systems er-
reicht.

Bei einer reguldren Implementierung eines Entwicklungssystems werden nur
bestimmte Module im unteren Systembereich vom Schutzmechanismus erfaft,
d. h. es ist moglich, ein System oberhalb dieser Schutzgrenze zu modifizieren.
Je nach Hardware kann dies durch Hinzufiigen oder Ersetzen von Scheiben
im EPROM oder im Bootbereich erfolgen. Die hinzugefiigten Scheiben kénnen
auch Anwenderprogramme sein.

9.2.1 Beispielhafte Systemerweiterung

Betrachten wir als Beispiel ein System mit folgender Hardware—Konfiguration:

Prozessor: 68000
EPROM-Bestiickung: 4x 27512, organisiert in zwei Bénken
EPROM-Adressen: Bankl1 : $F80000 — $FOFFFE

Bank2 : $FA0000 — $FBFFFE

Bei einer derartigen Konfiguration enthilt im Regelfall Bank1l das potentielle
Entwicklungssystem (mit Schutzmechanismus) und Bank2 Compiler und As-
sembler (ungeschiitzt). Compiler und Assembler mogen die Adressen $0000—
$AECB in Bank2 (relativ zu $FA0000) belegen.

9.2 Modifikation eines Systems 629

Als einfachen Einstieg betrachten wir die Umdefinition der Eigenschaften einer
Datenstation. Erforderlich hierzu ist die Kenntnis der LDN dieser Station (s.
Kapitel Datenstationen) sowie der Device-Parameter (s. Befehl SD, Seite 203).
Die zweite serielle Schnittstelle (/A2/), die vom System standardméfig als Da-
tenschnittstelle mit den Device-Parametern $0B00 vorbesetzt wird, sei beim
Kaltstart des Systems als Terminal-Schnittstelle mit den Device-Parametern
$3300 zu initialisieren (Standard bei /A1/). Erforderlich hierzu ist die Erstel-
lung einer 10—er Scheibe gem&fl der Beschreibung am Ende dieses Kapitels.

Wir kodieren hierzu in Assembler

RORG O relativierende Assemblierung
DC $AEB1 erstes Wort der Signalmarke
DC $BF95 zweites Wort der "

DC (10%2+1)*37 Kennung Scheibe 10

DC 2 LDN der A2-Schnittstelle

DC $3300 gewuenschte Device-Parameter
DC 0 Endekennung dieser Scheibe
END Ende Assemblierung

Wird dieser Text assembliert, so erhélt man

1. in der Assemblerliste eine auf Adresse 0 beginnende Speicherbelegung
$AEB1, $BF95, $0309, $0002, $3300, $0000

2. die hierzu gehorenden S—Records in der CO-Datei des Assemblers.

Wird der generierte Code in der EPROM-Bank2 ab Adresse $AECC abgelegt, so
iibernimmt das System die gewiinschte Device-Parametrierung beim Kaltstart.

630 9.2 Modifikation eines Systems

Als etwas aufwendigere Aufgabe betrachten wir die Einbindung eines PEARL-
Programmes in das System zur Ausfithrung als Auto-Start—Task nach Kalt—
und Warmstart des Systems. Gleichzeitig sollen Compiler und Assembler aus
dem System entfernt werden, um den verfiigharen EPROM-Platz zu ver-
groflern. Voraussetzung hierfiir ist das Vorhandensein des PROM—Befehls.

a) nicht elegant, aber einfach:

Ist das PEARL-Programm geschrieben und iibersetzt, so laden wir es (méog-
lichst mit Size-Angabe geméfi Compilerbilanz) an die Speicheradresse, auf der
es im spéteren Betrieb ausgefithrt werden soll. Anschliessend kann mit der
Anweisung

AUTOSTART modulname, taskname

die gewiinschte Task in eine Autostart—Task umgewandelt werden. (Bitte jetzt
nicht ABORT betédtigen — die Task wiirde sonst als Autostart—Task sofort star-
ten!). Es ist allerdings sinnvoller, gleich beim Codieren in PEARL der Task das
»MAIN“-Attribut zu geben. Mit dem Befehl

PROM modulnamex*

koénnen wir nun (s. Beschreibung Befehl PROM, Seite 186) S—Records erzeu-
gen. Diese S—Records sollten vom EPROMmer ab Adresse $0 der Bank2
in einen EPROM-Satz programmiert werden. Werden die so programmier-
ten EPROMs statt der Compiler/Assembler-EPROMs eingesetzt, so startet
das System sofort nach Kalt— oder Warmstart unsere Autostart—Task. Das
PEARL-Programm wird nun allerdings nicht aus dem EPROM heraus exe-
kutiert, sondern beim Kaltstart auf die Adresse kopiert, auf der wir es beim
PROMmen geladen hatten.

b) eleganterer Weg:

Nach einem ersten Compilerlauf merken wir uns die Grofenangabe aus der
Compilerbilanz ($zzzz BYTES), z. B. $E78. Fiir einen zweiten Compilerlauf
fiigen wir vor den Anfang des PEARL-Moduls die Zeile

SC=$E78,CODE=$FA0000, VAR=$3000;

in den Quelltext ein. Der Compiler generiert nun Code, der aus dem EPROM
heraus exekutiert werden kann (beginnend auf Adresse $FA0000), lediglich der
Modulvariablenbereich muf} hierzu im RAM vorhanden sein. Nach dem Laden
(auf beliebige Adresse) konnen wir (falls wir das , MAIN“-Attribut vergessen
hatten) mit der Anweisung

AUTOSTART modulname, taskname

die gewiinschte Task in eine Autostart—Task umwandeln. Mit dem Befehl

9.2 Modifikation eines Systems 631

0 /ED/SR;PROM modulname*

kénnen wir nun (s. Beschreibung PROM-Befehl, Seite 186) S—Records erzeugen.
Im File /ED/SR erscheinen zwei SO...82...S9 Blocke (z. B. Zeile 1 — 27 und
Zeile 28 — 67), die wir mit der SC-Option des COPY-Befehls in getrennte Dateien
kopieren (zwei Durchgénge).

Die S—Records des zweiten Blocks miissen mit einem EPROMmer ab Adresse
$0 der Bank2 (entspricht der physikalischen Adresse $FA0000, s. CODE= Anga-
be) in einen Satz EPROMs programmiert werden. Die S—Records des ersten
Blocks konnen in einen beliebigen, ausreichend groflen Freiraum des EPROM-
Satzes gebrannt werden. Haben wir sichergestellt, dafl unsere EPROM-Daten
noch vom Scan—Bereich des Systems erfafit werden (ggf. Nukleus+$20 aufwiirts
dndern), so kénnen wir unsere EPROMs statt Compiler und Assembler einset-
zen.

Statt der obigen Aktion mit Laden und PROM-Befehl ist normalerweise die Ver-
wendung der PROM-Option des Linkers bequemer.

Beim Kaltstart des Systems richtet der Nukleus nun im RAM folgende Ab-
schnitte ein:

1. den Modulvariablenbereich, beginnend bei Adresse $3000 geméifl der VAR=
Angabe,

2. und Taskkopfe fiir alle Tasks unseres Moduls ein. Unsere Autostart—Task
wird nach der Warmstartphase gestartet.

632 9.2 Modifikation eines Systems

Aufgabe 3

Als aufwendigsten Fall betrachten wir die Einbindung eines E/A-Treibers
gemifl dem Beispiel von Seite 614.

Zunichst kodieren wir einen Scheibenkopf fiir eine 1-er Scheibe (Systemtask—
Definition):

DC $AEB1,$BF95, (1x2+1) %37

DC.B $01,$80 Normale Task als Betreuungstask
DC.B ’MYQUE °’ Name der Task
DC -1 sehr hohe Prioritaet
DC.L $100 256 Byte Workspace noetig
(je nach Bedarf, muss aber > $66)
DC.L START-$ relativierte Startadresse
DC 1ldn LDN wie im Beispiel
DC 0 Endekennung fuer diese Scheibe

Da wir unsere Routine im EPROM ablegen wollen, konnen wir eventuellen
Speicherbedarf der Interrupt—Routine nicht iiber DC-Anweisungen reservieren.
Daher miissen wir beim Kaltstart einen Speicherbereich als Interrupt—Puffer
anfordern, d. h. als Speicherbereich, der nur unserer Interrupt-Routine zur
Verfiigung steht. Wir entnehmen mit der auf Seite 641 beschriebenen Methode
die schon belegten Interrupt—Puffer und wéhlen einen der freien Interrupt—
Puffer. In diesem Beispiel verwenden wir den IDP5. Zur Anforderung kodieren
wir daher eine 6-er Scheibe:

DC $AEB1,$BF95, (6%2+1)*37 6-Scheiben-Marke
DC 100 z.B. 100 Byte Puffer

Das System reserviert hierdurch 100 Byte Speicherplatz. Die Adresse des ersten
Bytes dieses Speicherbereiches finden wir nach dem Kaltstart des System auf
der Adresse $842.

Weiterhin soll unsere selbstdefinierte Datenstation auch unter einem Namen
(Mnemo) vom Bedieninterface her erreichbar sein (von der PEARL-Ebene her
ist unsere Datenstation nur iiber /LD/ldn.drive/ erreichbar). Wir kodieren
daher weiterhin eine 9—er Scheibe:

DC $AEB1,$BFO5, (9%2+1)*37 9-er Scheiben-Marke
DC.B ’MQ’ Mnemo

9.2 Modifikation eines Systems 633

DC.B 1dn+$80 LDN und Textende-Markierung

DC.B O Laufwerksnummer, wir nehmen
hier Drive O

DC.B O Ende der Scheibe

und haben hiermit den Mnemo—Anschluf} installiert.

Wollen wir auch noch Eigenschaften der Datenstation vorbesetzen, so kénnen
wir dies mit einer 10—er Scheibe (s. Aufgabe 1) tun.

Sollte unsere Datenstation iiber einen Peripheriebaustein mit der Auflenwelt
kommunizieren, so muf} dieser Baustein im Regelfall beim Warmstart (Abort,
oder nach der Reset—Kaltstart—Phase) initialisiert werden. Hierzu kodieren wir
eine 15—er Scheibe:

DC $AEB1,$BF95, (16%2+1) %37
R Maschinenkode zur Initialisierung
RTS Ruecksprung

Der Nukleus springt diese Code—Sequenz im Supervisor-Mode an. Bei der Er-
stellung des Maschinencodes miissen wir die bei der Beschreibung der Scheibe
gemachten Einschrankungen beachten. Nun kénnen wir mit der Programmie-
rung der Datenstation geméfl dem Beispiel von Seite 614 beginnen:

START TOQ Maschinencode wie im
Beispiel
RELCE
BRA START

Da der von unserer Datenstation angesprochene Peripheriebaustein Interrupts
auslosen kann, miissen wir noch einen Interrupt—Antwortroutine erstellen. Hier-
zu kodieren wir zunéchst eine 14—er Scheibe:

DC $AEB1,$BF95, (14%2+1)*37 Kennmarke

DC $220,IRENT-$-2 setzt Interruptvektor auf
unsere Interrupt-Routine

DC O Endemarke

634 9.3 Beschreibung der Scheiben

wobei wir annehmen, dafl unser Peripheriebaustein genau diesen Interrupt er-
zeugen kann. Selbstverstdndlich miissen wir hierzu die Eigenschaften der Hard-
ware kennen und wissen, welche Interruptvektoren uns zur Verfiigung stehen.

Nun kénnen wir den eigentlichen Interrupt—Prozefl wie im Beispiel gemé&f Seite
614 kodieren (Formatdatei SUPERVIS.FOR included):

IRENT IRENTC IRMAL,$220 Rette alten IID, lege Zeiger auf
IRMAL davor etc.
Maschinencode wie im Bei-
spiel, merke: Interruptpuffer
ueber IDP1 ... IDP7 erreichbar

IRMAL ... Malfunction, wie im Beispiel

Damit ist der gesamte Code fiir unsere Datenstation erstellt. Wir brauchen nur
noch zu assemblieren und kénnen den erhaltenen Code ins EPROM program-
mieren.

Beachten wir, daf§ ggf. der Scan—Bereich des Nukleus angepafit werden muf,
um alle Scheibenkopfe zu erfassen, und haben wir bei der Programmierung
darauf geachtet, dafl unser Programm frei im Speicher verschieblich ist (keine
absoluten Spriinge etc.), so sollte unsere Datenstation einsetzbar sein.

9.3 Beschreibung der Scheiben

Im folgenden werden die Scheiben in numerischer Reihenfolge beschrieben. Dies
bedeutet jedoch keineswegs, daf sie in dieser Reihenfolge vom Abtaster erfafit
werden oder in dieser Reihenfolge im abgetasteten Speicher stehen miissen.

9.3 Beschreibung der Scheiben 635

Scanbereich bedingt iiberspringen Scheibe: -1

Signalmarke: $AEB1, $BF95, $FFDB (=1-2+1)-37 =$FFDB

Diese Scheibe ist nur wirksam, wenn nicht der nukleuseigene normale Scan—
Trap, sondern die Hochgeschwindigkeitsscanscheibe (Scan—accelerator) benutzt
wird. Der Scan—accelerator sammelt nimlich zunédchst alle Adressen mit Signal-
marken in einer eigenen Liste und beim Sammeln dieser Adressen kénnen mit
Hilfe dieser (—1)—Scheibe einzelne Adrefibereiche in Abhéingigkeit von bestimm-
ten Systemreaktionen {ibersprungen werden. Dazu wird wiahrend der Kaltstart-
phase ein in der Scheibe vereinbartes Unterprogramm exekutiert, welches mit
EQ = nicht springen oder mit NE = springen antworten muf}. Da der Adref3-
sammler diese Operation ausfithrt, konnen logischerweise keine 0—er Scheiben
damit iibersprungen werden. Auch kénnen nur solche Kaltstartscheiben (Nr.
18) iibersprungen werden, die spéter als die Scanaccelerator—Scheibe vom Ab-
taster erfaflt werden.

Aufbau hinter der Signalmarke (COMEQU included):

Entry DC.L Cont-$ Langrelative Sprungweite

MOVEA.L A7,A6 Stack retten

_MOVE.L BUSELK,D7 Buserror-Link retten

LEA Exit,A0 Aussprung

MOVE.L AO,BUSELK neuer Buserror

MOVEQ =1,DO Set to ’NE’ = Scanfortsetzung bei Cont

Alle Register frei bis auf D7,A6,A7

..... 1. Statement der Testroutine

MOVEQ =0,DO Set to ’EQ’ = Scanfortsetzung bei Entry
Exit _MOVE.L D7,BUSELK Buserror restaurieren

MOVEA.L A6,A7 Stack zurueckladen

TST DO Trap-Antwort

RTS Rueckehr in den Scanaccelerator

Hier liegen evtl. ueberspringbare Scheiben

Cont EQU $ Marke zur Scanfortsetzung
END Normalerweise Ende der Scheibe hier

636

9.3 Beschreibung der Scheiben

’SCheibe: -1 ‘ Fortsetzung

Die Scheibe ist fiir den Sonderfall gedacht, wenn z. B. ein System mit
unterschiedlichen Kartenbestiickungen hochgefahren werden soll und
RTOS-UH sich selbsttétig an die aktuellen Gegebenheiten anpassen
mufl. Wenn etwa eine serielle Schnittstellenkarte nicht eingesteckt ist,
so kann mit Hilfe der Scanacceleratorscheibe und einer solchen (—1)—er
Scheibe verhindert werden, dafl die fehlende Karte initialisiert wird.
Auch der Einbau des zugehorigen Treibers in das System l&8t sich
unterdriicken.

Ein evtl. Buserror muB durch Retten und voriibergehende Anderung
des Links (BUSELK) unbedingt selbst abgefangen und in NE verwandelt
werden. Sonst wird beim Buserror der ganze gerade aktuelle Scanbe-
reich vorzeitig beendet. (BUSELK liegt beim 68k auf $8, beim PowerPC
auf $4008) Es muf} auch der Stack geordnet verlassen werden (A7 muf
richtig stehen).

9.3 Beschreibung der Scheiben 637

Erweiterte Scan-Tabelle anschlief3en Scheibe: 0

Signalmarke: $AEB1, $BF95, $0025 (0-2+1)-37=%$0025

Bevor iiberhaupt irgendeine Abtastung beginnt, inspiziert der Nukleus, ob in
seiner Scan—Bereichsbeschreibung auf den Zellen Nukleus+$20 (beim PowerPC
8 hoher!) nicht evtl. die beiden ersten Langworte Null sind. Ist dies der Fall,
dann nimmt er die Langadresse auf Nukleus+$28 (beim PowerPC 8 hoher!) als
absolute (1-er Bit ist Null) oder zum Nukleus relative (1-er Bit ist 1) Start-
adresse, um von dort aus die erste O—er Scheibe zu suchen. Weiter dahinter
liegende O—er Scheiben werden nicht mehr beriicksichtigt. Hinter der O-er Si-
gnalmarke folgt nun eine beliebig lange Tabelle mit absoluten (gerade) oder
relativen (ungerade) Adressen, die die einzelnen Scan—Bereiche festlegen.

Aufbau hinter der Signalmarke:

DC.L. Startl,Endil Bereich 1
DC.L Start2,End2 Bereich 2
DC.L Start3,End3 Bereich 3
DC.L O Stop-marke
Die Tabelle selbst hat also genau die gleiche Struktur, wie jene, die gewthnlich
im Nukleus steht — sie ist jetzt aber nicht mehr auf max. 2 Scanbereiche
beschrinkt.
Beispiel: DC $AEB1,$BF95,$0025 Signalmarke
DC.L $1,$1FFFF Relativ zum Nukl. 128 kByte
DC.L $800000,$80FFFE absolut 64 Kbyte dort oben
DC.L $30001, $5FFFF relativ zum Nukl. 192 kByte
DC.L O Stop-marke
-—=> Nicht vergessen, auf Nukleus+X die 3 magischen Langworte einzuset-
zen (X=$20 beim 68k, $28 beim PowerPC!):
Nukleus+X $00000000 Triggert Suche der 0O-er-Slice
-?7— 4X+4 $00000000 —---- 0 e

-?’- +X+8 $0001F001 obige O-er Scheibe wird hier
ab Nukleus+$1F000 gesucht

Falls bei dieser Besetzung der Zellen keine 0—er Scheibe gefunden wird, 1lduft das
System nicht an. Die Verwendung der O—er Scheibe ist nur sinnvoll, falls mehr
als 2 Scan—Bereiche bendtigt werden oder andere Griinde fiir eine auflerhalb
des Nukleus liegende Tabelle sprechen.

638 9.3 Beschreibung der Scheiben

Scheibe: 1 Systemtask definieren

Signalmarke: $AEB1, $BF95, $006F (1-2+41)-37 =$006F
Bytes hinter der Signalmarke:

$0 Type (s. u.)

$1 Class (s. u.)

$2 ... 97 Name-info

$8 ... $9 Priority

$A ... $D Size of required Workspace, 4 bytes.

$E ... $F Start-PC minus location of this word.

($10 ... $11 Only if class is $80 or $01: LDN.

$10 (or $12) Type (next task)

$11 (or $13) Class (next task)

Start-PC relative or LDN
of last task.

DC.W O $0000 Stop-marker this slice.
Ist das spéitere 2. Byte des Typwortes im RTOS—UH:
$01 Normale Task.
$81 Residente Task.
$41 Normale Task mit Autostart.
$C1 Residente Task mit Autostart.
--> andere nicht erlaubt, reserviert
Gibt an, welche Sonderform der Task vorliegt:
$00 Normale Usertask.
$01 Primaere Shell fiir LDN (s. o.)
$02 Der Systemdédmon #ERRDM.
$80 Eine I/0-Queue-Betreuungstask fiir die

Warteschlange der LDN (s. o.)
MSB oder LDN null oder 2. LDN (z. B. VI/VO)
--> andere nicht erlaubt, reserviert

9.3 Beschreibung der Scheiben 639

Fortsetzung Scheibe: 1

-—> Es darf im System nur einen Ddmonen #ERRDM geben. Ein Austausch
des standardméflig vorhandenen ist nur bei sehr kleinen reinen Lauf-
systemen sinnvoll - etwa um eine LED im Fehlerfall aufleuchten zu
lassen etc. Die Ubergabedaten finden sich im ringférmigen Errorpuf-
fer des Systemes.

- Bei den I/O-Tasks wird der entsprechende Anschlufl fiir den Trap
XI0 automatisch hergestellt. Zum Bekanntmachen des Stationsna-
mens und der Eigenschaften sind besondere Scheiben vorgesehen.

Ist auf 2 Arten wahlweise kodierbar:

1. Genau 6 ASCII-Bytes (wie im Beispiel)

2. Relativierter 4-Byte-Zeiger auf den Namensstring, der durch $FF beendet
wird. In diesem Fall haben die restlichen 2 Bytes keine Bedeutung, miissen
aber als Nullwort angelegt werden. Die Relativierung erfolgt iiber

DC.L Textad-$
DC.W O

Textad DC.B ’mueller’,$FF

Beispielscheibe

DC $AEB1,$BFI5, (1%2+1)*37 Signalmarke.
DC.B $C1,0 Resident, Autostart, normal
DC.B ’#SELFT’ 6 bytes name of task
DC $7FFO Extremely low priority.
DC.L $66 Workspace ($66 is minimum!!)
DC START-$ Start-PC relative
DC $0 Stop-marke fiir diese Scheibe.

START MOVE ... Anfang der Systemtask.

640 9.3 Beschreibung der Scheiben

Scheibe: 1 Fortsetzung

Hinweis 1

Alle residenten Systemtasks erhalten bereits beim Kalt- oder Warmstart ihren
Taskworkspace im Bereich unterhalb des dynamisch verwalteten Speicherberei-
ches. Damit soll der Verwaltungsaufwand reduziert werden.

Hinweis 2

Tasks mit gesetztem Autostart-Bit (wie im Bsp.) laufen beim Aufsetzen des
Systemes unter Beriicksichtigung der festgelegten Prioritéit sofort los. Auch
I/O-Betreuungstasks diirfen ggf. vom Autostart-Typ sein, obwohl eine etwaige
Peripheriebaustein-Initialisierung in einer Warminitialisierungsscheibe besser
aufgehoben ist.

9.3 Beschreibung der Scheiben 641

Interruptbuffer installation ’Scheiben: 2..8

Signalmarken: $AEB1, $BF95, (x -2+ 1) - 37 r=2,3,4,5,6,7,8

Das System stellt einen Interruptpuffer fiir den Level (z — 1) zur Verfiigung des
Systemprogrammierers. Dabei wird wihrend des Autolinking fiir jeden Level
nach der grofiten Anforderung gesucht. Nur dieser Maximalwert wird beriick-
sichtigt. Auf den Zellen ,, IDPy* legt das System einen 4 Byte Zeiger ab, der auf
den Anfang des Puffers fiir den Level y zeigt.

Wort hinter der Signalmarke: 2 Byte lange Puffergrofe, z. B.:

DC $AEB1,$BF95, (4%2+1)*37 Level 3
DC 100 100 Bytes

Falls nirgendwo im abgetasteten Bereich fiir den Level 3 eine groflere Anforde-
rung gefunden wird, so werden genau 100 Byte Puffer fiir den Level 3 bereit-
gestellt.

Die Verwaltung der Displacements mufl der Systemprogrammierer selbst tiber-
nehmen. Insbesondere diirfen bei Einbau dieser Scheibe schon angeforderte Zel-
len nicht benutzt werden. In Zweifelsfillen kann man aus den IDP-Differenzen
im Zielsystem ablesen, ab welchen Displacements Platz definiert werden kann.
(Im obigen Bsp: Inhalt IDP4 - Inhalt IDP3 = Puffergr. 3)

Die 7 IDP-Zeiger (4 byte) stehen im System unmittelbar hintereinander, ihre
tatsdchliche Adresse wird mit der Datei COMEQU included. Dabei gilt:

IDP1=$832 beim 68k
IDP1=$508C beim PowerPC

Beispiel zur Verwendung des Interruptpuffers:

HILF1 EQU 30 Start-displacement

HILFXY EQU 34 Irgendeine Variable

SIZE EQU 38 Letztes Byte auf displacem. 37
DC $AEB1,$BF95, (6%2+1) %37 Level 5
DC SIZE

IRENTR IRENTC MALF,Vectoradr T-Code-Format IR-Entry
MOVEM.L AO-A3,-(A7) angenommenes Beispiel.
MOVEA.L IDP5, A0 Basiszeiger

MOVE.L HILFXY(AO), ... typ. Zugriff.

642 9.3 Beschreibung der Scheiben

’Scheiben: 2..8 Fortsetzung

Hinweise

Der Zeiger IDP1 wird im System zum Loéschen des gesamten Interruptpuffers
(bis zum Ende des IDP7) bei jedem Warm- oder Kaltstart benutzt, darf also
nicht vom Programmierer ,, verbogen“ werden.

Theoretisch wiirde ein einziger IDP fiir alle Interrupts geniigen, die Aufteilung
nach Levels ist nur zur besseren Softwarestrukturrierung gedacht.

Weil samtliche Zellen in den Interruptbuffern bei jedem System-Neustart und
-Abort auf Null zuriickgesetzt werden, eignen sie sich auch hervorragend fiir
systeminterne Semaphor- oder Boltvariable.

9.3 Beschreibung der Scheiben 643

Definition einer Datenstation Scheibe: 9

Signalmarke: $AEB1, $BF95, $002BF (9-2+1)-37 =$02BF

Mit dieser Scheibe werden dem System ein oder mehrere Namen von neu de-
finierten Datenstationen hinzugefiigt. Das Bedieninterface kann mit Hilfe der
Informationen dieser Scheibe aus einem Textstring dann die zugehorige Warte-
schlangennummer (LDN) und die zugehorige Untergliederungsnummer (DRIVE)
ermitteln.

Aufbau hinter der Signalmarke:

$0 ... 7 Alphanumerischer Textstring beginnend mit Buchstaben.

$x ... 1 Byte LDN mit aufgeodertem Bit $80. (Dient gleich-
zeitig als Endemarke fiir den Textstring).

$x+1 1 Byte DRIVE, z. B. Laufwerksnummer.

$x+2 Nachster Textstring wie oben etc.

$y 1 Byte LDN plus $80

$y+1 1 Byte DRIVE.

Letzter Block mit Textstring, 1dn,drive.

$00 Stopmarke, Ende dieser Scheibe.

Beispiel: Sie wollen die Station ,PLOTTER* fiir die ,LDN 5“ einrichten, Lauf-
werksnummer sei 0 bzw. don’t care.

DC $AEB1,$BF95, (9%2+1) *37 Signalmarke 9-er slice
DC.B ’PLOTTER’,$80+5,$00 Name, ldn, drive
DC.B 0 Null markiert das Ende der Scheibe.

644

9.3 Beschreibung der Scheiben

Scheibe: 9 Fortsetzung

Damit die Station wirklich benutzt werden kann, miissen Sie noch mit
Hilfe der Scheibe 1 einen zur gewiihlten LDN passenden I/O-Démonen
bereitstellen. (s. Scheibe 1)

Wihlen Sie die LDN dabei nicht gréfer als notig. Der Nukleus sucht
im abgetasteten Speicher ndmlich nach der hochsten LDN aller 1-er
Scheiben (Nicht der 9-er). Diese bestimmt den freigehaltenen Platz
in der Tabelle ,LDN to TID“ (Zeiger auf Anfang der Tabelle heifit
SIOLDT, sieche Datei COMEQU). Diese Tabelle enthilt jeweils 4 Byte
(den TID) pro LDN).

Man kann allerdings auch gezielt Liicken bei den LDNs lassen. Diese
Tabellenliicken konnen durch Anschlufi von nachladbaren I/O-Tasks
(im verwalteten RAM) sinnvoll genutzt werden. So wird die I/O-Task
,hachmontiert®:

LDN EQU 5 Beispiel-LDN
TID EQU $802 bzw. $5000 Actual Task-ID
SIOLDT EQU $852 bzw. $50BO I/O LDN Table start
START MOVEA.L SIOLDT,A1 Tab-Zeiger
MOVE.L TID,LDN*4(A1) eigene TID
TOQ aus Schlange
BRA.B EXIT leer: Ende

hier Aktion der I/O-Task

Task einmal von Hand starten, ist dann betriebsbereit.

9.3 Beschreibung der Scheiben

Datenstationseigenschaften setzen

Signalmarke: $AEB1, $BF95, $0309

Die mit den Befehlen SD und DD (,,Set Device parameter® und ,,Display device
parameter”) zuginglichen Geriteeigenschaften konnen mit Hilfe dieser Schei-
be vorbesetzt werden. Beziehen sich mehrere solcher Scheiben auf das gleiche
Gerdét, so gelten die Eigenschaften der letzten vom Abtaster (Scanner) erfafiten

Scheibe.

|Scheibe: 10|

Aufbau hinter der Signalmarke:

2 Bytes
2 Bytes
2 Bytes
$00, $00
aa: $80 Bitfunktion
$40 Bitfunktion
$20 Bitfunktion
$10 Bitfunktion
$08 Bitfunktion
$04 Bitfunktion
$02 Bitfunktion
$01 Bitfunktion
bb: $80 Bitfunktion
$40 Bitfunktion
$20 Bitfunktion
$10 Bitfunktion
$08 Bitfunktion
$04 Bitfunktion
$02 Bitfunktion
$01 Bitfunktion

Start-LDN dieser Scheibe
aa,bb wie bei 8D, fiir Start-LDN.
aa,bb wie bei 8D, fiir Start-LDN—+1.

Stop-Marke dieser Scheibe.

Station ist riickspulbar (REWIND).
Station kennt OPEN/CLOSE.

Nach dem CR erwartet Station LF.
(CR=Carriagereturn, LF=Linefeed)
Station ist dialogfihiges Terminal
Station mochte kein Echo (RS232).
Station kennt RM bzw. ERASE.
Station ist fiir Ausgabe geeignet.
Station ist fiir Eingabe geeignet.

Station reagiert auf DIR+FILES
Station kennt Formatierbefehl.
Station kennt CF (Change)-Befehl
Hierarchische Verwaltung, MKDIR
SEEK, SYNC, SAVEPOS sind erlaubt.
Report Error ist moglich

Terminal (RS232c) Editor-parameter
Terminal (RS232c) Editor-parameter

(10-2 4 1) - 37 =$0309

646 9.3 Beschreibung der Scheiben

’ Scheibe: 10 ‘ Fortsetzung
Beispiel: DC $AEB1,$BFI5, (10*2+1) %37 Signalmarke

DC 11 Start-LDN

DC.B $2B,0 LDN 11

DC.B $33,0 LDN 12

DC.B $C7,$E0 LDN 13

DC.B 0,0 Stop-Marke

Die Station LDN=11 erwartet ein LF nach jedem CR, arbeitet in beiden Richtun-
gen und mochte kein Echo der eingegebenen Daten. Offensichtlich eine typische
Hostschnittstelle.

Die Station LDN=12 ist offenbar ein Terminal zum Editieren.
Die Station LDN=13 kénnte eine Floppy oder Wechselplatte sein.

---> Die Scheibe 10 entspricht einem automatischen SD-Befehl.

9.3 Beschreibung der Scheiben 647

Neuen Bedienbefehl definieren ’SCheibe: 11 ‘

Signalmarke: $AEB1, $BF95, $0353 (I1-2+1)-37=$0353

Das Bedieninterface wird fiir alle Nutzer um einen oder mehrere Befehle erwei-
tert. Dazu wird mit dieser Scheibe je ein ,Mnemo* der neuen Anweisung sowie
die relativierte Sprungadresse definiert.

-—=> Die definierte Aktion wird auf der Ebene des Bedieninterface mit
sehr hoher Prioritdt ausgefiihrt. Es ist darum bei zeitaufwendigen
Kommandos unbedingt zu priifen, ob nicht ein Sohnprozess generiert
werden sollte.

Aufbau hinter der Signalmarke:

[os]

DC. roLL? »String des Befehles“ (ohne Blanks im String!)
(DC.B 0) Nur wenn String ungerade Anz. Bytes besitzt!
DC.L Adr-$ Lang relative Ansprungadresse.

DC.B ...’ »String néchster Befehl“

(bC.B 0) Nur um String auf gerade Bytezahl zu fiillen.
DC.L Adr2-$ Lang relativierte Ansprungadresse.

$FFFF Stop-Marke, Ende dieser Scheibe.

Beispiel: Neues Kommando zum Inkrementieren der Zelle $FFA000.

DC $AEB1,$BF95, (11%2+1) 37 Signalmarke
DC.B ’INK’,$0 Befehlsname, mit $0 aufgefiillt.
DC.L INKSR-$ Ansprung
DC $FFFF Stop-marke
INKSR ADDQ.B =1,$FFA000 Eigentliche Operation
RTS Riicksprung Bedieninterface.

Nach Anschlag von Ctrl A oder iiber die XC-Station kénnte man nach Einfiigen
dieser Scheibe in den abgetasteten Bereich den Befehl ,INK*“ oder ,,ink* einge-
ben. Die ,,Shell“ von RTOS—UH wére also entsprechend erweitert. Das System
nutzt selbst teilweise diese Erweiterungsmoglichkeit, z. B. sind die floppyspezi-
fischen Kommandos durch eine kleine 11-er Scheibe innerhalb des Filehandlers
eingebaut.

648

9.3 Beschreibung der Scheiben

’ Scheibe: 11 ‘ Fortsetzung

Das Bedieninterface stellt fiir die Shellerweiterung eine Reihe von Hilfsfunktio-
nen zur Verfiigung. So gibt es die Moglichkeit, den weiteren Text hinter dem
Kommando zu analysieren, den Fehlerausgang anzuspringen oder etwa Sohn-
prozesse zu generieren und mit Parametern (SI=xx etc.) zu versorgen.

-—>

Die Register DO-D7, A3, A5 und A6 konnen frei benutzt werden. Das
Register A0 zeigt beim Einsprung auf die Unterprogrammtabelle des
Shell-subroutine-packages ,,SSRP“. Man kann mit JSR 4(AO) etc. die
Dienste des SSRP anwéhlen. A0 kann bei Bedarf verédndert werden.
Es lafit sich von der Zelle CIADR ($8B8 bei 68k, $51A8 bei PowerPC)
wieder auf die SSRP-Unterprogrammtabelle zuriickladen.

A1 zeigt auf das Communication Element des Bedieninterfaces, kann
notfalls aus dem Task-WSP (iiber A4) nachgeladen werden mit
MOVEA.L $8C(A4),A1.

A2 zeigt auf das néchste Zeichen des Eingabepuffers. Damit sind die
Traps CSA und QSA zur Textanalyse direkt anwendbar. Muf} geordnet
zuriickgegeben werden!

A4 zeigt auf den Task-Workspace des Bedieninterfaces.

A5 zeigt auf den Textpuffer eines fertigen Ausgabe-CE des Bedienin-
terfaces. Mit (A5)+ kann man hier Text ablegen und mit JSR 28(A0)
ausgeben. CR und LF werden dabei automatisch angehéngt. Die Ziel-
station ist durch das 0-Kommando steuerbar. Nach der Ausgabe wird
A5 wieder reinitialisiert.

A7 zeigt auf den Stack der Bedientask. Dieser liegt innerhalb des
Task-Workspace und enthélt die Riicksprungadresse in den Bedien-
interpreter. Platz fiir max. 5 Longwords.

Alle anderen Register stehen frei zur Verfiigung, werden jedoch von
den u. a. Unterprogrammen teilweise zerstort.

Der Riicksprung in den systemseitigen Interpreter mufl mit RTS er-
folgen, es sei denn, daf einer der iiber AO erreichbaren mit JMP anzu-
springenden Ausginge benutzt wird.

9.3 Beschreibung der Scheiben 649

Fortsetzung

| Scheibe: 11|

Tabelle der iiber AO erreichbaren Funktionen (JSR, JMP):

JSR 0(A0)
JSR 4(A0)

JMP 8(A0)
JSR 12(A0)

Hier nicht sinnvoll: Aufruf des SSRP Dekoders.
I/O-command processor (Dir,files,mkdir etc.)

Hinter dem JSR 4(A0) folgende 4 Bytes sind Parameter:
1. Wort: Die notwendigen Facilitybits (,SD*,,DD*)

2. Wort: links MODE rechts MODE+1 des Comm.El. ,CE“.
Subtask (son process)- generation.

Device/File decoder by (A2) to (A3)+

Ablage fiillt ein CE exakt, wenn mit A3 auf STATIO(...)
zeigend begonnen wird. Work. dir. etc. wird berticks.
Syntaxfehlerausgang (, WRONG COMMAND*).

Nicht innerhalb der Shell-task.

Nicht innerhalb der Shell-task

Make output of Text stored by (A5)+

CR und LF werden automatisch angehéngt.

Scan on class of character by (A2).

Write address in A3 as 8 hex. digits to (A5)+

650

9.3 Beschreibung der Scheiben

’ Scheibe: 12 ‘ RAM-Bereich definieren

Signalmarke: $AEB1, $BF95, $039D (12- %2+ 1) - 37 =$039D

Start und Ende einer beliebigen Zahl von RAM-Sektionen, die unter Verwal-
tung von RTOS—UH stehen sollen, werden mit dieser Scheibe definiert. Wenn
der Abtaster mehrere Scheiben des Typs 12 erfafit, so werden nur die Parame-
ter der letzten abgetasteten Scheibe giiltig. Man muf} also in jedem Fall mit
dieser Scheibe eine vollstéindige Definition angeben.

Aufbau hinter der Signalmarke:

-—>

DC.L RAM1begin,RAMlend Speichersektion 1
DC.L RAM2begin,RAM2end Speichersektion 2
DC.L RAMxbegin,RAMxend Speichersektion x
DC.L 0 Stopmarke dieser Scheibe

Die Adressen miissen gerade sein und oberhalb der 2. Adresse sollen
noch $20 Zellen RAM sein. (Ende ... EO)

Der Adressbereich der Sektion 2 muf} iiberlappungsfrei hoher liegen
als der von Sektion 1, der von Sektion 3 entsprechend hoher sein als
der von Sektion 2 etc.

Die zwischenliegenden Liicken werden vom Nukleus als scheinbare
(unloschbare) Module Namens #NORAM angelegt und erscheinen ent-
sprechend beim S-Befehl.

Die letzte Adresse vor der Stopmarke darf zusétzlich noch mit ge-
setztem LS-Bit versehen werden. Dann wird von der angegebenen
Adresse aus bis zum Bus-error oder bis zum ROM oder bis zum Er-
reichen des Nukleus in 1 kB groflen Schritten getestet und die so
ermittelte Obergrenze eingesetzt. Achtung: Ende mit $. . .E1 setzen!

9.3 Beschreibung der Scheiben 651

Fortsetzung ’ Scheibe: 12 ‘
Beispiele:
DC $AEB1,$BFI5, (12%x2+1)*37 12-er Signalmarke
DC.L $12000,$0001FFE1 ’open end’-spezif.
DC.L 0

Das verwaltete RAM erstreckt sich von $12000 bis zum durch Probieren (Bus-
error, unverénderlich oder Nukleus erreicht) ermittelten oberen Grenzwert.

DC $AEB1,$BFO5, (12%2+1) %37 12-er Signalmarke
DC.L $800, $3FFEO Fixierter Bereich
DC.L $00080000, $000FFFEOQ z. B. VME-System.
DC.L 0

Die Grenze von $800 wird automatisch um die Anzahl Zellen, die RTOS—
UH dort unten anlegt (ohne evtl. RTOS—UH-Code!), nach oben korrigiert.
VORSICHT, wenn RTOS—UH-Code unten im RAM liegt!

652 9.3 Beschreibung der Scheiben

’ Scheibe: 13 ‘ Modulvariablenblock einrichten

Signalmarke: $AEB1, $BF95, $03E7 (13-2+1)-37 =$03E7

Bei ROM-residenten miteinander kommunizierenden Tasks tritt das Problem
auf, einen gemeinsamen Variablenblock zu definieren und diesen beim System-
start zu initialisieren. Da die Tasks wegen der grofien Distanz auf diese Objekte
mit absolut langer Adressierung zugreifen miissen, mufl die Adresse dieser Mo-
dulvariablen fest definiert werden kénnen.

Aufbau hinter der Signalmarke:

DC.L Adr.1 Anfangsadresse des Moduls, gerade.*
DC.L Adr.2 Adresse der (freien) Folgesektion, gerade.*
DC.B ’Name6b’ 6 Byte langer Modulname.*
DC.L Dataladresse. (Adr. erstes von Null versch. Wort).*
DC.L Blocklaenge. (Anzahl der Datenworte).*
DC.W Erstes Datenwort. *
e . Datenblock No. 1 *
DC.W Letztes Datenwort. *
DC.L Data2adresse. (Anfang naechster Datenblock).*
DC.L Blocklaenge. (Anzahl der Datenworte).*
DC.W Erstes Datenwort. *
. . Datenblock No. 2 *
DC.W Letztes Datenwort *
*

. Datenblock No. x *

DC.L 0 Statt Datenadresse: Stopmarke der Scheibe.x*

—-—> Der angegebene feste Adressraum mufl beim Hochlaufen wirklich im

verwalteten RAM verfiigbar sein, sonst ldauft das System nicht an.
Alle Worte fiir die keine Initialdaten angegeben sind, werden vom
Nukleus zu Null gesetzt.

9.3 Beschreibung der Scheiben 653

Fortsetzung ’ Scheibe: 13 ‘

Beispiel:
DC $AEB1,$BFO5, (13*2+1)*37 Signalmarke. *
DC.L $3000 Anfangsadresse. *
DC.L $4000 Naechste FREE- Sektion.*
DC.B ’Testmd’ Name des Modules. *
DC.L $3100 Datenblock-adr. *
DC.L 4 4 Worte zu initialis. *
DC 1 Datum *
DC 2 -7- *
DC 3 =)= *
DC 4 =)= *
DC.L O Stopmarke der Scheibe. *

PEARL-Module fiir EPROM-Programme werden erst in das Zielsystem gela-
den, dann mit dem PROM-Befehl (siehe Seite 186) in obenstehende Scheibenda-
ten verwandelt.

Bequemer ist in der Regel jedoch die Verwendung des Linkers, der ebenfalls
diesen Scheibentyp erzeugen kann.

654 9.3 Beschreibung der Scheiben

’ Scheibe: 14‘ Anschlufl von Traps und IR-Vektoren

Signalmarke: $AEB1, $BF95, $0431 (14-2+1) - 37 =$0431

Fiir nutzerdefinierte Interruptprozesse mufl das System eine Moglichkeit zum
Besetzen der entsprechenden Adressvektoren schon wihrend der Hochlaufphase
bereitstellen.

Aufbau hinter der Signalmarke:

DC.W Adr.1 Vektor- oder Pseudovektoradresse. *

DC.W Jumpadr1-$ Zieladresse fuer Ansprung relativ.*

DC.W Adr.2 Naechste Vektoradresse o.ae. *

DC.W Jumpadr2-$ Relativierte Zieladresse. *

DC.W 0 Statt Vektoradresse: Stopmarke. *

Beispiel: Der Userinterrupt $200 soll nach dem Aufsetzen auf die Adresse
»XYZ zeigen.

DC $AEB1,$BF95, (14%2+1) *37 Signalmarke *

DC $200,XYZ-$-2 -2 wegen 2 Worte im DC!=*

DC 0 Stopmarke *

..... *

*

XYZ IRENTC XYZMAL,$200 Save old Interrupt-Id etc. *

MOVEM.L DO-D3,-(A7) Privat benutzte Reg. retten *

..... Interrupt-code nach Anwendungk

EXIT MOVEM.L (A7)+,D0-D3 Privat benutzte Reg. rueckladen

IREXTC Exit-Format f"ur Interrupts *

..... *

* Rueckfallroutine, falls Bus-/Adr-/Opcode-exc. im Interrupt: *

XYZMAL MOVE ... z.B. Controller abstellen *

BRA EXIT *

Interruptprogramme miissen den vorgeschriebenen Ausgang benutzen, da sonst
der Taskumschalter (Dispatcher) ausfallen kann.

9.3 Beschreibung der Scheiben 655

Fortsetzung ’ Scheibe: 14 ‘

Die angegebene Vektoradresse rechnet sich relativ zum , Exception origin®
EXCORG, der nur beim 68k den Wert Null hat ($4000 beim PowerPC). Den
jeweils passenden Wert von EXCORG erhélt man bei Bedarf (s.u.) durch Inklu-
den des Files COMEQU automatisch.

Will man den Mechanismus ,,miflbrauchen, um eine andere Speicherstelle (die
kein Exceptionlink darstellt) vorzubesetzen, so ist EXCORG bei der Angabe der
Vektornummer abzuziehen:

DC Helplk-EXCORG,HELP-$-2

Nun wird die physikalische Adresse Helpk mit der Adresse der Routine HELP
besetzt.

Damit koénnen prinzipiell alle Speicherzellen im Bereich von EXCORG bis
EXCORG+$7FFE auf diese Weise mit Adresszeigern (4 byte Adr) automatisch
versorgt werden, leider kann man damit dann auch u. U. systemeigene An-
schliisse zerstoren. Es wird bei Scheiben mit gleichen Vektoradressen immer
die letzte vom Abtaster erfaite Scheibe als giiltig genommen.

Man beachte bei dem relativierten zweiten 16-Bit Wort, dal das $-Symbol im
Assembler immer den Anfang des DC-Blockes bezeichnet, das relativierte Wort
aber auf seine eigene Adresse bezogen wird. (Daher die Korrektur mit $-2 im
obigen Beispiel).

Warnung:

Wegen der Einfithrung von EXCORG ist bei der Umstellung von 68k-
Assemblertext auf T-Code besondere Vorsicht bei allen 14-er Scheiben
geboten. Es laufen nur solche Programme korrekt, bei denen tatséchlich
ein Interrupt-, Line-A- oder Traplink angeschlossen wird. In den anderen
Fillen ist die Korrektur mit EXCORG (wie oben) nétig.

656 9.3 Beschreibung der Scheiben

’ Scheibe: 15 ‘ Warmstart Initialisierungscode

Signalmarke: $AEB1, $BF95, $047B (15-2+1) - 37 =$047B

Bei der Verwendung von Peripherie-Kopplern kommt es oft zur Notwendigkeit,
deren Controlregistern beim Systemstart eine gewisse Anfangsinformation mit-
zugeben. Auch z. B. das Auslesen einer batteriegepufferten Uhr (um damit die
Planungsuhr des Systemes zu stellen) sollte bei jedem Warm- oder Kaltstart er-
folgen. Um dies dem Systemprogrammierer zu ermoglichen, sucht der Nukleus
nach AbschluB aller sonstigen Aufsetzoperationen mit dem Scanner (Abtaster)
nach 15-er Scheiben, um deren Code nacheinander zu exekutieren.

Aufbau hinter der Signalmarke:

Maschinencode fast beliebig, aber kein Tasking, I/O etc.
Alle Register bis auf A7 frei verfiighar.
RTS Riickkehr in den Nukleus.

Wichtiger Hinweis!

Das System befindet sich noch in einem sogenannten , Kernelmode*
auf der Supervisorebene und kann daher seinen Taskumschalter noch
nicht benutzen. Queued I/O ete. ist also keinesfalls moglich. Tritt
in dem Scheibencode eine exception (Buserror etc.) auf, so lduft das
System unter Umstédnden mit einem Notstart an. Die im Abtastbe-
reich folgenden 15-er Scheiben werden dann nicht mehr exekutiert,
ohne daf} dies erkennbar sein muf3.

Beispiel: Schreibe das Byte $3C in den Coupler $FF60A2 ein.

DC $AEB1,$BF95, (15%2+1) %37 Signalmarke
_MOVE.B =$3C,$FF60A2 Initialisierung
RTS Zurueck (Nukleus)

Die Bearbeitung der 15-er Scheiben erfolgt in der Reihenfolge, in der der Ab-
taster sie findet. In jedem Fall ist die Bearbeitung der letzten 15-er Scheibe
auch die letzte Aufsetzoperation des Nukleus. Danach startet unmittelbar der
Taskumschalter mit der héchstprioritierten Autostarttask. (Meistens #ERDMN)

Fiir Operationen, die nur beim Kaltstart ausgefithrt werden sollen, ist eine
eigene Scheibe (18) vorgesehen.

9.3 Beschreibung der Scheiben 657

Header-Text ’ Scheibe: 16 ‘

Signalmarke: $AEB1, $BF95, $04C5 (16 -2+ 1) - 37 =$04C5

Die Scheibe gestattet die Ausgabe von ASCII-Text, der in der RTOS-UH
Kopfzeile erscheint, sofern das System den standardméfigen ERROR-Déamonen
besitzt. Diese Scheibe wird ndmlich nicht vom Nukleus bearbeitet, sondern von
#ERDMN. Die Textzeichen werden nacheinander ausgegeben, ohne dafl automa-
tisch Carriage-Returns etc. eingefiigt werden. Solche Control-Zeichen miissen
also im Text enthalten sein. Der Text erscheint in der Reihenfolge, in der der
Scanner die 16-er Scheiben erfafit.

Aufbau hinter der Signalmarke:
DC.B >ASCII-Text’,$FF $FF ist Endekennung.
Beispiel:

DC $AEB1,$BF95, (16%2+1)*37 Signalmarke
DC.B $0A,$0D, ’Walter Meier’s RTO0S’,$FF Text

658 9.3 Beschreibung der Scheiben

’SCheibe: 17‘ Externsymbol definieren

Signalmarke: $AEB1, $BF95, $050F (17-2+1) - 37 =$050F

Es ist mit dieser Scheibe moglich, im EPROM oder RTOS—UH-Bootbereich
eine globale Marke zu setzen. Der Lader von RTOS—UH kann damit automa-
tisch z. B. EPROM-residente Unterprogramme an das Nutzerprogramm anbin-
den.

Wann immer der Lader eine nach dem Bearbeiten der Liste noch unbefriedigte
Referenz findet, sucht er mit Hilfe des Abtasters den RAM /Bootbereich nach
dieser Scheibe ab. Die Scheibe hat also fiir den Nukleus selbst keine Bedeutung,
da sie nur vom Lader bei Bedarf gesucht wird.

Aufbau hinter der Signalmarke bei kurzen Namen bis 6 Zeichen:

DC.B ’Name6b’ 6 Bytes langer globaler Name .
DC Adr-$ Relativierte Adresse des Symbols.

Aufbau hinter der Signalmarke bei Namen bis zu 24 Zeichen:

DC.L name-$ Relativer Zeiger 32 bit
DC 0 Indikator: ist Zeiger
DC Adr-$ Relativierte Adresse des Symbols.

Anderer Text oder nichts

name DC.B ’Ein_langer_Name, $20, $FF

Mit dem $FF als Stop-Marke endet der auf eine gerade Anzahl Zeichen auf-
gefiillte Text. Man kann auch kurze Namen mit der zweiten Konstruktion global
definieren. Der PEARL-Compiler benutzt diesen Weg bei der /*+G*/-Option.

9.3 Beschreibung der Scheiben 659

Fortsetzung ’ Scheibe: 17‘

Jede 17-er Scheibe kann nur genau ein globales Symbol definieren. Existieren
mehrere Scheiben mit dem gleichen Symbol, so verwendet der Lader die erste
vom Abtaster erfaite Scheibe.

Beispiel:
DC $AEB1,$BF95, (17*2+1)*37 Signalmarke 17.
DC.B ’RANF ° Globaler Name.
DC RANF-$ relative Einsprungadresse.
....... Beliebige Daten.
>RANF PRODEC R zum Beispiel: PEARL-Unter-
VARF Programmkopf

Das Label ,RANF* ist jetzt dem Lader so verfiigbar, als stiinde es in einem der
Input-files des Laders. Das Zeichen ,,>“ an der Einsprungstelle hat nichts mit
dieser Scheibe zu tun, sondern erméglicht gleichzeitig auch noch das normale
Linken des resultierenden S-Recordfiles. Es ist natiirlich durchaus méglich, dort
ein anderes Symbol als RANF zu benutzen, sinnvoll ist das meist nicht.

Auch die Einbaufunktionen des PEARL-Compilers werden mit Hilfe von 17-er
Scheiben angeschlossen, allerdings im Gegensatz zu den normalen Funktionen
mit gegen die offene PEARL-Welt geschiitzten Namen (z. B. #SSIN, #SSQRT)

660 9.3 Beschreibung der Scheiben

’ Scheibe: 18 ‘ Kaltstart Initialisierungscode

Signalmarke: $AEB1, $BF95, $0559 (18 -2+1)-37=%$0559

Bei der Verwendung von RAM-Modulen (etwa VME-RAM) kommt es oft zur
Notwendigkeit, deren Paritétsbits richtig vorzubesetzen, um einen Bus-error
beim spéteren Schreib/Lesezugriff zu vermeiden. Auch kann eine ,private“ No-
tiz, dafl es sich um einen Kaltstart handelt, niitzlich sein. Seltener dagegen wird
man Peripherie-Bausteine schon an dieser Stelle initialisieren wollen. Um die-
ses dem Systemprogrammierer zu erméglichen, sucht der Nukleus vor Beginn
aller sonstigen Aufsetzoperationen mit seinem Scanner (Abtaster) nach 18-er
Scheiben, um deren Code nacheinander zu exekutieren.

Aufbau hinter der Signalmarke:

Maschinencode fast beliebig, aber kein Tasking, I/O etc.
Alle Register bis auf A7 frei verfiigbar.
RTS Riickkehr in den Nukleus.

Wichtiger Hinweis

Das System befindet sich noch in einem sogenannten , Kernelmode*
auf der Supervisorebene und kann daher seinen Taskumschalter noch
nicht benutzen. Queued I/0 ete. ist also keinesfalls moglich. Tritt in
dem Scheibencode eine Exception (Buserror etc.) auf, so lduft das
System nicht an.

Beispiel: Losche das RAM von $80000 bis $FFFFF.

DC $AEB1,$BF95, (18%2+1) %37 Signalmarke

LEA $80000,A1 Start-adresse

LEA $100000,A2 End-adr.+1

CLR DO Null vorbereiten, denn CLR
* beginnt mit Read-cycle !!!!
LOOP MOVE.B DO, (A1)+ loeschen durch schreiben

CMPA.L A2,A1 Bedingung

BLT.S LOOP Schleifenruecksprung

RTS Rueckkehr in den Nukleus.

Die Bearbeitung der 18-er Scheiben erfolgt in der Reihenfolge, in der der Ab-
taster sie findet. In jedem Fall ist die Bearbeitung der 18-er Scheiben allen
anderen Operationen vorgelagert.

Fiir Operationen, die nur beim Warmstart ausgefithrt werden sollen, ist eine
eigene Scheibe (15) vorgesehen.

9.3 Beschreibung der Scheiben 661

Filehandler Link | Scheibe: 19|

Signalmarke: $AEB1, $BF95, $05A3 (19-2+1) - 37 =$05A3

Bekanntlich kénnen in RTOS—UH gleichzeitig mehrere unterschiedliche File-
systeme (RTOS, DOS, Mac-OS) benutzt werden. Wenn ein Filehandler nach
dem Offnen des Rootblockes (die ersten 1024 Bytes der Partition) feststellt, daf
er mit diesen Daten nichts anfangen kann, so sucht er im System nach weiteren
Filehandlern, die bereit sind, diesen File zu bearbeiten. Mit Hilfe dieser 19-er
Scheibe konnen nun solche anderen Filehandler aufgespiirt und angesprungen
werden.

Aufbau hinter der Signalmarke:
DC.L TESTXY-$ Lang relativer Verweis
Der Einstieg TESTXY hat folgende Parameterschnittstelle:

A0 In: Speicheradresse des eingelesenen Rootblockes.
DO Out: Antwort, bei DO=0 keine Akzeptanz.

Auch im Statusregister ggf EQ oder NE
A0 Out: Bei pos. Antwort: Filemanager Entry adr.

662 9.3 Beschreibung der Scheiben

(Leere Seite vor neuem Kapitel)

Kapitel 10: Netzwerkoperationen

Wenn Thr Rechner mit Netzwerk-Hardware ausgeriistet ist, kann auf Dateien
von ebenfalls an dieses Netzwerk angeschlossenen Rechnern mit dem Netzwerk-
Filehandler zugegriffen werden. Dazu geben Sie den Namen des Zielrechners,
gefolgt von dem Dateinamen, an. Mit dem Namen

/ST8/H0/COMMON/FILE1

kann auf die Datei ,FILE1* im Unterverzeichnis ,,COMMON“ auf der Platte ,,HO“
des Rechners mit dem Namen ,,ST8“ zugegriffen werden. Sie kénnen alle Befehle
verwenden, die fiir das entsprechende Gerit auf dem Zielrechner erlaubt sind.
Die einzige Ausnahme bilden die Befehle zum wahlfreien Zugriff, die iiber das
Netzwerk (noch) nicht abgewickelt werden kénnen. Die FORMAT-Befehle kénnen
aus Sicherheitsgriinden ebenfalls nicht iiber das Netzwerk abgesetzt werden.

Weiter ist es moglich, dafl Tasks iiber das Netzwerk direkt Daten austauschen
konnen. Wenn eine Task, die im Rechner ST5 abgearbeitet wird, Daten an eine
Task im Rechner ST8 senden mochte, so wendet sie sich an

/ST8/CHxxrx

wobei ,,CH* anzeigt, dal ein Datenkanal und keine Datei gemeint ist, und ,, zzzz”
der Name des Datenkanals ist. Die Task im Rechner ST8 mufl dann von

/ST5/CHxxxx

lesen. Da die Daten zur Ubertragung iiber das Netzwerk zu Blocken von 254
Byte zusammengefalit werden, ist ein CRhinter solchen Daten notwendig, die
sofort {ibertragen werden sollen.

Weitere besondere Befehle fiir das Netzwerk sind ,MES“ zur Ubertragung von
Nachrichten auf ein Bedien-Terminal und ,,IP“ zum Abbau einer hingengeblie-
benen Verbindung, wenn dies mit RETURN nicht mehr moglich ist.

Das RTOS—UH-Netzwerksystem kennt besondere Stationen, die etwa zum
Anschlu8 von Druckern, Plottern etc. dienen. Hier reicht die Angabe des Sta-
tionsnamens zum Zugriff. Diese Stationen kénnen aber nur einen Auftrag zur
Zeit bearbeiten, ist schon ein Auftrag in Bearbeitung, so erhélt man die Feh-
lermeldung ,,Station zur Zeit belegt“. Eine solche Station kénnte z. B. aus
einem EPAC bestehen, der nur die Aufgabe hat, den Drucker netzwerkfihig zu
machen.

663

664 10 Netzwerkoperationen

Obwohl der PEARL-Compiler die Netzwerkstationen nicht kennt, kann man
im SYSTEM-Teil eines PEARL-Programmes dennoch deren Namen verwenden.
Der Lader besorgt beim Laden des Programmes den entsprechenden Anschlufi:

NETFILE:/ST8/HO/COMMON/FILE <->;

oder

NETOUT :/ST8/CHzzrzrz ->;
oder

NETIN :/ST5/CHxzzz <=

Fiir den Zugriff auf einen Datenkanal muf3 der Filenamen also mit CH, sonst
mit dem Gerédtenamen anfangen.

Beispiele:
P /ST6/HO/PROG1>/ED/PROG1S LO /ST1

Ubersetzt aus der Datei PROG1 auf der Platte HO des Rechners ST6 und schickt
die Liste zur Druckerstation ST1.

DIR /ST6/HO
Gibt das Rootverzeichnis der Platte HO des Rechners ST6 aus.

DIR /ST6 Gibt alle Gerétebezeichner aus, die auf der Seite der Gegenstation
verfiighar sind.

FILES /ST7

Gibt alle Verbindungen aus, die auf der Station noch offen sind. Wenn /ST7 die
eigene Station ist, so kann man sehen, mit welchen Geriiten oder Files auf wel-
chen Rechnern noch Verbindungen aktiv sind. Natiirlich sieht man mindestens
die eigene Standardout Pathlist auf der Gegenstation offen, weil der Befehl ja
gerade dorthin schreibt.

10 Netzwerkoperationen 665

Init a Connection

Syntax: IP /stationname/pathlist
IP -S /stationname/pathlist

Die durch stationname und pathlist angegebene Verbindung wird auf Netz-
werkebene abgebrochen. Es werden jedoch keine evtl. noch offenen Dateien
geschlossen. Der Befehl ist nur anzuwenden, wenn RETURN oder CLOSE nicht
mehr zu dem gewiinschten Ergebnis fithren.

Stationname muf} ein im ausfithrenden System bekannter Name einer Netzsta-
tion sein.

Pathlist ist die exakte und im Zielsystem giiltige Pathlist einer offenen Verbin-
dung.

Beispiel: IP /SN17/PN;

IP -S /ST25/HO/TEX/PROJ.TEX
Der Parameter -S (Superuser) ist erforderlich, wenn die Verbindung von einem
anderen Nutzer aufgebaut wurde.

Das System antwortet mit ,,... JOB_ABORTED® oder ,,... FILE NOT FOUND“-
je nach Sachlage.

666 10 Netzwerkoperationen

LOCK Lock external access

Syntax: LOCK stationname [stationname]

Mit diesem Befehl kann man sich gegen (unbefugten) Zugriff anderer Netz-
stationen schiitzen, dabei aber gleichzeitig noch einen Zugriff auf bestimmte
Geriite oder Directories zulassen. Auch eine Verriegelung gegen alle anderen
Netzstationen ist moglich.

stationname: Die Elemente der Liste miissen im System bekannte Stationen
sein. Setzt man hier den eigenen Namen ein, so werden allen anderen Stationen
die Zugriffsrechte entzogen. Den eigenen Stationsnamen kann man mit ,,0WNST*
erfragen. Lesen Sie bitte dazu auf Seite 669 nach.

LOCK /SN6 /SN7
Hier schiitzt man sich gegen Zugriffe der Stationen /SN6 und /SN7.

Das System antwortet mit einer Meldung, die den gesamten Lock-Status fiir das
Netz beschreibt, in dem die jeweils adressierte Station der Liste zu finden ist.
Die ausgegebene Liste der Buchstaben ,,U“ und ,,L* ist nach ,DRIVE“-Nummern
geordnet.

Der komplementére Befehl zu LOCK ist ,,UNLOCK“. Er benutzt die gleiche Syntax
und antwortet ebenfalls mit einer Statusmeldung.

Durch Laden eines Assemblermodules ,NETLOK* oder Einbindung eines sol-
chen an geeigneter Stelle im EPROM kann man bestimmte Geréte oder Direc-
tories des eigenen Rechners trotz Sperre zugiinglich halten. Wenn Sie dies nicht
wenigstens fiir Thre Console tun, so kénnen Sie von der gesperrten Station auch
keine Informationen mehr erhalten, weil diese (z. B. beim DIR) ja nicht auf Thr
Terminal schreiben darf.

10 Netzwerkoperationen 667

Fortsetzung

Das Assemblermodul hat einen einfachen Aufbau, denn es enthélt nur die text-
liche Bezeichnung der zugelassenen Zugriffspfade. Beim DIR und &hnlichen
Befehlen adressiert der ferne Rechner das eigene Terminal iiber eine ,,/LD-
Kodierung“. Aus diesem Grund sind entsprechende Eintrége vorzusehen.

DC.L 0,0 Modulkopf
DC $0010 Typ Modul
DC ’NETLOK” Name

DC.B ’LD/00’ ,$FF /A1 fiir DIR
DC.B ’LD/02’ ,$FF /A2 fiir DIR
DC.B 'LD/04° , $FF /A3 fiir DIR
DC.B ’HO/PUB’ , $FF /HO/PUB/. ..
DC.B ’ED/PUB’ , $FF /ED/PUB/. ..
DC.B ’LD/01.00/PUB’ ,$FF /ED/PUB/...
DC.B $00 STOP - Marke
END

Wie man sieht, werden die Pfadlisten ohne das eréfflnende Zeichen ,,/ “ abgelegt
und durch das Byte $FF beendet.

Ein geladenes Modul dieses Namens iibersteuert ein im Boot- oder EPROM-
Bereich liegendes.

668 10 Netzwerkoperationen

MES Message to other System

Syntax: MES /stationname [-U unumber]nachricht
Die angegebene Nachricht erscheint auf dem Terminal

des optional angegebenen Users, sonst beim User 0. Der adressierte User erhalt
zusétzlich die Stationsnummer der Quelle der Nachricht mitgeteilt.

Stationsname: Er muf eine im System bekannte Zielstation beschreiben. Ver-
wendet man dabei die eigene Stationsbezeichnung, so erfolgt
eine Fehlermeldung.

unumber: Diese Ganzzahl ist die laufende Nummer eines auf dem Ziel-
system vorhandenen Nutzerarbeitsplatzes (primére Shell). Der
Nutzerplatz mufl vorhanden sein, sonst erfolgt eine Fehlermel-

dung ,,... wrong command.
Nachricht: Es ist beliebiger druckbarer Text erlaubt. Als Endekennung
wird das Semikolon, das Doppelminus (,,-=*) oder das Zei-

lenende benutzt. Achten Sie auf Metazeichen, wenn Sie mit
der Shellsprache arbeiten und auf Shellvariable ($-Zeichen!),
die den Text verdndern konnen.

Wir studieren dazu ein Beispiel. Wenn auf dem Rechner ,,ST06“ der Befehl

MES /ST8 Kommen Sie mit in die Kantine?

eingegeben wird, adressiert man das Terminal des Users 0 (Console) am Rech-
ner ,,ST8“. Dort erscheint folgende Meldung:

>> MESSAGE FROM: /STO6.
Kommen Sie mit in die Kantine?

Der Absender auf Station 6 erhélt eine Mitteilung (,,. .. message received®)
und sieht so, ob die Nachricht angenommen wurde. Wenn auf dem Terminal
der Zielstation eine Eingabe héngt, wird die Nachricht erst nach Beendigung
der Eingabe sichtbar.

MES /SN24 -U 3 Hallo Nutzer 3
adressiert entsprechend den Nutzer mit der laufenden Nummer 3.

Ein Text, der mit ,,-U“ oder ,,—u* beginnt, kann nu dann transferiert werden,
wenn vorher ein echter -u-Parameter gegeben wurde:

MES /SN24 -ul -ungeheuer ...

10 Netzwerkoperationen 669

Eigene Stations-ID feststellen OWNST

Syntax: OWNST stationsname;
Bei stationsname muf ein im System bekannter Name einer

Netzstation des gewiinschten Netzes eingegeben werden. Der Befehl antwortet
mit dem Namen der eigenen Station.

Eine Station kann gleichzeitig in verschiedene Netze eingebunden sein und dar-
um auch verschiedene Eigennamen haben. Mit diesem Befehl wird der zur Ziel-
station passende Eigenname im zusténdigen Netz ermittelt.

Bei diesem Befehl stoért es nicht, wenn man zufiillig den Eigennamen der
ausfiihrenden Station bei stationsname angibt.

Beispiel: OWNST /SN1
antwortet moglicherweise mit:

>> OWN DEVICE: /SNi11 (NETWORK) .

670 10 Netzwerkoperationen

’U NLOC K‘ Unlock fiir Netzstation

Syntax: UNLOCK stationnamelstationnamel

Mit diesem Befehl konnen einer oder mehreren Netzstationen Zugriffsrechte auf
den eigenen Rechner eingerdumt werden. Es handelt sich um den Gegenbefehl
zu LOCK, der auf Seite 666 genau beschrieben ist.

stationname: Die Elemente der Liste miissen im System bekannte Stationen
sein. Setzt man hier den eigenen Namen ein, so werden allen anderen Statio-
nen die Zugriffsrechte erteilt. Den eigenen Stationsnamen kann man mit OWNST
erfragen. Lesen Sie bitte dazu auf Seite 669 nach.

UNLOCK /SN6 /SN7
Hier erlaubt man den Stationen /SN6 und /SN7 den Zugriff.

Das System antwortet mit einer Meldung, die den gesamten Lock-Status fiir das
Netz beschreibt, in dem die jeweils adressierte Station der Liste zu finden ist.
Die ausgegebene Liste der Buchstaben ,,U“ und ,,L* ist nach ,DRIVE“-Nummern
geordnet.

LOCK und UNLOCK benutzen die gleiche Syntax und antworten beide mit einer
Statusmeldung.

Kapitel 11: Glossar

Aktivierung Systemdienst, der eine [Task mit dem TTaskzustand schlafend
oder zur Aktivierung eingeplant in den Zustand lauffihig versetzt. Bein-
haltet eine Aufnahme der Task in den TDispatcherring, falls die Task
nicht eingeplant war.

Aktivierung, gepufferte Versuchte TAktivierung einer Task, die jedoch
einen der Zusténde lauffihig, laufend oder blockiert (] Taskzustand) hat.
Hinweis fiir das Betriebssystem, dafl Task bei Beendigung erneut zu star-
ten ist. Bis zu 3 Aktivierungen kann RTOS-UH pro Task puffern.

Aliasname Zweiter Directoryeintrag fiir eine Datei, iiber den ebenfalls auf die
Datei zugegriffen werden kann. Dadurch stehen zwei |Lese-/Schreibzeiger
zur Verfiigung. Der Bedienbefehl zum Anlegen des Aliasnamens lautet
LINK.

Alphic-Dation [Datenstation in PEARL, bei der die Dateniibertragung iiber
den angesprochenen Ein-/Ausgabekanal im Verhiltnis zu einem Prozes-
sorbefehl sehr lange dauert. Deshalb Betreuung des Kanales durch eine
TBetreuungstask.

Ausgabe Schreiben von Daten aus dem Rechner heraus. Prinzipiell iiber
TTraps moglich. Bei RTOS-UH iiber [Betreuungstasks gelost, falls die
Ausgabe wesentlich linger als ein Maschinenbefehl dauert. Bei | Alphic-
Dations Absenden eines TCEs an die zugehotrige Betreuungstask, verbun-
den mit dem Schreiben der Daten durch die Betreuungstask.

Ausgabe, asynchrone TAusgabe von Daten, bei der die sendende]Task
nicht die Ausgabe des letzten zu iibertragenden Zeichens abwartet,
sondern schon weiterlaufen kann, wihrend die TBetreuungstask noch
schreibt.

Moglich durch die Verwendung von TCEs. Die asynchrone Ausgabe ist
gegeniiber der synchronen Ausgabe schneller, da sich eine Betreuungs-
task selbst blockieren muf}, weil das empfangende Ausgabegerit entweder
nicht schnell genug ist oder die Ubertragung im TDMA-Modus geschieht.
Wihrend der Blockierung kann die sendende Task schon weiterarbeiten.

Ist das CE im TReturn-Mode abgeschickt worden, ist sogar eine asyn-
chrone Ausgabe mit (verzogerter) Quittung méglich.

671

672 11 Glossar

Ausgabe, synchrone TAusgabe von Daten, bei der die sendende TTask so-
lange wartet, bis das letzte Zeichen {ibertragen ist.

Ausnahmebehandlung Betriebssystemdienst, der Prozessorausnahmen (z.
B. Zugriff auf nicht existierende Speicherstellen, ungiiltiger Code, un-
erlaubte Adresse) einer CPU entgegennimmt. Fiihrt bei RTOS-UH zur
Beendigung einer TInterrupt-Service-Routine, falls diese die Ausnahme
ausgelost hat. Die Fehlermeldung gibt in diesem Fall der TError-Damon
aus. Besitzt ein TProzefl zweiter Art keinen TException-Handler, gene-
riert auch hier der Error-Démon die Meldung und suspendiert die Task.
Im anderen Fall wird der Exception-Handler angesprungen. Der betriebs-
systemeigene gibt die Meldung aus und beendet den Proze8.

Ausplanung Systemdienst, der alle TEinplanungen und Tgepufferten Aktivie-
rungen einer Task 16scht.

Autoclose Erreicht bei einem Leseauftrag der Lese-/Schreibzeiger das Da-
teiende, wird bei eingeschaltetem Autoclose die Datei sofort geschlos-
sen. Bei der Datenstation /ED erfolgt das Schlieflen nach jedem Lese-
/Schreibzugriff, es sei denn, die Datei wurde exklusiv gedsffnet.

Basic-Dation TDatenstation in PEARL, bei der die Dateniibertragung iiber
die betreute Schnittstelle nur wenige Prozessorbefehle dauert (z.B. A/D-
und D/A-Wandler). Oft als TTrap oder globales Unterprogramm reali-
siert.

Bedienbefehl Urspriinglich Kommando, das ein Nutzer iiber eine]primére
Shell oder iiber eine Tsekundére Shell Fall a) an das Betriebssystem ab-
setzen kann. Inzwischen sind auch Bedienfehle in |Shellskripten moglich.
PEARL-Tasks konnen iiber eine Einbaufunktion, die die Task kurzfristig
in eine Shell verwandelt, Bedienbefehle absetzen.

Bedienbefehl, nachgeladener Mit Hilfe des Befehls LOAD geladene |Shell-
erweiterung. Assembler- oder PEARL-codiert.

Bedienbefehl, permanenter [Bedienbefehl, der immer im System vorhan-
den ist und nicht entladen werden kann. Assembler- oder PEARL-codiert.

Bedienbefehl, transienter Bedienbefehl, der in einer Datei gleichen Namens
steht und der dadurch aufgerufen wird, dafl der Nutzer den Datein-
amen inklusive Pfad eingibt. Handelt es sich um einen frelativen Pfad,
werden nacheinander alle TExecution-Directories durchsucht. Selbstentla-
dung nach Beendigung. S-Records mit transienten Bedienbefehlen lassen
sich auch mit dem Bedienbefehl LOAD nachladen und werden dann zu
einer TShellerweiterung.

Betreuungstask 7TTask, die Ein- und Ausgaben tiber Ein- und Ausgabekanile

11 Glossar 673

(z.B. serielle und parallele Schnittstelle, Festplatte, Floppy, Netzwerk) des
Rechners betreut.

Bourne-Shell An den UNIX-Bourne-Sprachstandard angelehnte Tsekundére
Shell, die iiber die Elemente der Bourne-Sprache verfiigt.

Bus-Error-Handler 7Prozef erster Art, in den die CPU verzweigt, wenn ein
Prozef} auf eine nicht existierende Adresse zugreifen mochte (Bus-Error).
Der Bus-Error-Handler wird auch von anderen Prozessen erster Art an-
gesprungen, die TAusnahmebehandlungen annehmen (z.B. bei Wrong-
Opcode-Error, Wrong-Address-Error).

CE Abkiirzung fiir TCommunication-Element.
Code, realer Ausfiithrbarer Prozessor-Code.

Code, virtueller Code, der nicht auf dem Zielprozessor ablaufen kann und
daher zu emulieren ist. In RTOS-UH betrifft das vor allem die forma-
tierte TEin- und TAusgabe in PEARL-Programmen. Der entsprechende
TEmulator heifit THyperprozessor.

Communication Element (CE) Primér Speicherbereich fiir ein Datenpa-
ket (inklusive Auftragskodierung), das eine [Task an eine [Betreuungs-
task sendet, um eine TEin- oder TAusgabe anzustofien. Kann aber auch
an beliebige Tasks gesendet werden, um Daten auszutauschen. Ein CE
beinhaltet Sender, Empfinger, Daten und Kommando, was mit den Da-
ten zu geschehen hat.

Compilezeitfehler Fehler, die der Compiler bei der Ubersetzung des Hoch-
sprachtextes ausgibt.

Damon Prozefl 2. Art, der Betriebssystemdienste (im]User-Mode!) iiber-
nimmt.

Datenstation Datenstruktur in PEARL zur Ein- und Ausgabe iiber Ein- und
Ausgabekanile. (TAlphic- [Basic-Dation).

Dation TDatenstation.

Device-Mnemo Zeichenkette, mit ,,/“ beginnend, iiber die ein TBedienbefehl
oder eine TAlphic-Dation eine TBetreuungstask ansprechen kann (z.B.
/HO zum Ansprechen der ersten Festplatte im Rechner).

Direct-Memory-Access (DMA) Fé#higkeit eines Peripheriebausteins, ohne
Zuhilfenahme des Prozessors direkt in den Speicher eines Rechners zu
schreiben. Der Baustein teilt sich mit dem Prozessor den Datenbus.
Der Prozessor wird dadurch zwar etwas langsamer, insgesamt ergeben
sich jedoch viel schnellere Dateniibertragungsraten. Besonders vorteilhaft

674 11 Glossar

bei TBetreuungstasks in einem TMultitaskingsystem: Sie blockiert sich
nach Initialisierung des Datentransfers und bleibt wihrend des gesam-
ten Transfers blockiert. Der Peripheriebaustein sendet nach der Ubertra-
gung einen Statusinterrupt (THardware-Interrupt) und die dazugehorige
TInterrupt-Service-Routine kann die Betreuungstask fortsetzen.

Dispatcher]Prozeumschalter.

Dispatcherring Doppelt verketteter Ring, in den alle TTasks, nach ihrer
TPrioritdt geordnet, aufgenommen sind, die nicht den TTaskzustand
schlafend besitzen.

DMA Abkiirzung fiir TDirect-Memory-Access.

Echtzeitbetriebssystem Betriebssystem, das auf einen [Hardware-Interupt
innerhalb einer garantierten Maximalzeit reagiert, egal, in welchem
Zustand es sich gerade befindet. Oft wegen der vielen Anwendun-
gen, die bei einer Regelungs- oder Steuerungsaufgabe anfallen, als
TMultitaskingsystem ausgelegt.

Einbaufunktion Jpermanente Ladebibliothek.

Eingabe Lesen von Daten aus der Rechnerperipherie. Prinzipiell iiber TTraps
moglich. Bei RTOS-UH iiber TBetreuungstasks gelost, falls die Einga-
be wesentlich linger als ein Machinenbefehl dauert. Bei TAlphic-Dations
Absenden eines TCEs an die zugehorige Betreuungstask, verbunden mit
dem Lesen der Daten durch die Betreuungstask.

Eingabe, asynchrone TEingabe, bei der sich die [Task, die das Eingabe-
TCE absendet, weiterhin den [Taskzustand laufend beibehélt und nicht
auf das Ende der Eingabe wartet. Sinnvoll bei Betrieb im TReturn-Mode.

Eingabe, synchrone 7Eingabe, bei der sich die TTask, die das Eingabe-TCE
absendet, blockiert. Sobald die TBetreuungstask das CE an den Auftrag-
geber mit Daten oder Fehlermeldung zuriicksendet, versetzt RTOS-UH
die auftraggebende Task in den |Taskzustand lauffihig. Standardfall fiir
Eingaben.

Einplanung Systemdienst, der dem TScheduler mitteilt, dal eine TTask zu
einem bestimmten Zeitpunkt bzw. bei einem bestimmten Hardware-
Interrupt fortzusetzen oder zu aktivieren ist. Zeitliche Einplanungen
konnen auch zyklisch erfolgen. Dann sind Zykluszeit und Zyklusende
ebenfalls angebbar.

Emulator Programm, das einen Prozessor simuliert, der gar nicht im Rechner
enthalten ist. Der TPC zeigt wihrend der Emulation auf den Emulator,
nicht auf den Tvirtuellen Code.

11 Glossar 675

Environment FEine Datenstruktur, die eine [Task benétigt, um als Shell
arbeiten zu kénnen. Dazu gehoren u.a. die Shellnummer, Standardpfade
fiir Ein- und Ausgaben sowie Fehlermeldungen (stdin, stdout und stderr),
TWorking- und TExecution-Directories. TPrimére Shells besitzen dariiber
hinaus noch Zeiger auf einen |Environment-Block und eine Tvariable La-
debibliothek, die jedoch von Tsekundéren Shells mit der gleichen T User-ID
mitgenutzt werden.

Environment-Block Speicherbereich, in dem eine Tprimére Shell ihre TEn-
vironment-Variablen ablegt.

Environment-Variable Variable einer Tpriméren Shell, die ein Nutzer oder
ein Programm mit Hilfe von ENVSET definieren, &ndern oder 16schen kann.
Zugriff iiber ,$“: P $Quelle LO NO compiliert den Inhalt der Variablen
,»Quelle”.

Error-Damon {Task, die die RTOS-UH-Startmeldung sowie Fehlermeldun-
gen ausgibt, und die fiir die Aktivierung einer priméren Shell oder einer
sekundéren Shell Fall a) zusténdig ist.

Exception-Handler Unterprogramm, das TAusnahmebehandlungen durch-
fithren kann. Hat ein TProzef3 zweiter Art eine Ausnahmebehandlung aus-
gelost und hat er einen Exception-Handler montiert, kann dieser an Stelle
des TError-Damons die Fehlermeldung ausgeben und den auslésenden
Prozef3 ggf. suspendieren oder beenden.

Execution-Directory Ordner auf einem Massenspeicher, in dem RTOS-UH
Ttransiente Bedienbefehle und TShellskripte sucht, falls ein transienter
Bedienbefehl oder ein Shellskript iiber einen Jrelativen Pfad aufgerufen
wird.

Exklusivéffnung Bei Exklusivoffnung einer Datei kann nur die Task auf die
Datei zugreifen, die diese gedffnet hat. Damit die Datei auch geschlossen
werden kann, falls die Task nicht mehr existiert, darf die der Task zuge-
ordnete Tprimére Shell bzw. Tsekundére Shell Fall a) mittels RETURN die
Datei schliefen. Ein RETURN -A darf jede Shell senden.

FIFO (first-in-first-out) Dateniibertragungskonzept bei Datenkanilen, bei
dem die zuerst gesendeten Daten auch zuerst den Empféanger erreichen.
Auch bei Tnamed Pipes benutzt.

File-Handler TFile-Manager.

File-Manager (FM) Programm, das alle hardwareunabhéngigen Dienste zur
Ein-/Ausgabe auf/von Massenspeichern oder LANs bereitstellt. Der
hardwareabhéngige Driver stellt, in Zusammenarbeit mit dem FM, die
TBetreuungstask zur Verfiigung. RTOS-UH kennt 5 Manager:

676 11 Glossar

e ED-FM als eine Art RAM-Disk.

e MS-FM zur Verwaltung von MS-DOS formatierten Massenspei-
chern.

e UH-FM zur Verwaltung von RTOS-UH formatierten Massenspei-
chern.

e MAC-FM zur Verwaltung von MAC-OS formatierten Massenspei-
chern.

e NET-FM zum Lesen und Schreiben von Ein-/Ausgabe-Kanélen an-
derer, lose gekoppelter Rechner.

Hardware-Interrupt Interrupt eines Peripheriebausteines. Man spricht von
einem Dateninterrupt, wenn der Baustein mitteilt, daff neue Daten ein-
getroffen sind oder entgegengenommen werden kénnen, und von einem
Statusinterrupt, wenn der Baustein einen Status meldet (z.B. Kein Pa-
pier im Drucker, Schreibfehler).

Hyperprozessor Sammlung von Unterprogrammen, die eine PEARL-kodier-
te Task zwingend benétigt. Die Unterprogramme sind dem Compiler alle
bekannt, so daf3 Spezifikationen im Quelltext entfallen. Der Hyperpro-
zessor enthélt auch einen TEmulator, um Tvirtuellen Code zu emulieren.
Im Emulatorbetrieb ist jedem ,virtuellem Befehl“ ein Unterprogramm
zugeordnet.

I/0-Didmon [Betreuungstask.

Idle 7Task niedrigster |Prioritét, die immer lauffdhig ist und dann lauft, wenn
keine Task hoherer Prioritdt lauffihig ist.

Interrupt-Service-Routine Prozef3 erster Art, in die der Prozessor bei Auf-
treten des zugehorigen Hardware-Interrupts verzweigt.

Interrupt-Sperre Kurzzeitige Sperre aller Interrupts, um inkonsistente Da-
tenstrukturen dadurch zu verhindern, dafl ein anderer Proze3 den TPC
erhélt. In einem TEchtzeitbetriebssystem immer nur kurzzeitig erlaubt
(wenige Prozessorbefehle).

Kommandointerface Task, die die Eingaben eines Nutzers interpretiert
und ausfiihrt.

Ladebibliothek Bibliothek mit globalen Variablen, Prozeduren und Funktio-
nen, die sowohl RTOS-UH als auch der Nutzer zur Verfiigung stellen
konnen.

11 Glossar 677

Ladebibliothek, permanente [Ladebibliothek von RTOS-UH. Diese Bi-
bliothek ist Betriebssystembestandteil, nicht entladbar, Twiedereintritts-
fest und gilt fiir alle Nutzer.

Ladebibliothek, variable Mit Hilfe des Befehls LIBSET nutzerdefinierte
TLadebiblitothek. Die Bibliothek gilt nur fiir die User-ID, deren {Shell
oder TShellsohnprozefl den Befehl abgesetzt hat.

Lader Programm, das TS-Records in den Speicher lddt. Die in den S-Records
enthaltenen TBedienbefehle und |Tasks konnen nach der Beendigung des
Ladens ausgefiihrt werden.

Lader, transienter Lader fiir Ttransiente Bedienbefehle. Das Anlaufen des
transienten Laders bleibt i.a. dem Nutzer verborgen.

Laufzeitbibliothek TLadebibliothek.

Laufzeitfehler Fehler, die wiahrend der Laufzeit eines Prozesses auftreten.
Die dazugehorigen Fehlermeldungen senden der [Error-Damon oder der
systemeigene TException-Handler an Tstderr.

LDN TLogical-Dation-Number.

Lese-/Schreibzeiger Zeiger auf das néchste zu lesende / zu schreibende Zei-
chen einer Datei.

LIFO (Last-In-First-Out) a) Unterbrechungsmechanismus von Prozessen,
bei dem der letzte Unterbrechende auch derjenige ist, der sich als erstes
beendet. Bei [Multitaskingsystemen nur fiir TProzesse erster Art ver-
wendbar.

b) Datenablageart in einem Speicherbereich (typischerweise einem Stack).
Die zuletzt abgelegten Daten werden als erstes wieder abgeholt.

Logical Dation Number (LDN) Betriebssysteminterne Nummer einer Be-
treuungstask.

Message-Passing Absenden eines TCEs an eine beliebige Task. Die Task
wird direkt adressiert, ohne dafl eine Tnamed Pipe oder eine TLDN be-
nutzt wird.

Multitasking-System Betriebssystem, in dem mehrere Anwendungen gleich-
zeitig laufen kénnen. Die einzelnen Anwendungen heiflen Tasks.

PC 7Program-Counter.

Pfad, absoluter Zeichenkette zum Ansprechen einer Datei mit Angabe des
TDevice-Mnemos. Unterordner und Dateinamen kénnen folgen.

678 11 Glossar

Pfad, relativer Zeichenkette zum Ansprechen einer Datei ohne Angabe ei-
nes TDevice-Mnemos. RTOS-UH sucht beim Aufruf von Ttransienten Be-
dienbefehlen und TShellskripten in den]Execution-Directories. Bei rela-
tiven Pfaden, die Bedienbefehlen iibergeben werden, stellt RTOS-UH das
TWorking-Directory voran.

Pipe, named Benamter Datenkanal nach der TFIFO-Methode innerhalb ei-
nes Rechners, um Daten von einer [Task an eine andere zu senden, ohne
gemeinsame Variablen zu verwenden. Die Sendende muf3 nicht wissen, wer
liest, die Lesende nicht, wer schreibt, da die Anbindung iiber den Namen
der Pipe erfolgt. Diesen Dienst stellen in RTOS-UH die Datenstation /VI
und /VO bereit. Eine lesende Task wird solange blockiert, bis Daten
vorhanden sind. Dadurch ist eine TProzelsynchronisation gewéhrleistet.

Preemption Fihigkeit eines Betriebssystems (auch von RTOS-UH), die
Ausfiihrung eines Traps abzubrechen, falls ein THardware-Interrupt
einen Lauf des TDispatchers anstoflen will. Der Trap wird spéter fort-
gefithrt oder neu begonnen.

Prioritdt Maf fiir die Wichtigkeit einer TTask. Nutzerdefinierte Tasks kénnen
eine Prioritdt von 1 bis 32767 besitzen, wobei die Task mit der Prioritit 1
die hochste Nutzerprioritidt hat. Negative Prioritdten (mit noch héherer
Prioritdt) sind TDédmonen vorbehalten, wobei bei TBetreuungstasks aus
Sicht der Echtzeiteigenschaften fast immer Tvariable Prioritédten sinnvoll
sind.

Prioritit, variable 7Betreuungstasks konnen mit verénderlicher Prioritét
ausgestattet werden, so daff auch die TAus- und Eingabe von Daten
priorititsgerecht erfolgt. Sendet eine Task mittels eines TCEs Daten an
die Betreuungstask, die vorher keine Auftrige mehr zu bearbeiten hatte,
gibt RTOS-UH der Betreuungstask eine gegeniiber dem Absender um 1
erhohte TPrioritét.

Sendet wahrend der Abarbeitung dieses CEs eine hoherpriorisierte Task
ein weiteres CE an die Betreuungstask, was zu einem Einketten dieses
CEs in die TWarteschlange der Betreuungstask fiihrt, hebt RTOS-UH
die Prioritéit der Betreuungstask auf die um eins erhchte Prioritdt des
zweiten Senders an. Dadurch kénnen zwar die neu eingetroffenen Daten
nicht sofort abgearbeitet werden, die Abarbeitung der ersten Daten er-
folgt dann jedoch mit erhohter Prioritét.

Procedure-Workspace Speicherbereich, der Variablen einer PEARL-Proze-
dur oder einer PEARL-Funktion sowie Verwaltungsdaten enthélt. Im wei-
teren Sinne von]Tasks angeforderter Speicherbereich zur Ablage von
taskinternen Daten.

11 Glossar 679

Program-Counter Register einer CPU, das (je nach Prozessortyp) auf die
Adresse des gerade abzuarbeitenden oder des néchsten abzuarbeitenden
Prozessorbefehles zeigt.

Prozef3 erster Art Systemdienste, die keine eigene Task haben. Prozesse er-
ster Art laufen immer im TSupervisor-Mode. Zusammenfassender Be-
griff fir TTraps, TInterrupt-Service-Routinen, [Prozefumschalter und
TScheduler.

Prozef3 zweiter Art Selbstéindig laufendes Programm, in einem TMultitas-
kingsystem auch Task genannt. Laufen im Gegensatz zu [Prozessen
erster Art im TUser-Mode. Alle Prozesse 2. Art laufen in einem
TEchtzeitbetriebssystem prioritéitsgerecht, d.h. von allen lauffihigen
Tasks teilt der TProzeBumschalter der hochstpriorisierten den Prozessor
zu. Bei RTOS-UH in TBetreuungstasks, TDamonen und nutzerdefinierte
Tasks aufgeteilt.

Prozef3synchronisation Vom Programmierer durch TSynchronisationsmittel
erzwungenene Reihenfolge bei der Abarbeitung von TProzessen 2. Art, die
nicht prioritdatsgerecht ist. Bei der Nutzung von gemeinsam, verdnderli-
chen Datenstrukturen zwingend erforderlich.

ProzeBBumschalter (PU) TProzel erster Art, der der hochstpriorisierten
lauffihigen Task (TProzel zweiter Art) den Prozessor zuteilt. Kann nur
anlaufen, wenn a) kein anderer Prozefl erster Art lauft (da der PU von
allen Prozessen erster Art die niedrigste Prioritdt hat) und b) sich keine
Task kurzfristig in den Supervisor-Mode begeben hat.

Ausnahme von b): Hat eine Task im Supervisor-Mode eine Ausnahme-
behandlung ausgelost (z.B. BUS-Error, Wrong-opcode-error), kann der
TBus-Error-Handler diese suspendieren. Anschlielend gibt der Prozef3-
umschalter einer anderen Task prioritédtsgerecht den Prozessor.

Random-Access-Mode In diesem Mode erfolgen Lese- und Schreibzugriffe
auf eine Datei eines Massenmediums an beliebig vorgebbarer Position. Im
Gegensatz zu normalen Zugriffen zeigt der |Lese-/Schreibzeiger nur dann
auf das Dateiende, wenn iiber die originéire Dateigréfle hinaus geschrieben
wird.

Return-Mode TAsynchrone Aus- oder Eingabe, bei der nach erfolgter Bear-
beitung durch die TBetreuungstask das TCE in der [Warteschlange des
Auftraggebers eingekettet wird. Bei Tasynchroner Ausgabe ist so ein Be-
trieb mit (verzogerter) Quittung moglich.

Bei Tasynchroner Eingabe kann eine TTask Eingabe-CEs an verschiedene
Betreuungstasks senden und zuriickkehrende CEs in der Reihenfolge be-

680 11 Glossar

arbeiten, in der sie zum Auftraggeber zuriickkehren. Gleichzeitig lassen
sich sogar noch CEs anderer Tasks bearbeiten, die mit Hilfe des TMessage-
Passing gesendet wurden.

Runtime-Library 7TLadebibliothek.

S-Record Ablageform von Compiler, Assembler und Linker fiir iibersetzte
Programme, die jedoch nur die unteren sieben Bits des ASCII-Codes ver-
wendet. Der Befehl LOAD kann S-Records verwerten und legt den Code
bindr im Speicher ab.

Scheduler TProze erster Art, der alle zeitlichen und interruptgesteuerten
Einplanungen von [Tasks verwaltet und diese bei Eintreffen des Ereig-
nisses je nach Auftrag fortsetzt oder aktiviert.

Scheibe Nicht ausfithrbarer Programmcode, der der TSelbstkonfiguration
beim RESET, der Definition der Tpermanenten Ladebibliothek oder eines
TBedienbefehles dient.

Selbstkonfiguration Fahigkeit von RTOS-UH, sich beim Hochlauf an Hand
von TScheiben selbst zu konfigurieren, ohne dafl das System gelinkt wer-
den mufl. Ermdoglicht eine einfache Erweiterung von RTOS-UH fiir eigene
Zwecke durch Hinzufiigen neuer Scheiben.

Shell TTask, die Bedienbefehle abarbeiten kann. Um als Shell arbeiten zu
konnen, bendtigt sie gegeniiber einer ,,gewOhnlichen“ Task ein Shellen-
vironment, auch einfach nur TEnvironment genannt.

Shell, primére a) TShell, die von RTOS-UH bereits bei der TSelbstkonfigu-
ration des Systems eingerichtet wird und nicht entladen werden kann. Sie
dient der Kommunikation des Nutzers mit dem Betriebssystem.

b) Shell, die RTOS-UH beim Einloggen iiber ein Netzwerk mittels TELNET
oder RLG generiert. Sie hat die gleiche Aufgabe wie eine primére Shell Fall
a), terminiert und entlidt sich jedoch beim Ausloggen.

Shell, sekundére a) TShell, die vom Nutzer mit Hilfe des Bedienbefehls
SHELL aufgerufen werden kann, um an Stelle der Tpriméren Shell CTRL-
A /B /C zu bearbeiten. BREAK aktiviert weiterhin die primére Shell.

b) Folgt in der Aufruferzeile einem Bedienbefehl, fiir den ein TShellsohn-
prozel generiert wird, ein Kommando mittels ,,--%, verwandelt sich der
Sohnprozefl nach der Abarbeitung des eigenen Bedienbefehls in eine se-
kundére Shell, um die Folgekommandos abzuarbeiten. Nach Abarbeitung
aller Kommandos Selbstbeendigung und Selbstentladung aus dem Spei-

cher.

11 Glossar 681

c) Bei einem exekutierten TShellskript handelt es sich ebenfalls um eine
sekundére Shell. Nach Abarbeitung aller Kommandos Selbstbeendigung
und Selbstentladung des generierten Shellsohnprozesses aus dem Spei-
cher.

Shell-Subroutine-Package Sammlung von [wiedereintrittsfesten Unterpro-
grammen, die fiir Shells sehr niitzlich ist. Enthélt auch den Code zur
Interpretation einer Eingabezeile, so dafl der Code einer Tpriméren Shell
sehr kurz ist.

Shellenvironment TEnvironment.

Shellerweiterung Nachladen von TS-Records, in dem TBedienbefehle mit Hil-
fe von TScheiben definiert sind. Nach fehlerfreiem Laden stehen die Be-
dienbefehle allen Shells zur Verfiigung. Nutzern, die einen iiber eine Shel-
lerweiterung hinzugefiigten Befehl aufrufen, bleibt es verborgen, ob der
Bedienbefehl permanent im System vorhanden oder nachgeladen ist.

Shellprozef3 TTask mit allen Eigenschaften einer 7Shell.

Shellskript Datei, die RTOS-UH-Bedienbefehle und/oder Sprachelemente
der Bourne-Sprache beinhaltet. Léfit sich mit Hilfe des Bourne-Shell-
Interpreters abarbeiten. Aufruf iiber Bedienbefehl EX, iiber Dateinamen,
falls Datei im TExecution-Directory liegt oder iiber Tabsoluten Pfad.

Shellsohnprozef3 Eine Shell kann Kommandos nur sequentiell abarbeiten.
Bei vielen Kommandos, die sehr lange dauern, generiert die Shell eine
eigene TTask, den sogenannten ,,Sohnproze3“, die den Befehl abarbeitet
(z.B. bei Compiler, Assembler, Linker, Lader, COPY). Dadurch kann die
Shell bereits nach Starten des Sohnprozesses weitere Kommandos abar-
beiten. Falls der TVaterprozef auf die Beendigung des Sohn wartet (Be-
dienbefehl WAIT), teilt der Sohn nach Beendigung seiner Aufgaben dem
Vater den Fehlerstatus mit. Auf jeden Fall entlddt er sich nach Beendi-
gung aller Aufgaben selbst.

Nur die bei der Interpretation von TShellskripten generierten Sohnpro-
zesse haben von Anfang an ein eigenes TEnvironment und somit Shellei-
genschaften (7sekundére Shell, Fall b) und c)).

Sohnprozef3 TShellsohnprozef.

stdin absoluter Standardeingabepfad (]TEnvironment).

stdout absoluter Standardausgabepfad (TEnvironment).

stderr absoluter Standardpfad fiir Fehlermeldungen (7Environment).

Supervisor-Call (SVC) [Trap.

682 11 Glossar

Supervisor-Mode Privilegierter Mode eines Prozessors. Eine TTask, die sich
im Supervisor-Mode befindet, unterdriickt einen Lauf des TProzefum-
schalters. (Ausnahme: Task, die sich selbst kurz in den Supervisor-Mode
begeben hat, ruft diesen selbst, um wieder in TUser-Mode zu gelangen.)

Supervisor-Stack Gemeinsamer Stack aller [Prozesse erster Art. Der ge-
meinsame Stack ist moglich, da sich Prozesse erster Art nur nach dem
TLIFO-Prinzip unterbrechen.

Synchronisationsmittel Konstrukte, die bei korrekter Benutzung gewéhrlei-
sten, dafl bei verdnderlichen, von mindestens zwei TProzessen 2. Art ge-
meinsam genutzten Datenstrukturen keine Mischdaten entstehen kénnen.
Bei gemeinsam genutztem Speicherbereich (shared Memory) stellt RTOS-
UH {Traps fiir Semaphore und Bolt-Variablen zur Verfiigung. Ande-
renfalls bieten sich [Message-Passing (falls Adressat bekannt ist) und
Tnamed Pipes (falls Adressat nicht bekannt ist) beim Austauschen von
Datenstrukturen zwischen |Tasks an.

Systemtrap Trap.
Task TProzefl zweiter Art.

Taskidentifier (TID) Zeiger auf den Anfang eines Taskkopfes. Die einzige
eindeutige (und schnelle) Identifizierungsmoglichkeit, da Tasknamen auch
doppelt vergeben sein konnen. Der TID der gerade laufenden Task liegt
in einer betriebssysteminternen Speicherzelle, damit RTOS-UH bei einem
Supervisor-Call (] Trap) immer weifl, welcher Prozefl 2. Art den |Trap
aufgerufen hat.

Taskkontext Alle Speicherzellen und Registerinhalte, die der [Prozefum-
schalter retten mufl, wenn eine Task den]Taskzustand laufend verliert
bzw. die der Prozelumschalter besetzt, wenn eine Task den Zustand lau-
fend bekommt.

Taskkopf Speichersegment zur Definition einer TTask. Enthélt wichtige Da-
ten, wie z.B. Namen, TTaskzustand, TPrioritit und Adresse des ersten
ausfithrbaren Codes.

Taskwechsel Vorgang, bei dem der Prozeflumschalter den Prozessor einer
TTask wegnimmt und einer anderen zuteilt. Geschieht, falls eine héher-
priorisierte Task lauffihig wird oder die momentan laufende Task sich
beendet oder selbst blockiert.

Taskworkspace Speichersegment, das Platz fiir die Taskvariablen, den TTask-
kontext und verwaltungsinterne Daten, die sich auf die Task beziehen,
bietet.

11 Glossar 683

Taskzustand Einer der vier Zustidnde laufend, lauffihig, blockiert und schla-
fend, den eine TTask haben kann.

schlafend (dormant): Task ist geladen, ist jedoch in keinerlei Aktivitéit
verwickelt.

laufend (running): Prozessor ist der Task zugeteilt.

lauffihig (runable): Der Dispatcher teilt dieser Task den Prozessor zu,
sobald keine hoherpriorisierte Task den Zustand lauffihig oder laufend
hat.

blockiert (blocked): Task darf den Prozessor nicht besitzen und wartet
auf ein Ereignis, das diese in den Zustand lauffihig versetzt. In RTOS-
UH aufgeteilt in:

e Wartend auf Beendigung der Ein- /Ausgabe (I/07%)

e Wartend auf Freiwerden eines Semaphors / einer Boltvariablen
(SEMA)

e Wartend auf TProcedure-Workspace (PWS?)

e Wartend auf freiwerdende TCEs (Jede Task hat ein eigenes Kontin-
gent, damit eine Task nicht den gesamten freien Speicher allokieren
kann!) (CWS?)

e Wartend auf TAktivierung an bestimmtem Zeitpunkt oder bei In-
terrupt (SCHD)

e Wartend auf Fortsetzung an bestimmtem Zeitpunkt oder bei Inter-
rupt (SUSP)

e Wartend auf eintreffende CEs (Nur bei Betreuungstasks, SCHD)
e Unterbrochen (SUSP)

Trap ,,Unterprogramm® zur Bereitstellung von Betriebssystemdiensten, das
i.a. von einem TProzel zweiter Art aufgerufen wird. Ein Trap ist ein
TProzef} erster Art.

Umlenkung Maoglichkeit, Ein- und Ausgabe sowie Fehlermeldungen mit an-
deren Pfaden als stdin, stdout und stderr (TEnvironment) durchzufiihren.

Umlenkung, permanente Neudefinition von stdin, stdout oder stderr (TEn-
vironment).

'In teletype geschriebenes Kiirzel gibt an, wie die TBedienbefehle L oder LU den Taskzu-
stand anzeigen.

684 11 Glossar

User-ID Systeminterne Nummer einer]priméren Shell. Uber diese Nummer
kann RTOS-UH den TTaskidentifier der Shell durch einen Tabellenzugriff
herausfinden. Jeder TTask in RTOS-UH ist eine User-ID und somit eine
primére Shell zugeordnet. TBetreuungstasks nehmen immer die User-1D
des Auftraggebers an. TError-Ddmon und Betreuungstasks schreiben
ihre Fehlermeldungen nach Tstderr der zugehorigen priméren Shell.

User-Mode Standard Mode eines Prozessors und fiir TProzesse zweiter Art.
In diesem Mode ist ein TTaskwechsel erlaubt.

User-Stack Jede TTask hat einen eigenen Stack, der auch User-Stack heift, da
eine Task im TUser-Mode lduft. Er liegt gewhnlich im |Taskworkspace,
kann aber auch in einem extra angeforderten Bereich liegen. In einem
TMultitasking-Betriebssystem benotigt jede Task ihren eigenen Stack, da
Prozesse zweiter Art nicht nach dem TLIFO-Prinzip abgearbeitet werden
konnen.

Vaterprozef3 [ShellprozeB3, die einen TShellsohnprozefi generiert hat. Kann
in RTOS-UH entweder auf die Terminierung des Sohnes warten oder sich
prioritatsgerecht den Prozessor teilen.

Verschieblichkeit Fihigkeit von RTOS-UH, an jeder beliebigen Stelle im
Speicher laufen zu kénnen, da RTOS-UH nur PC-relative Beziige enthélt.

Warteschlange Sammlung von TCommunication-Elementen, die an eine
(1Betreuungs-) T Task gesendet worden sind, aber noch nicht abgearbei-
tet werden konnten (Jede Betreuungstask hat eine eigene Warteschlan-
ge). Die Warteschlange ist prioritéitsgeordnet, so dafl CEs von Absendern
mit hoherer TPrioritét bei Eintreffen in die Warteschlange vor denen von
Absendern mit niedrigerer Prioritit eingeordnet werden. Besitzt die emp-
fangende Task Jvariable Prioritét, ist die Prioritdt der Task mindestens
genauso hoch wie die des hochstpriorisierten CEs in der Warteschlange.

Waiedereintrittsfestigkeit Code ist dann wiedereintrittsfest, wenn er von
beliebig vielen Tasks gleichzeitig genutzt werden kann, wobei die Rei-
henfolge des Austritts aus dem Code vollig unabhéngig von der des
Eintritts ist. Bedeutet zwangsliufig ein Verbot von Adressierungsarten
» TPC-Relative und ,,Absolut“ bei schreibenden Zugriffen. Beispiel: Der
Code aller TShellsohnprozesse, die RTOS-UH bereitstellt, ist wiederein-
trittsfest. Dadurch braucht RTOS-UH bei der Generierung eines Sohnes
nur |Taskkopf und [Taskworkspace zu generieren.

Working-Directory Ordner eines Massenspeichers, der Nutzerdateien ent-
hélt. Werden Bedienbefehlen relative Dateinamen iibergeben, ver-
vollsténdigen sie i.a. den Pfad durch das Voranstellen des Working-
Directories.

Stichwortverzeichnis 685

Stichwortverzeichnis

]

#EDFM (Task), 400
#ERRDM (Task), 46, 471
#ERROR (Task), 62
#IDLE (Task), 28, 622
#PPORT (Task), 408
#USERz (Task), 56
#VDATN (Task), 409
#XCMMD (Task), 56, 411
$4Exzx (Trap), 449 ff
$A0xz (Trap), 449 ff

? — Bedienbefehl HELP, 151

A (Bedienbefehl), TACTIVATEG81
Ablaufsteuerung (Shellsprache), 81 ff
ACTIVATE (Bedienbefehl), 100
AFORM (PEARL-UP), 356
AFTER (Bedienbefehl), 101
ALL (Bedienbefehl), 102
Anwenderprogramm

- Begriffsdefinition, 18
APPEND (PEARL-UP), 336
Arbeitsspeicher

- Belegung anzeigen, 201
Arbeitsspeicherbereich festlegen (Scheibenkonzept), 646
AS (Bedienbefehl), TASSEM681
ASSEM (Bedienbefehl), 103
Assembler

- 68k-Systemkonfiguration feststellen, 435

- Ausdriicke, 422

- Bedingungsanweisung, 417

- Beschreibung, 415

- Betriebsparameter, 416

- Direktive, 420, 423

-E/A

- Beschreibung, 601
- Treiber ergénzen, 604
- FPU-Befehle nutzen, 432
- FPU-Benutzung, 432

);
);

686 Stichwortverzeichnis

- File einbinden, 419
- Formatdefinition, 428
- Formate, Namensrestriktion, 428
- Hardware-Instruktion, 419
- Hyperprozessor, 420
- Befehle, 591-600
- ,MAXI“-Version, 432
- Modul codieren, 442
- Operanden-Feld, 420
- PEARL-Unterprogramm, 562
- Parameteriibergabe, 562
- PEARLS8O0-Unterprogramm
- Feldbeschreibung, 576
- Parameterbefehle, 577
- PowerPC, 431
- Programm einbetten, 442
- Programmzeilenaufbau, 416
- S-Records
- erzeugen, 436
- Tabellenkapazitéit, 432
- Task codieren, 442
- Umstellung von PEARLS80 auf PEARL90, 582
-Fehlermeldungen, 438
Assembler-Unterprogramm (PEARL), 370
ASSIGN (PEARL-UP), 342
AT (Bedienbefehl), 105
Ausgabe, TE/A681
Ausnahmebehandlung, 614
/Az-Datenstation, 385 ff

BADBLOCK (Bedienbefehl), 106
BASIC-Datenstation, 390
Batch-Datei (RT0s-WORD), 255
- anlegen, Nr. 89
- ausfithren, Nr. 90
Bedienbefehl
- Arbeitsspeicherbelegung anzeigen, 201
- Ausgabe umlenken, 179, 184
- Bibliothek einrichten, 160
- Code ohne Modulkopf ausfiithren, 150
- Communication Element 16schen, 111
- Datenstation
- Parameter dndern, 203

Stichwortverzeichnis 687

- Datum
- anzeigen, 123
- einstellen, 124
- Eingabe umlenken, 152, 183
- Environment-Variable, 142
- Execution-Directory
- &ndern, 120, 121
- anzeigen, 189
- Fehlermeldung umlenken, 144, 182
- File
- Erstellungszeitpunkt anzeigen/édndern, 214
- Fileanfang fiir Lese-/Schreibzeiger, 196
- Name dndern, 194
- anzeigen (aktive), 145, 660
- auslisten, 220
- kopieren, 115
- linken, 162
- 16schen, 197
- mischen, 115
- schlieflen, 195
- speichern, 211
- Filesystemstatus, 109 f
- Hilfe der Shell anfordern, 151
- Interrupt
- freigeben, 141
- simulieren, 219
- sperren, 130
- MS-DOS-Filesystem, 176
- Massenspeicher
- Speicherkapazitit anzeigen, 149
- formatieren, 147
- Modul
- assemblieren, 190
- compilieren, 180, 192
- entladen, 221
- laden, 169, 173
- Module
- linken, 191
- Nachricht senden (Netzwerk), 664
- PEARL-codiert, 68
- Programm
- assemblieren, 103, 190

688 Stichwortverzeichnis

- compilieren, 180, 192
- editieren, 136
- entladen, 221
- laden, 169, 173
- RTOS-Filesystem, 199
- S-Record
- entladen, 221
- erzeugen, 163, 186
- laden, 169, 173
- linken, 163
- Sektor markieren, 106
- Semaphorvariable
- freigeben, 193
- Shell
- spezielle installieren, 206
- Shellprozef3
- anzeigen, 225
- definieren (sekundéren), 126
- Speicherzelleninhalt
- andern, 208
- anzeigen, 132
- Stationsname anzeigen (Netzwerk), 665
- Stationsparameter anzeigen, 125
- String ausgeben, 135
- Tabelle aller, 95 ff
- Task
- Breakpoint 16schen, 178
- Breakpoint setzen, 216
- Einplanung loschen, 185
- Trace-Mode, 178, 216
- Zustand anzeigen, 207
- aktivieren, 100, 105, 224
- anzeigen (geladene), 153, 174
- ausplanen, 185
- beenden, 213
- einplanen, 101, 102, 105
- entladen, 221
- fortsetzen, 105, 114, 224
- gleichpriorisierte bearbeiten, 205
- suchen, 134
- unterbrechen, 210
- Trace-Mode

Stichwortverzeichnis 689

- ausschalten, 178
- einschalten, 216
- Uhrzeit
- anzeigen, 112
- einstellen, 113
- Verbindung abbrechen (Netzwerk), 661
- Verzeichnis
- Inhalt anzeigen, 128, 146, 660
- einrichten, 175
- 16schen, 175, 198
- Working-Directory
- dndern, 107, 119
- anzeigen, 107, 189
- Zeileneditor LINEEDIT , 155
- Zeilennummer aktiver Task anzeigen, 131
- Zugriff freigeben (Netzwerk), 666
- Zugriff sperren (Netzwerk), 662
- ausfithren
- PEARL-UP, 350, 352
- Shellsprache, 90
- definieren (Scheibenkonzept), 643
- sequentiell bearbeiten, 223
- transientes Kommando, 72
Bedingte Kompilation
- in PEARL, 290
Bedingungsanweisung (Shellsprache), 84
Befehl
- transienten laden, 58
Befehlsdatei
- erstellen, 64
BEG (PEARL-UP), 356
Benamte Konstante
- mit Preprozessor definieren (PEARL), 287
Betriebssystem, TSystem681
Bezeichner (PEARL), 282
Bibliothek
- Lineedit einrichten, 155
- einrichten, 160
Bildschirm restaurieren (RT0s-WORD), Nr. 72
Block (RTOS-WORD), 245 ff
- "anfang markieren, Nr. 50
- “befehle ein-/ausschalten, Nr. 60

690 Stichwortverzeichnis

- “ende markieren, Nr. 51
- l6schen, Nr. 74
- einfiigen
- aus Blockpuffer, Nr. 57
- aus Datei, Nr. 59
- einriicken, Nr. 54
- kopieren, Nr. 52
- in Blockpuffer, Nr. 56
- 16schen, Nr. 55
- speichern
- in Datei, Nr. 58
- verschieben, Nr. 53
Boltvariable
- Lesezugriff
- anfordern, 470
- freigeben, 490
- Schreibzugriff
- anfordern, 510
- freigeben, 476
BREAK (Shellsprache), 88
Breakpoint
- PEARL, 298
- anlaufen (Assembler), 491 f
- ausschalten, 178
- setzen, 216
/BU-Datenstation, 390 ff
- benutzerdefiniert, 393
/Bx-Datenstation, 385 ff
Byte vergleichen (Trap), 461

C
- PEARL-Unterprogramme nicht aufrufbar, 368
- Unterprogramme von PEARL aufrufen, 368
C (Bedienbefehl), TCONTINUEGS1
C-kodierte Unterprogramme von PEARL aus aufrufen, 368
Cache 16schen, 455
capacity overflow
- Fehlermeldung bei LOAD, 171
CASE (Shellsprache), 82
CD (Bedienbefehl), 107
CD7TAS (Nucleus-Subroutine), 456
CF (Bedienbefehl), 109
CLEAR (Bedienbefehl), 111

Stichwortverzeichnis 691

CLOCK (Bedienbefehl), 112
CLOCKSET (Bedienbefehl), 113
CMD_EXW (PEARL-UP), 350
CMPW (PEARL-UP), 359
Communication Element
- Aufbau, 557
- Begriff, 25
- Beschreibung, 555
- Betriebsarten, 558
- Modebytes, 558
- Warteschlange
- CE einreihen, 494, 545
- CE entnehmen, 530
- erzeugen, 475
- freigeben, 506
- l6schen, 111
Compiler (PEARL), 277 ff
- Abschlufimeldung, 295, 378
- Breakpoint, 298
- Charakterselectortest, 300
- Codegenerierung unterdriicken, 296
- Codeprotokoll, 297
- EPROM-Prozedur, 302
- Feldindex testen, 300
- Markierungsoption, 298
- Optionen im PEARL-Quelltext, 278 ff
- Prozedurarbeitsspeicher reservieren, 303
- Prozedurparameter testen, 300
- Prozedurparameterstrukturanalyse unterdrucken, 302
- Ubersetzungsprotokoll, 297
CONT (Shellsprache), 89
CONTINUE (Bedienbefehl), 114
COPY (Bedienbefehl), 115
CP (Bedienbefehl), TCOPY681
CPB (Bedienbefehl), 115
CUD (Bedienbefehl), 119
Cursorbewegung (RT0S-WORD), 236 f
- Bildschirmrand
- oben, Nr. 17
- unten, Nr. 18
- Blockanfang, Nr. 29
- Blockende, Nr. 30

692 Stichwortverzeichnis

- Dateianfang, Nr. 19
- Dateiende, Nr. 20
- Spalte
- physikalische, Nr. 34
- Suchen/Ersetzen (vorletztes), Nr. 31
- Wortanfang
- linkes Wort, Nr. 13
- rechtes Wort, Nr. 14
- Zeile
- logische, Nr. 33
- physikalische, Nr. 32
- Zeilenanfang, Nr. 15
- Zeilenende, Nr. 16
- links, Nr. 9
- oben, Nr. 12
- rechts, Nr. 10
- unten, Nr. 11
CUXD (Bedienbefehl), 120
/Cax-Datenstation, 385 ff
CXD (Bedienbefehl), 121

Démon
- Begriffsdefinition, 46
- E/A-Démon, 49
DATE (Bedienbefehl), 123
DATE (PEARL-UP), 341
Datei, TFile681
Datei (RTOS-WORD), 241 ff
- Name adndern, Nr. 47
- Text wechseln, Nr. 43
- komprimieren, Nr. 73
- 16schen, Nr. 49
- offnen, 228, Nr. 42
- schlielen, Nr. 41, Nr. 45, Nr. 44
- speichern, Nr. 41, Nr. 46, Nr. 44
- automatisch, Nr. 47
Datenblock, 549
Datenkonvertierungsformat (PEARL)
- Bitkette, 317
- Festpunktzahl, 315 f
- Gleitpunktzahl, 315 f
- Uhrzeit, 318
- Zeichenkette, 316

Stichwortverzeichnis 693

- Zeitdauer, 318
Datenstation, 385 ff
-BASIC-Station, 390
- /BU-Station, 390 ff
- Bedienbefehl ausfiihren, 64, 411
- Datenquelle umlenken (Eingabe), 152, 183
- Datensenke umlenken
- Ausgabe, 179, 184
- Fehlermeldung, 144, 182
- Datensenke/-quelle (ideal), 406
- /Da-Station, 398
- Editor-Station, 400
- Eigenschaften (Scheibenkonzept), 641
- Massenspeicher-Laufwerk, 403
- /NIL-Station, 406
- Name zuweisen (PEARL), 342
- /PP-Station, 408
- Parameter
- erzeugen (PEARL-UP), 366
- manipulieren (PEARL-UP), 364
- Parameter dndern, 203
- Pipe, 409
- ProzeBinterrupt ansprechen, 412
- ProzeBperipheriezugriff, 390
- Statusabfrage (PEARL), 331
- Typen, 41, 49
- Untergliederungsnummer, 41
- /VI-/V0-Station, 409
- Voll-Duplex-Betrieb, 398
- Warteschlangennummer, 41
- Mnemo ermitteln (PEARL-UP), 361, 362
- /XC-Station, 64, 411
- Zugriff iiber Warteschlangennummer, 405
- definieren
- PEARL, 305 ff
- Scheibenkonzept, 639
- parallele, 408
- serielle, 385 ff
- Ausgabe, 385
- Bedieninterface, 388
- Eingabe, 386 ff
- PEARL-Programm, 389

694

Stichwortverzeichnis

- Time-Out, 388

Datentransfer (PEARL)

- binér, 338
Datentypen (PEARL), 282 ff
DATESET (Bedienbefehl), 124
Datum

- anzeigen, 123

- einlesen (PEARL), 341

- einstellen, 124

- Assembler, 518

DD (Bedienbefehl), 125
DEFINE (Bedienbefehl), 126
Delimiter suchen (Assembler), 465
Device-Parameter-Differenz, 468
DEVMNEMO (PEARL-UP), 361
DIR (Bedienbefehl), 128, 660
DISABLE (Bedienbefehl), 130
Diskette, TMassenspeicher681
Dispatcher, Tauch Prozefiumschalter681

- aufrufen, 467

- sperren, 495
DL (Bedienbefehl), 131
DM (Bedienbefehl), 132
DMX (Zusatzshellbefehl), 132
DR (Bedienbefehl), 134
DRANF (PEARL-UP), 344
Drucker-Datenstation, 408
/Da-Datenstation, 398

E/A

- Ausgabe
- serielle Datenstation, 385
- umlenken, 179, 184

- Eingabe
- serielle Datenstation, 386 ff
- umlenken, 152, 183

- Fehlermeldung
- umlenken, 144, 182

- PEARL
- Formate, 314 ff
- formatierte, 312 f
- umparametrieren, 307

- Peripherie (Assembler), 500 f

Stichwortverzeichnis 695

- Shellsprache, 80 f
- Tastatureingabe, 28
- assemblercodiert, 601
- Treiber ergénzen, 604
- umlenken mit Bedienbefehl
- Ausgabe, 179, 184
- Eingabe, 152, 183
- Fehlermeldung, 144, 182
- umparametrieren (PEARL), 307
Ebenenmodell der Shell, 56
ECHO
- Bedienbefehl, 135
- Shellsprache, 80
ED (Bedienbefehl), 136
/ED-/EDB-Datenstation, 400 ff
Editor (RTOS-WORD)
- Beschreibung, 227
- Blockoperationen, 245 ff
- Dateiauswahlfenster anzeigen, Nr. 82
- Eingabeaufforderungen, 269 ff
- Einsetzmodus, Nr. 1
- Fehlermeldungen, 272 ff
- Fensteraufbau, 230
- Fernsteuerung, 227, 257 f
- Kommando aus Batch-Datei, 255
- Konfigurationsmodul, 230
- Programm-Datei editieren, 229
- Randauslésung, Nr. 2
- Spaltenanzahl, 227
- Status dndern, 233 ff
- Statusmeldungen, 269
- Statuszeile, 230
- Tabulatorleiste, 231
- Text einriicken, Nr. 3, Nr. 54
- Ubergabeparameter, 228, 256
- Uberschreibmodus, Nr. 1
- Window-Modus, 232
- Wortumbruch, Nr. 4
- Zeichen (zuliissige), 227, 229
- Zeilenanzahl, 227
- Zeilennummer, 230
- Zeilenoperationen, 247 ff

696

Stichwortverzeichnis

- aus Programm ausfiihren, 257
- starten, 227
- technische Daten, 275
- unterbrechen, Nr. 40
Editor (Beschreibung), 136
Einbaufunktion (PEARL), 329 ff
- Basis-Grafik, 335
- Binér-Transfer von Daten, 338
- Datenstationsname zuweisen, 342
- Datenstationsstatus, 331
- Datum einlesen, 341
- E/A-Funktionen, 336

- Floatzahl-Konvertierung IEEE — RTOS-Darst., 348
- Floatzahl-Konvertierung RTOS-Darst. — IEEE, 348

- Prioritét lesen, 346

- Prioritdt dndern, 346

- Taskzustand ermitteln, 345

- Uhrzeit lesen, 341

- Zeigervariablen manipulieren, 342

- Zufallszahlen, 329, 344

- mathematische, 329
Einfiigen (RTOS-WORD)

- Leerzeichen, Nr. 7

- Leerzeile, Nr. 6

- Sonderzeichen, Nr. 8

- String, Nr. 88

- Zeilenpuffer, Nr. 62
Eingabe, TE/A681
Eingabeaufforderungen (RT0s-WORD), 269 ff
Eingabeprotokoll aktivieren (RTOS-WORD), Nr. 89
Einriicken (RTOS-WORD), Nr. 3
Einsetzmodus (RTOS-WORD), Nr. 1
ELIF (Shellsprache), 81
ELSE (Shellsprache), 81
ENABLE (Bedienbefehl), 141
ENVGET (PEARL-UP), 351
Environment, TUser-Environment681
ENVSET (Bedienbefehl), 142
ER (Bedienbefehl), 144
Error-Damon, 614
ESAC (Shellsprache), 82
Exception-Frame, 619

Stichwortverzeichnis 697

Exception-Handler, 48, 614
EXEC (Shellsprache), 90
EXEC (PEARL-UP), 352
Execution-Directory
- Pathlange, 122
- User-Environment, 60
- dndern, 120, 121
- anzeigen, 189
- bei transientem Befehl, 57
- bei transientem Laden, 72
- ermitteln (PEARL-UP), 363
EXIT (Shellsprache), 90
EXPR (Shellsprache), 86

FALSE (Shellsprache), 84
Farbe éndern (RTOS-WORD)
- Blockmarkierung, Nr. 76
- Kommandozeile, Nr. 79
- Statuszeile, Nr. 76
- Text, Nr. 78
Fehlerbehandlungsroutine, TException-Handler681
Fehlermeldung
- Beispiele, 47
- Error-Déamon, 46
- Lader, 171
- Linker, 167
- PEARL
- Compile-Zeit-Fehler, 373 ff
- Laufzeitfehler, 381 f
- mathematische Einbaufunktion, 383
- ausgeben (Assembler), 471 f
- spezifizieren (Assembler), 463 f
Fehlermeldungen (RTOS-WORD), 272 ff
Feld
- Beschreibung im Assembler fur PEARLS0, 576
- Grenzen testen (Assembler), 484-489
- Kurzformel, 322
- Zeiger auf, 326
- Zugrift (PEARL), 322
Feldbeschreibungsblock
- in PEARL90, 570
Fensteraufbau (RT0s-WORD), 230
- Window-Modus, 232

698 Stichwortverzeichnis

Fensterbreite éndern (RT0s-WORD), Nr. 80
Fensterhohe dndern (RTos-WORD), Nr. 81
Fernsteuerung (RTOS-WORD), 227, 257 f
Festplatte, TMassenspeicher681
FI (Shellsprache), 81
File

- Erstellungszeitpunkt anzeigen/dndern, 214

- Fileanfang fiir Lese-/Schreibzeiger, 196

- Name &ndern, 194

- anzeigen (aktive), 660

- anzeigen (aktives), 145

- auslisten, 220

- einbinden (PEARL), 288

- kopieren, 115

- linken, 162

- 16schen, 197

- mischen, 115

- offnen (PEARL), 313

- schlieflen, 195

- PEARL, 313

- speichern, 211
FILES (Bedienbefehl), 145, 660
Filesystem, 547 ff

- Datenblock, 549

- Driver codieren, 549

- Hauptverwaltungsblock, 547

- MS-DOS, 176

- RTOS, 199

- Status, 109 f

- Verwaltungsblock, 547

- Verwaltungskopf, 547

- abfragen, 145, 176
FIND (Bedienbefehl), 146
FOR (Shellsprache), 82
FORM (Bedienbefehl), 147
FPU

- Ausnahmebehandlung, 614

- Benutzung bei Assemblercode, 432
FREE (Bedienbefehl), 149
/Fz-/Hz-Datenstation, 403

Geritebezeichner (PEARL), 307
GET (PEARL), 312

Stichwortverzeichnis

699

GET_DEVICE (PEARL-UP), 362
GET_EXECDIR (PEARL-UP), 363
GET_EXECPATH (PEARL-UP), 363
GET_TASKNAME (PEARL-UP), 354
GET_USER (PEARL-UP), 353
GET_WORKDIR (PEARL-UP), 363
GET_WORKPATH (PEARL-UP), 363
GETPIX (PEARL-UP), 335
GETPRI (PEARL-UP), 346

GO (Bedienbefehl), 150
Grundshell, 56

Hauptverwaltungsblock, 547
Header-Text (Scheibenkonzept), 653
? (Bedienbefehl), 151
HELP (Bedienbefehl), 151
Hilfemenii (RTOS-WORD), Nr. 71
Hilfesystem (RT0OS-WORD), 250
Hyperprozessor, 420

- Befehle, 591-600

- einschalten, 532

I (Bedienbefehl), 152
I/O-Démonen, 604
IDF_DATION (PEARL-UP), 364
IF (Shellsprache), 81
INSER (PEARL-UP), 359
INSTR (PEARL-UP), 357
Interpreter
- fiir Shellsprache, 67
Interrupt
- Anzahl (maximal zuléssige), 141, 412
- Buffer installieren (Scheibenkonzept), 637
- ProzeBinterrupt (PEARL), 412 ff
- Riickfallmechanismus, 607
- anschlieflen (Scheibenkonzept), 650
- eigene einbinden, 413
- freigeben, 141
- Assembler, 469
- simulieren, 219
- Assembler, 498, 533
- sperren, 130
- Assembler, 466, 495
IP (Bedienbefehl), 661

700

Stichwortverzeichnis

Kaltstart, 27, 656
Kapazititsiiberlauf

- des Compilers beim Prozeduraufruf, 564
Kommando, TBedienbefehl oder Shellskript681

- transientes, 58, 72 f
Kommando-Datei, TBefehlsdatei681
Kommandoverzeichnis (RT0S-WORD), 259 ff
Kommentar (Shellsprache), 76
KON (PEARL-UP), 358
Konfigurationsmodul (RT0s-WORD), 230

- Beispiel, 265 f

- Beschreibung, 264

- Terminalanpassung, 265
Kontext

- Begriffsdefinition, 18
Kontextswitch

- Begriffsdefinition, 19

- Prozefimodell, 21
Konvertierung

- Zahlenformat

- IEEE — RTOS, 348
- RTOS — IEEE, 348

Konvertierung (Assembler)

- ASCII-Zahl in Integer, 480

- Datum in ASCII, 462

- Hex.-Zahl in ASCII, 456

- Uhrzeit in ASCII, 457

L (Bedienbefehl), 153
Laufwerk

- Filesystem abfragen, 176
LE (Bedienbefehl), 155
LEN

- PEARL-UP, 356

- Shellsprache, 85
LIBSET (Bedienbefehl), 160
LINE (PEARL-UP), 335
LINEEDIT (Bedienbefehl), 155
LINK (Bedienbefehl), 162
LNK (Bedienbefehl), 163
LOAD (Bedienbefehl), 169
LOADX (Bedienbefehl), 173
LOCK (Bedienbefehl), 662

Stichwortverzeichnis

701

Loschen (RTOS-WORD)
- Block, Nr. 55
- Blockpuffer, Nr. 74
- Wortende, Nr. 23
- Zeichen, Nr. 5
- links vom Cursor, Nr. 22
- Zeile, Nr. 24
- bis vom Zeilenanfang, Nr. 26
- bis zum Zeilenende, Nr. 25
- riickgéngig machen, Nr. 27
- Block, Nr. 57
- Zeile, Nr. 28
LU (Bedienbefehl), 174

Makro ausfithren (RTOS-WORD), Nr. 91
Marke (RTOS-WORD), 250
- anlaufen, Nr. 70
- setzen, Nr. 69
Massenspeicher
- Filesystemstatus, 109 f
- PEARL, 403
- Pfadlidnge (maximal zuliissige), 50
- Speicherkapazitit anzeigen, 149
- Verzeichnis
- Inhalt anzeigen, 128, 146
- einrichten, 175
- 16schen, 175, 198
- formatieren, 147
MES (Bedienbefehl), 664
Metazeichen (Shellsprache), 77, 93
MID (PEARL-UP), 357
Mitternacht, Besonderheiten, 112
MKDIR (Bedienbefehl), 175
Modul
- assemblieren, 190
- compilieren, 180, 192
- entladen, 221
- laden, 169, 173
- suchen (Assembler), 479
Modul-1D, 293
Module
- linken, 191

module overflow label - Fehlermeldung bei LOAD, 172

702 Stichwortverzeichnis

Modulgrofie (PEARL), 295
Modulvariablenblock (Scheibenkonzept), 648
MS-DOS-Filesystem, 176

MSFILES (Bedienbefehl), 176

Netzwerk, 659 ff
- Datenkanal, 659
- Files anzeigen (aktive), 660
- Gerétebezeicher anzeigen, 660
- Nachrichten senden, 664
- Pathlist-Konzept, 50
- Stationsname anzeigen, 665
- Verbindung
- abbrechen, 661
- anzeigen (aktive), 660
- Verzeichnis anzeigen, 660
- Zugriff
- blockieren, 662
- freigeben, 666
- im PEARL-Programm, 660
/NIL-Datenstation, 406
NOLSTOP - Mode des PEARL-Compilers, 216
NOTRACE (Bedienbefehl), 178
Now (PEARL-UP), 341
Nucleus-Subroutine, 451
- Hex.-Zahl in ASCII wandeln, 456
- Interrupt simulieren, 498
Nutzerprozefl
- Begriffsdefinition, 20

0 (Bedienbefehl), 179
OWNST (Bedienbefehl), 665

P (Bedienbefehl), TPEARL681
Parameteriibergabe

- Priifung durch Signatur, 567
Parameterspace

- bei PEARL Prozeduren, 375
Pathlist

- Konzept, 49 ff

- Lange (maximal zuléssige), 50
PEARL

- Abweichungen DIN/PEARL90, 285

- Assembler-Unterprogramm, 370

Stichwortverzeichnis 703

- Bedingt kompilieren, 290
- Benamte Konstante
- mit Preprozessor definieren, 287
- Besonderheiten, 281
- Bezeichner, 282
- Compiler, 277 ff
- Abbruchkonditionen, 376
- AbschluBimeldung, 295, 378
- Breakpoint, 298
- Charakterselectortest, 300
- Codegenerierung, 296
- Codeprotokoll, 297
- EPROM-Prozedur, 302
- Feldindex testen, 300
- Optionen im PEARL-Quelltext, 278 ff
- Prozedurarbeitsspeicher reservieren, 303
- Prozedurparameter testen, 300
- Prozedurparameterstrukturanalyse unterdrucken, 302
- Schaltbarer Kommentar, 292
- Switched comment, 292
- Ubersetzungsprotokoll, 297
- Datenkonvertierungsformat, 315 ff
- Datenstation
- /BU-Station, 390 ff
- Bedienbefehl ausfiithren, 411
- Datensenke/-quelle (ideal), 406
- /Dz-Station, 398
- /ED-/EDB-Station, 400 ff
- Massenspeicher-Laufwerk, 403
- Pipe, 409
- Voll-Duplex-Betrieb, 398
- Zugriff iiber Warteschlangennummer, 405
- definieren, 305
- parallele, 408
- Datentypen, 282 ff
- Default-PRIO setzen, 304
-E/A
- Formate, 314 ff
- formatierte, 312 f, 313
- umparametrieren, 307
- Einbaufunktion, 329 ff
- Basis-Grafik, 335

704 Stichwortverzeichnis

- Binér-Transfer von Daten, 338
- Datenstationsname zuweisen, 342
- Datenstationsstatus, 331
- Datum einlesen, 341
- E/A-Funktionen, 336
- Floatzahl-Konvertierung IEEE — RTOS-Darst., 348
- Floatzahl-Konvertierung RTOS-Darst. — IEEE, 348
- Prioritéat dndern, 346
- Prioritét lesen, 346
- Taskzustand ermitteln, 345
- Uhrzeit lesen, 341
- Zeigervariablen manipulieren, 342
- Zufallszahlen, 329, 344
- mathematische, 329
- Fehlermeldung
- Compile-Zeit-Fehler, 373 ff
- Laufzeitfehler, 381 f
- mathematische Einbaufunktion, 383
- Feldzugriff, 322
- File
- einbinden, 288
- 6ffnen, 313
- schlieflen, 313
- Gerétebezeichner, 307
- Interrupt, 412 ff
- Konstantenpool leeren, 304
- Modul-ID, 293
- ModulgroBe, 295
- READ/WRITE
S-Format, 340
- ROM-Code, 296
- SYSTEM-Teil, 305
- Schliisselworte, 282
- Sprachumfang, 281 ff
- Warnung
- Compile-Zeit-Meldungen, 378
- Zeigervariablen, 323
- Zielprozessor, 277
- serielle Datenstation, 389
-Preprozessor, 286
PEARL (Bedienbefehl), 180
PEARL-Shellbefehle XHELP-Support, 68

Stichwortverzeichnis 705

PEARL-Unterprogramm
- Bedienbefehl ausfiihren, 350, 352
- Datenstation
- Mnemo einer Warteschlangennummer ermitteln, 361,
362
- Parameter manipulieren, 364
- Parameter neu setzen, 366
- Execution-Directory ermitteln, 363
- Stringoperation, 355 ff
- Taskname ermitteln, 354
- User-Environment abfragen, 351
- Usernummer ermitteln, 353
- Working-Directory ermitteln, 363
- assemblercodiert, 562 ff
- Parameteriibergabe, 562
PEARLS0-Unterprogramm
- assemblercodiert
- Feldbeschreibung, 576
- Parameterbefehle, 577
PER (Bedienbefehl), 182
Peripherie-E/A (Assembler), 500 f
Pfadliste
- Konzept, 49 ff
- Linge (maximal zuléissige), 50
PI (Bedienbefehl), 183
Pipe-Datenstation, 409
PIRTRI (Nucleus-Subroutine), 498
PO (Bedienbefehl), 184
PowerPC
- Assembler, 431
PREVENT (Bedienbefehl), 185
Prioritét
- Prozef}/Zeitdiagramm, 21
- Taskaktivierung, 100-102
-einer laufenden Task dndern, 346
- einer laufenden Task lesen, 346
Programm
- Begriffsdefinition, 18
- assemblieren, 103, 190
- compilieren, 180, 192
- editieren, 136
- entladen, 221

706

Stichwortverzeichnis

- laden, 169, 173
PROM (Bedienbefehl), 186
Prozedur-Workspace

- Parameterspace, 375

- freigeben, 511

- suchen, 496, 538-543
Prozef

- Begriffsdefinition, 18

- Nutzer-, 20

- Supervisor-, 20

- anzeigen, 225
Prozefl/ Zeitdiagramm, 21

Prozeflinterrupt, TInterrupt681

Prozemodell, 21 ff
Prozefiperipherie

- Datenstationsanschluf}, 390 ff

Prozeflumschalter, 21

Prozeflumschaltung, TKontextswitch681

PUT (PEARL), 313
PWD (Bedienbefehl), 189

QAS (Bedienbefehl), 190
QLNK (Bedienbefehl), 191
QP (Bedienbefehl), 192
Qualitétssicherung, 2

Randauslésung (RTOs-WORD), Nr. 2

RANF (PEARL-UP), 344
READ (PEARL-UP), 338
READ (Shellsprache), 80
Reaktionszeit, 17
Rechnerdatum, TDatum681
Rechneruhrzeit, TUhrzeit681
REFADD (PEARL-UP), 342
RELEASE (Bedienbefehl), 193
RENAME (Bedienbefehl), 194
RETURN (Bedienbefehl), 195
REWIND

- Bedienbefehl, 196

- PEARL-UP, 336
RM (Bedienbefehl), 197
RMDIR (Bedienbefehl), 198
ROM-Code, 164

- PEARL, 296

Stichwortverzeichnis 707

RTOS-Filesystem, 199
RTOSFILES (Bedienbefehl), 199
Rueckfallmechanismus

- in Interruptroutinen, 607

S (Bedienbefehl), 201
S-Format bei READ/WRITE, 340
S-Record

- Aufbau, 436

- Compilerabschlumeldung, 379

- Daten-Record, 436

- S0-Record, 436

- S9-Record, 437

- entladen, 221

- erzeugen, 163, 186, 436, 626, 627

- laden, 160, 169, 173

- linken, 163
SAVEP (PEARL-UP), 336
Scan-Tabelle (Scheibenkonzept), 633
Scanbereich (Scheibenkonzept), 631
Schaltbarer Kommentar (im PEARL-Compiler), 292
Scheibe, TScheibenkonzept681
Scheibenkonzept, 621 ff

- Arbeitsspeicherbereich definieren, 646

- Bedienbefehl definieren, 643

- Beschreibung der Scheiben, 630 ff

- Datenstation definieren, 639

- Datenstationseigenschaften, 641

- Header-Text, 653

- IR-Vektoren anschliefien, 650

- Interruptbuffer installieren, 637

- Kaltstart-Initialisierungscode, 656

- Modulvariblenblock, 648

- Scan-Tabelle erweitern, 633

- Scanbereich iiberspringen, 631

- Scheibe suchen (Assembler), 517

- Symbol, globales, 654

- Systemtask definieren, 634

- Trap anschliefen, 650

- Warmstart-Initialisierungscode, 652
Schliisselworte (PEARL), 282
Scrollen (RTOS-WORD)

- abwérts, Nr. 35

708 Stichwortverzeichnis

- aufwérts, Nr. 36
SD (Bedienbefehl), 203
SEEK (PEARL-UP), 336
SEG (Shellsprache), 87
Seite (RTOS-WORD)
- vorblattern, Nr. 37, Nr. 39
- zuriickblattern, Nr. 38
Sektor
- defekten markieren, 106
Selbstkonfiguration, TScheibenkonzept681
Semaphore
- testweise anfordern
- Assembler, 534
Semaphorvariable
- anfordern (Assembler), 509
- freigeben, 193
- Assembler, 508
SET (Shellsprache), 87
SET_DATION (PEARL-UP), 366
SETPIX
(PEARL-UP), 335
SETPRI (PEARL-UP), 346
SH (Bedienbefehl), TSHOW681
SHARE (Bedienbefehl), 205
SHELL (Bedienbefehl), 206
Shell
- spezielle installieren, 206
Shell in der RTOS-Prozefiphilosophie, 59
Shell-Console als Bedienzugriff, 99
Shell-Ebene, TEbenenmodell681
Shell-Subroutine-Package, 56
Shellbefehl
- Anweisungsformat, 61
- Bearbeitung
- parallel, 61
- sequentiell, 61, 65 f
- Eingabezeile, 62
- Fehlerantwort, 67
- PEARL-codiert, 68
Shellfunktion als PEARL-Unterprogramm, 349 ff
Shellmodul, TS-Record681
Shellprozef3

Stichwortverzeichnis 709

- Begriff, 55
- Begriffsdefinition, 20
- Fehlerantwort, 67
- Typen, 55 f
- Wartezustand, 62
- #XCMMD, 56
- abbrechen, 62
- primér, 55 f
- Ausgabe umlenken, 179, 184
- Eingabe umlenken, 152, 183
- Fehlerantwort, 67
- Fehlermeldung umlenken, 144, 182
- Parameter dndern, 63
- Prioritéat, 59
- User-Environment, 56
- sekundér, 56, 59
- Datenausgabe umlenken, 63
- Fehlerantwort, 67
- Parameter &ndern, 63
- abbrechen, 62
- definieren, 126
- erzeugen, 62, 477
Shellskript, 76
Shellsprache
- Ablaufsteuerung, 81 ff
- Ausfithrung, 58
- Bedingungsanweisungen, 84
- E/A-Befehle, 80 f
- Interpreter-Subtask suspendieren, 91
- Interpretervariable 16schen, 91
- Kommentar, 76
- Metazeichen, 77, 93
- Positionsparameter verandern, 90
- Programmschleife abbrechen, 88
- Prozedur
- beenden, 90
- unterbrechen, 91
- Schliisselworte, 92
- Sonderzeichen, 94
- Sprung an Schleifenanfang, 89
- String als Anweisung ausfiihren, 90
- Stringoperation, 85 ff

710 Stichwortverzeichnis

- Subskript aufrufen, 76
- Variable, 77 f
- Wertzuweisung, 78 f
- anzeigen, 87
- vorbesetzte, 93
- ausfithren, 74, 76
Shelltask, TShellprozef3681
SHIFT (Shellsprache), 90
SHOW (Bedienbefehl), 207
Signatur
- Check in PEARL90, 567
- signaturlose Unterprogramme, 569
Skript, TShellskript681
SLEEP (Shellsprache), 91
SM (Bedienbefehl), 208
»oohn“-Prozefl, Tsekundérer Shellprozef3681
Sonderzeichen (RT0S-WORD), Nr. 8
Sonderzeichen (Shellsprache), 94
Spalte (RTOS-WORD)
- max. zuldssige Anzahl, 227
- physikalische anlaufen, Nr. 34
Speichersektion (Shell-Modul), 57
Speicherzelleninhalt
- &ndern, 208
- anzeigen, 132
ST
(PEARL-UP), 331
Stationsparameter anzeigen, 125
Status dndern (RT0OS-WORD), 233 ff
Status einer Task, 153
Statusmeldungen (RTOS-WORD), 269
Statuszeile (RTOS-WORD), 230
String (RTOS-WORD)
- einfiigen, Nr. 88
- suchen, Nr. 63, Nr. 85
- suchen und ersetzen, Nr. 86
- suchen/ersetzen wiederholen, Nr. 87
Stringoperation
- PEARL-UP, 355 ff
- Shellsprache, 85 ff
- Trap, 465, 504, 515
SU (Bedienbefehl), TSUSPENDG81

Stichwortverzeichnis 711

Supervisorprozefl
- Begriffsdefinition, 20
SUSP (Shellsprache), 91
SUSPEND (Bedienbefehl), 210
Symbol, globales (Scheibenkonzept), 654
SYNC (Bedienbefehl), 211
SYNC (PEARL-UP), 336
System
- Beschreibung, 621
- Grundzustand, 27
- Implementierungsstufen, 623
- Tastatureingabe, 28
- Zusatzscheiben, 624
- einschalten, 27
- erweitern, 624
- konfigurieren, 621
- modifizieren, 622
- Datenstation, 625
- E/A-Treiber einbinden, 628
- PEARL-Programm einbinden, 626
Systemprogramm
- Begriffsdefinition, 18
Systemtask
- E/A-Treiber, 604
- Scheibenkonzept, 634
Systemtrap, [Trap681

T (Bedienbefehl), TTERMINATE6S81
T-Code, 415, 425
- Konditionierte Befehle, 427
- Optimieren, 426
Tabulator (RTOS-WORD), 248 f
- Leiste im Textfenster, 231
- Textrand rechts setzen, Nr. 68
- anlaufen, Nr. 54
- 16schen, Nr. 67
- setzen, Nr. 66
Task
- Begriffsdefinition, 20
- Breakpoint
- 16schen, 178
- setzen, 216
- Einplanung 16schen, 64

712 Stichwortverzeichnis

- Name ermitteln (PEARL-UP), 354
- Prioritét, 153
- Status ermitteln (PEARL), 345
- Statusinformation, 153
- Trace-Mode
- ausschalten, 178
- einschalten, 216
- Workspace, 153
- neu organisieren, 513
- Zustand anzeigen, 207
- aktivieren, 64, 100
- Assembler, 452, 454
- bei Ereignis, 224, 453, 473
- fester Zeitpunkt, 105
- implizit, 57
- zeitverzogert, 101
- anzeigen (geladene), 153, 174
- auf niederpriorisierte warten, 535
- ausplanen, 64, 185
- Assembler, 502 f
- beenden, 213
- Assembler, 520-523
- compilieren, 64
- einplanen, 64
- Assembler, 453, 473, 524-526
- fester Zeitpunkt, 105
- zeitverzogert, 101
- zyklisch, 102
- entladen, 64, 221
- Assembler, 523
- fortsetzen, 114
- Assembler, 458-460, 527-529
- bei Ereignis, 224, 459, 474
- fester Zeitpunkt, 105
- zeitverzogert, 101
- gleichpriorisierte bearbeiten, 205
- laden, 64
- suchen
- im RAM, 482 f
- in Speicherverwaltung, 134
- terminieren, 64
- unterbrechen, 210

Stichwortverzeichnis 713

- Assembler, 519, 529
TASKST (PEARL-UP), 345
Terminalunterstiitzungen (RTOS-WORD), 264
TERMINATE (Bedienbefehl), 213
TEST (Shellsprache), 84
Text (RTOS-WORD)
- Arbeitstext wechseln, Nr. 43
- Blockoperationen, 245 ff
- Farbe dndern, Nr. 76
- Fensterbreite &ndern, Nr. 80
- Fensterhohe dndern, Nr. 81
- Marke
- anlaufen, Nr. 70
- setzen, Nr. 69
- Seite
- vorblattern, Nr. 37, Nr. 39
- zuriickblédttern, Nr. 38
- String
- einfiigen, Nr. 88
- suchen, Nr. 63, Nr. 85
- suchen und ersetzen, Nr. 86
- suchen/ersetzen wiederholen, Nr. 87
- Zeichen loschen, Nr. 5
- an Datei anhingen, Nr. 44
- blattern, 239 ff
- einfiigen
- Leerzeichen, Nr. 7
- Leerzeile, Nr. 6
- Sonderzeichen, Nr. 8
- Zeilenpuffer, Nr. 62
- einriicken, Nr. 3, Nr. 54
- 16schen
- Wortende, Nr. 23
- Zeichen, Nr. 5, Nr. 22
- Zeile, Nr. 24
- bis zum Zeilenanfang, Nr. 26
- bis zum Zeilenende, Nr. 25
- 16schen riickgéingig machen, Nr. 27
- Zeile, Nr. 28
- rechten Rand festlegen, Nr. 68
- scrollen
- abwérts, Nr. 35

714

Stichwortverzeichnis

- aufwérts, Nr. 36
Textanalyse, TStringoperatation681
THEN (Shellsprache), 81
Thread

- Begriff, 19
TOCHAR (Shellsprache), 88
TOFIX (Shellsprache), 88
TOIEED (PEARL-UP), 348
TOIEES (PEARL-UP), 348
TORTOD (PEARL-UP), 348
TORTOS (PEARL-UP), 348
TOUCH (Bedienbefehl), 214
TRACE (Bedienbefehl), 216
Trace-Mode

- ausschalten, 178

- einschalten, 216
Transferassembler, 415

- .V—Adressierung, 425

- Nicht umsetzbare 68k-Befehle, 425

Trap

- ASCII-Zahl in Integer wandeln, 480

- Benutzungshinweise, 447
- Boltvariable
- Lesezugriff anfordern, 470
- Lesezugriff freigeben, 490
- Schreibzugriff anfordern, 510
- Schreibzugriff freigeben, 476
- Breakpoint anlaufen, 491 f
- Byte vergleichen, 461
- CE
- anlegen, 475

- aus Warteschlange entnehmen, 530

- freigeben, 506

- in Warteschlange einreihen, 494, 545

- Cache 16schen, 455
- Datum
- einstellen, 518
- in ASCII wandeln, 462

- Device-Parameter-Differenz, 468

- Dispatcher
- aufrufen, 467
- sperren, 495

Stichwortverzeichnis 715

- Fehlermeldung
- ausgeben, 471 f
- spezifizieren, 463 f
- Feldindex testen, 484-489
- Hyperprozessor einschalten, 532
- Interrupt
- freigeben, 469
- simulieren, 533
- sperren, 466, 495
- Modul suchen, 479
- Peripherie-E/A, 500 f
- Prozedur-Workspace
- freigeben, 511
- suchen, 496
- Scheibe suchen, 517
- Semaphore
- testweise anfordern, 534
- Semaphorvariable, 508 f
- Shellprozef} erzeugen (sekundéren), 477
- Stringoperation
- Delimiter suchen, 465
- Leerzeichen iiberlesen, 515
- Strings vergleichen, 504
- Tabelle der, 449
- Task
- aktivieren, 452, 454
- auf niederpriorisierte warten, 535
- ausplanen, 502 f
- beenden, 520-523
- einplanen, 453, 473, 524-526
- entladen, 523
- fortsetzen, 458, 460, 474, 527-529
- suchen, 482 f
- unterbrechen, 519, 529
- Task-Workspace neu organisieren, 513
- Uhrzeit
- berechnen, 493
- einstellen, 518
- in ASCII wandeln, 457
- lesen, 505
- Warteschlange analysieren, 481
- Workspace

716 Stichwortverzeichnis

- freigeben, 516
- suchen, 538-543
- anschlieflen (Scheibenkonzept), 650
- benutzereigen, 451
Treibertask, 604
TRIGGER (Bedienbefehl), 219
TRUE (Shellsprache), 84
TYPE (Bedienbefehl), 220

Uberschreibmodus (RTos-WORD), Nr. 1
Uhrzeit
- anzeigen, 112
- bei Systemiiberlastung, 112
- berechnen, 493
- einstellen
- Assembler, 518
- PEARL, 113
- lesen
- Assembler, 505
- PEARL, 341
/UL-Datenstation, 385 ff
Umstellung
- Assemblerunterprogramme von PEARLS0 auf PEARL90,
582
UNLOAD (Bedienbefehl), 221
UNLOCK (Bedienbefehl), 666
UNSET (Shellsprache), 91
UNTIL (Shellsprache), 83
User-Environment
- Beschreibung, 60 f
- Fehlermeldepuffer, 46
- Parameter, 60
- Ubergabe an Shellskript, 58
- Variable, 142
- in PEARL abfragen, 351
- wo es ist, 56
User-Identifikation, 99
- Netzshellprozef3, 99
- Parameter, 99
Usernummer feststellen (PEARL-UP), 353

Variable
- Shellsprache, 77 f
- User-Environment, 142

Stichwortverzeichnis 717

- Wertzuweisung (Shellsprache), 78 f
,, Vater“-Prozef}, Tprimérer Shellproze3681
Verwaltungsblock, 547
Verwaltungskopf, 547
Verzeichnis

- Inhalt anzeigen, 128, 146, 660

- einrichten, 175

- 16schen, 175, 198
Voll-Duplex-Betrieb (Datenstation), 398

WAIT (Bedienbefehl), 223
Warmstart, 652
Warnung

- /BU-Station, 392

- Compile-Zeit-Meldungen (PEARL), 378

- wiedereintrittsfeste Assemblerprogramme, 371
Warteschlange

- Betreuungstask, 49

- CE einreihen, 494, 545

- CE entnehmen, 530

- analysieren, 481
WHEN (Bedienbefehl), 224
WHILE (Shellsprache), 83
WHO (Bedienbefehl), 225
Window-Modus (RT0S-WORD), 232
Working-Directory

- Pathléange, 108

- User-Environment, 60

- &ndern, 107, 119

- anzeigen, 107, 189

- bei OPEN-Anweisung, 42

- ermitteln (PEARL-UP), 363
Workspace

- Task-, 153

- freigeben, 511, 516

- suchen, 538-543
Wortende 16schen (RTOS-WORD), Nr. 23
Wortumbruch (RTOS-WORD), Nr. 4
WRITE (PEARL-UP), 338

/XC-Datenstation, 411
XHELP (Bedienbefehl, 151

Zahlenformat

718 Stichwortverzeichnis

- Konvertierung IEEE — RTOS, 348
- Konvertierung RTOS — IEEE, 348
Zeichen (RTOS-WORD)
- einfiigen, TEinsetzmodus (RT0s-WORD)236
- Leerzeichen, Nr. 7
- l6schen, Nr. 5
- links von Cursor, Nr. 22
Zeichenkettenanalyse, TStringoperation681
Zeigervariablen
- als Prozedurparameter, 325
- auf Felder, 326
Zeigervariablen (PEARL), 323
- manipulieren, 342
Zeile (RTOS-WORD)
- Leer einfiigen, Nr. 6
- "nendesignal, Nr. 2
- "nnumerierung aktualisieren, Nr. 75
- anlaufen
- logische, Nr. 33
- physikalische, Nr. 32
- 16schen, Nr. 24
- Zeilenanfang, Nr. 26
- Zeilenende, Nr. 25
- logische, 230
- max. zuléssige Anzahl, 227
- physikalische, 230
- umbrechen, Nr. 21
Zeilennummer
- anzeigen (aktive Task), 131
Zeilenpuffer (RTOs-WORD), 247 f
- Inhalt suchen, Nr. 63
- Zeilenende in Puffer kopieren, Nr. 61
- editieren, Nr. 64
- einfiigen, Nr. 62
Zeilenumbruch (RT0s-WORD), Nr. 21
Zufallszahlen (PEARL), 344
Zyklische Einplanung von Tasks , 102

	RTOS--UH
	Vorwort
	Inhaltsverzeichnis
	Tabellenverzeichnis
	Die innere Architektur
	Was muß der Systemanwender wissen?
	Programme, Prozesse und Kontext
	Beschreibung des RTOS--UH-Prozeßmodelles
	Das I/O-System

	Betriebssystem RTOS--UH
	Schnellkurs Teil 1: Erste Schritte
	Einschalten
	Erste Aktion
	PEARL--Programmentwicklung
	Retten des Programmes auf Platte oder Diskette
	Zeit sparen durch Multitasking
	Das Bediensystem in Kürze
	Empfehlung für das weitere Anlernen

	Schnellkurs Teil 2: Schnittstellen und Dations
	Schnellkurs Teil 3: Typische Bedienungsfehler
	Interpretation von Fehlermeldungen
	Der Error-Dämon
	Beispiele für Fehlermeldungen
	Der Exception-Handler

	Das Pathlist-Konzept von RTOS--UH/PEARL
	Einige technische Daten

	Bedienung des Systems
	Struktur der RTOS-Shell
	Die 8 Ebenen der Shell
	Prozeßphilosophie der RTOS--UH--Shell
	Das User-Environment

	Umgang mit der Shell
	Aufbau der Anweisungszeile
	Bedienung durch den primären Shellprozeß
	Bedienung durch einen sekundären Shellprozeß
	Bedienfunktionen mit Hilfe der Datenstation /XC
	Zeitliche Hintereinanderschaltung von Befehlen
	Antwort der Shell im Fehlerfall

	PEARL--codierte Bedienbefehle
	Besonderheiten bei transienten Kommandos
	Die Shell-Sprache
	Aufruf von Shellskripten
	Sprachumfang Shell-Interpreter
	Kommentare
	Metazeichen
	Shell-Variablen
	E/A-Befehle
	Ablaufsteueranweisungen
	Bedingungs-Anweisungen
	Zeichenketten-Behandlung
	Verschiedene Anweisungen

	Tabelle der Bedienbefehle
	Beschreibung der Bedienbefehle

	Der Editor Rtos-Word
	Einleitung
	Erste Schritte
	Öffnen einer Datei
	Statuszeile, Tabulatorleiste und Fensteraufbau
	Fenster-Elemente im Window-Modus

	Bearbeitung von Texten
	Beschreibung der Bedienbefehle
	Statusänderungen des Editors
	Grundlegende Bearbeitung einer Datei
	Befehle zum Blättern
	Dateibefehle
	Blockbefehle
	Befehle für den Zeilenpuffer
	Tabulatorbefehle
	Marken
	Das Hilfesystem
	Befehle zum Aufräumen
	Zusätzliche Befehle im Window-Modus
	Suchen und Ersetzen
	Ausführen von Batchdateien

	Übergabeparameter des Bedienbefehles
	Die Fernsteuerung
	Alphabetisches Verzeichnis der Kommandos
	Standardmäßig unterstützte Terminals
	Das Konfigurationsmodul
	Die Anpassung an Ihr Terminal
	Beispielmodul

	Besonderheiten bei der Einbindung in das Betriebssystem RTOS-UH
	Statusmeldungen und Eingabeaufforderungen
	Fehlermeldungen
	Technische Daten

	Programmieren in PEARL
	Die PEARL-Compiler-Familie
	Compilertypen und Zielprozessoren
	Sprachliche Besonderheiten des UH--PEARL

	Preprozessor-Anweisungen
	Die Preprozessoranweisung DEFINE
	Die INCLUDE-Anweisung
	Bedingte Kompilation: die Preprozessoranweisung IF
	Bedingte Compilation: Schaltbarer Kommentar

	Globale Sondereinstellungen des Compilers
	SETLINE, MAXERR und MODE
	Modulgröße, ROM-Code
	Codegenerierung unterdrücken

	Lokale Hilfs-- und Testmodi des Compilers
	Übersetzungsprotokoll ein--/ausschalten
	Codeprotokollierung ein--/ausschalten
	Markierungsoption ein--/ausschalten
	Seitenvorschub im Protokoll erzeugen
	Index--, Selektor-- und Parametertest aktivieren
	EPROM--Prozedur erzeugen
	Prozedurparameterstrukturanalyse unterdrücken
	Prozedurarbeitsspeicher reservieren
	Konstantenpool leeren
	Default-PRIO setzen

	Umgang mit Datenstationen in PEARL
	Festlegungen im Systemteil
	Beschreibung AI und MB-Parameter
	Besonderheiten bei der formatierten Eingabe („GET“) im UH--PEARL
	Besonderheiten bei der formatierten Ausgabe („PUT“) im UH--PEARL.
	Erweitertes OPEN/CLOSE--Statement
	E/A--Formate
	Datenkonvertierungsformate
	Steuerformate
	Report- und Positionierungsformate

	Umgang mit Feldern und Zeigern
	Besonderheiten bei Feldzugriffen
	Arbeiten mit Zeigervariablen

	Einbaufunktionen
	Mathematische Funktionen
	Die Funktion „ST“ zur Statusabfrage von Datenstationen
	Bitmapping Basis--Grafik
	Besondere E/A--Operationen
	READ/WRITE
	READ/WRITE mit S-Format
	Die Einbaufunktion NOW
	Die Funktion DATE zum Einlesen des Datums
	Die Einbaufunktion REFADD
	Die Funktion ASSIGN zum Ändern der Datenstation
	Die Funktionen RANF und DRANF zur Erzeugung von Zufallszahlen
	Die Funktion TASKST zum Feststellen eines Taskstatus
	Prozeduren zum Lesen und Ändern der Taskpriorität
	Die Prozeduren TOIEES und TOIEED zur Floatzahl--Wandlung
	Die Prozeduren TORTOS und TORTOD zur Floatzahl--Wandlung
	PEARL-Unterprogramme für Shellfunktionen
	PEARL-Unterprogramme für Textstrings
	PEARL-Unterprogramme für Datenstationen

	Aufruf von C-kodierten Unterprogrammen
	Aufruf von Assembler--Unterprogrammen
	Ausnahmebehandlung und Signale
	Vorgänge im Systemkern
	Exception-Händler in PEARL

	Fehlermeldungen zur Compile--Zeit
	Lokal detektierbare Fehler
	Bilanzdetektierbare Fehler
	Nicht sprachbedingte Abbruchkonditionen
	Warnungen
	Abschlußmeldungen

	Fehlermeldungen zur Laufzeit
	Fehlermeldungen der implementierten mathematischen Einbaufunktionen

	Datenstationen
	Datenstationen Ax, Bx, Cx, UL
	Datenstation BU
	Eigene BU--Datenstation
	Datenstation Dx
	Datenstationen ED/EDB
	Datenstationen Fx/Hx
	Stationszugriff über „LD“
	Datenstation NIL
	Parallel--Port
	Datenstationen VI, VO
	Datenstation XC
	Prozeßinterrupts
	Einbindung eigener Prozeßinterrupts

	Der RTOS--UH Assembler
	Allgemeine Eigenschaften
	Programmzeilenaufbau
	Labelfeld
	Operationsfeld
	Operanden--Feld
	Ausdrücke
	Die Assemblerdirektiven

	Besonderheiten des T-Code
	Problematische 68k-Befehle
	Optimierter T-Code
	Zielmaschinenkonditionierte Befehle
	Formatdefinition

	PowerPC-Assembler
	Tabellenkapazität
	FPU--Befehle und Maxi--Version
	S--Records
	Assembler--Fehlermeldungen
	Einbettung von Assemblerprogrammen
	Beispiele für Modul--/Taskköpfe
	Task-Deklarationsblock

	Innenstrukturen des Systemes
	Die Systemtraps
	Hinweise zur Benutzung der Traps
	Tabelle der Traps

	Das Filesystem
	Der Verwaltungskopf
	Die Datenblöcke
	Eigene Driver für das RTOS--UH-Filesystem

	Das Communication Element
	Benutzung und Aufbau des CE
	Die Modebytes

	Assemblerkodierte PEARL-Unterprogramme
	Parameterübergabe bei PEARL90
	Der Signaturcheck in PEARL90
	Der Feldbeschreibungsblock

	Parameterübergabe im alten PEARL80
	Umstellung von alten Assemblerunterprogrammen auf PEARL90
	Hyperprozessorbefehle
	E/A in Assemblersprache
	Ergänzung von E/A-Treibern
	Exception-Handler
	Einführung
	Anschluß des Exception-Handlers
	Selbstverarbeitete Ausnahmebehandlungen
	Interna

	Das Scheibenkonzept
	Die Systemkonfigurierung
	Modifikation eines Systems
	Beispielhafte Systemerweiterung

	Beschreibung der Scheiben

	Netzwerkoperationen
	Glossar
	Stichwortverzeichnis

